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A NEWVVARIATIONAL PRINCIPLE FOR FINITE
ELASTIC DISPLACEMENTSY
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Aerospace Laboratory, University of Liége, Belgium

Abstract— Variational principles for finite elastic displacements have been formulated in terms of Green
strain and Kirchhoff-Trefftz stress tensors. The first is a functional of the displacement field only and implies
stationarity of the total potential. The second is a canonical principle, in the sense of Friedrichs[1], involving
both stresses and displacements and generalizing Reissner’s principle [5]. In contrast with the geometrically
linearized elasticity theory, it cannot be reduced to a complementary energy principle involving equilibrium
stresses only [9, 10]. The paper discusses the Levinson{9] and Zubov[11] formulation in terms of displace-
ment gradients and the Piola stress tensor, which, however interesting from a theoretical viewpoint, does not
appear suitable for practical applications. A new set of variational principles, of displacement, canonical or
complementary energy types, is found to derive from the use of the polar decomposition theorem of the
jacobian. It involves the engineering strain tensor and its conjugate stress tensor is to be regarded as a
function of the Piola tensor and the material rotation. The complementary energy formulation is discussed
in terms of first order stress functions. The presence of the rotational degrees of freedom opens the possibility
of discretizing the rotational equilibrium equations in approximate solutions.

1. EULERIAN AND LAGRANGIAN STRESS TENSORS
ASSUME, for simplicity, the initial or reference configuration of an elastic body and its
strained or final configuration to be referred to the same cartesian frame. Let x; (i =
1, 2, 3) denote the material coordinates, or coordinates of a material point in the initial
configuration, ¢&; its coordinates in the final configuration. The components of the
displacement vector

a&;ax; = D&, (2)

The determinant of this matrix is denoted by J.
An oriented volume element dV in the initial configuration is constructed on three.
infinitesimal vectors d,,X, d;, X and d, X as

&—x = u;(x;) (1)

are considered to be functions of the material coordinates. In this Lagrangian point of
view, the local transformation from initial to final configurations is governed by the
Jacobian matrix

dV = epup diyxm d(z)xnd(a)xp

where Enayp is the alternatmg tensor. In the final configuration they become respectively
dmf, d(q)f and d(3)§ and generate the volume element

dQ = ey diéidoy€5dm €
= eijchmgianijfkd(l)xmd(z)xnd(:s)xp
= J enup diyXm dioy X, d(3)x11 =JdV. 3)

1The Russian version of this paper was dedicated to Professor B. G. Galerkin’s centenary.
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746 B. FRAEUS de VEUBEKE

Hence J is a measure of the change in volume. Physically the change in configuration
takes place contmuously and the volume element cannot collapse to zero nor change
its orientation, so that :

J>0  everywhere. . @
Thus the Jacobian matrix is invertible; the elements of its inverse are
=0y e (5)

and yield the following useful formulas

x5 Dils =0 Didydpm =8 (6

Tne onented surface elements in the initial and final configuration are respectively
emnn Ay Xn Aoy Xp = Ny dS (@)
ein doy€;dey . = v; A2 D ®
where n,, and v; denote the direction cosines of the normal, taken positive outwards

when the surface belongs to the boundary of the elasttc body under con51derat10n
Since

(Dné)v; dz = eijchmfianijflcdu)xnd(z)xp
=Jempp duyXy doyxp=Jny dS

the surface elements are related by
Ry das = % (Dmfi)vi dz Vi dE == J (aixm)nm ds. (9)

In the strained couﬁguratlon, the ‘true’ or ‘BEulerian’ stress tensor 14 is defined by the
force element : ’

dF;= T,J v; d2, (10)
acting on the oriented surface element. This equation contains the statement of equili-

brium of an infinitesimal tetrahedron, three faces of which are parallel to the coordinate
planes. It can also be written in the equivalent ‘surface equilibrium’ form

Tj"_':Tiji (11)

where the left-hand side represents the ‘surface traction’ components.
In some infinitesimal change of configuration 8u,, the virtual work performed by the
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surface tractions, acting on a closed surface %, bounding the volume (), is measured by
[, aFsdu= [ wryduydS = [ a,(rydu) d, " (12)

the last form deriving from an application of the divergence theorem. The statemeni
of conservation of energy for the hyperelastic body can thus be written in the form

5 [  pUd= J , {pgsdus+3i(ryBuy)} A (13)
where U is the specific strain energy (per unit mass), p the mass per unit volume in the

strained configuration and g; the acceleration components of body forces. Noting that
p d Q, which is the mass of a particle, is an invariant,

8fﬂpUdQ=fnp8UdQ

and (13) implies
pdU = pg;du;+ 8;(7;;0u;). (14)
In particular, when 8u; is a constant vector, the relative translation of the volume

element produces no increase in strain energy and we get the translational equilibrium
equations

pg;+di7y =0, . )
that reduce (14) to the simpler form
p8U = 70, 8u;. : (16)
There is likewise no strain energy increase if | |
0u; = ejmn(dewm)&n, (17)
representing an infinitesimal rigid body rotation about the origin, superimposed on the
strained configuration and characterized by the constant but arbitrary rotation vector
dw,. In this case (16) reduces to the rotational equilibrium conditions:
Tij€jmn0i €n = Ty =0 (m=1,2,3), (18)
which are equivalent to the symmetry statements |
=T L) (19)
Because the equilibrium conditions for the Eulerian stress tensor‘reduce to sixﬁple

symmetry (19) or to differential equations (15) that are linear in space (final) coordi-
nates, the Eulerian formulation, so commonly used in Fluid Mechanics, is also tempting
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at first: sight to deal with Elasticity problems involving finite displacements. It is how-
ever, like Fluid Mechanics, restricted to isotropic constitutive equations. For fibrous
materials, for instance, the constitutive equations can only be set up in a configuration
where the local orientation of fibers is known; this is usually the initial configuration.
In the strained configuration the fibers are reoriented by the local material rotations,
whose ‘amplitudes are not restricted in the non linear theory. As a consequence the
constitutive equations depend not only on the Eulerian or Almansi strain measure but
also on the local rotations, which complicates matters considerably. Furthermore the
‘bBoundary conditions are also modified by the motion of the bounding surfaces.

These considerations motivate a return to material coordinates. This is achieved by
expressing .the .force element in (10) in terms of the initial oriented surface element.

The combination of (9) and (10)

dF, = 1,0 (3xm)m dS

introduces the Lagrangian or Piola stress tensor f,,; -

b = T35 0iXm o (20)
so that R > :
dF; —tm,nmdS e . (21)

In thls operatlon the force element has been sunply translated from the ﬁnal to the

initial surface element and the virtual work has been kept invariant. Application of the

divergence theorem on the initial configuration yields now
/ | dF;8u;= | My 4S = |  Dultns15) V. )

With p, denoting the mass per unit volume in the initial configuration, conservation of
energy can be stated in the form

8 fV poU dV = fV {Pogjauj+ Dm(tmjsuj)} dav

and implies

W = pogsSu;+ Dyltmsduy) ~  (23)
where, for concision of notation, the strain energy per unit initial volume W = poU
was introduced.

- The translational equilibﬁum equatic'ns. are again obtained as the special case §W =
0, when the 8u; are arbitrary constants, yielding

Po8it Dntm; =0 (j=1,2,3). 249

Hence the Piola tensor satlsﬁes lmear dlfferentlal equatlons 1n matenal coordmates,
they reduce (23) to '

SW = 1, Dbty - @
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The rotational equilibrium equations are however non-linear; they are obtained by
substitution of (17) with again 8W = 0, whence

CimnlgiDebn =0 (m=1,2,3). (26)
The last factor is no more a simple Kronecker delta but, in view of (1),
Dt = Dgx,, + Dy, = 8gm+ D glty,. 27

Geometrical linearization of elasticity theory implies that we consider the displacement
gradients as negligible before unity

| Dttr| <1, (28)

in which case the second term in the right-hand side of (27) can be neglected when
substituted into (26) and we would again obtain a statement of symmetry for the Piola
stress tensor. As a matter of fact the linearizing assumption is easily seen to make the
Piola tensor and the Eulerian stress tensor undistinguishable. Even in the case of
infinitesimal strains, finite rotations causes assumptions (28) not to be satisfied and the
general form (26) of rotational equilibrium, showing the Piola tensor not to be symme-
trical, must be retained. It can be stated in the equivalent form

tgiDobm = tgnDo;. (29)

2. KIRCHHOFF-TREFFTZ TENSOR

Material coordinates allow to perform all integrations and to state boundary
conditions on the known and fixed initial configuration; in addition they allow to com-
mute partial derivatives and variations

D g8u; = D o{il;(x) — t4(X0) } = Dgit;— Dgt; = 8D g5
so that equation (25) of conservation of energy becomes that of a perfect differential
SW = ty8e, \ - (30)
eq = Dyt (€2))

The energy per unit volume is thus a function of the nine displacement gradients e,;
and

Additional information as to the structure of the function W is provided by the rota-
tional equilibrium equations. One way to obtain this information is to rewrite (29),
using (27), 31) and (32), as
| oW, W W W

demi ey dem  © deqm (33)
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For m = j those equations are trivially satisfied, for m # j they constitute a set of three
linear partial differential equations for W, that are easily solved by the method of
characteristics.

" "For instance, for m = 1 and = 2, the differential equations of the characteristics
~are : ; petenilal &4 s Of

de —~de,, dey, de —de, —des,
12 .. — = U3 1 31

I+e; 1+es €21 €31 €19 €39

_deyg  dess  degs d_I’Z

Simple first integrals of those equations, that is functions of the e, that are arbitrary
constants under those differential relations, are readily found to be

2ey +ed, ek, Qe+ el €k, 10t eny €185+ €150,
ey ey 831+ €100, €30 €585+ €593, e§1 + 6’%2
and, )
" €313, €93, €33.
The symmetrical Green or Lagrangian strain tensor g,,,, issued from the quadratic form

dfj dfj — dx, dx, = 2gun d-xm dxna 4 (35) )
has six elements ‘ :
Bnm = Bmn ™ %(Dmf D& — Omn) = $emn + enm + enge i) (36)

that are algebraic combinations of the preceding first integrals and are, consequently,
first integrals themselves. They are the only combinations that remain first integrals of
the two othersets (m =2,j=3andm = 3,j= 1).

Moreover W is seen to be constant itself. The conclusion is that the strain energy
per unit initial volume is a function of the nine displacements gradients e, through
the six independent coordinates of the Green strain tensor g,,,.

A different proof of this result introduces in a natural way the symmetrical Kirch-
hoff-Trefftz stress tensor s,. The rotational equilibrium equations (29) are satisfied
by setting

ty= Sy D i; 37)
provided
$p0 = Sep. (38)
Equation (30) becomes then , :
OW = sppDp&;8eg; (39

but also, exchanging the dummy subscripts g and p and using the symmetry of s,
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SW = 55D, &;8ep;
or, adding both results,
28W = $qp(Dp&;6e4;+ Dy€;8ep;).
The bracket, however, is, in view of @7,
8egp -+ p; €4+ By €450€5;
= 8(egp T €pgt €pi€ys) = 268
and we obtain finally
W = 5,,88 - (40)
Provided we convene to distinguish the order of the subscripts in g, and to express W
symmetrically in terms of the six quantities $(g, -+ g»q), the constitutive equations or
stress—strain relations can be summarized by
Sqp = 0W[0gep. 41)

They contain the symmetry statements s,, = $,, €quivalent to the rotational equilib-
rium conditions. By the chain rule of differentiation and use of this symmetry

_ W 0gm

= S %(amqﬁnj + 8,90mi + Omq€ni BugComs )
ag mn de aj

qj
= SmnOma(On; + €n3) = SqnDré;
we retrieve definition (37).

Trefftz [3] gave the geometrical interpretation of the stress tensor s,,. In the strained
configuration the convected material coordinates constitute a set of curvilinear coordi-
nates with local base vectors

Gi=Dif = Di;3,. (42)
The corresponding fundamental metric tensor is
Gin=G;.Gn=D;§D,¢e;. &,
and, since the base vectors &; of the cartesian frame are orthonormal,

Gin= D& D& = 28im+ Oim- (43)

This fundamental metric tensor is in fact Cauchy’s definition of the strain measure and
is thus not fundamentally different from Green’s strain tensor. Using in succession
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equations (21), (37) and (42), the force element expression that is obtained
dF = dF;Z, 365 = tgiedS & = Sppn,dS Dy &€= St dS G, e - (44).

still associates the Kirchhoff-Treiftz— tensor with-a deﬁnition per unit initial area; but
this time in the metric induced by the deformation.

3. THE PRINCIPLE OF VARIATION OF DISPLACEMENTS
With kinematical boundary conditions imposed on displacements

w;= ;> 8u; =0 on S (45)

and Lagrangian surface tractions f; imposed on the complementary part S, of the sur-
face S, bounding the simply connected domain V, the sumof strain energy and potential
energy of loads

P= fV WdV~fV pggjujdV—fsz tu;dS ~ (46)

is a functional of the displacement field that is. stationar.y_undef arbitrary variations
éu; respecting (45). As proof we can use (25) and obtain, after integration by parts, the
Euler equations

o Dqlaj_}'pogi,:mo (J = 11 2’ 3)
and natural boundary conditions
nqtqi = IJ' (J = ls 2: 3) on SZ: (4‘7)

expressing all equilibrium conditions, except rotational equilibrium, As observed ear-
lier, rotational equilibrium becomes integrated in the principle provided W be con-
sidered to depend on the displacement gradients through the Green stram tensor. This

is equivalent to replace (25) by (39) and (31), or '

SW = 55D p&;D 1 48)

and produces the other equilibrium equations in the form given by Signorini:
Dy(sppDpé;) + Po8; = 0 , 49
neSepDyé;=1; on Sz- (50)

4. THE CANONICAL PRINCIPLE BASED ON KIRCHHOFF-TREFFTZ STRESSES
AND GREEN STRAINS

Starting from this last formulation, a ‘canonical’ variational principle in the sense
of Friedrichs[1] (see also Courant and Hilbert[2]) is obtained by addition of a ‘disloca-
tion potential’

D = f  £30(Datty + Dyttg+ Dot Dyt~ 28,) AV
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in which the s, are momentarily considered to be a set of Lagrangian multipliers.
Their object is to transfer the differential constraints between Green strains and
displacements, obtained by substitution of (31) into (36), from the status of a priori
equations necessary to obtain (48) to a status of Euler equations. They are indeed the
variational equations associated to variation of the multipliers in the extended prin-
ciple 5(P+D) =0,

This principle is a three-field principle, since, in addition to the field of Lagrangian
multipliers, the field of the Green tensor g,, has now become independant from the
displacement field. Consequently W is now considered to depend on the g,,. The
variational equations associated to variations on. the g, turn out to be identical to
equations (41), thus identifying the Lagrangian multipliers with the Kirchhoff-Trefftz
stresses related to the strains in the constitutive equations.

This allows the three-field principle to be simplified by accepting the constitutive
equations to be satisfied a priori. Indeed, grouping all terms containing the Green
strain tensor, the following contact transformation is suggested

Sap8ap— W = S8 (Smn) (5D
which would remove the presence of the g,,, and lead to the ‘canonical form’
fv {38ap(D ity + Dyity=+ D gy Dyu;) — S} AV
— fv pog;it; dV — fsz t;u;dS  stationary. (52)

The function S of the Kirchhoff-Trefftz tensor is a ‘complementary energy density’.
Its existence and uniqueness imply that the constitutive equations (41) establish a one
to one correspondance between stresses and strains, they must have a unique inverse.
This inverse can then be written as :

gqp:as/asqp (53)

provided § be expressed in a symmetrical form.

The variational equations of the canonical two-field principle (52) are the Signorini
equilibrium equations (49) and (50) and, associated to the variations of the Kirchhoff-
Trefftz stresses, the compatibility equations

3(Dgitp+ Dpttg+ Do D pty) = 8[05p,. (54)

This canonical principle obviously constitutes a generalization to finite displacements
of the Reissner principle of linear elasticity theory. 1t was discovered independantly by
Reissner[5] and the author.

In the linearized case, assumptions (28) allow to discard the term D ;D u;in (52)
and to replace D,¢; by the Kronecker 8,; in the Signorini equations. Then, if the func-
tional (52) is integrated by parts and if the stresses are assumed to satisfy the Signorini
equations a priori, one obtains the complementary energy principle

- f . §dV+ f ¢ N4Sepil, S  stationary.
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It is a single-field principle involving only stresses in equilibrium. Its generalization,
when assumptions (28) are discarded, is known to fail when attempted on the present
formulation [9 10] o , e

5 ‘-VMARIATIONAL FORMULATIONS BASED ON THE PIOLA AND
DISPLACEMENT GRADIENT TENSORS

Levinson[9] pointed out that a complementary energy principle for finite displace-
ments could be obtained on the condition that the contact transformation -

tm' - W T(tmn) - . ﬁ,;, (55) :

would exist, in which case

egi= dT oty —— -~ o = (56)

This would furnish a canonical principle, akin to (52)
I, D= ¥ = J, posis V[ tysdS stationary.  (57)

Then, 1ntegratlon by parts and a priori satisfaction of the ethbnum equations (24) and
(47) would give the complementary energy principle

—[, T+ [ ntuads sationary. O (58)

Zubov[11] proposed a method for computing 7 in the case of an isotropic medium
and performed the computation for a semilinear material. However, in the general
case, it is not known whether a one to one correspondance between g, and s,,, will be
sufficient to guarantee the existence of contact transformation (55). In this connexion
the following observations can be made. Equations (30) or (32) hold true, whether or
not the rotational equilibrium equations are satisfied. If they are, we know that W has a
special structure, which must be reflected in a corresponding structure for 7. Indeed,
if T exists, we can use (56) to place the rotational equilibrium equations (29), or,
equivalently,

t‘lj(aqm+ eqm) = tqm(Sq,+ eqj)
in the form

3T
g+ oy — tjm+tqm£ j#m (59)

ol g Otg;

of a set of 3 partial differential equations to be satisfied by T. Integration by the method
of characteristics yields the result

T(tmn) = — (t1r+ ton+ t33) + F (tulni). (60)

Thus*the structure of T comprises a function to be determined in the elements of the
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symmetrical tensor
Tnn = tot - (61)
In view of (37) and (53) it can be expressed in terms of the Kircﬁhoﬁ’-—Trefftz tensor

T in = SmaSnpD a€iDpé; = SaSup(28€ qp+ 84p), OT,

Twn= 2qusnzfaTS_’{" SmaSng. (62)

05 qp
Furthermore, Levinson’s contact transformation can be rewritten in the form
tuDoli—W =ty(ey+8y)—W=T+t,=F
and, using (37) once again,
SapDp€iDof;i— W = 584p(280p+8p)— W =F
or
F =258+ Sqa—W. (63)

If we accept the existence of the contact transformation (51), the function F, is expres-
sible in terms of the Kirchhoff-Trefftz stresses. We have thus obtained the following
result: the existence of contact transformation (51), which is in the nature of a physical
assumption, guarantees the existence of contact transformation (55), provided equa-
tions (62) are invertible. The existence and unicity problem for the inversion of non-
linear equations (62) can be handled theoretically by the implicit functions theorem.
The result would however be useless for practical applications and this approach will
not be pursued. '

6. A CANONICAL VARIATIONAL PRINCIPLE BASED ON THE POLAR
DECOMPOSITION
The Jacobian matrix (2) has a unique decomposition
D= aj7n(67ni+ hmi) (64)
interms of a Lagrangian measure of strain
Noni = him (65)
and a rigid body rotation operator o

Ogm O = Omn X Cpm = 6jz:: Iajml = 1. (66)

Through this decomposition a neighborhood of the medium is first strained ancie&ﬂ‘@f’l%%
(23

()

o
g 0 3
-
g 9
.

@
gpag - 32
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wards rotated. The strain tensor h,,; is related to the Green tensor through

Diijpr O O (O + hmi)(ﬁnp'l" Nup)
= 8yn(Bmi + Ani) (Brp + hnp)
= (8 + 1) (Onp + hap)

or, finally, using the symmetry properties (65),
Zgip = 2hip + hinhnp- ) X (67)

Because of (4) the relatlon is known to be one—one. The tensors are co-ax1a1 and ina
set of principal axes, their diagonal elements are related as follows:

2ei=2h+R . ((=1,2,3). .. " (68)
Then, because (4) implies
1+2g;>0  and 1-+h; > 0, 69)
the unique inverse fo (68)is
=-1+Vi+2s. (70)

For -commodity thé tensor h,,; will be called the ‘engineering strain tensor’; this is
justified by the fact that the principal strains can be defined, as in the linearized case,
by the usual engineering formula »

dO'i “'.dsi

hi ==
dsi

ds; and do; being the elementary distances measured before and after straining along
the principal directions. In fact, for infinitesimal strains, (67) shows that the Green and
engineering strain measures become identical. S

The one to one correspondance that exists, even for finite strams, estabhshes that
W can also be considered to be a function of the engineering strains and that a new
symmetrical stress tensor can be introduced by

P = OW[3hs. an
From (67) B ' o
agip = Ship +%hin8hnp + T‘lihnpShin

and (40) can be manipulated as follows
W = 51,081p = SipOhip +58ip Nin OMnp + 3510 ip SPip.

In the second right hand term exchange the dummy subscripts » and i, and p and r in
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the third, then
‘ oW = (Sizz +%Snphni + %Sinhpn) ahip'
The bracket is clearly symmetncal in the subscripts i and p, so that by identification
with
W = l‘ipﬁhip : (72)

the following relationship is established between the new stress tensor and the Kirch-
hoff-Trefftz one: :

Fip = Sip+ 3hinSnp + 351 hnp. (73)
In the case of infinitesimal strains, but even for finite rotations, both tensors are

clearly coalescent. Then, invertible stress—strain relations of type (41) are equivalent to
invertible relations of type (71) and the following diagram of one to one relationship

Sip > 8ip <> hip > 1y (74)

shows (73) to be invertible.
Introducing the polar decomposition (64) into definition (37)

tej = SaqpQim(Omp+ hmp) ) . ' (75)

showing that, in view of (74), the nine components of the Piola tensor are determined
by the six components of the Kirchhoff-Trefftz tensor and the three effective para-
meters of the material rotation.
From (75) follows also
Lqi O = Sqp(Bnp + Hup) = Sqn + Sap Mom

and, in view of (73),

Fan = 3(tg O+ tnj0iq). » (76)
To the functional P, given by (46), we add a dislocation potential that removes the
differential constraints (64) of the polar decomposition and consider W to be a function

of the engineering strain tensor. Since the use of (71) implies that W be expressed
symmetrically with respect to A, and h,, we take care to do the same for the disloca-

tion potential:
A= f { &—om (am1+h"‘i;’him>}dy. | o

The variational equation corresponding 10 8h,, in S(P+A) = 0is
W [0han = $(tg; 0+ tnj Qtiq)

which corresponds to (76), rq, being regarded as given by the constitutive equations
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in the form of (71). This can serve to identify the set of multipliers of the dislocation
potential as the Piola stress tensor. The variational equations corresponding to the
rotational degrees of freedom are obtained as follows:

'a,mam an — a,n‘o‘oz,m 3 aJmSam 8w,,m “skew- symmetnc

and consequently,
V-Sajm = ajnswmn- . ) . (78)

Substituting this into 8(P+A) =0, there comes
115 03 Brni + Fis) men 0

or, on-account of the skew-symmetry-of- 8m,,m, T

L5 Qin(Bmi + imi) = LigOim(Bni + Fns).
Multiplying by oy, 0m, it becomes

oGOt ) = lionBus+ )
and, in view of (64), reduces to the known rotational equilibrium form

| toDifa= tuDiy.

Thus, as could be suspected the rotational degrees of freedom i in the prmmple have the
" rotational equilibrium conditions as variational equations.,

We now simplify the principle by grouping the terms containing the A,

At hy
?ij ajme_‘ w.

Exchange the dummy subscripts / and m in the second term, to obtain in view of (76)
,m,;(t ajm+ t,maﬁ) W [ - - |14

which suggests again a contact transformation:
PP~ W = R(rpg) My = OR[3F . (79

For infinitesimal strains this transformation is identical to (51) and will be assumed to
exist; in other words (71) is assumed to have a umque inverse. Note also that for q=
n=m, (76) gives , :

Piit Yot rag = Fum = by Qjm,

and that
13D &= (8 + Dig) = 15+ ;D15
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The canonical form of the variational principle can now be given as
[ @sDus+t5—rum—RYAV — [ pogu;dV — [ tu;dS  stationary.  (80)
v Vv Sa2
It contains as independant variables, the displacements i, the Piola stress tensor f;;
and the 3 rotational degrees of freedom that appear in the ‘auxiliary’ variables (76). Its

variational equations are (24) and (47), together with

Y
Dyt~ 8pg— agp — hy Ty

=0 for &ty
0 rq

that is easily recognized to be a disguised form of the polar decomposition

Dy &, = 0tgn(8np+ hng).

Also for
B0y = Olyp By
OFmm . OR Or
o IR Oa)
(6 Cuy  OFgy G0ty Gew Oop
or
[tvu +:‘15(hqvtqu + hvntnu)] aupsva =0

or

bl Oy 7+ Pny) Oty = Ly (B + hnp) Oy
a disguised form of the rotational equilibrium conditions.

7. THE COMPLEMENTARY ENERGY PRINCIPLE BASED ON THE POLAR
DECOMPOSITION

It suffices now to integrate by parts in (80) and to assume the equilibrium equations
(24) and (47) satisfied to reduce the principle to a complementary energy form

fV = rmm—R) dV—I—fS Aptm; 8;dS  stationary. 81
Because the rotational degrees of freedom are still free and rotational equilibrium is

still cared for by the principle itself, satisfaction of the translational equilibrium
" equations requires only “first order’ stress functions. For instance

tmj = emrsDrAsj (82)
satisfies equations (24) in the absence of body loads and introduces a tensor 4 of
functions. that generate the Piola stresses by their first derivatives. Then, provided we

satisfy a priori

emrsanrAsjztj on SZ’ (83)
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and consider the auxiliary variables (76) to represent
e P = 3l O Cprs Oi) DAy, (84)

we -obtain--a-principle goVerning- the-first order stress-functions.-A-satisfactory-treat-
ment of the natural boundary conditions requires that (83) be- incorporated into (81)
by means of Lagrangian multipliers; this transforms (81) into : o

[ = rum—R)AV+ [ npitsty;dS— [ uyt,dS- stationary (85)

where the u; are imposed displacements con §, but free Lagrangian multipliers, that are
of course identified to the surface displacements, on S,. Preparatory calculations based
on (78), (79), (82) and (84), yleld
8 ejrsD 8Asj
O = €prs Oyp D rAsj 8wnp + emrs i Dy 84

R = emrshmn(ajpD rAstCan +ay, D raAsj)-

From them, the variational etluatibris associated with the skew-symmetric variations
dw,, (rotational equilibrium equations) are obtained in the form

emrsDrA sj{ Uip (Smh’+ hnin) - ajn(amp + hmp)} = 0. : ' (86)

The variational equations associated to 84, follow from an integration by parts as

emrsDr{ajn(amn+ hu)} =0 all  (s,7). 87

They are equivalent to the equations obtained from the polar decomposition (64) on
eliminating the displacements by cross-differentiation. Hence they can be considered
as the local integrability conditions for a displacement field. The surface terms, con-
taining Varlatmns of the stress functions, are collected below:

fS {ejrs Ry == Eprs Ny ajn(ﬁmn + hmn) } 6A"lsj ds + fS emrsnmujDr 8Asj ds=0 (88)

and the second integral requires manipulation to remove the derivatives of the varia-
tions. To this effect we use Stokes theorem

$ b ds--j roth.7 ds,

according to which the circulation of vector b around a closed contour c is equal to the
flux of rot b through the surface S’ bordered by this contour. Let §” denote a second
surface bordered by the same contour and modify the orientation of the normal on it so
that it points away from the volume ¥ comprized between both surfaces. Then’

f}gcz.d§’=—fsurot5.ﬁ'ds
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and, subtracting both formulas,
[ roth.7#dS = [ eunnnD,b,dS =0
8§ s

where S is the complete surface bounding the volume. Thus, if in the second integral of
(88) we observe that

UJ'DT SASJ' S D,.(uj 8Asj) - D,-Uj . SAsj 5

only the second term will contribute. The natural boundary conditions resulting from
the free variations 64 0n S are consequently:

Cirs My = Emyg {’zr ajn(amn + hmn) + anr uj } = O (89)
Since

3
Emps iy Dy 1ty = (X grad 1;)s

they involve only surface derivatives of the data if; on 5. .
They are also seen to be identically satisfied by using the polar decomposition

ajn(amn + hmn) = D m fj = 8mj + D muj
giving
Cirs My = Crrs My By — Conps Ny Dyl — s M D u; =0,

The two first terms cancel and, exchanging the dummy subscripts » and m in the third
and noting that e, = — €ps,

Emrs - nm(Dr U;— Dr uj) =0

8. LINEARIZED VERSION OF THE COMPLEMENTARY ENERGY PRINCIPLE
Assuming very small rotations, we can write

Qi = Oy + Wiy 90)
where

Wiy =~y and |wmi| < 1. 91)
The following approximations can then be introduced. To lowest order

rqm = %(tmn + t?lll]) (92)

as arguments of the complementary energy density and

— Foun ™ Iy = Liti Wi . (93)
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The linearized version of principle (81) reduces then to

— [, twoum+RYAV + [ nuty;5dS -stationary  (94)
where the"approximation ’ | |

tom = timg 95

becomes a variational result. Hence, as for the non linear case, we need only first order

stress functions in order to free the translational equilibriuri equations. In approXimate
solutions it becomes possible to discretize the rotational equilibrium conditions.
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Résumé — Des principes de variations pour des déplacements élastiques finis ont été formulés en termes de
contrainte de Green et de tenseurs de contrainte de Kirchoff—Trefftz. L.e premier représente une fonc-
tionnel le dépendant uniquement du champ de déplacement et implique que le potentiel total soit stationnaire.
Le second est un principe canonique, dans le sens de Friedrichs (1), comprenant & la fois les contraintes
et les déplacements, et généralisant le principe de Reissner[S]. Au contraire de la théorie de I'élasticité
linéarisée géométriquement, il ne peut pas étre ramené & un principe d'énergie complémentaire comportant
seulement les contraintes d’équilibre 9, 10. Cet article étudie les formulations de Levinson[9] et Zubov [11]
en termes de gradients de déplacements et du tenseur de contrainte de Piola, lequel, bien qu’il soit intéressant
d’'un point de vue théorique, n’apparait pas convenir 4 des applications pratiques. On découvre qu'un nouveau
groupe de principes des variations, de type de déplacement, de type canonique ou d'énergie complémentaire,
découle de I'utilisation du théoréme de la décomposition polaire du Jacobien. Il comprende le tenseur de
déformation mécanique et le tenseur de contrainte conjugué doit étre considéré comme la rotation matérielle.
Cette formulation de I'énergie complémentaire est étudiée en termes de fonctions de contrainte du premier
ordre. La présence des degrés de liberté de rotation ouvre la possibilité de donner des valeurs discrétes aux
équations d'équilibre de rotation dans des solutions approchées.

Zusammenfassung — Variationsprinzipien fiir endliche elastische Verdriangungen wurden in Ausdriicken von
Green’schem Beanspruchungstensor und Kirchhoff-Trefftz’schem Spannungstensor formuliert. Der erstere
ist nur ein Funktional des Verdringungsfeldes und schliesst das Gleichbleiben des Totalpotentials ein. Der
zwelte ist ein kanonisches Prinzip im Sinne von Friedrichs[1], wobei sowohl Spannungen als auch Verdrin-
gungen beteiligt sind und Reissner’s Prinzip [5] verallgemeinert wird. Zum Unterschied von der geometrisch
linearisierten Elastizitiitstheorie kann es nicht auf ein komplementiires Energieprinzip reduziert werden,
das nur Gleichgewichtsspannungen einbezieht[9, 10]. Die Arbeit bespricht die Formulierung von Levinson
[9] und Zubov[11] in Ausdriicken von Verdringungsgradienten und des Piola'schen Spannungstensors, was,
wie interessant es von einem theoretischen Standpunkt sein moge, fiir eine praktische Anwendung nicht
geeignet scheint. Es wird gefunden, dass ein neuer Satz von Variationsprinzipien, von Verdringung, kanonis-
chen oder komplementiren Energietypen, sich von der Verwendung des polaren Zersetzungstheorems der
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Jakobischen Determinante ableitet. Es schliesst den technischen Verzerrungstensor ein und sein konjugierter
Spannungstensor muss als eine Funktion des Piola’schen Tensors und der Materialrotation betrachtet
werden. Die komplementére Energieformulierung wird in Ausdriicken von Spannungsfunktionen erster
Ordnung besprochen. Die Anwesenheit der Drehungsfreiheitsgrade ergibt die Moglichkeit, die Drehungs-
gleichgewichtsgleichungen in Ndherungslosungen zu diskretisieren.

Sommario— Si sono formulati principi variazionali per spostamenti elastici finiti in termini di sollecitazione
di Green e tensori di sollecitazione di Kirchhoff-Treffts. Il primo & una funzionale del solo campo di sposta-
mento e comporta stazionarieta del potenziale totale. Il secondo € un principio canonico, secondo Friedrichs
[1], che interessa sia sollecitazioni che spostamenti e generalizza il principio di Reissner [5]. In contrasto con
la teoria di elasticiti geometricamente linearizzata, non puo venire ridotto a un principio di energia comple-
mentare interessante le sollecitazioni di equilibrio solamente[9, 10]. Nell’articolo si discute la formulazione
di Levinson[9] e Zubov[11] in termini di curve di spostamento oltre che il tensore di sollecitazione di Piola
che, benché interessante da un punto di vista teorico, non appare indicato per applicazioni pratiche. Si
scopre come una nuova serie di principi variazionali, di tipo di spostamento, canonico o di energia com-
plementare, derivi dall'uso del teorema di scomposizione polare del giacobismo. Interessa il tensore di
sollecitazione d’ingegneria e il suo tensore di sollecitazione coniugato va inteso come una funzione del
tensore di Piola e della rotazione materiale. Si discute la formulazione d’energia complementare in termini di
funzioni di sollecitazione di primo grado. La presenza dei gradi rotazionali di liberta apre la possibilita di
discretizzare le equazioni di equilibrio rotazionale in soluzioni approssimative.

Abcrpakt — ©OpPMYITHPOBaHE! BapHalMOHHBIE HPUHLUMIBI KOHEYHBIX 9JIaCTHYHBIX CMEIUESHHH, BbIpajeH-
HBlE Yepe3 TEH30pH! HarTseHus I'pumHa ¥ TeHsopsl Hanpsikenus Kupxroda-Tpeddua. IMepsriii npurumn
spnsercs (QYHKUMOHAIOM TONBKO OT IIONS CMEIICHHM, O3Hayasd CTALMOHAPHOCTL OOIEro moTeHuwana.
BTopo#t npHMHIMI ABJSETCSH KaHOHHYECKMM B cMeicie Opunpuxca [1], 4To cBaA3aHO ¢ HANPSHKEHUSAMH U C
CMELICHHAMH, & Taxxe 06obmaer npurugn Peiiccaepa [5]. B oT/ymy 0T reOMeTpHYECKH JIMHEAPU3OBAHROR
TEOPHH YIPYTOCTH HPUBEHEHHE €r0 K JOMOJHUTENLHOMY 3HEPreTHYECKOMY IPHHIMIY, CBSI3AHHOMY TOJILKO
C PaBHOBECHRIMH HANPKCHHMsSMH, He Bo3moxHO [9,10]. O6cyxnena dopmymauns JleBuncona [9] #
3yGosa [11], BeipajkeHHas 4epe3 rpaueHThl CMEILEHHs M TeH30p HanpskeHus Iuona, xoTopas xak Ob1 Hu
HHTEpECHA OT TEOPETHYECKOH TOYKYM 3DEHHS He OKa3bIBAaeTCH IPUrOAHOM IS mpakTHYECKHX MpHUMEHEHHI,
VeraHoBIEeHO HOBOE MHOXECTBO BAPHALIMOHHBIX OPUHLUIIOB THIIOB CMEILEHHUS, KAHOHHYECKOr0 MIH OO~
HUTEJIBHOK BHEPIrHy, KOTOPOE BBIBOAUTCH OT HCIOAb30BAHMA TEOPEMBI [TOJIPHOTO Pa3IoONeHus axobuaHa.
OHO CBSI3aHO C HYDKEHEDHBIM TEH30POM HaTSDKEHHS, & €r0 CONPSKEHHBIR. TEeH30D HAUPSDKEHAS Clenyer
cuntath (yHKuEed oT Tenszopa [Tuona H OT MaTepuanbHOro Bpamenus. O6cyxuena GopMynauus JOIOIHE-
TENBLHOM JHEPrHy, BRIpAKEHHAs yepe3 YHKUKHHM HAnpsODKEHHs mepBoro mopsaxa. Hanwuwe poTalMOHHBIX
cryneselt cBoGOAR! 1aeT BO3MOXXHOCTh JHCKPETH3AIMH POTALMOHHBIX PABHOBECHLIX YpaBHEHUH B Ipubia-
JKEHHBIX PELICHUSAX.






