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ABSTRACT

We investigate the early formation of bound objects with masses comparable to the cosmological
Jeans mass (~10% My). We follow the growth of isolated spherically symmetric density peaks starting
from the linear perturbative regime. The initial parameters correspond to density peaks of various widths
and heights in a cold dark matter cosmology. We use a one-dimensional spherical Lagrangian hydrody-
namics code to follow the dynamical, thermal, and nonequilibrium chemical evolution of the gas. The
system includes a collisionless dark matter component and a baryonic component composed of the nine
species H, H™, H*, He, He*, He*™*, H,, HJ, and e~. All relevant chemical reactions between these
species and their cooling mechanisms are included in the calculations.

We explore the dependence of the dynamical evolution of the gas on two parameters: the initial mass
scale and the initial overdensity of the system. We follow the evolution of the density, temperature, and
abundance profiles within the cloud, assuming two types of central boundary conditions for the colli-
sionless component: in one the infalling dark matter virializes through a reflection from a hard sphere,
while in the other it accretes onto a central sink. We find that in both cases, radiative cooling by H,
affects the collapse dynamics of the gas only after it has already virialized and become part of the bound
object. Therefore, radiative cooling is unlikely to have triggered the initial collapse of perturbations at
redshifts z > 10. Nevertheless, baryonic objects with masses well below the linear theory Jeans mass
(510° M) form at high redshifts because of shell crossing by the dark matter. Such objects could be

the progenitors of a primordial population of high-mass stars in the intergalactic medium.
Subject headings: cosmology: theory — early universe — galaxies: formation — hydrodynamics

1. INTRODUCTION

Observations indicate that by a redshift ~5 the universe
contained nonlinear objects such as quasars and absorption
systems (see, e.g., Frenk et al. 1989). As current quasar
searches are limited from probing even higher redshifts by
observational limitations, there is no reason to suspect that
they have already revealed the first generation of baryonic
objects in the universe. In fact, popular cold dark matter
(CDM) cosmologies predict the collapse of the first bary-
onic objects as early as z ~ 30 on a mass scale just above
the cosmological Jeans mass ~ 10° M, (Peebles 1993).

The earliest baryonic objects are interesting for a variety
of reasons. First, in the bottom-up hierarchical picture of
structure formation, they provide the elementary building
blocks for larger mass objects that form later (see, e.g., Blu-
menthal et al. 1984). For example, Peebles & Dicke (1968)
have suggested that globular clusters may be the fossils of
Jeans mass objects that collapsed and fragmented into stars
at high redshifts, long before galactic halos formed. Second,
direct detection of low-mass objects at z 2 10 can be used
to place constraints on the power spectrum of primordial
density fluctuations on very small scales that cannot be
probed by microwave background anisotropy experiments
(e.g., White, Scott, & Silk 1994). Third, the first baryonic
objects may have fragmented into stars and contaminated
the intergalactic medium with metals through supernova-
driven winds. Recent spectroscopic observations with the
Keck telescope indicate the existence of a nonzero metal-
licity even in Lya clouds (Fan 1994; Tytler & Fan 1995).
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The evolution of the first baryonic objects depends on
their molecular composition and thermodynamic state. The
chemistry and radiative cooling during the cosmological
collapse of these objects define a well-posed problem for
investigation, since the element abundances are fixed by
primordial nucleosynthesis and the cooling rates are not
complicated (at least initially) by energy input or metal
enrichment from stars or quasars. This situation is changed
during the later evolutionary stages of these clouds, because
of both internal and external ionizing sources or super-
novae. We will address this feedback in a forthcoming pub-
lication (Haiman & Loeb 1996).

Under primordial conditions, molecular hydrogen (H,)
could become the most efficient coolant of collapsing
clouds. Indeed, it has been suggested by various authors
(e.g., Saslaw & Zipoy 1967; Peebles & Dicke 1968; Hira-
sawa 1969; Matsuda, Sato, & Takeda 1969; Hutchins 1976;
and more recently, Silk 1983; Palla, Salpeter, & Stahler
1983; Lepp & Shull 1984; Couchman 1985; Lahav 1986)
that radiative H, cooling may, in fact, control the formation
of the first generation of objects. However, these suggestions
were based on highly simplified models involving homoge-
neous clouds that cool radiatively while undergoing a
uniform free-fall collapse. In reality, a collapsing system
becomes highly inhomogeneous as its central density
increases. The resulting density profile tends to steepen until
a shock develops (see, e.g., Bertschinger 1985 for self-similar
solutions well above the Jeans mass). As the shock therma-
lizes the kinetic energy of the infalling gas, it alters consider-
ably the thermal history of the gas relative to the
predictions of the homogeneous collapse models.

In order to study the effect of molecular cooling on col-
lapsing primordial clouds, it is necessary to follow both the
dynamics of the gas as a whole and the chemical evolution
of its various molecular components. It has only recently
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become computationally possible to incorporate gas-
dynamics into three-dimensional numerical simulations
(Cen & Ostriker 1994; Evrard, Summers, & Davis 1994;
Navarro & White 1994; Steinmetz & Muller 1994; Shapiro,
Giroux, & Babul 1994; Hernquist, Katz, & Weinberg 1995;
Quinn, Katz, & Efstathiou 1995). Unfortunately, these
three-dimensional hydrodynamic simulations still suffer
from limited spatial and mass resolution. Furthermore, they
usually focus on the formation of galaxy-size objects. Here
we use a one-dimensional Lagrangian code (Thoul & Wein-
berg 1995) to examine the evolution of spherically sym-
metric systems at high redshifts. We follow in detail the
dynamical, thermal, and chemical evolution of a spherical
system made of collisionless dark matter and collisional gas.
While the geometry is idealized, this one-dimensional simu-
lation can achieve much higher spatial and mass resolution
than three-dimensional simulations, computing gasdynamic
processes with higher accuracy. Because one can easily
visualize the results from one-dimensional simulations, it is
often straightforward to interpret the underlying physics in
these runs. But most importantly, since these simulations
are inexpensive, it is possible to explore a larger range of
parameter space with them.

The minimum baryonic mass of the first generation of
objects is defined by the smallest scale over which the repul-
sive pressure force is unable to counteract the attractive
gravitational force. Since molecular hydrogen formation
becomes more effective as the gas density increases, H,
cooling can provide a positive feedback that reduces the gas
pressure as the density increases, thus allowing the density
to increase even further. In this paper we address the ques-
tion: could molecular cooling lower the mass of the first bary-
onic objects down to low (possibly stellar) values?

The outline of the paper is as follows. In § 2 we review the
notion of a cosmological Jeans mass based on linear pertur-
bation theory and describe how the presence of dark matter,
nonlinearities, or cooling affect this notion. In § 3 we
describe the numerical code and its ability to reproduce
various analytical results. In § 4 we present numerical
results for the evolution of clouds with different initial con-
ditions. In particular, we identify the regime of mass scales
and density contrasts over which radiative cooling by H,
affects the collapse dynamics. Finally, § 5 summarizes the
implications of these results for the first generation of
bound objects in the universe.

2. SPHERICAL COLLAPSE AND THE COSMOLOGICAL
JEANS MASS

The Jeans length A, was originally defined (Jeans 1928) in
Newtonian gravity as the critical wavelength that separates
oscillatory and exponentially growing sinusoidal density
perturbations in an infinite, uniform, and stationary dis-
tribution of gas. On scales smaller than A;, the sound-
crossing time is shorter than the gravitational free-fall time,
allowing the build-up of a pressure force to balance gravity.
The Jeans mass is defined as the mass within a sphere of
radius 4,/2, My = (4n/3)p(4;/2)°. In a perturbation with a
mass greater than M), self-gravity cannot be supported by
pressure, and so the gas is unstable to gravitational col-
lapse. The Newtonian derivation of the Jeans instability
suffers from conceptual inconsistency, as the unperturbed
gravitational force of the uniform background must induce
bulk motions (see Binney & Tremaine 1987). However, this
inconsistency is remedied when the analysis is done in an
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expanding universe.

The perturbative derivation of the Jeans instability cri-
terion can be carried out in a cosmological setting by con-
sidering a sinusoidal perturbation superposed on a
uniformly expanding background. Here, as in the Newto-
nian limit, there is a critical wavelength A; that separates
oscillatory and growing modes. Although the expansion of
the background slows down the exponential growth of the
amplitude to a power-law growth, the fundamental concept
of a minimum mass that can collapse at any given time
remains the same (see, e.g., Kolb & Turner 1990; Peebles
1993).

To be specific, let us consider an Einstein—de Sitter uni-
verse with Q,, + Q, = 1, where Q4. = Pam/Pe> Qb = Po/Pe>
Pam 1s the average dark matter density, p, is the average
baryonic density, and p, is the critical density. We assume
spatial fluctuations in the gas and dark matter densities in
the form of a single spherical Fourier mode,

pdm(r9 t) _ pdm(t) _ sin (kr)
ot )= plt) - sin (kr)
P AP = a0 S, ©

where py,(f) and p,(t) are the background densities of the
dark matter and baryons, d4,(t) and d,(t) are the dark
matter and baryon overdensity amplitudes, r is the co-
moving radial coordinate, and k is the comoving pertur-
bation wavenumber. We assume a y = 5/3 ideal gas
equation of state for the baryons. Initially, at time t = ¢,, the
gas temperature is uniform T,(r, t;) = T;, and the pertur-
bation amplitudes are small d4,, ;, J,; < 1. We define the
region inside the first zero of sin (kr)/(kr), namely,
0 < kr < =, as the “cloud.”

The evolution of T;(r, ) is determined by the coupling of
free electrons to the cosmic background radiation (CBR)
through Compton scattering, by the adiabatic expansion of
the gas, and by other radiative heating and cooling pro-
cesses. Depending on the detailed chemical composition of
the baryons, T(r, t) will be somewhere between the CBR
temperature T, oc t~%® and the adiabatically scaled tem-
perature T,q oc t~*/3. In the limit of tight coupling to T, the
gas temperature remains uniform. On the other hand, in the
adiabatic limit, the temperature develops a gradient accord-
ing to the relation

T, oc pfi ™Y ©)

The evolution of d4,(t) in the linear regime is described by
the equation

> 4d 2
(ﬁ + 3 E)édm =32 (505 + Qg Oam) @
(Kolb & Turner 1990), whereas the evolution of §,(t) is
described by

£ 44 2
<;1? + 5 E)éb = ? (Qb 51, + Qdm 6dm)

ky Ty (1 ¥ (t,\2+2003 2
pm, k <t) ” 0y + 3 By, —dp) |- (5

Here m,, is the proton mass, u is the mean molecular weight
of the gas, kg is Boltzmann’s constant, and ¢, is the present
age of the universe. The parameter f distinguishes between
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the two limits for the evolution of the gas temperature. In
the adiabatic limit § = 1, and when the baryon temperature
is uniform and locked to the background radiation, f = 0.
The last term on the right-hand side (inside the inner
parentheses) takes into account the extra pressure gradient
force in V(p, T) = (TVp, + p,VT), arising from the tem-
perature gradient that develops according to equation (3) in
the adiabatic limit. The Jeans wavelength A; = 2n/k; is
obtained by setting the right-hand side of equation (5) to
zero and solving for the critical wavenumber k;. As can be
seen from equation (5), the critical wavelength 4, (and there-
fore the mass M) is time dependent.* We infer from equa-
tion (5) that as time proceeds, perturbations with
increasingly smaller initial wavelengths stop oscillating and
start to grow. To derive the time evolution of 4;, we must
solve for the time evolution of the temperature T(r, t),
including the effects of the various cooling and heating
mechanisms, and the evolution of the chemical composition
of the baryons.

Another, more fundamental, difficulty is to relate the
Jeans mass to the mass of collapsed, bound objects. The
above analysis is perturbative (eqs. [4] and [5] are valid
only while §,, d,,, < 1) and can only describe the initial
phase of the collapse. As , and d,,, grow and become larger
than unity, the density profiles start to evolve. In particular,
since material at various radii collapses at different times,
there is no reason to assume that the collapsed object
includes the entire mass within the original density peak.
Indeed, it has been realized (Larson 1969) that in the non-
linear regime the density and temperature profiles steepen
considerably and the central part of the sphere becomes
exceedingly dense and hot. An object may form in the center
and subsequently accrete material from the original peak.
In the limit of high masses (4 > 4;) and in the absence of
radiative cooling, the gas particles virialize through a shock
that propagates outward from the center of the sphere. The
shock structure and the evolution of the density profile is
self-similar, and near the center the density approaches the
power-law profile p oc r~22% (this was first predicted by
Gott 1975, and later proved via a semianalytic approach by
Bertschinger 1985). Although the initial perturbation has a
definite mass, it is not clear what mass to associate with the
end-product of the collapse. The relation between the mass
of the bound object M,,; and the parameters of the initial
perturbation can be expressed as M p; = Mpi(k, g i» Op,i»
t;, t). This relation cannot be inferred directly from linear
theory.

In the presence of radiative cooling, the dynamical evolu-
tion of the gas departs from self-similarity. In the limit of
very efficient cooling, gas particles follow free-fall trajec-
tories until they come arbitrarily close to the origin. If the
cooling time is comparable to the dynamical time, the gas
particles go through various phases of partial pressure
support (see, e.g., Thoul & Weinberg 1995). In general, radi-
ative cooling will facilitate the collapse of the clouds, since it
reduces the pressure support of the gas. Thus we expect that
M (K, 4m,i» Op.i» t;» t) Will be increased relative to its value
in the absence of cooling.

*In the limit Q, € Q&1 and T, T, (ie, f=0 in eq. [5]), the
growing solution to equation (4) gives 8,,, oc t~2/3, and equation (5) can be
made homogeneous in time. In this limit, i.e., when almost all the mass is in
dark matter and the density of free electrons is sufficiently high to lock the
gas temperature to the CBR temperature, A, becomes approximately time
independent.
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The Jeans mass derived from linear theory specifies
whether an initial perturbation, characterized by the
parameters k, 0,4y, ;, 05 ;, and t;, starts to grow. To determine
the mass of the bound object resulting from its collapse, we
must follow numerically the nonlinear evolution of the
density peak, including all microphysical gas processes. In
the following sections, we address this problem using a one-
dimensional spherically symmetric hydrodynamical code.

3. THE NUMERICAL CODE

3.1. Description of the Code

The code we use is a modified version of the one-
dimensional, spherically symmetric Lagrangian hydrody-
namics code written by Thoul (Thoul & Weinberg 1995).
The code evolves a mixture of two fluids by moving concen-
tric spherical shells of fixed mass in the radial direction. For
the column densities of interest here, the gas is assumed to
be optically thin. A description of the numerical method
and the details of the original code can be found in the
above reference. Here we only summarize the equations
solved by the code and describe briefly the new additions:
chemical reactions, Compton cooling, and cooling by the
H, molecule.

The Lagrangian equations of hydrodynamics in spherical
symmetry are the continuity equation for the baryons,

dm
ar, = Ay ©)
the momentum equations for the baryons and dark matter,
dv, dp M)
— = A} — - —~> 7
dt T dm, 12’ @
dVgm _ M)
. ri. ®)
the energy equation,
-1
du_ _ dp) A o

a- P4 P
and the equation of state,

p=@—Dpyu. (10)

Here y = 5/3 is the adiabatic index, and we have set G = 1.
Each baryonic shell is described by its radius r,, velocity v,,
mass density p,, pressure p, internal energy per unit mass u,
and the baryonic mass interior to it m,. The dark matter
shells are described by their radius ry,,, velocity vy,,, and the
enclosed dark matter mass mg,,. M(r) is the total (baryonic
plus dark matter) mass inside a shell at radius r. The details
of the cooling terms included in A in equation (9) are given
in Appendix A.

The baryonic component is composed of the nine species
H,H ,H*, He, He*, He**, H,, H;, and e". For the ith
species, we denote the total number of particles by N;, the
number density and molecular weight of these particles by
n; and y;, respectively, and the mass fraction by

LR
' Z?=1 u;n; Po

The relative abundances of helium species (i = 4, 5, 6) are
denoted by x; = n;/ny, ., and the relative abundance of the

(11
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hydrogen species (i = 1, 2, 3, 7, 8) and electrons (i = 9) are
given by X; = ny/ny, o, WhTe My 1o, = (tge + Miges + Myger+)
and ny oy = (ny + Mg+ + Ng- + 20y, + 2ng, ).

The above nine species interact through various chemical
reactions. Only the global quantity p, appears in the hydro-
dynamical equations (6)—(10). After each shell has been
moved to its new location by a hydrodynamical iteration,
the nine species are allowed to interact for a time dty, and
the relative abundances in each shell are upgraded accord-
ing to the rate equations

dn. 9 9 9
d_tl = Z Z alm,-klmnlnm + z bﬂkj nj . (12)
I=1 m=1 i=1

Here the k,,, denote reaction rate coefficients, k, represent
photoionization or photodissociation integrals, and a,;,
b, =0, +1, or +2, depending on the reaction. The next
hydrodynamical iteration starts at a time interval dty later,
with the updated relative abundances. In Appendix B we
provide a table of the chemical reactions, and the adopted
rate coefficients and cross sections.

A complication to the above numerical approach arises
because of the stiffness of the system of differential equa-
tions (12). The stiffness increases the required computation
time by a large factor, because standard solver routines for
differential equations require exceedingly small time steps,
while routines designed to solve a stiff system of equations
require many matrix operations with 9 x 9 matrices, in our
case. We have experimented with each routine in Numerical
Recipes (Press et al. 1992) and have found the routine
STIFBS to be the most efficient. We also compared the
performance of STIFBS with the more popular routine
LSODAR (Hindmarsh 1983) to solve the system of equa-
tions (12). We found STIFBS to produce identical answers
~20% faster than LSODAR. The nine equations in system
of equations (12) could be reduced to six, using the conser-
vation equations for the hydrogen and helium mass and for
the charge. However, we found that this reduction actually
increases the computation time, because the use of the alge-
braic conservation laws requires that the calculation of each
number density n; be done to a much higher degree of accu-
racy than otherwise necessary. Another simplification could
arise if the species were either “irozen” or reached equi-
librium within a hydrodynamical iteration time. Unfor-
tunately, equations (12) do not have a single time constant,
and the concentrations of different species change on differ-
ent timescales; in particular, ny, evolves on the hydrody-
namic timescale. The only simplification we were able to
make was to freeze the helium abundances during the initial
phase of the dynamical evolution, thus reducing the number
of equations to be solved from nine to six.

We adopt two different central boundary conditions, cor-
responding to placing either a hard sphere or a sink (black
hole) in the center (see Thoul & Weinberg 1995). In the first
case, the dark matter virializes by bouncing off the hard
sphere, while in the latter case the dark matter falls freely
into a central sink. The first case may provide a more realis-
tic representation of collapsing regions in thie universe, for
which nonspherical motions (or angular momentum) define
an inner boundary to the infall. Quantities for the nth shell
are always calculated using information from the nth and
(n + Dth shells; thus boundary effects from the surface of
the sphere propagate inward by one shell at each iteration.
In order to avoid unphysical contamination of the results

Vol. 464

by signals propagating from the outermost shell in the
simulation, we choose the outer boundary condition to be
such that the total perturbed mass inside the outermost
shell is zero, and the density profile has zero slope at the
surface. Both of these conditions are satisfied at the first
minimum of the sin (x)/x function in equations (1) and (2),
i.e., at x = 4.4934. This choice eliminates both pressure and
gravitational forces on the outermost shell and allows this
shell to simply follow the general expansion of the universe.

3.2. Tests of the Code

Although Thoul & Weinberg (1995) have made extensive
tests of the code, we performed a few additional tests. The
most important side effect of the addition of the chemical
rate equations was an increase in computation time by
approximately a factor of 10. This forced us to use a lower
resolution (500 gas shells and 5000 dark matter shells) in
our runs. However, comparisons with runs of 5 times higher
resolution (2500 gas shells, 25,000 dark matter shells)
showed no considerable differences in the trajectories of the
shells.

The numerical code contains three almost independent
modules. These modules perform the hydrodynamical,
chemical, and cooling calculations. We tested these three
modules as follows.

1. Hydrodynamics—The hydrodynamics part of the code
was tested by Thoul & Weinberg (1995). They reproduced
analytical solutions for pulsations of a polytrope and for the
self-similar collapse of a spherically symmetric, cosmo-
logical perturbation (Bertschinger 1985). In order to test the
code in a context closer to the present application, we
checked that it reproduces the evolution of the density con-
trast in the linear regime. The linear theory for the evolution
of the density contrast of a single spherical Fourier mode
was described in § 2 above. Supplemented with the tem-
perature evolution T;(t), this calculation yields the factor
d,(t)in

sin (kr)
kr

for each value of k for both the dark matter and the gas. We
ran the code with an initial overdensity profile given in
equations (1) and (2) for various values of k and d,(t = 0) =
0.05. We found that the shape of the profile stays unchanged
to a high precision, while the overdensity changes by an
overall factor very close to the value predicted from linear
theory. Figure 1 shows how closely the overdensity in three
gas shells follow the predicted 6,(t), for four different values
of k.

2. Chemistry—To test the numerical integrations of the
system of chemical reaction equations (12), we checked that
the total hydrogen and helium mass and the total charge
are conserved, or equivalently that the quantities

Ny = Ny + Ny+ + Ny- + 2Ny, + 2Ny, , (14)
NHe,lot=NHe+NHe+ +NHe++ > (15)

or, t) = (%p (r, £) = 0(t) 13)

and
Ot = Nu+ — Ny~ + Nye+ + 2Nge++ + Ny,+ — N, (16)

are constant in time in each shell. We found all three quan-
tities to be conserved to at least one part in 108. We also
checked that the abundances converge to the correct equi-
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F1G. 1.—Evolution of the overdensity for single spherical Fourier
modes in the linear regime. The overdensity d is normalized to its initial
value §;. The comoving wavenumber k is given in kpc™!. The dashed lines
are obtained analytically from linear theory. The pairs of solid lines show
numerical results for d(r, z) at the center and at the surface of the sphere.
The overdensity at the center of the sphere becomes slightly higher than at
the surface. The dotted line shows the analytic results from linear theory
when the temperature gradient term in the square brackets in equation (5)
of § 2 is ignored.

librium values. We ran the routine STIFBS starting with
the set of initial concentrations x, = 1.7 x 107°, yy =
0.24, and yy = 0.76 at various temperatures, until none of
the abundances changed by more than 0.1% from one step
to the next. Since the abundances of H,, H™, and HJ are
always very small, by eliminating these three species from
the system of equations (12), and by setting d/dt = 0, one
can find algebraically the expected equilibrium abundances
of the six remaining species. We found that STIFBS indeed
converged to these values. Figure 2 shows the equilibrium
abundances of all nine species versus temperature.

3. Cooling and chemistry.—Several authors have con-
sidered molecular cooling of a uniform sphere in free-fall
collapse (e.g., Palla et al. 1983; Lepp & Shull 1984). The
general conclusion from these studies can be summarized as
follows. On a temperature versus density plot, the tem-
perature departs from the adiabatic relation, T oc pZ/3,
because of H, cooling and achieves a local maximum T, ,,,
after which it turns around and declines as the density
increases further. The temperature does not start to rise
again over several decades of increase in density. The exact
values of T, ,,, the density at the turnaround in temperature,
and the density at which the temperature starts to rise again
all depend on the adopted reaction rates and cooling func-
tion, as well as on the initial size, density temperature, and
composition of the sphere.

We therefore tested only the general conclusion that a
turnaround in temperature should occur and that the tem-
perature should not increase over the next several decades
in density. We considered a uniform sphere in a homoge-
neous free-fall collapse with the following initial param-
eters: R = 102! cm, p, =452 x 1072° gcm ™3, T = 64 K,
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Xy, = 1.7 x 1076, yy. = 0.24, and yy ~ 0.76. The chemical
reactions and cooling mechanisms are summarized in
Appendices A and B. The resulting temperature versus
density plot as well as the relative abundance of H, versus
density are shown in Figure 3. As seen in this figure, turn-
around indeed occurs at p/p, = 80 when the temperature
reaches the maximum value T,,,, ~ 400 K. We note that the
relative abundance of H, reaches x;;, = 3.8 x 1073, which
is consistent with the H, fractions in Palla et al. (1983) and
Lepp & Shull (1984).

4. NUMERICAL RESULTS AND DISCUSSION

4.1. Initial Conditions

For all cases presented in this paper, we adopt a Hubble
constant of Hy = 50 km s~! Mpc~! (h = 0.5). In runs with
dark matter, we assume an Einstein—de Sitter universe with
Qim =09, Q, = 0.1, and in runs without dark matter, we
assume an open universe with Q, = 0.1. We start the inte-
grations at z; = 500, when the perturbations are still in the
linear regime. The temperature for the CBR is taken to be
T, = 2.726(1 + z) K (Mather et al. 1994), and the initial tem-
perature of the cloud is assumed to be uniform and equal to
T, at z;. We use spherical k-modes as the initial overdensity
profiles,

sin (kr
Pun ) = Oump] 1+ b0 D] 1)
sin (kr
Pp, A1) = Pc[l + 0y kf‘ ):I ) (18)

where p, = (6nGt*)~! is the critical density. With this
choice, the evolution in the linear regime can be compared
directly to the prediction of equations (4) and (5). As men-
tioned at the end of § 3.1, this choice also eliminates numeri-
cal edge effects at the outer boundary. We have
experimented with alternative overdensity profiles, such as
a Gaussian, or the most probable profile for random Gauss-
ian fluctuations (Bardeen et al. 1986, hereafter BBKS), and
found that our qualitative conclusions are insensitive to the
detailed shape of the initial density profile.

The density profiles in equations (17) and (18) can be used
to define three characteristic mass scales. First, the total
baryonic mass that is gravitationally bound includes all the
baryonic material enclosed by the radius corresponding to
the first minimum of sin (kr)/(kr), i.e., inside kR n,q = 4.4934.
We denote this mass as My,,,,q- Second, we define the mass
of the baryonic material that has a positive overdensity [i.e.,
contained within the first zero of sin (kr)/(kr), at kR ;.4 = 7]
to be M,q. Finally, the baryonic mass that has virialized
and condensed into a central object, M ;, is redshift depen-
dent and will be defined more precisely in the next section.

The initial amplitude of the dark matter density profile
perturbation can be written as 8,4, ; = vo, where ¢ is the rms
density fluctuation within some filter of a given shape and
size in the CDM model. The value of v characterizes the
likelihood of the occurrence of the peak in a Gaussian
density field. This characterization depends weakly on the
shape and size of the filter, and strongly on the choice of
power spectrum. For reference, we quote in Table 1 the
value of ¢ for six different mass scales, M4, and two
different filter shapes with the COBE-normalized BBKS
power spectrum. The values in this table were obtained
under the normalization 6g-1y,, = 1.22 (for Q4,, = 0.9 and
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Fi6. 2—Equilibrium abundances of the nine species as a function of temperature. The abundances were obtained by integrating equations (12) with the
routine STIFBS until the abundances reached their equilibrium values. The dots show values obtained algebraically from equations (12) by setting

Ny, =Ny- =ny,. =0and d/dt =

h = 0.5; see Bunn, Scott, & White 1995), using a filter radius
R; = 0.12R,,,4. The initial amplitude of the baryon density
perturbation is a small fraction of the dark matter ampli-
tude, because the baryons had been locked to the CBR until
z =~ 103, while the dark matter fluctuations have had more
time to grow since matter-radiation equality. We chose the

TABLE 1
RooT MEAN SQUARE FLUCTUATION o(M)*

04n(M, z = 500)
M cloud

M) Top-Hat Gaussian

50 .. i 0.118 0.113

100............ 0.115 0.110

500........... 0.107 0.103

1000 ............ 0.104 0.100

5000............ 0.097 0.093

10%............ 0.093 0.090

® Given in two different-shaped filters
with the COBE-normalized (0g;-1yp =
1.22) BBKS power spectrum of a CDM uni-
verse at z = 500.

somewhat arbitrary value &, ; = (1/10)d4y,; to take this
effect into account; our results are insensitive to the precise
value of this ratio. Because of the tight coupling of the
baryons to the CBR before the recombination epoch, the
initial velocity of each baryonic shell at z; = 500 is assumed
to be the Hubble velocity v,(r) = Hr. For the dark matter,
we assume that the perturbation is dominated by the
growing mode and choose the initial velocity for the dark
matter shells accordingly, vy,,(r) = Hr(1 — {,..>,)-
The initial relative abundances and mass fractions of the

various species are taken to be the following: xy+ = x,
107 (see Peebles 1993), x, = 1.7 x 107° (see Palla et al
1983), xy- = Xgge+r = Xpe++ = Xyg,+ =0, and  yy + yy+
+ Yy, + .= 0.76, yy. = 0.24. Note that the freeze out
value of the electron fraction scales with the cosmological
parameters as x, oc Q8/2Q, th™ 1,

4.2. Definitions of “ Collapse” and “ Object”

In order to express the state of the gas as a function of the
initial conditions, we need to define what we mean by the
concepts of “collapse ” and “ object.” We base our heuristic
definitions on the spherical top-hat collapse model (Gunn
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mr & Gott 1972). In this model, virialization occurs at half the

turnaround radius when the overdensity is ~100-200. The
'+ value appears to be rather insensitive to the underlying
. cosmology (see Fig. 4 in Richstone, Loeb, & Turner 1992).
We therefore define a shell to have collapsed if the average
overdensity enclosed by that shell is §, > d,,,, = 200.

As time evolves, the density profile within the collapsing
region steepens, and at some definite time, the average
density contrast within the mnermost baryonic shell reaches
the threshold value &,(r,) = 8, = 200. The subsequent
shells reach this threshold some time later. We define an
object to include all the baryonic material within the outer-
most shell that has collapsed. According to this definition,
the mass of the object M, (z) is zero until the first shell
reaches d,,, = 200, and is monotonically increasing after-
ward.

Unlike definitions based on optical depth, or absolute
density, the threshold overdensity does not strongly depend
on the mass scale involved. In the presence of cooling we
find our results to be rather insensitive to the exact value of
the threshold overdensity (see below).

4.3. Collapse without Dark Matter or Cooling

The simplest system to consider consists of a purely bary-
onic cloud following adiabatic infall, without any dark
matter or radiative processes. We present results from test
cases of such a system in order to establish a prototype
against which we will compare results later, when the dark
matter component and the radiative processes will be
added.

For the initial conditions (see § 4.1), it is necessary to fix
two free parameters: the height of the density peak J, ;, and
the mass scale M4, OF equivalently, the width ~k~! of
the initial density peak. The density peak J, ; sets the red-
shift at which the perturbation reaches the nonlinear phase,
and k determines the initial ratio of pressure to gravita-
tional forces.

In Table 2 we summarize the parameters for eight differ-
ent runs. The runs numbered 1-4 are purely baryonic and
do not include any radiative cooling, while the runs num-
bered 5-8 contain a mixture of baryons and cold dark
matter, and include radiative cooling.

We first discuss the results of the first four simulations. In
Figure 4 we show the trajectories of 10 shells (enclosing 7%,
17%, 27%, ..., 87%, and 97% of the total baryonic mass

M, ouna) across the radius of the sphere (solid curves), along

with the trajectories that each shell would have had if it
were freely falling (dashed curves). In all cases, the baryonic
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shells expand, turn around, collapse, shock, and then drift
slowly toward the center. The trajectories of the shells are
similar to the semianalytic solution of Bertschinger (1985).
Here, however, the shells hit the shock at slightly different
fractions of their turnaround radii rather than at the fixed
fraction of 3, because of corrections of order 57 to Berts-
chinger’s results. The higher mass runs (1 and 3) initially
follow the free-fall trajectories, but eventually deviate from
them after the shells’ shock. In the lower mass runs (2 and
4), pressure is important and the collapse is delayed relative
to the free-fall case even before the shock. The temperature
evolution for these shells is shown in Figure 5.

In Figure 6 we show the fraction of the total bound bary-
onic mass that has collapsed to form the object (solid lines).
We also show what this collapsed fraction would be for a
pressureless freely falling gas (dotted lines). The higher mass
runs deviate from the free-fall curves only after the shocked
shells collapse. In the lower mass runs, the collapse is
delayed relative to the free-fall case at all times.

4.4. Collapse with Dark Matter and Cooling

Given some choice of cosmological parameters H, Qqp,
and Q,, and the ratio d; ;/d4p, ;> there are again only two free
parameters left, namely, the initial baryonic cloud mass
M uq and the amplitude 4, ;. We have performed simula-
tions on a grid in the (M 44> O4m ;) Parameter space. The
details of the four simulations numbered 5-8 in Table 2 are
shown in Figures 7-12.

Figure 7 shows the trajectories of 10 shells (enclosing 7%,
17%, 27%, ..., 87%, and 97% of the total baryonic mass
M,,..0)- The trajectory of each shell is shown by a solid line,
until the average density contrast within it reaches the
threshold value d,,, = 200. Once the overdensity within a
shell reaches d,,, it is considered to be part of the central
object. To indicate this in the plots, we continue to draw the
shell trajectories as dotted lines after they reach 6 = d,,.
The dashed lines show the trajectories of the dark matter
shells. In the smallest mass run (5), cooling is inefficient and
the gas shells stop moving after they shock. In larger mass
cases (runs 6 and 7), cooling is more efficient. Finally, in the
largest mass case (run 8), all the shocked shells cool rapidly
and fall toward the center.

Figure 8 shows the evolution of the temperature with
redshift for the same gas shells. The dotted lines show the
CBR temperature T, oc (1 + z), and the dashed lines show
the adiabatic temperature scaling in the linear regime 7,4 oc
(1 + z)%. The temperature of the gas remains approximately
uniform initially, with a value in-between the adiabatic and

TABLE 2

PARAMETERS OF THE NUMERICAL RUNS

Baryon Mass Width

Run M, s Height R ioua Baryons Dark Matter Cooling
Number M) 9; (pc) Q, Qyr (Yes/No)
1o, 5x 107 0.13 235.56 0.1 0 No
2. 5 x 10° 0.13 50.75 0.1 0 No
3. 5% 107 0.39 228.96 0.1 0 No
4........ 5 x 10° 0.39 49.33 0.1 0 No
5o 500 0.26 5.13 0.1 0.9 Yes
6..e.nn. 1000 0.26 6.46 0.1 0.9 Yes
Toooonoo. 1000 0.39 6.45 0.1 0.9 Yes
8....i. 5000 0.26 11.05 0.1 0.9 Yes

Note.—Initial heights and widths are at z = 500.
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F1G. 3.—Fractional abundance of H, molecules and temperature (in
kelvins) vs. density in a freely collapsing uniform sphere in the presence of
H, cooling. Parameters of the sphere are described in § 3.2 (3).

CBR cases. After turnaround the temperature increases
adiabatically and a temperature gradient develops. Even-
tually, as each shell encounters the shock, its temperature
jumps abruptly to the virial temperature. In the absence of

Vol. 464

cooling, the temperature of each shell remains approx-
imately constant, increasing slowly because of the slight
adiabatic compression. When cooling is efficient, i.e., when
the cooling time becomes smaller than the dynamical time,
the temperature reaches a maximum value and then
decreases very quickly (see run 8 in Fig. 8). The temperature
at which this turnover occurs in our simulations is of the
order log (T/K) ~ 2.3-2.8 at the onset of H, cooling. Figure
9 shows the evolution of the four most efficient cooling and
heating terms with redshift in a typical run. The most effi-
cient radiative mechanism before the shock (when the tem-
perature of the gas is below the temperature of the CBR) is
Compton heating; this process keeps the gas temperature
above T,4. After the shock, the most efficient radiative
mechanism is H, cooling, causing a turnover in the tem-
perature. Note that the gas temperature reaches a value
above T, so that the H, molecules as well as Compton
scattering cool the gas, rather than heat it. After the tem-
perature starts to decline, the shells fall toward the center
essentially at the free-fall rate. When the shells reach a very
small radius and the numerical time step necessary to
resolve their motion becomes too small, we artificially set
the temperature of these shells to T =200 K and subse-
quently ignore them.

Figure 10 shows the evolution of the relative abundances
of H, and e~ within five different shells in the central region
(enclosing 2%, 7%, 12%, 17%, and 22% of the total bary-
onic mass My,,,s). The highest relative abundance of H, is
achieved in the case of the largest perturbed mass (run 8),
where it reaches about 1073. The abundances develop a

TTTT T T T AR

Run 1

LA N B
I

Ty T T T T [T | LAARN

Run 2

10—2 —

w0 dert st ey

HITOR ST TR TN ISR T H IV TTR N IR YT

108 102 10t
Z

FiG. 4—Evolution of the (physical) radii of 10 gas shells (enclosing 7%, 17%, 27%, ...

1 108 102 10! 1

Z

, 87%, and 97% of the total baryonic mass M) for four pure

baryonic runs without cooling. The parameters of these runs are summarized in Table 2. The solid lines show the shell trajectories from the siniulations, while
the dashed lines show for reference the corresponding shell trajectories for a pressureless gas.
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FiG. 5—Temperature evolution of the gas shells that appear in Fig. 4

gradient across the sphere, which is positive for H, and
negative for the electrons. The evolutions of the abundances
are relatively universal and look similar in all four runs. In
particular, log x4, & —3.6 in all four runs before the gra-

1+ i
r
i Runs 1-4
(no dark matter) *
08 |~ —-‘
1
0.6 [~ _
|
Mobj
Mho\md
04 .
L
0.2 - B
0 -
L i [ 1 T L
1000 100 10 1

FiG. 6.—Fraction of the bound mass that has collapsed as a function of
redshift for the four runs 1-4 in Table 2 (solid lines). The two dashed lines
show what the collapsed baryonic mass fraction would be in each case if
the cloud had been in free-fall. The line marked “A” is for d4,, ; = 0.13 (to
be compared with runs 1 and 2) and the line marked “B” is for d4,, ; = 0.39
(to be compared with runs 3 and 4).

dient develops, and the central value is log xy, & —3.2
afterward. The main difference between the four runs is the
redshift at which the gradients develop.

Figure 11 shows typical density, temperature, and rela-
tive H, and e~ abundance profiles across the sphere at
redshift z = 10 for each of the four runs. The x, profiles are
almost flat at the outer part of the sphere, and well approx-
imated by a power law xy, oc r~%* within the postshock
region, while the e~ fraction profiles behave less regularly.
Note that the power-law profile for the density p oc r~2-23
predicted by the self-similar solution (Bertschinger 1985) is
obtained near the center (see § 2 and the thick line in Fig.
11a).

Figure 12 shows the fraction of the collapsed baryonic
mass out of the total bound baryonic mass versus redshift
for the runs 5-8, for two different values of the overdensity
threshold for forming objects d,,,. The collapsed baryonic
mass versus redshift curves are rather insensitive to the
value of d,,,, especially for the objects that collapse early.

4.5. Collapse onto a Black Hole

Next, we perform the same runs as described in § 4.4, but
with a different central boundary condition; we replace the
reflecting hard sphere with a black hole sink of a fixed
radius. We choose the radius of the sink to be a small
fraction of the initial radius of the first shell. The shells that
cross the black hole radius are assigned arbitrary values of
density and temperature, and are subsequently ignored.
Under these conditions, the dark matter component does
not bounce back and virialize, since it is absorbed by the
central black hole. Due to the postshock shell crossing, the
gas component continues to collapse after it shocks, unlike
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in the case of a reflecting sphere. This continued collapse
and compression lead to a continuous rise in the gas density
and temperature after the shock. The increased gas density
and temperature enable more efficient postshock cooling.

In the presence of a central black hole, we have found an
oscillatory instability of the shock front in the cases involv-
ing efficient radiative cooling. Instead of propagating
outward monotonously as in the cases shown in Figure 7,
the shock front in these cases can reverse its motion and
oscillate. However, for the present application, the details of
these oscillations can be glossed over, since we are only
interested in the question whether shells reach é = 0y, The
oscillation of the shock front occurs only for shells that have
already collapsed according to our definition, hence this
instability affects only the structural details of the objects
we find but not the question of whether they form.

4.6. Discussion

We next explore the (M jouq> O4m,;) Parameter space for
the two different boundary conditions. In each case, we
determine whether radiative cooling affects the dynamics of
the gas and whether an object forms.

To assess the significance of cooling in each run, we com-
pared the trajectories of the gas shells with and without
cooling. If the trajectories in the two cases were indistin-
guishable, we concluded that cooling had no effect; if they
differed significantly, we concluded that cooling was effi-
cient. To establish whether or not an object formed, we used
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Fic. 10.—Evolution of the relative abundances of H, and e~ for five shells (enclosing 2%, 7%, 12%, 17%, and 23% of the total baryonic mass My,,q) in

runs 5-8.
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a simple criterion: for an object to form, we required that at
least half of the baryonic mass within the original cloud
should collapse by a redshift z = 10, i, Mz = 10)/
M iua = 1/2. This corresponds to one-sixth of the total
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F1G. 12—FTraction of the total baryonic bound mass that has collapsed
and formed an object in runs 5-8 vs. redshift. The upper panel shows
results with d,,, = 200, the lower panel with 6, = 500. The vertical and
horizontal dashed lines illustrate the condition M ,;/M .4 = 0.5 (or,
equivalently, M ,;/Myu0q = 0.17) at z = 10.

bound mass (My,,,4) being above a density contrast of 200.
The choice of z = 10 in the above definition is somewhat
arbitrary; we show how our results change with different
choices of z in Figures 6 and 12.

The main parameters that determine the postshock
cooling rate are the virial temperature T,;, and the abun-
dance of molecular hydrogen xy, after the shock. While it is
not possible to calculate xy, analytically, the scaling of the
virial temperature can be derived from the spherical top-hat
model (White 1994). Using our runs with a central hard
sphere to calibrate this relation for the baryons, we find that
for Qy = Q, + Q4 = 1, the postshock temperature of the
gas shells closely follow

h 2/3 M 2/3
T;'ir = 55(1 + Zs)(ﬁ) (ﬁd—e) K s (19)

where z, is the shock redshift of each gas shell and M4 is
the baryonic mass of the cloud. The postshock values for
xy, do not vary substantially between runs, as shown in
Figure 10.

In Figure 13 we show the grid of points we explored in
the (M ;oua> Oam,;)) Parameter space. The solid lines corre-
spond to lines of constant central virial temperatures,
T, = 85 K and T,;, = 120 K. The solid circles on this grid
represent cases where cooling had no effect; the open circles
represent cases where cooling was very efficient; and the
open triangles represent intermediate cases, where cooling
had a small but noticeable effect. The (M4, Oam,i)-Plane
can be divided into two regions: the region where cooling is
important and the region where cooling is not important.
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FiG. 13.—Effectiveness of radiative cooling as a function of the two
parameters M4 and d,,, ;- Filled circles represent cases where cooling
had no effect; open circles denote cases where cooling was very efficient;
open triangles represent intermediate cases where cooling had a minor but
noticeable effect. On these mass scales, d4,, ; = 0.13 corresponds to 1.1-
1.4 o for the COBE-normalized (63 = 1.22) cold dark matter power spec-
trum (see Table 1). The upper panel refers to runs with a reflecting sphere
in the center, and the lower panel to runs with a central black hole. The
solid curves are lines of constant virial temperature (see eq. [19]); the
upper and lower curves correspond to temperatures of 120 and 85 K,
respectively.

According to our results, this division follows roughly a line
of constant virial temperature, T,;, ~ 10> K.

In Figure 14 we show again the above grid of points, but
here the solid dots represent cases where no object formed
by z = 10: the open dots represent cases where objects
formed by z = 10; and the triangles represent intermediate
cases, where objects are just starting to form at z = 10.
Again, we can divide the (M g.4, O4m i)-Plane into two
regions, depending on whether objects form or not. The
constant T, curves from Figure 13 are also overlayed on
this plane. According to the upper panel, we see that the
division based on cooling goes through points of somewhat
higher 4, ; than the division based on collapse in the case
of a central reflecting sphere. In other words, the transition
from “no collapse” to “collapse” takes place in a regime
where cooling is ineffective. Thus, radiative cooling does not
introduce new mass or overdensity scales that are able to
collapse.

The above result can be understood physically as follows.
In order for H, cooling to affect the dynamics, the gas
temperature T, must satisfy two conditions. First, in order
for cooling (rather than heating) to occur, the gas tem-
perature must be higher than the CBR temperature.
Second, the H, cooling time needs to be smaller than the
typical dynamical time; we find that this is only possible for
a temperature T, 2 10> K. We find that the above two con-
ditions cannot be satisfied simultaneously before the gas
shocks. The gas temperature drops below 10? K as early as
z ~ 100, before any object forms, and rises above 10> K
again only after the gas shocks (see Fig. 8). However, by that
late time the gas has already achieved an overdensity
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FiG. 14—Collapse as a function of the two parameters M .4 and d4, ;.
The definition of “collapse” is given in § 4.2. Filled circles represent runs
where none of the shells have collapsed by the redshift z = 10; open circles
represent runs where more than half of the baryonic mass M, has
collapsed by z = 10; open triangles represent intermediate cases where
only the innermost few shells have collapsed. The upper panel refers to
runs with a reflecting sphere in the center, and the lower panel to runs with
a central black hole. The solid lines are curves of constant virial tem-
perature, as in Fig. 13.

close to our collapse criterion  ~ 200. Thus, even if cooling
alters the postshock trajectories significantly (as in run 8 in
Fig. 7), its effect translates into a minor change in the col-
lapsed baryonic mass as a function of redshift, M ,(z).

The situation is somewhat different for collapses with a
central sink (black hole) boundary condition. In the hard
sphere case, the dark matter shells bounce back from the
center, virialize, and stop moving subsequently. After a gas
shell shocks, it is not crossed by dark matter shells, unless
radiative cooling is sufficiently effective to reduce its pres-
sure support and allow it to fall toward the center. In the
central sink case, the dark matter shells do not bounce back
and virialize; instead, they are absorbed by the sink. Even
after a gas shell shocks, it is crossed continuously by new
dark matter shells. Therefore, gas shells continue to collapse
after they shock even in the absence of radiative cooling.
The continued infall heats the gas adiabatically, and the
importance of postshock cooling is enhanced relative to the
hard sphere case. The lower panel of Figure 13 shows that
cooling is indeed effective for much smaller mass scales than
in the hard sphere case; the gas dynamics in clouds with a
baryonic mass as low as M., = 10>-10% M, is altered by
cooling. For higher mass runs, H, cooling becomes so effec-
tive as to smooth out the shocks; the gas shells fall in
rapidly, and their trajectories show little evidence for a dis-
continuity. The cooling effects change the collapsed bary-
onic mass as a function of redshift, M,(z) and allow
slightly lower mass scales to collapse by z = 10. Indeed, the
lower panel of Figure 14 shows that the transition from “no
collapse” to “collapse” occurs for slightly lower masses
than in the hard sphere case, and in a regime where cooling
is efficient.
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5. CONCLUSIONS

In this paper we have investigated the early (z = 10) for-
mation of bound objects with masses in baryons compara-
ble to the linear theory Jeans mass (~10° M). We used a
spherically symmetric Lagrangian code to analyze the
dynamics of low-mass overdense regions in a cold dark
matter cosmology. The code solved for the radial trajec-
tories of the dark matter and gas shells, along with the
density, temperature, and nonequilibrium abundances of
various chemical ingredients of the gas in each shell.

The dynamics of a primordial gas cloud depends pri-
marily on two parameters: the baryonic mass (M ,,q) and
the initial overdensity (94, ;) of the cloud. We have com-
puted the evolution of gas clouds on a grid of 48 runs,
corresponding to different points in the (M oua> Odm,:)
parameter space. We have done the calculations with two
different types of central boundary conditions for the dark
matter: a reflecting hard sphere and a central sink (black
hole).

Based on the above grid of runs, one can study the effect
of radiative cooling by molecular hydrogen (H,) on the
dynamics of the baryons. We find that, in the hard sphere
case, H, cooling is important only when the virial tem-
perature of the collapsing object is =100 K (see eq. [19]
and Fig. 13). However, this temperature regime is accessible
only after shock heating, when the gas has already con-
densed to be part of a nonlinear object. Before the gas enters
the virialization shock, its temperature is lower than the
CBR temperature and radiative H, cooling is not possible.
This implies that contrary to previous suggestions, radiative
cooling could not have triggered the formation of the first
generation of bound objects in the universe.

However, the evolution of the gas after it shocks can be
substantially altered as a result of H, cooling. This effect is
particularly emphasized in the case of a central sink bound-
ary condition (see lower panel of Fig. 13), where the dark
matter shells cross the baryonic shells and pull them effec-
tively toward the center. This process brings the baryonic
shells to a thermodynamic state that favors efficient cooling.

In general, we find that the presence of shell crossing by
dark matter allows baryonic objects with masses well below
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the linear theory Jeans mass to form. Figures 7 and 14
demonstrate that the cores of objects containing < 10°> M
in baryons can collapse in a standard CDM cosmology by a
redshift z = 10. It is therefore possible that high-mass stars
had formed in the intergalactic space directly as a result of
the primordial cosmological perturbations, and not just due
to the commonly discussed process of fragmentation inside
more massive objects. Intergalactic stars may have left their
signature on the metallicity of the intergalactic medium and
of Lya absorption clouds through supernovae at high red-
shifts. It is difficult to detect the light from intergalactic stars
unless they are assembled into high-surface brightness
objects. However, such stars should result in gravitational
microlensing events of quasars, with a lensing probability
comparable to their cosmological density parameter ~Q,
(Press & Gunn 1973).

The most significant limitation of our approach is the
assumption of spherical symmetry. This assumption is
forced upon us by practical computational considerations.
Spherical symmetry may, in fact, apply to the collapse of a
small subset of systems in environments with unusually low
shear (Eisenstein & Loeb 1995b). However, most three-
dimensional collapses are likely to be triaxial (Eisenstein &
Loeb 1995a, and references therein). The early pancaking
along the short axis would enhance the gas density and the
corresponding H, formation, and could lead to a more effi-
cient cooling of the gas. Fragmentation may lead to similar
effects (see Ruzmaikina 1973; Kashlinsky & Rees 1983).
Future three-dimensional simulations are essential in
exploring this more complicated dynamics.
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and the Isaac Newton Studentship. A. T. was supported
by the Ambrose Monell Foundation and by NSF grant
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APPENDIX A

COOLING AND HEATING TERMS

The cooling terms in A of equation (9) in § 3.1 are given by the sum of the following 12 terms below, in units of ergs s ™!
cm 3. References are Black (1981) and Cen (1992) for the first 10 terms, Spitzer & Hart (1971) for the Gaunt factor g,
appearing in Ag,e(T), Shapiro & Kang (1987) for Ac,m,(T), and Lepp & Shull (1983) for Ay,(T). In these formulas, T denotes

cm

Collisional ionization of H, He, and He ™ :

the gsas temperature in kelvins, and T, is the temperature of the CBR, T, = 2.726(1 + z) K. The number densities, n;, are in

A(T) = 1.27 x 1021 TYX(1 4 T?)~ ! exp (—157,809.1/T)n, ny ,
AudT) = 938 x 107 22T2(1 + TY2)~1 exp (—285,335.4/T)n, nyy, ,
Aye+(T) =495 x 10722TH2(1 + TY?) ! exp (—631,515/T)n, nyy+ -

Recombination to H, He, and He* :

Ag+(T) =870 x 10~ 27T12T592(1 + T97) "1 ny,
Aye+(T) = 1.55 x 1072603647 pp
Ages +(T) = 348 x 10726TV2T502(1 4 TON 1 po ., .
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Dielectric recombination to He:
Aye+(T) = 1.24 x 107 13T~ 13 exp (—470,000/T)[1 + 0.3 exp (—94,000/T)]n, nyye+ -
Collisional excitation of H and He " :
Ay(T) = 7.50 x 10711 + T%?)~! exp (—118,348/T)n, ny ,
Aye+(T) = 5.54 x 10717T 703971 + TL?) ™! exp (—473,638/T)n, nye+ -
Bremsstrahlung:
Aprem(T) = 142 x 10727 g T 20 (nyg+ + Nyge+ + dpger+)
gee = 1.10 + 0.34 exp [ —(5.50 — log T)%/3.0] .
Compton cooling:
Acomp(T) =1.017 x 1073"THT — T )n, .

Cooling due to H, molecules—A lengthy expression for the term Ay,(T) was adopted from Lepp & Shull (1983). The
expression in this reference is an analytical fit to the authors’ numerical results. It includes cooling from the following
mechanisms involving H,:

1. Dissociation of H, molecules from H,-H, collisions,

2. Dissociation of H, molecules from H,-H collisions,

3. De-excitation from excited rotational and vibrational states, due to H,-H, collisions,
4. De-excitation from excited rotational and vibrational states, due to H,-H collisions.

However, radiative cooling by H, is not possible thermodynamically when T < T,; instead, H, is a source of heating under
this condition. In order to correct for the presence of radiative heating from the inverse of the above processes, we multiply the
quoted value Ay,(T) by the factor (T — T)AT + T,). This factor has the correct limiting values +1for T> T, and T < T,,
respectively. Note that there is a typographical error in Lepp & Shull 1983 (confirmed by S. Lepp 1995, private
communication), which changes the value of Ay,(T) considerably. In their equation (8) on page 581, 1.10 x 10~ !3 should be
replaced by 1.10 x 10718,

APPENDIX B
REACTION RATES AND CROSS SECTIONS

Table 3 lists the chemical reactions included in equations (12) in § 3.1. We attempted to include all possibly important
reactions. The rates for reactions (5), (7), (15), (16), and (21) and the cross section for reaction (27) are given by more lengthy
expressions, which can be found in the references. The expression for the cross section in reaction (26) is a fit to the data from
Stancil (1994), with temperature-dependent coefficients p,. The coefficients a, f, vy, and s appearing in the cross sections for
reactions (22)—(25) can be found in Osterbrock (1974).

TABLE 3
A. REACTION RATES

Rate Coefficient

Reaction (cm3 s™1) Reference
(1) H+e »H* +2e 5.85 x 107 11T4/2 exp (—157,809.1/T)1 + T¥*» ™! 1
(2) He + e~ > He* + 2e~ 238 x 107 T/ exp (—285,335.4/T)1 + T ! 2
(3) He* +e” > He** + 2e” 5.68 x 10712T%/2 exp (—631,515.0/TY1 + T ™! 1
4 H " +e >H+hv 840 x 10~ 1'T~12T$2(1 + T2 ") ! 1
(5) He* + e~ - He + hv See expression in reference 1
(6) He** + e~ >He* + hv 3.36 x 107107127021 4+ T27)™! 1
7 H+H*>HS +hv See expression in reference 3
® H; +H->H, +H* 6.40 x 1071° 4
9 H+e -H™ +hv 5.57 x 1071712 5
(1) H+H™ »H, + e 1.30 x 10° 6
(11) Hf + e~ -»2H 1.68 x 10~%(T/300)~°-2° 7
(12 Hf +H ->H,+H 5.00 x 1076712 8
(13 H- +H* ->2H 7.00 x 1077T 12 8
(149 Hy+e »H+H" 2.70 x 10787 ~3/2 exp (—43,000/T) 9
(15) H, + H->3H See expression in reference 10
(16) H, + H, - H, + 2H See expression in reference 10
(17 H,+H*->H; +H 2.4 x 107° exp (—21,200/T) 11
(18) Hy+e »2H + e~ 4.38 x 1071 exp (—102,000/T)T°-3* 11
(19 H +e ->H +2e” 4.00 x 10727 exp (—8750/T) 11
(200 H- +H->2H + e~ 5.30 x 107 2°T exp (—8750/T) 11
) H +H*>HJ +e See expression in reference 11

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...464..523H

538 HAIMAN, THOUL, & LOEB

TABLE 3—Continued
B. REACTION CROSS SECTIONS

Cross Section

Reaction (cm?) Reference

22 H+hv—>H* + e

(23) He+ hv»>He* + e~ _ e

04 Ho* + hy o Het* 4 [ O =aBOMD T+ A= B0, vy 12
25 H +hv>H+e”

(26) Hf +hv—H + H* o(v, T) = (p, + p) exp [(v — py)*/2p%] 13
(27) Hy, + v—>H} + e~ See expression in reference 1
(28) H, + hv—>2H o(v)=3x10722, 1126eV <hv<13.6eV 14

RErFERENCES.—(1) Cen 1992; (2) Black 1978; (3) Rawlings, Drew, & Barlow 1993; (4) Karpas, Anicich,
& Huntress 1979; (5) Rawlings 1988; (6) de Jong 1972; (7) Nakashima, Takayi, & Nakamura 1987; (8)
Dalgarno & Lepp 1987; (9) Hirasawa 1969; (10) Lepp & Shull 1983; (11) Shapiro & Kang 1987; (12)
Osterbrock 1974; (13) Stancil 1994; (14) Hollenbach & McKee 1979.
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