

Centre Spatial de Liège Université de Liège

Applications of inorganic photorefractives : marketed systems and potentialities

Marc GEORGES

Head of Laser Techniques Group

Centre Spatial de Liege, Liege Science Park, Belgium

© Centre Spatial de Liège, OSC, Tucson, Oct 07

Summary

- The Centre Spatial de Liège
 - Activities with PR materials
- Applications of PR materials :
 - General context
 - Laser mode filtering and enslaving
 - Detection of ultrasound by laser
 - Holographic interferometry

Laser Techniques Group

- Formerly Non Linear Optics
- ♦ 3 scientists-engineers + part-time technician
- First activities (start 1988)
 - Photorefractive crystals characterization
 - Applications in optical information processing
- Since 1993 : Development of holographic camera
 - Many projects (Eur. Defense Agency, Walloon Region, European Union, ESA)
 - Creation of Spin-off OPTRION (2001)
- Since 1998 : Photorefractive Crystal growth
 - Technology transfer from Univ. Bordeaux
- Recent :
 - Digital Holography
 - Laser Induced Breakdown Spectroscopy

Laser Techniques Group

Photorefractive holographic camera

- Displacement metrology
- Non destructive testing
- Compact
- Userfriendly
 - In-situ recording of holograms
 - Indefinitely reusable

- High power monomode fiber
 - (World patent)
 - Transmission 80%
 - 5 Watts injected
 - VERDI laser

Laser Techniques Group

- Photorefractive Crystal growth facilities
 - BSO (stopped)
 - CdTe (1 thesis, NATO collaboration)

Applications of inorganic PRCs

- Many applications
 - Data storage

.

- Phase conjugation
- Optical processing
- Coherent imagery through turbid media
- Holographic filtering
- Non destructive control
- Literature : springer Series in Optical Sciences
 « Photorefractive Materials and Their Applications »
- OSA Toptical Meetings on Photorefractive Materials, Effects and Devices : e.g. PR'07, Lake Tahoe
- Best Applications of PR Materials
 - Must be marketed or have a high potential

Holographic adaptative filtering

Filtering of laser modes

Laser mode filtering and enslaving

© Centre Spatial de Liège, OSC, Tucson, Oct 07

• Filtering of laser modes (courtesy of Gilles Pauliat, Inst. Optique, Palaiseau, Fr)

© Centre Spatial de Liège, OSC, Tucson, Oct 07

• Filtering of laser modes (courtesy of Gilles Pauliat, Inst. Optique, Palaiseau, Fr)

[©] Centre Spatial de Liège, OSC, Tucson, Oct 07

• Filtering of laser modes (courtesy of Gilles Pauliat, Inst. Optique, Palaiseau, Fr)

Ex : monolithic cavity 15 mW at 660 nm, with Co:BaTiO₃

• Filtering of laser modes (courtesy of Gilles Pauliat, Inst. Optique, Palaiseau, Fr)

• provided by D. Rytz, FEE

Adaptation toward a single longitudinal mode within 2 s

• Injectable laser with wavelength memory (Gilles Pauliat, Inst. Optique, Palaiseau, Fr)

Injectable laser with wavelength memory

(courtesy of Gilles Pauliat, Inst. Optique, Palaiseau, Fr)

Material issues

- Use crystal matching wavelength of laser (obvious)
- Reflection Bragg grating : thick enough
- PR crystal used in diffusive regime :
 - phase-shift = $\pi/2$
 - No electric field
- $\Gamma l \sim 0.2 0.5$ (not higher otherwise unstable)
- Present prospects
 - Grow CdTe crystal for 1.55 μm

Global principle of Laser Ultrasonics

• Interest :

- Non contact/no couplants
- Hostile environments
- Complex shapes
- Extended bandwidth compared with traditional contact US

Detection of Ultrasound by Lasers

© Centre Spatial de Liège, OSC, Tucson, Oct 07

Confocal Fabry-Perot interferometer

Ultrasonic motion of surface Doppler shift of laser frequency

Frequency modulation transformed as intensity modulation

Confocal F-P allows large throughput Ideal for speckled beams (scattering surfaces)

© Centre Spatial de Liège, OSC, Tucson, Oct 07

- Confocal Fabry-Perot interferometer : Drawbacks
 - Stabilization of cavity required
 - For MHz bandwidth : long FP cavities (50 cm 1 m)
 - Complex and cumbersome systems
 - Weak sensitivity to low US frequencies (< MHZ)
 - Not well suited for composites inspection (the increasing market)
- Solution : use adaptative interferometry with PRCs
 - Two Wave Mixing
 - Photo-EMF

Ultrasound Detection by Two-Wave Mixing

Probe beam : phase modulated + speckled

Index grating recorded :

- Response Time > Phase modulation time
- Tuned through Pump Beam

A-scan 0.02 0.015 0.01 Amplitude (a.u.) 0.005 0 Harry -0.005 -0.01 -0.015 -0.02 2 10.5 8 10⁻⁶ 1.2 10^{.5} 1.6 10-5 0 4 10 Time (S) **Depth of defect Thickness of piece**

• Typical results (courtesy BossaNova Company)

- Ultrasound detection by Two Wave Mixing
- Common works by
 - IMI-CNRC (Boucherville, QC) : J-P. Monchalin, A. Blouin
 - Institute Optics (Orsay, Fr) : G. Roosen, Ph. Delaye
- Best Application of Photorefractive Materials at PR'01
- Other works by USA group B. Pouet, M. Klein
- Good commercial success
 - Bossa Nova, CA
 - Tecnar, QC

© Centre Spatial de Liège, OSC, Tucson, Oct 07

Material issues :

- Response time of grating formation
 - Sufficiently long to record the reference state (i.e. If too short, it adapts to the ultrasound motion)
 - Sufficiently short to adapt the interferometer to low ambient vibrations (i.e. to record new holograms with new speckled beams during a scan)
 - In practice : $\tau \sim 1-10 \ \mu s$
- Ratio Gain/Absorption
 - GaAs : $\alpha/\Gamma \sim 2$
 - There is an optimal crystal length d for a given α/Γ

CW vs. Pulse Lasers

- Detection only during a few tens of µs
- Pulsed laser with 50-100 μs sufficient (PDL Laser by Tecnar)
 - Only at 1.06 µm, MOPA
- CW possible but loss of light
- Any wavelength, mostly DPSS 532 nm (e.g. BossaNova)

CW : lab systems

PDL : industry systems

- Comparison of techniques
- Fabry-Perot vs. TWM
- Different crystals

Photo-Electro Motive Force (EMF) for measuring vibrations

- First demonstrated by then Soviet group (Stepanov, Petrov,...)
- Pump + Object Speckled beams interfere at crystal
- Crystal is used with applied field (drift regime)
- Motion due to moving target implies moving grating
- Variations of electric current processed to provide signal
- Crystal GaAs:Cr = sensor ; No Photodiode

- Photo-EMF used for detecting ultrasonic motions on rough surfaces
- US company LASSON/Intelligent Optical Systems, CA
- Best Application of Photorefractive Materials, PR'99
- First commercial device with PR materials
- Not big success due to weak figures of merit (sensitivity)

Holographic interferometry generalities

Object is displaced/deformed

 Object visualization simultaneous to holographic readout

 $I(x,y) = I_0(x,y) \cdot [1 + m(x,y) \cos \phi(x,y)]$

3. Object deformation and Holographic reading

• What can we measure ?

$I(x,y) = I_0(x,y) \cdot [1 + m(x,y) \cos \phi(x,y)]$

 $\phi(x,y) = S(x,y).L(x,y)$

Variation of surface position between 2 instants

Transparent objects

Variations of refractive index between 2 instants and integrated along line of sight

$$\phi(x, y) = \int \frac{2\pi}{\lambda} [n(x, y, z) - n_0] dz$$

Quantification of phase difference

- Quantification of phase difference
 - Temporal heterodyning : « phase shifting »

phase modulo 2π

Better accuracy

Requires stability between acquisition

– Spatial heterodyning : FFT with spatial carrier added

Lower accuracy Careful choice of carrier

Single Frame analysis

© Centre Spatial de Liège, OSC, Tucson, Oct 07

« Real-Time » Holographic Interferometry

• Materials issues : inorganic PR used for HI

NIR $(\lambda=1 \ \mu m)$

Semiconductors CdTe, GaAs

Highest sensitivity : $E_s \sim 0.1-1 \text{ mJ/cm}^2$ Poor efficiency : $\eta \sim 1 \%$

• Materials issues : Particular properties of diffraction by PRCs

- Choice of crystal = BSO
 - The most sensitive
 - Works with DPSS frequency doubled laser (e.g. Verdi)

	Isotropic	Anisotropic
Crystal thickness	<i>l</i> ~ 1-2 cm	<i>l</i> ~ 2.7 mm
Average intensity	High	Low
$I_0(x,y)$		
Contrast $m(x,y)$	Depends on Γl	Easy to control
	Medium	Very High

1 4 4 7 7 7 1 1 1 1 1 1

3.3

© Centre Spatial de Liège, OSC, Tucson, Oct 07

CW holographic camera

Commercialized by spin-off OPTRION « Best application of Photorefractive materials » PR'05 © Centre Spatial de Liège, OSC, Tucson, Oct 07

Applications : displacements metrology

Aluminum + honeycomb

Applications : displacements metrology

© Centre Spatial de Liège, OSC, Tucson, Oct 07

Applications : Stroboscopic Real-Time

Applications : NDT (defect detection)

Application on MEMS mechanical behaviour

Application on transparent objects

- Use pulse Q-switch YAG laser
 - Nanoseconds recording
 - Allows adressing high speed phenomena : shocks, vibrations,...
- Double pulse lasers,
 - 10-25 Hz repetition rate
 - $\Delta t = 1 200 \ \mu s$

- Novel phase quantification technique # 1
 - <u>Fully passive</u> simultaneous phase-shifting with 2-cameras

Industrial prototype = Holographic Head + Laser

» INNOLAS

© Centre Spatial de Liège, OSC, Tucson, Oct 07

- Vibrations : Electronic board on shaker
 - total amplitude of vibration can be millimeters
 - $-\lambda = 1064$ nm / AsGa crystal

Shock : Metallic plate with hammer
laser : double pulse sequence (25 Hz rep. Rate, 120 µs delay)

- Discussion about materials issues
 - Present : BSO/AsGa
 - E=10 mJ/cm²
 - Weak efficiency : I_{diffracted} << I_{direct}
 - Counterbalanced by polarization separation after crystal
 - Contrast m=1
 - I_0 weak : we work at the limit of CCD cameras sensitivity
 - Ratio Surface Observed/Laser Power : small
 - Ideal material :
 - E<10 mJ/cm² (not that critical)
 - High efficiency/isotropic diffraction
 - Low scattering noise
 - Laser source :
 - 532 nm, 1064 nm (DPSS)
 - Smaller laser (monomode diode lasers) : material adapted to wavelength

- Single pulse lasers High repetition rate
 - 1**-**10 kHz
 - Allows sampling of fast phenomena
 - Keep track of object/phenomena changes between pulses
 - Readout at slow speed : « Wavefront Buffer Memory »
 - Multiplexing of readout : angular

Pulsed holographic systems

- Material issues :
 - N holograms

$$\eta_i = \frac{1}{N} \eta_0$$

- Need efficient/fast crystals
 - BSO : fast, not efficient (E. Weidner, G. Pauliat, G. Roosen. J. Opt. A: Pure Appl. Opt. 5, pp. 524-528, 2003)
 - A few tens of holograms
 - Limited object size due to low efficiency
 - LiNbO3 : slow, very efficient (X. Wang, R. Magnusson, A. Haji-Sheikh, Appl. Opt. 32 (11), pp. 1983-1986 (1993)
 - High power lasers
- Need new materials with both qualities
 - Double exposure
 - All holograms have the same polarization
 - Phase quantification : should be a bit more tricky

New holographic technique

- Use holographic interferometry methods at 10 μm
 - Fill a gap in current optical metrology methods
 - Holography at visible wavelengths
 - Displacement measurement range depends on wavelength
 - Fringe projection/image correlation
 - Displacement measurement range depends on imaging device resolution
 - Decrease stability criteria of Holography (depends on wavelength)
 - Address metrology and NDT with large sollicitation/stress levels

Photosensitive holographic recording media at 10 μm

- Examples:
 - Wax & Gelatin Film by S. Kobayashi et al (Appl. Phys. Lett. 1971)
 - Thermochromic materials by R. R. Roberts et al (Appl. Opt. 1976)
 - Plastics by Rioux *et al* (Appl. Opt. 1977)
- Recording at 10 μ m, readout at 633 nm
- 10 lines/mm (low resolution)

New holographic technique

Use digital holography methods at 10 μm

New holographic technique

No convincing materials

- In situ recording : thermal processes
- Not readable by self-diffraction
- Low resolution

• Is there a PR material at 10 μ m?