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Summary

♦ The Centre Spatial de Liège
– Activities with PR materials

♦ Applications of PR materials : 
– General context
– Laser mode filtering and enslaving
– Detection of ultrasound by laser
– Holographic interferometry
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♦ Formerly Non Linear Optics
♦ 3 scientists-engineers + part-time technician
♦ First activities (start 1988)

– Photorefractive crystals characterization
– Applications in optical information processing

♦ Since 1993 : Development of holographic camera
– Many projects (Eur. Defense Agency, Walloon Region,    

European Union, ESA)
– Creation of Spin-off OPTRION (2001)

♦ Since 1998 : Photorefractive Crystal growth
– Technology transfer from Univ. Bordeaux

♦ Recent :
– Digital Holography
– Laser Induced Breakdown Spectroscopy

Laser Techniques Group
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♦ Photorefractive holographic camera

– Displacement metrology
– Non destructive testing
– Compact
– Userfriendly

• In-situ recording of holograms
• Indefinitely reusable

– High power monomode fiber
• (World patent)  
• Transmission 80%
• 5 Watts injected
• VERDI laser

Laser Techniques Group
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♦ Photorefractive Crystal growth facilities
– BSO (stopped)
– CdTe (1 thesis, NATO collaboration)
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Applications of inorganic PRCs

♦ Many applications
– Data storage
– Phase conjugation
– Optical processing
– Coherent imagery through turbid media
– Holographic filtering
– Non destructive control
– …..

♦ Literature : springer Series in Optical Sciences
« Photorefractive Materials and Their Applications »

♦ OSA Toptical Meetings on Photorefractive Materials, Effects and 
Devices : e.g. PR’07, Lake Tahoe

♦ Best Applications of PR Materials
– Must be marketed or have a high potential
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Holographic adaptative filtering

♦ Filtering of laser modes

Laser cavities Several modes Longitudinal

Transverse

Geometry of cavity
Depending on

Laser medium

Filtering
Fabry-Perot

Lyot

….

Static Filters Selection of 1 mode

Correct Adjustment of
Filter spectral response

Adaptative Filtering
Avoid using



8© Centre Spatial de Liège, OSC, Tucson, Oct 07

Laser mode filtering and enslaving
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Wave A Wave B

Interference pattern

Photorefractive crystal

Phase shift of π/2

Phase shift of π/2
Destructive interference

Attenuation of A

Constructive interference
Amplification of B

A diffracted, phase shift = π/2-ϕ = 0

B transmitted, phase shift  = 0

A transmitted, phase shift  = 0

B diffracted, phase shift = π/2+ϕ = π

A

B

ϕ : phase shift due to diffraction by 
refractive index grating

ϕ = π/2

♦ Filtering of laser modes (courtesy of Gilles Pauliat, Inst. Optique, Palaiseau, Fr)

Self organized laser cavities

This happens for one wavelength
Other wavelengths do not match

Amplification for a single wavelength
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♦ Filtering of laser modes (courtesy of Gilles Pauliat, Inst. Optique, Palaiseau, Fr)

Self organized laser cavities

Output coupler

A 
transmitted

A diffracted
+

B transmitted
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♦ Filtering of laser modes (courtesy of Gilles Pauliat, Inst. Optique, Palaiseau, Fr)
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Self organized laser cavities
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SpectreSpectrum
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Frequency

50%

Nd:YVO4

Initially : diffraction limited 
beam, but several 
longitudinal modes

BaTiO3:RhBaTiO3:Rh

At t = 0 s

Adaptation toward a single 
longitudinal mode within 2 s 

Bragg
grating

Self-adapted Fabry-Perot

At t = 2 s

• Rhodium doped
• 45° cut
• thickness = 3.5 mm
• α = 0.1 cm-1, Γl=0.2 
• provided by D. Rytz, FEE

♦ Filtering of laser modes (courtesy of Gilles Pauliat, Inst. Optique, Palaiseau, Fr)

Self organized laser cavities
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♦ Injectable laser with wavelength memory (Gilles Pauliat, Inst. Optique, Palaiseau, Fr)

Self organized laser cavities

Extended cavity laser diode : multimode regime

Insertion of crystal : monomode regime

Injection of master laser at λ : monomode regime at λ
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♦ Injectable laser with wavelength memory
(courtesy of Gilles Pauliat, Inst. Optique, Palaiseau, Fr)
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Wavelength (nm)

Superposition of spectra memorized by the slave 
laser after temporary injection

Targeted applications
Telecom source WDM PON
Source for instrumentation

Injection by a master laser
or by a filtered Amplified Spontaneous Emission source

Self organized laser cavities
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♦ Material issues
– Use crystal matching wavelength of laser (obvious)
– Reflection Bragg grating : thick enough
– PR crystal used in diffusive regime :

• phase-shift = π/2
• No electric field

– Γl ~ 0.2 – 0.5 (not higher otherwise unstable)

♦ Present prospects
– Grow CdTe crystal for 1.55 µm

Self organized laser cavities
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Ultrasound detection by laser

♦ Global principle of Laser Ultrasonics

♦ Interest :
– Non contact/no couplants
– Hostile environments
– Complex shapes
– Extended bandwidth compared with traditional contact US
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Detection of Ultrasound by Lasers
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♦ Confocal Fabry-Perot interferometer

Ultrasound detection by laser

Ultrasonic motion of surface

Doppler shift of laser frequency

Confocal F-P allows large throughput
Ideal for speckled beams (scattering surfaces) 

Frequency modulation transformed
as intensity modulation 
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♦ Confocal Fabry-Perot interferometer : Drawbacks 
– Stabilization of cavity required
– For MHz bandwidth : long FP cavities (50 cm – 1 m)
– Complex and cumbersome systems
– Weak sensitivity to low US frequencies (< MHZ)
– Not well suited for composites inspection (the increasing market)

♦ Solution : use adaptative interferometry with PRCs
– Two Wave Mixing
– Photo-EMF

Ultrasound detection by laser
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♦ Ultrasound Detection by Two-Wave Mixing

Ultrasound detection by laser

Probe beam : phase modulated + speckled

Index grating recorded :
- Response Time > Phase modulation time
- Tuned through Pump Beam

Diffracted Beam = Local Oscillator
- No more modulated
- Still speckled

Transmitted Beam

Interference
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♦ Typical results (courtesy BossaNova Company)

Ultrasound detection by laser

A-scan

Depth of defect

Thickness of piece
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♦ Ultrasound detection by Two Wave Mixing
♦ Common works by

– IMI-CNRC (Boucherville, QC) : J-P. Monchalin, A. Blouin
– Institute Optics (Orsay, Fr) : G. Roosen, Ph. Delaye

♦ Best Application of Photorefractive Materials at PR’01
♦ Other works by USA group B. Pouet, M. Klein
♦ Good commercial success

– Bossa Nova, CA
– Tecnar, QC

Ultrasound detection by laser

Ultrasound detection Steel tube
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♦ Material issues :
– Response time of grating formation

• Sufficiently long to record the reference state
(i.e. If too short, it adapts to the ultrasound motion)

• Sufficiently short to adapt the interferometer to low ambient vibrations
(i.e. to record new holograms with new speckled beams during a scan)

• In practice : τ ~ 1-10 µs
– Ratio Gain/Absorption

• GaAs : α/Γ ~ 2
• There is an optimal crystal length d for a given α/Γ

Ultrasound detection by laser
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♦ Material issues : Crystals – Lasers used
Ultrasound detection by laser

Green Laser

Nd-YAG Laser 1.06 µm

CW : lab systems PDL : industry systems

Green Laser

♦ CW vs. Pulse Lasers
– Detection only during a few tens of µs
– Pulsed laser with 50-100 µs sufficient (PDL Laser by Tecnar)

• Only at 1.06 µm, MOPA
– CW possible but loss of light
– Any wavelength, mostly DPSS 532 nm (e.g. BossaNova)

BaTiO3 : too slow
GaAs : faster but no DC field possible
InP:Fe : faster, DC field possible
CdTe : faster, DC field possible, better coupling
BSO
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♦ Comparison of techniques
♦ Fabry-Perot vs. TWM
♦ Different crystals

Ultrasound detection by laser
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♦ Photo-Electro Motive Force (EMF) for measuring vibrations

Ultrasound detection by laser

– First demonstrated by then Soviet group (Stepanov, Petrov,…)
– Pump + Object Speckled beams interfere at crystal
– Crystal is used with applied field (drift regime)
– Motion due to moving target implies moving grating
– Variations of electric current processed to provide signal
– Crystal GaAs:Cr = sensor ; No Photodiode
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♦ Photo-EMF used for detecting ultrasonic motions on rough 
surfaces

♦ US company LASSON/Intelligent Optical Systems, CA
♦ Best Application of Photorefractive Materials, PR’99
♦ First commercial device with PR materials
♦ Not big success due to weak figures of merit (sensitivity)

Ultrasound detection by laser



28© Centre Spatial de Liège, OSC, Tucson, Oct 07

Holographic Interferometry
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– Object is displaced/deformed
– Object visualization simultaneous

to holographic readout

– Fringe pattern superimposed to
object image

INTERFEROGRAMINTERFEROGRAM

Holographic Interferometry

Ι(x,y) = I0(x,y).[1 + m(x,y) cosφ(x,y)]

♦ Holographic interferometry generalities
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♦ What can we measure ? 
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Holographic Interferometry

Ι(x,y) = I0(x,y).[1 + m(x,y) cosφ(x,y)]
Scattering objects

Transparent objects

Variations of refractive index between 2 instants
and integrated along line of sight

Variation of surface position between 2 instants
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♦ Quantification of phase difference

I(x,y)=I0(x,y) [1+m(x,y) cos(φ(x,y))]

Optical Phase DifferenceOptical Phase Difference Displacement mapDisplacement map

xx

yy Average IntensityAverage Intensity

ContrastContrast

Optical Phase DifferenceOptical Phase Difference

Phase computationPhase computation
techniquetechnique

(phase(phase--shifting, FFT,..)shifting, FFT,..)

(modulo 2(modulo 2ππ)) φ(x,y) = S.L

Holographic Interferometry
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♦ Quantification of phase difference
– Temporal heterodyning : « phase shifting »

– Spatial heterodyning : FFT with spatial carrier added

phase modulo 2π

Better accuracy

Requires stability between acquisition

Lower accuracy
Careful choice of carrier

Single Frame analysis

Holographic Interferometry
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Holographic Interferometry

♦ « Real-Time » Holographic Interferometry

Recording energy at saturation : Es = τ.I
cw lasers

pulsed lasers

Object state 0 Object state 1 Object state 2

Interferogram 1

Interferogram 2incident

self
diffracted
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Holographic Interferometry

Visible
(blue-green)

Sillenite
Bi12SiO20 (BSO)

Ferroelectrics
LiNbO3, BaTiO3

High sensitivity : ES ~ 1-10 mJ/cm2

Poorest efficiency : η~ 0.1 %

Poor sensitivity : ES ~ 1 J/cm2

Highest efficiency : η~ 100 %

NIR
(λ=1 µm)

Semiconductors
CdTe, GaAs

Highest sensitivity : ES ~ 0.1-1 mJ/cm2

Poor efficiency : η~ 1 %

♦ Materials issues : inorganic PR used for HI
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Holographic Interferometry

♦ Materials issues : Particular properties of diffraction by PRCs

θ θ

Γl =
4π ∆n l

λ
≈ 1

P2

P1

Pdiff

Pt

Anisotropic diffraction Isotropic diffraction

Interferogram contrast depends on the analyser orientation Interferogram contrast depends on the product :
-coupling constant
-crystal thickness



36© Centre Spatial de Liège, OSC, Tucson, Oct 07

♦ Choice of crystal = BSO
– The most sensitive
– Works with DPSS frequency doubled laser (e.g. Verdi)

Easy to control
Very High

Depends on Γl
Medium

Contrast m(x,y)

LowHighAverage intensity
I0(x,y)

l ~ 2.7 mml ~ 1-2 cmCrystal thickness

AnisotropicIsotropic

Holographic Interferometry



37© Centre Spatial de Liège, OSC, Tucson, Oct 07

♦♦ CW CW holographicholographic cameracamera

Commercialized by spin-off OPTRION
« Best application of Photorefractive materials »

PR’05

Holographic Interferometry
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♦ Applications : displacements metrology

Aluminum + honeycomb CFRP + honeycomb

Holographic Interferometry
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♦ Applications : displacements metrology

Holographic Interferometry
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Holographic Interferometry

♦ Applications : Stroboscopic Real-Time

t0-T +T

τ

holographic
recording

stroboscopic
readout
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♦ Applications : NDT (defect detection)

Holographic Interferometry
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♦ Application on MEMS mechanical behaviour

Holographic Interferometry
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♦ Application on transparent objects

Holographic Interferometry
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♦ Use pulse Q-switch YAG laser
– Nanoseconds recording
– Allows adressing high speed phenomena : shocks, vibrations,…

♦ Double pulse lasers,
– 10-25 Hz repetition rate
– ∆t = 1 – 200 µs

Holographic Interferometry

Record

Readout

CCD emptied

∆t
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CCD camera

non-polarizing
beamsplitter

QWP

polarizerpolarizer

non-polarizing
beamsplitter

π/2QWP

Polarizer

Polarizer

♦ Novel phase quantification technique # 1
– Fully passive simultaneous phase-shifting with 2-cameras

• Cam 1 : I = I01 (1+m sin ∆φ)
• Cam 2 : I = I02 (1+m cos ∆φ)

Holographic Interferometry
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♦ Industrial prototype = Holographic Head + Laser

Holographic Interferometry
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♦ Vibrations : Electronic board on shaker
– total amplitude of vibration can be millimeters
– λ = 1064 nm / AsGa crystal

Holographic Interferometry
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♦ Shock : Metallic plate with hammer
– laser : double pulse sequence (25 Hz rep. Rate, 120 µs delay)

Holographic Interferometry
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0                                        40ms                         80ms                       120ms   160ms                      200ms

240ms                         280 ms                    320ms   360ms                     400ms              440ms

480ms                         520 ms                    560ms   600ms                     640ms              680ms

720ms                         760 ms                    800ms   840ms                     880ms              920ms

Holographic Interferometry



50© Centre Spatial de Liège, OSC, Tucson, Oct 07

♦ Discussion about materials issues
– Present : BSO/AsGa

• E=10 mJ/cm2

• Weak efficiency : Idiffracted << I direct
• Counterbalanced by polarization separation after crystal
• Contrast m=1
• I0 weak : we work at the limit of CCD cameras sensitivity
• Ratio Surface Observed/Laser Power : small

– Ideal material :
• E<10 mJ/cm2 (not that critical)
• High efficiency/isotropic diffraction
• Low scattering noise
• Laser source :

– 532 nm, 1064 nm (DPSS)
– Smaller laser (monomode diode lasers) : material adapted to wavelength

Holographic Interferometry
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♦ Single pulse lasers – High repetition rate
– 1-10 kHz
– Allows sampling of fast phenomena
– Keep track of object/phenomena changes between pulses
– Readout at slow speed : « Wavefront Buffer Memory »
– Multiplexing of readout : angular

Holographic Interferometry

t

1 2 3 4 6

I3
I1 I2
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Pulsed holographic systems
♦ Material issues :

– N holograms

– Need efficient/fast crystals
• BSO : fast, not efficient  (E. Weidner, G. Pauliat, G. Roosen. J. Opt. A: Pure Appl. Opt. 5, pp. 524-528, 2003)

– A few tens of holograms
– Limited object size due to low efficiency

• LiNbO3 : slow, very efficient (X. Wang, R. Magnusson, A. Haji-Sheikh, Appl. Opt. 32 (11), pp. 1983-1986 (1993)

– High power lasers

– Need new materials with both qualities
• Double exposure
• All holograms have the same polarization
• Phase quantification : should be a bit more tricky

0
1 ηη
Ni =
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New holographic technique

♦ Use holographic interferometry methods at 10 µm
– Fill a gap in current optical metrology methods

• Holography at visible wavelengths 
– Displacement measurement range depends on wavelength

• Fringe projection/image correlation
– Displacement measurement range depends on imaging device resolution

– Decrease stability criteria of Holography (depends on wavelength)
– Address metrology and NDT with large sollicitation/stress levels

♦ Photosensitive holographic recording media at 10 µm
– Examples:

• Wax & Gelatin Film by S. Kobayashi et al (Appl. Phys. Lett. 1971)
• Thermochromic materials by R. R. Roberts et al (Appl. Opt. 1976)
• Plastics by Rioux et al (Appl. Opt. 1977)

– Recording at 10 µm, readout at 633 nm
– 10 lines/mm (low resolution)
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New holographic technique

♦ Use digital holography methods at 10 µm
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♦ No convincing materials
– In situ recording : thermal processes
– Not readable by self-diffraction
– Low resolution

♦ Is there a PR material at 10 µm ?

New holographic technique


