
,'�RI�FRQWULEXWLRQ��������(12&�������(LQGKRYHQ��1HWKHUODQGV�������$XJXVW�����
%./#
����� %INDHOVEN� .ETHERLANDS� �
�� !UGUST ����

)3 "/5.#% *5'',).' %!3)%2 ). ! 0!2!"/,)#
"),,)!2$ 4(!. ). ! 7%$'%�

$ONG %UI #HANG
�)������*) ����������� *�


�	.
 ��� �������

&��$������ 	� ��E���

�@2GGG ��E���< ��)�� .

��*��4.	���:	��C )�C*�C/�

2ENAUD 2ONSSE
�)������*) ����������� *�


�	.
 ��� �������

&��$������ 	� ��E���

�@2GGG ��E���< ��)�� .

�C�	����4 )�C*�C/�

2ODOLPHE 3EPULCHRE
�)������*) ����������� *�


�	.
 ��� �������

&��$������ 	� ��E���

�@2GGG ��E���< ��)�� .

�C��
 )����4 )�C*�C/�

!BSTRACT
0� �� 
� ��� 
��*.��� *�
 �	���	) 	� /	 ��� ! ��)���

�� �(	 
)*�*� ��*$��*��	�*) /�))�*�
�D * (�
��< 
*�*.�@

������
 /� ��� *��)�< *�
 * 
*�*/	)*< 
*�*.�������
 /�

��� � �$*� ��C "�� �(	 �)*���� *�
  �*�� *��
 M:-�
3

/�))�*�
� 
	����� ��� �*.� 
���	
@	�� *�
 
���	
@�(	

	�/���C �	.� 	� ���. *�� ��	(� �	 /�  ���*/)� �� ���

(�
��< (����*� *)) 	� ���. *�� ��	(� �	 /� .*����*))�

��*/)� �� ��� 
*�*/	)*< 
 � �	 *� *

���	�*) �	����$�


� *�����C 0� 
��� �� �.
)��*��	�� 	� ���� ��� )� �	� ���

�	���	) 
�	/)�. 	� ! ��)��� ����� 	�/��� �� *� *�� *��


�	��)*���� /�))�*�
C

+EY WORDS
��))�*�
< ! ��)���< ���
/*�%< ����	�)���< ��*/�)��*��	�

� )NTRODUCTION
�	 ��� ! ��)��� �� *� ����������� �	���	) 
�	/)�.

��*� �*� /��� ��$�����*��
 /� ��$��*) ����*������ *� *

/����.*�% �	� �����.������ �	���	) 	� �.
*�� �����.�F

���< �	� �-*.
)�< 7� ��)��< ,	
������% *�
 ,��
)@

.*��< IBB2F ����� *�
 �)*�%< IBBBF ��	�)�*�	< IBB8F

���**) *�
 ��%��	�< IBBLF ��
 )���� *�
 ���*�
<

JGGLF �	����< ����$�� *�
 ��
 )����< JGG2> *�
 �����@

����� �������C #� ������ 
*
��� 7��
 )���� *�
 ���*�
<

JGGLF ���*�
 *�
 ��
 )����< JGG2F �	����< ����$��

*�
 ��
 )����< JGG2>< (� �� 
��
 ��� ��*/�)��*��	� 	�


���	
@	�� *�
 
���	
@�(	 
���	
�� 	�/��� �� * (�
��F

��� ��� �� IC ����	
@�(	 M��� M*3 	� ��� �� J3 	�/��� ��@

��./)� ��� �)*����*) K��	(��6 ! ��)��� 
*����� *�
 *)@

)	( �	 �	���
�� ��� /	 ��� ! ��)��� �	���	) 	� ��$��*)

/*))�C

� 
��*.��*) �� 
� 	� ��� �)*����  �*�� *��
 M:-�
3

(�
�� ��	(� ��*� 
���	
@	�� 	�/��� �-��� �	� *)) *��)� � C

"��� *�� .*����*))� ��*/)� �	� � � ���< �-
	�����*))�
 ���*/)� �	� � � ���< *�
 ! ��  ���*/)� A �	� �-
	���@

��*))�  ���*/)� A �	� � � ���C #� �	���*��< 
���	
@�(	

	�/��� �-��� 	�)� �� ��� �� *�� (�
�� M� � ���3C "����

�� * �	����  . 	� � �� 	�/��� �� ��� �� *�� (�
�� *�


���� *�� *))  ���*/)�C ���
/*�% ���*������ 7���*�
 *�


��
 )����< JGG2> *� (�)) *� ����	�)��� ���*������ 7�	�@

���< ����$�� *�
 ��
 )����< JGG2> (��� ��$�����*��
 �	

��*/�)��� ����� 	�/��� �� * �	��)*���� / � .	$��� (�
��C

#� ��� 
������ 
*
��< (� � ����� ��$�����*�� ��� �	)� 	�

��� /�))�*�
 ��*
� �� ���� �	���	) 
�	/)�.C 0� �� 
� ���


��*.��� 	� * 
*�*/	)�� /�))�*�
 :��� �� 
��
 �� 7,	����

*�
 �*��< IBBI>C "�� 
*�*/	)�� /�))�*�
 �� 
*�*.����@

���
 /� ��� � �$*� ��< (����*� ��� (�
�� /�))�*�
 �� 
*@

�*.�������
 /� ��� *��)�C �	.
*��
 �	 ��� (�
��< ���


*�*/	)�� /�))�*�
 �*� *� *

���	�*) �	����$�
 � *�����

*�
 (� �-*.��� ��� �	���� ����� �	� ��� /	 ��� ! �@

�)��� �	���	) 
�	/)�.C 0� 
���$� * ��
 ��
 �	���*�H�

.*
 �	� ��� 
*�*/	)�� /�))�*�
 *�
 �� 
� ��� �-�������

*�
 ��*/�)��� 	� �	.� �*.�)��� 	� 
���	
�� 	�/���C #� 
*�@

��� )*�< (� ��	( ��*� ��� �*.� 
���	
@	�� *�
 
���	
@

�(	 	�/��� �-��� �� /	�� /�))�*�
� / � ��*� ����� 	�/��� *��

*)(*�� .*����*))� ��*/)� �� ��� 
*�*/	)�� /�))�*�
C

"�� ��*/�)����� �	)� 	� ��� 
*�*/	)�� ��*
� �*� /� �-@


)	���
 �� ��� /	 ��� ! ��)��� �	���	) 
�	/)�.C �	�

����*���< �� 7���*�
 *�
 ��
 )����< JGG2>< * ��.
)�

���
/*�% �	���	) ���*���� (*� 
�	
	��
 �	 �-
	���@

��*))� ��*/�)��� 	�/��� ��*� *�� .*����*))� ��*/)� �� ���

�)*���� (�
��C "��� ���*���� (*� ���������
 �	 
���	
@

	�� 	�/��� *�
 �	 � � ��� �� ��� (�
��C #� �	���*��<

(� ��	( ��*� �� �� *

)��*/)� �	 
���	
@	�� 	�/��� �� ���


*�*/	)�� /�))�*�
C

"�� 
*
�� �� 	��*����
 *� �	))	(�D �����	� J ��$��(�

��� .*�� 
�	
������ 	� ��� (�
�� /�))�*�
 
��*.���C

�����	� L ��$��(� ��� 
���$*��	� 	� ��� 
*�*/	)�� /�)@

)�*�
 
��*.��� *�
 
�	
	��� * /�� ��*��	� *�*)���� 	�

�	.� �*.�)��� 	� 	�/��� /*��
 	� ��� *�*)����*) 
���$*@

��	� 	� * ��
 ��
 �	���*�H� .*
C �����	� 2 �	.
*��� ���

*�*)���� 	� /	�� /�))�*�
� *�
 
��� ���� ��� �.
)��*��	��

�	� ��� �	���	) 	� /	 ��� ! ��)���C

�����



2 Review of the WedgeDynamics
We review the analysis the wedge dynamics from

[Lehtihet and Miller, 1986; Ronsse, Lefevre and Sepul-

chre, 2004; Sepulchre and Gerard, 2003]; see Figure 1

for the wedge billiard. For any θ ∈ (0◦, 90◦), there
always exist periodic orbits with the shape of a single

arch; see (a) of Figure 2. For convenience, we call them

period-one orbits. Only when θ = 45◦, namely, for the
square wedge, there exist periodic orbits with the shape

of a double arch; see (b) of Figure 2. They are called

period-two orbits for convenience.

θ

Figure 1. The wedge.

Period-one orbits are marginally stable for θ < 45◦

because the three different eigenvalues of the Poincaré

map have magnitude 1. Moreover, the phase portrait

of the Poincaré map has integral, KAM and chaotic re-

gions for θ < 45◦. Period-one orbits are unstable for
θ = 45◦. Period-one orbits are exponentially unsta-
ble for θ > 45◦ because one of the eigenvalue of the
Poincaré map has magnitude greater than 1. Moreover,

all the periodic orbits are known to be unstable and the

wedge dynamics are chaotic for θ > 45◦. Period-two
orbits, which exist only for the square wedge, are all

unstable.

θ

(a) A period-one orbit (b) A period-two orbit

Figure 2. Period-one orbits exist for all θ, but period-two orbits
exist only for the square wedge.

3 Parabolic Gravitational Billiards
A gravitational billiard with a parabolic boundary is

called a parabolic gravitational billiard (PGB). This bil-

liard system is integrable as Hamiltonian system with

two first integrals when collision is elastic , [Korsch

and Lang, 1991]. In this section, we build a one-

dimensional reduced Poincaré map of this system, de-

tect some periodic orbits of the system and check their

stability. In this section we assume that collision with

the boundary is elastic.

3.1 Review of PGB
We review the analysis of the PGB in [Korsch and

Lang, 1991] and build a three-dimensional Poincaré

map.

Consider the motion of a particle of unit mass under

the gravitational force with a parabolic boundary y =
1
2ax

2, a > 0. The configuration spaceM is given by

M =

{
(x, y) ∈ R

2 : y ≥ 1

2
ax2

}
.

The phase space N (⊂ T ∗
R

2) is given by

N ={(x, y, px, py) ∈ R
4 :

y ≥ 1

2
ax2,¬[y =

1

2
ax2, py = axpx]}.

We exclude the boundary points with py = axpx from
N because the velocity vector (px, py) is tangent to the
boundary and this means that the ball is rolling on the

parabola, which is out of our interest in this paper. De-

fine the boundary B by

B =

{
(x, y, px, py) ∈ N : y =

1

2
ax2

}
.

Let us define two sets of coordinates for B. Let

B1 = {(x, px, py) ∈ R
3 : py 6= axpx}

and

B2 = {(x, pt, pn) ∈ R
3 : pn 6= 0}.

Define ψ1 : B1 → B by

ψ1(x, px, py) =

(
x,

1

2
ax2, px, py

)
.

Define ψ2 : B2 → B by

ψ2(x, pt, pn) =

(
x,
ax2

2
,
pt − axpn√

1 + a2x2
,
axpt + pn√

1 + a2x2

)
.

The map ψ1 expresses vectors at the boundary in the

Cartesian frame [ex, ey] and the map ψ2 in the tangent-

normal moving frame [et, en] where the two frames
have the same orientations such that the vector en at
the boundary of M always points to the inside of M ,
[Korsch and Lang, 1991].
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The Hamiltonian of this system is given by

H =
1

2
(p2
x + p2

y) + gy (1)

where g > 0 is the gravitational constant. When the
mass of the particle is not one, one can always rescale

the time such that the Hamiltonian takes the above form

with a different value of g.
We now build a Poincaré map, P : B → B. Since
the particle starting from B with pn > 0 will reach B
and then rebound at the boundary, P can be decom-
posed into two maps: the flight map C and the bounc-
ing map B. The flight map C is given in the coordinates
(x, px, py) by

ψ−1
1 ◦ C ◦ ψ1(x, px, py) =




(g−ap2x)x+2pxpy

g+ap2x
px

py − 2g(py−axpx)
g+ap2x


 .

The bouncing map B with elastic collision is given in
(x, pt, pn) by

ψ−1
2 ◦ B ◦ ψ2(x, pt, pn) = (x, pt,−pn).

Hence, one can easily compute the Poincaré map

P = B ◦ C (2)

in terms of (x, px, py) or (x, pt, pn).

3.2 ReducedPoincaré Map
When collision is elastic on the boundary, the dynam-

ics of the PGB have two first integrals: H andG, where
H is the Hamiltonian in (1) and G is defined by

G(x, y, px, py) = xpxpy −
(
y − 1

2a

)
p2
x +

1

2
gx2.

(3)

See [Landau and Lifshitz, 1976] for the derivation ofG
with the Hamilton-Jacobi equation. Both functions are

invariant under C and B, i.e.,

H ◦ C = H, H ◦ B = H,

G ◦ C = G, G ◦ B = G.

See [Korsch and Lang, 1991] for more details. Notice

that the two first integralsH and G satisfy

(H − aG) =
1

2
(axpx − py)

2 > 0 (4)

on N .
We give one physical interpretation of the function G.
Suppose that a ball is launched at (x, y = 1

2ax
2) on the

boundary with the initial momentum (px, py), px 6= 0.
Its (parabolic) trajectory intersects with the y-axis, say
at (0, y0) with

y0 = −py
px
x+

1

2
ax2 − g

2p2
x

x2, (5)

forward or backward in time; see Figure 3. From (3)

and (5), it follows

G =

(
1

2a
− y0

)
p2
x.

Since (x, y) = (0, 1
2a ) is the focal point of the parabola

y = 1
2ax

2, one can interpret G as the signed distance
from y0 to the focal point scaled by p

2
x (notice that px

is also constant in time between collisions).

PSfrag replacements
y0

Figure 3. Each non-degenerate parabolic trajectory intersects with

the y-axis in the absence of any boundaries.

As we have two first integrals, we can construct an

one-dimensional reduced Poincaré map by restricting

the Poincaré map P in (2) to a fixed level set of (H,G).
Let PH,G denote the reduced Poincaré map. Its domain
will be constructed below. A simple algebra yields

PH,G(x) =
2aG−Q(x)

ax(g + aQ(x))
(6)

whereQ(x) is a non-negative real root of the following
quadratic equation in Q:

(1 + a2x2)2Q2

+ 2a(ga2x4 + (2a2G− 4aH + g)x2 − 2G)Q

+ a2(gx2 − 2G)2 = 0. (7)

Since the numerator (2aG − Q(x)) has a factor x, the
reduced Poincaré map, PH,G is well-defined. The do-
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main BH,G of PH,G is given by the set of x satisfying

(ga2x4 + (g − 2aH)x2 − 2G) ≤ 0, (8)

ga2x4 + (2a2G− 4aH + g)x2 − 2G ≤ 0 (9)

where the first inequality comes from the roots of (7)

being real and the second from the roots of (7) being

both non-negative.

One can check that the root Q(x) is the same as p2
x

at the collision point x. As there are always two non-
negative roots of (7) for x ∈ BH,G, one of the two
is the pre-collision p2

x and the other the post-collision

p2
x. Let Qb and Qs be the bigger and the smaller root,
respectively, of the quadratic equation (7). Notice the

symmetry:

Qb(x) = Qb(−x), Qs(x) = Qs(−x).

LetPbH,G be the Poincaré mapPH,G withQ = Qb, and
PsH,G with Q = Qs. Then, one can see check

PsH,G(x) = −PbH,G(−x). (10)

We give the choice rule of Qb and Qs:

IF Qb(xi+1) == Q(xi)

Q(xi+1) := Qs(xi+1)

ELSE

Q(xi+1) := Qb(xi+1)

END

where xi+1 = PH,G(xi). This rule comes from the as-
sumption of energy conservation and elastic collision.

3.3 Periodic Orbits
We find four different types of periodic orbits in the

PGB dynamics using the reduced Poincaré map, and

discuss their stability in the reduced space, i.e., on the

level set of (H,G).

Vertical Bouncing. Suppose there is x such that
PH,G(x) = x. Solve (6) for Q – i.e., Q = a(2G −
gx2)/(1 + a2x2) – and plug it into (7) to get

x2(2G− gx2) = 0.

There are three roots to the above equation: x =
0,±

√
2G/g. We here deal with x = 0 only, postpon-

ing the analysis of x = ±
√

2G/g. When does x = 0
become a fixed point and what about its stability? One

can compute

PH,G(0) = −4

√
a (H − aG)G

g + 2 a2G
.

Hence, PH,G(0) = 0 if and only if G = 0 since (H −
aG) > 0. This fixed point of PH,G corresponds to the
vertical bouncing at x = 0.
By (8) and (9), the domain BH,G of the reduced
Poincaré map PH,G with G = 0 is given by

BH,G =

{[
−
√

2aH−g
ga2 ,

√
2aH−g
ga2

]
if (2aH − g) > 0

{0} if (2aH − g) ≤ 0.

We now study the stability of the fixed point x = 0.
When (2aH − g) > 0, one can compute

P ′
H,G(0) = −

(√
2aH

g
+

√
2aH − g

g

)2

< −1.

Hence, x = 0 is an unstable fixed point when (2aH −
g) > 0. On the other hand, if (2aH − g) ≤ 0, then
x = 0 becomes an isolated solution of G = 0 for each
value of H satisfying 0 < H ≤ g

2a . In this case the

vertical bouncing at x = 0 is Lyapunov stable even in
the whole phase space N according to Theorem 1 in
[Aeyels and Sepulchre, 1992].

Period-oneOrbits. An orbit like the one in Figure 4

is called a period-one orbit. Let us find all period-one

orbits. They satisfy

x 7→ −x 7→ x 7→ −x . . . . (11)

To find these orbits, we solve P(x) = −x in (6) for Q:

(1 − a2x2)Q(x) = a(2G+ gx2). (12)

If x 6= ± 1
a (i.e., the case of x = ± 1

a will be treated

separately), one can solve (12) for Q(x) and plug it
into (7) to get

2ga3(H − aG)x4

+ (g2 + 4a3HG+ 6ga2G− 2agH)x2

− 4aG(H − aG) = 0. (13)

Notice that PH,G(−x) = x and Q(−x) = Q(x).
Notice also that x uniquely determines Q(x) by (12).
Hence, by energy conservation, orbits corresponding to

(12) cannot be period-two but period-one. So, we need

to check Qb(x) = Qs(x) = Q(x). That is, we need
to check the compatibility of (13) and the condition of

existence of the double root of (7), which is given by

ga2x4 + (g − 2aH)x2 − 2G = 0. (14)

Equations (13) and (14) are compatible, except for x =
0, if and only if

G = − 1

2g

(
H − g

2a

)2

. (15)

�����



Equation (15) implies that (14), as a quadratic equation

in x2, has the double root

x2 =
2aH − g

2ga2
> 0. (16)

The corresponding Q is given by

Q(x) =
(2aH − g)

2a
> 0. (17)

Notice that (15) and (17) give the condition on (H,G)
for the existence of those orbits which is located at x in
(16).

PSfrag replacements

x−x

Figure 4. A period-one orbit. It satisfiesPH,G(±x) = ∓x and
the one way of the trajectory coincides with the other way.

We now consider the case of x = ± 1
a . From (6) and

(12), one can check that PH,G is well-defined at x =
± 1
a and it is given by

PH,G
(
±1

a

)
= ∓1

a
.

The substitution of x = ± 1
a into (12) yields

G = − g

2a2
.

We now choose the value of Q(± 1
a ) such that there

exists a period-one orbit at x = ± 1
a . Plug x = ± 1

a and

G = − g
2a2 into (7) and we get

Q2 −
(g
a
− 2H

)
Q+

g2

a2
= 0. (18)

The non-negative (real) roots are given by

Q

(
±1

a

)
=
(
H − g

2a

)
±
√(

H − g

2a

)2

− g2

a2
(19)

with

H ≥ 3g

2a
.

It corresponds to a period-one orbit if and only if (18)

has the double root if and only if

H =
3g

2a
.

Since formulas (15) – (17) derived for x = 6= ± 1
a hold

at x = ± 1
a as well, one can parameterize all the period-

one orbits, or the positive fixed points of PH,G ◦PH,G,
as

xH =

√
2aH − g

2ga2
, H >

g

2a
. (20)

We now check the stability of the period-one orbits.

Substituting (15) into (8) and (9), one can see that the

domain of PH,G containing {±xH} is exactly the two-
point set {±xH}. Hence, this period-one orbit is an
isolated solution of (15). According to Theorem 1 in

[Aeyels and Sepulchre, 1992], the period-one orbit is

Lyapunov stable in the whole phase space, N .

Period-two Orbits. We now investigate the case

where the two roots (19) of (18) are different for the

periodic orbits:

1

a
7→ −1

a
7→ 1

a
7→ −1

a
. . . .

They are period-two orbits illustrated in Figure 5. They

exist if and only if

H >
3g

2a
, G = − g

2a2
. (21)

The points (x, y) = (± 1
a ,

1
2a ) are the points on the

boundary where the tangent vectors at the points to

the boundary have slopes ±45◦. Hence, the bifurca-
tion of the period-two orbits from the period-one orbits

at (x, y) = (± 1
a ,

1
2a ) agrees with the analysis of the

wedge in that in the wedge dynamics the period one or-

bits exist for all values of the angle between the left arm

and the right arm of the wedge and the period-two or-

bits occur only when the wedge is square. The stability

can be checked by directly computing

P ′
H,G

(
±1

a

)
= 1.

That is, all the period-two orbits are marginally stable.

This result is in the contrast with the instability of all

the period-two orbits in the square wedge.

Vertical Bouncing+ Period-oneOrbits. Recall that

in searching for fixed points of PH,G we found candi-
dates

x± = ±
√

2G

g
, G > 0. (22)
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Figure 5. A period-two orbit. It satisfies PH,G(x) = −x only
at x = 1

a and the one way of the trajectory is different from the

other way.

With x = x± in (7), one solves for Q:

Qs = 0, Qb =
16ga2G(H − aG)

(g + 2a2G)2
. (23)

By the choice rule of Q, it is impossible to have

(x−, Qs) 7→ (x−, Qb) 7→ (x−, Qs) . . .

or

(x+, Qs) 7→ (x+, Qb) 7→ (x+, Qs) . . . .

Namely, x± cannot be the fixed points of PH,G. In-
stead, the following is possible

(x−, Qs) 7→ (x−, Qb) 7→ (x+, Qs) 7→ (x+, Qb)

7→ (x−, Qs) 7→ . . .

provided the following holds

H =
g2 + 8ga2G− 4a4G2

4a(g − 2a2G)
, 0 < G <

g

2a2
(24)

where G < g
2a2 comes from (4). The corresponding

periodic orbits are illustrated in Figure 6.

PSfrag replacements

x+x−

Figure 6. (Vertical bouncing + period-one) periodic orbits.

General stability analysis of the (vertical

bouncing+period-one) periodic orbits is not straight-

forward. One needs to rely on numerical computation

given specific numeric data of all parameters.

Bifur cation Diagram. We have found the four dif-
ferent types of periodic orbits: vertical bouncing,

period-one, period-two and (vertical bouncing+period-

one) orbits. We now study how they bifurcate from one

another. The bifurcation diagram is given in in Fig-

ure 7.

First, notice from (15) and (20) that the period-one

orbits converge to a vertical bouncing orbit at x = 0
as H approaches g

2a . Recall that the vertical bouncing

orbit loses its stability at H = g
2a . Hence, one can

see that the period-one orbits bifurcate from the vertical

bouncing at x = 0 when (H,G) = ( g2a , 0).
Second, it follows from (15) and (21) that the period-

two orbits bifurcate from the period-one orbits when

(H,G) = ( 3g
2a ,−

g
2a2 ).

Third, one can see from (24) that the (vertical bounc-

ing + period-one) orbit at x± in (22) converges to the
vertical bouncing orbit at x = 0 as G approaches 0 (or,
H approaches g

4a ). Namely, the (vertical bouncing +

period-one) orbits bifurcate from the vertical bouncing

on x = 0 when (H,G) = ( g4a , 0). One can also see
from (22) – (24) that

lim
G→ g

2a2

x± = lim
G→ g

2a2

±
√

2G

g
= ±1

a
,

lim
G→ g

2a2

E(G) = +∞,

lim
G→ g

2a2

Qb = ∞.

In other words, as G approaches g
2a2 , the (vertical

bouncing+ period-one) orbits converge to the orbit in

Figure 8.
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Figure 7. The bifurcation diagram for the four types of periodic or-

bits: vertical bouncing, period-one, period-two and (vertical bounc-

ing + period-one).

4 Boundary Curvature and Two Stabilization
Strategiesfor Periodic Orbits in the PGB.

We first discuss the role of the curvature of the

parabolic boundary of the PGB in stability by compar-

ing it with the flat boundary of the wedge. We then
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Figure 8. The limit of the (vertical bouncing + period-one) periodic

orbit asG approaches g
2a2 .

propose two possible strategies for stabilizing periodic

orbits: 1. feedback impact control at the boundary

and 2. open-loop rotational harmonic vibration of the

boundary. These two strategies proved effective with

the wedge billiard.

4.1 Boundary Curvatureand Stability
Period-two orbits exist in the wedge dynamics only

when the wedge is square; see Section 2. In the PGB

period-two orbits exist only at x = ± 1
a where the tan-

gent lines at the parabolic boundary have slopes ±45◦.
Hence, the period-two orbits in the square wedge bil-

liard also exist in the PGB with appropriate values of

a. Even though these orbits have the same shape, they
have different stability properties. Recall that period-

two orbits are all unstable in the square wedge whereas

period-two orbits in the PGB are all Lyapunov sta-

ble. One can make the similar observation with the

period-one orbits in the wedge and those in the PGB.

This indicates that the local curvature of the bound-

ary dictates the stability property of the periodic or-

bits. The parabolic boundary stabilizes those periodic

orbits whereas the flat boundary of the wedge fails to

do so except for θ < 45◦ with period-one orbits. It
follows that in general the (local) curvature shaping of

the boundary, if it can be implemented by an additional

force, is an effective way of stabilizing periodic orbits.

4.2 Lyapunov-basedFeedbackStabilization
We suggest a Lyapunov-based feedback control law to

stabilize period-one orbits in the PGB. The main idea

is to make use of the conserved quantities H and G
– conserved with no control– to identify a period-one

orbit and construct a Lyapunov function in terms of

(H,G). A similar idea was successfully used for the
wedge billiard in [Gerard and Sepulchre, 2004] where

the approximated level set of the KAM tori around a

period-one orbit was used in place of G as G is not
a conserved quantity in the wedge dynamics. This

method of constructing Lyapunov functions in terms

of conserved quantities was also employed to achieve

Lyapunov-based transfer between elliptic Keplerian or-

bits, [Chang, Chichka and Marsden, 2002].

Recall that the level set in (15) withH > g
2a coincides

with the period-one orbit {±xH}with xH in (20). This
obervation leads to the following choice of a Lyapunov

function:

V [k] = (H[k] −H0)
2 + (G[k] −G0)

2

where k denotes the collision time-sequence and
(H0, G0) denotes the value of (H,G) at the target
period-one orbit; see the bifurcation diagram in Fig-

ure 7. We assume that the impact control u[k] is in the
direction normal to the boundary. The impact control

{u[k]} affects {H[k]} and {G[k]} as follows:

H[k] = H[k − 1] + u[k](2pn[k] + u[k]),

G[k] = G[k − 1] − u[k](2pn[k] + u[k])a(x[k])2.

One needs to choose control u[k] such that

∆V [k] = V [k] − V [k − 1] ≤ 0.

The performance of this impact feedback control law is

being investigated as on-going research.

4.3 SensorlessStabilization
The idea of stabilizing periodic orbits in impact sys-

tems by vibrating the boundary dates back to [Holmes,

1982]. Recently, the stabilization of the period-one

and period-two orbits with a rotational harmonic vibra-

tion of the wedge in the wedge dynamics was achieved

[Ronsse, Lefevre and Sepulchre, 2004]. We summarize

this result as follows. First, detect all the period-one

and period-two orbits in the wedge dynamics when the

collision is elastic, i.e., e = 1. Then, consider a real
wedge system where the collision is no longer elastic,

i.e. e < 1. Then, the period-one and period-two orbits,
which exist with e = 1, will not exist in the case of
e < 1. One chooses an orbit of interest among them.
The question is “can we create, isolate and stabilize this

periodic orbit by vibrating the boundary harmonically

and rotationally?”; see Figure 9. The answer is yes for

the wedge billiard. We expect that the same method

will work for the PGB. It is currently under investiga-

tion.

Figure 9. The rotational vibration of the wedge in the harmonic

way.
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5 Conclusion
This paper suggests two methods for stabilizing peri-

odic orbits in parabolic gravitational billiard (PGB): 1.

Lyapunov-based feedback impact control at the bound-

ary and 2. sensorless rotational harmonic vibration of

the boundary. Both results proved successful in the

case of the wedge billiard, [Ronsse, Lefevre and Sepul-

chre, 2004; Gerard and Sepulchre, 2004]. Thanks to

the local curvature, the bounce juggling in the PGB

seems easier than in the wedge billiard.

In this paper, we first reviewed the main properties of

the wedge billiard dynamics in Section 2 and then the

dynamics of the parabolic gravitational billiard (PGB)

in Section 3. The dynamics of the PGB have two con-

served quantities: H and G in (1) and (3). By fixing
the values of these two quantities, we constructed the

reduced Poincaré map and found four different types

of periodic orbits. We studied their stability and gave a

bifurcation diagram in Figure 7. In Section 4, we em-

phasized the role of the local curvature of the boundary

for stability by comparing the wedge billiard and the

PGB.We also proposed two methods for stabilizing pe-

riodic orbits in the PGB. As an ongoing work, we are

investigating the performance of these methods.
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