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Spatial Models of Bistability in Biological Collectives

Derek A. Paley, Naomi Ehrich Leonard, Rodolphe Sepulchre and Iain D. Couzin

Abstract— We explore collective behavior in biological sys-
tems using a cooperative control framework. In particular, we
study a hysteresis phenomenon in which a collective switches
from circular to parallel motion under slow variation of the
neighborhood size in which individuals tend to align with one
another. In the case that the neighborhood radius is less than
the circular motion radius, both circular and parallel motion
can occur. We provide Lyapunov-based analysis of bistability
of circular and parallel motion in a closed-loop system of self-
propelled particles with coupled-oscillator dynamics.

I. INTRODUCTION
In this paper, we use a cooperative control approach

to model collective motion in biology. Collective motion
appears in natural systems ranging from molds [1] to lo-
custs [2] to fish [3]. All of these systems exhibit collec-
tive motion that ranges from relatively disordered (swarm
motion) to highly ordered (parallel motion). Another highly
ordered type of motion observed in biological collectives is
circular motion [1]–[3], characterized by collective rotation
about a fixed point. Numerical investigations [4] of a re-
pulsion/orientation/attraction (ROA) description of collective
behavior [4], [5] indicates that changes in model parameters
generate transitions between swarm, circular, and parallel
motion. In fact, slow variation of a single parameter related
to interaction between individuals is observed to generate
hysteresis in the transition between these motions.

We infer from the presence of hysteresis in the ROA
behavior that there exists a parameter range in which both
circular and parallel motion are stable, in a qualitative sense.
We say that the ROA behavior is bistable with respect to
circular and parallel motion. We seek to prove the existence
of such a parameter range in a related model by showing that
both circular and parallel motion are stable, in a Lyapunov
sense. An earlier version of this work appeared in [6], where
we studied a bistable model restricted to two individuals; in
this work, that restriction is lifted. Techniques that support
our results are drawn from our related work on collective mo-
tion in engineered systems [7], [8] as well as from stability
theory, graph theory [9], and studies of consensus in time-
varying systems [10]. This paper reveals that an alternate
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version of the circular formation control that appeared in [11]
also stabilizes parallel formations.

The paper is organized as follows. In Section II, we
describe a collective behavior model including the ROA be-
havior and, in Section III, we present an idealized version of
the model that is mathematically tractable. Our approach to
developing a provably bistable behavior depends on whether
the interaction between individuals in the model is undirected
or directed; we describe the approach for undirected interac-
tion in Section IV. The corresponding analysis for directed
interaction is omitted, and will be presented elsewhere.

II. COLLECTIVE BEHAVIOR MODEL
Each individual in the collective behavior model is repre-

sented by a particle (point mass). Let N denote the number of
particles. Let I , (O, êx, êy, êz) denote an inertial reference
frame with origin O and orthonormal unit vectors êx, êy ,
and êz . Let rk(t) denote the position of particle k ∈ N ,
{1, . . . , N} and ṙk(t) denote the inertial velocity.

Let Bk be a moving reference frame with origin rk(t) and
unit vectors b̂k(t), âk(t) and b̂k(t)× âk(t) (for example, Bk
could be a Fermi-Walker frame [12], although this choice is
not critical to the development). Frame Bk is oriented such
that b̂k(t) is always parallel to the direction of motion of
particle k. Let sk denote the speed of particle k and assume
that sk > 0 is constant. The velocity ṙk(t) expressed as a
vector component in frame Bk is ṙk(t) = sk b̂k(t).

The trajectory of each particle is determined by a discrete-
time update rule. Let ∆t denote the discrete time step. We
have rk(t+ ∆t) = rk(t) + sk b̂k(t+ ∆t), where b̂k(t+ ∆t)
is a unit vector that represents the direction of motion of
particle k at time t+ ∆t. The direction of motion of particle
k depends on the position and direction of motion of a
subset of all of the particles. Let r(t) , (r1(t), . . . , rN (t))T

denote the N × 1 matrix of particle positions and let b̂(t) ,
(b̂1(t), . . . , b̂N (t))T denote the N × 1 matrix of particle
direction unit vectors. The direction of motion b̂k(t + ∆t)
is a function—called a steering behavior—of the entries of
r(t) and b̂(t) and the time step ∆t.

The subset of particles that interact with particle k and the
nature of that interaction depends on the perceptual geometry
of particle k. Consider M non-overlapping perceptual zones
associated to each particle k that are fixed with respect to
frame Bk. Let Γ(n)

k denote perceptual zone n ∈ {1, . . . ,M}
of particle k. If rj(t) ∈ Γ(n)

k (t), then particle k perceives
particle j and may respond to it; the response of particle
k to the presence of particle j depends on n. Let N (n)

k (t)
denote the set of indices of all of the particles contained in
zone Γ(n)

k at time t. For each n, the collection of perceptual



relationships between all of the particles with respect to zone
Γ(n)
k is called an interaction network, of which there are M .
Let b(n)

k (t + ∆t) denote the desired direction of motion
of particle k with respect to the set N (n)

k (t). We call
b
(n)
k (t + ∆t), which is not necessarily a unit vector, a

behavior rule. A steering behavior b̂k(t + ∆t), such as
the ROA behavior described below, satisfies b̂k(t + ∆t) ∈
span{b(1)k (t+ ∆t), . . . , b(M)

k (t+ ∆t)}.
We describe a spherical perceptual zone geometry with

M = 3 and the associated behavior rules as defined in [4].
Consider a single right cone with the cone axis lying along
−b̂k(t) axis and apex at rk(t). Let 2β(n)

k denote the opening
angle of the cone. Let Γ(n)

k , (β(n)
k , ρnk ) denote the percep-

tual zone that is contained in the spherical annulus centered
at rk(t) with width ∆ρ(n)

k , ρ
(n)
k −ρ

(n−1)
k , where ρ(n)

k is the
radius of zone n and ρ

(0)
k = 0. The portion of the annulus

inside the cone, called a blind spot, is not contained in Γ(n)
k .

If β(n)
k = 0 for all n, then particle k has omnidirectional

perception. Otherwise, particle k has directional perception.
Three fundamental behavior rules associated with the

spherical perceptual zone geometry are repulsion, orienta-
tion, and attraction [4], [5]. The first behavior rule, repulsion,
generates a desired direction of motion away from the cen-
troid of the particles contained in the innermost perceptual
zone Γ(1)

k , which we call the zone of repulsion. Let rkj(t) ,
rk(t) − rj(t) denote the position of particle j relative to
the position of particle k and let r̂kj(t) , rkj(t)/|rkj(t)|.
The repulsion behavior rule depends on the relative positions
rkj(t) for all j ∈ N (1)

k (t) in the following way: b(1)k (t +
∆t) =

∑
j∈N (1)

k (t)
r̂kj(t). The second behavior rule, orien-

tation, generates a desired direction of motion in the average
direction of motion of all of the particles in the middle zone
Γ(2)
k , which we call the zone of orientation. The orientation

behavior rule is b(2)k (t+∆t) = b̂k(t)+
∑
j∈N (2)

k (t)
b̂j(t). The

third behavior rule, attraction, generates a desired direction
of motion that points toward the centroid of the particles
contained in the outermost perceptual zone Γ(3)

k , which
we call the zone of attraction. The attraction behavior is
b
(3)
k (t+ ∆t) = −

∑
j∈N (3)

k (t)
r̂kj(t).

We describe a steering behavior from [4] based on a
spherical perceptual zone geometry and the corresponding
repulsion, orientation, and attraction behavior rules. In this
steering behavior, which we call the ROA behavior, all of the
particles move at the same constant speed s0. The steering
behavior prioritizes the repulsion behavior rule by making it
the only active rule at time t if the set N (1)

k (t) is not empty.
The steering behavior also limits the maximum absolute rate
ω0 at which the particle direction of motion can change over
time. Assume ω0 satisfies 0 < ω0∆t ≤ π/2. Let

fk(t+ ∆t) ,


bk(t), N

(n)
k (t) = ∅ ∀ n,

b
(1)
k (t+ ∆t), |N (1)

k (t)| > 0,
1
2

∑3
n=2 b

(n)
k (t+ ∆t), otherwise,

and f̂k(t + ∆t) , fk(t + ∆t)/|fk(t + ∆t)|. Let Rk(t, φ)
denote the matrix that rotates a vector counterclockwise by

ρ(2) ↑
ρ(2) ↓

ρ(2) ↑
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Fig. 1. Hysteresis loop in ROA behavior. Changing the radius ρ(2) of the
zone of orientation (depicted by the dashed region centered on the dotted
fish) generates transitions between swarm, circular, and parallel motion,
which are characterized by collective polarization |p| and rotation |m|.

an angle φ about the axis aligned with the vector gk(t +
∆t) , b̂k(t)× f̂k(t+∆t). (If |gk(t+∆t)| = 0, then Rk(t, φ)
is the identity matrix.) The deterministic version of ROA is

b̂k(t+∆t) =
{

f̂k(t+ ∆t), |gk(t+ ∆t)| ≤ sin(ω0∆t),
Rk(t, ω0∆t)b̂k(t), otherwise.

In the stochastic version, the deterministic behavior b̂k(t +
∆t) rotated by a small, random angle in a random direction.

The types of collective motion generated by the ROA be-
havior can be quantitatively distinguished using two metrics.
Collective polarization measures the degree to which the
particle velocities are aligned. The collective polarization
vector p(b̂(t)) , (1/N)

∑N
j=1 b̂j(t) is proportional to the

average linear momentum of the collective; the collective
polarization is the magnitude |p(b̂(t))| of the collective
polarization vector. The second metric is proportional to
the average angular momentum of the collective about the
centroid pr(t) , (1/N)

∑N
j=1 rj(t) of the particle positions.

This metric, called collective rotation, is the magnitude of the
vector m(r(t), b̂(t)) , (1/N)

∑N
j=1(rj(t)− pr(t))× b̂k(t).

We use these metrics to characterize three different types
of cohesive collective motion observed in numerical simu-
lations of the ROA behavior illustrated in Figure 1: swarm
motion, circular motion, and parallel motion. In cohesive col-
lective motion, the collective does not fragment into smaller,
isolated collectives. Swarm motion is characterized by low
collective polarization and low collective rotation. Circular
motion is characterized by low collective polarization and
high collective rotation with individuals tending to be locally
aligned with one another. Parallel motion is characterized by
high collective polarization and low collective rotation.

The type of collective motion exhibited by the ROA
behavior depends on the values of the model parameters
and, in particular, the widths of the perceptual zones. Let
∆ρ(n)

k = ∆ρ(n)
j for all pairs j and k; in this case, we drop

the subscripts k and j. Extensive parametric studies using
numerical investigations [4] have identified the width ∆ρ(2)

of the orientation zone and the width ∆ρ(3) of the attraction
zone as key parameters. For example, if ∆ρ(3) is small, then
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Fig. 2. Planar collective behavior model. (a) The direction of motion
b̂k = eiθk of particle k lies in the span of the inertial reference frame unit
vectors êx and êy . (b) Three concentric, spherical perceptual zones with
blind spot angles β(0) = 0 and β2 = β3 = π/4; directed graph G(3)(t)

generated by perceptual zones Γ
(3)
k for all k = 1, . . . , N is shown.

the collective tends to fragment, whereas, if ∆ρ(3) is large,
then the collective motion tends to be cohesive.

Transitions between three types of collective motion occur
for large ∆ρ(3) under slow variation of the width ∆ρ(2) of
the orientation zone [4]. If ∆ρ(2) is small, then the collective
moves in a swarm. For intermediate values of ∆ρ(2), the
collective exhibits either circular motion or parallel motion,
whereas for large values of ∆ρ(2), the collective exhibits
parallel motion. If ∆ρ(2) slowly increases, the collective tran-
sitions from swarm to circular to parallel motion; if ∆ρ(2)

slowly decreases, the collective transitions from parallel to
circular to swarm motion. The value of ∆ρ(2) at which
the transition from circular to parallel motion occurs (for
increasing ∆ρ(2)) is higher than the value at which the tran-
sition from parallel to circular motion occurs (for decreasing
∆ρ(2)). This hysteresis phenomenon, depicted in Figure 1, is
called “collective memory” [4]: the type of collective motion
depends on past values of model parameters that are not
retained by individuals in the collective.

Collective memory occurs for large ∆ρ(3) and intermedi-
ate values of ∆ρ(2), since both circular and parallel motion
are stable. We refer to the existence of two types of stable
motion for the same parameter values as bistability (stability
is used loosely here and in a Lyapunov sense below).

III. SIMPLIFIED COLLECTIVE MODEL
In order to find analytical evidence of bistability of circular

and parallel motion in the collective behavior model, we
simplify the model and isolate its fundamental components.
The first simplification is to assume that the unit vector êz is
approximately parallel to the axis of rotation of the circular
motion and project onto the plane spanned by the unit vectors
êx and êy; this yields a planar representation of the model.

To describe particle motion in a plane, assume that b̂k(t)×
âk(t) = êz as shown in Figure 2(a). We describe the direc-
tion of motion of particle k by the phase θk(t) ∈ S1, that is,
let b̂k(t) = cos θk(t)êx + sin θk(t)êy . To facilitate the planar
analysis, we identify êx and êy with the complex numbers
1 and i, respectively. In complex notation, the velocity of
particle k is ṙk(t) = sk(cos θk(t) + i sin θk(t)) = ske

iθk(t).
The action of the steering behavior b̂k(t + ∆t) is to rotate

the particle velocity ṙk(t). Let θ(t) , (θ1(t), . . . , θN (t))T .
Let uk(t+ ∆t) denote the angular rate of rotation, which is
a function of the entries of r(t) and θ(t) and the time step
∆t. We have θk(t+ ∆t) = θk(t) + uk(t+ ∆t)∆t.

The collective polarization vector p(b̂(t)) is equivalent to
pθ(t) , (1/N)

∑N
j=1 e

iθj , the phase order parameter [13],
which satisfies 0 ≤ |pθ(t)| ≤ 1; |pθ(t)| = 1 if and only if
θj = θk for all pairs j and k, i.e., phase synchronization.
Phase synchronization corresponds to parallel motion. If all
particles travel at the same speed, then pθ(t) is proportional
to the centroid velocity ṗr(t). If pθ(t) = 0, then the position
centroid is fixed, which we call phase balancing.

To facilitate Lyapunov analysis, we express the collective
behavior model as a system of ordinary differential equa-
tions. The discrete-time planar model is the forward Euler
approximation of the continuous-time model given by

ṙk = ske
iθk

θ̇k = uk(r,θ).
(1)

We call (1) the particle model and uk the steering behavior.
We do not assume that the particles have knowledge of
the inertial frame I or any common reference frame. As
a result, the steering behavior uk can depend only on the
orientation and position of particle j ∈ N (n)

k (t), for all
n, relative to the orientation and position of particle k. We
refer to the quantities θkj and rkje

−iθk as shape variables.
Note rkje−iθk is the position of particle j relative to particle
k expressed as a vector component in frame Bk. Provided
the steering behavior u , (u1, . . . , uN )T depends only on
shape variables and all particles travel at constant speed s0,
the particle model is invariant to rigid translation and rigid
rotation of all of the particles, and both circular and parallel
motion are relative equilibria [14].

Finally, to facilitate parametric studies, we nondimension-
alize the particle model (1) using the inverse angular rate
ω−1

0 , which has units of time, and the characteristic length
scale ρ0 , s0ω

−1
0 , which has units of length; ρ0 is the radius

of the circle traced by a particle with uk = ω0. We use
the Fraktur typeface to represent dimensionless quantities:
we have t , tω0, r , rρ−1

0 , ṙ , ṙ(ρ0w0)−1 = ṙs−1
0 ,

u , uω−1
0 , and %(n) , ρ(n)ρ−1

0 . Note that θ, which is in
units of radians, is already dimensionless; we use θ̇ to denote
the dimensionless rate of change dθ/dt, which is a slight
abuse of notation. The nondimensionalized particle model is
ṙk = eiθk and θ̇k = uk(r,θ). In this version of the particle
model, a particle with uk = 1 travels around a unit circle.

The behavior rules are made concise using graph the-
ory [9]. Let G(n)(t) , (N , E(n)(t)) denote a time-varying,
directed graph that represents the interaction network gener-
ated by the nth perceptual zone, as shown in Figure 2(b). In
graph G(n)(t), node k corresponds to particle k; E(n) is a
set of ordered pairs (j, k) that represent directed information
flow from node j to node k. Particle j is contained in
perceptual zone Γ(n)

k at time t if and only if (j, k) ∈ E(n)(t).
Assume that E(n)(t) is piecewise constant over finite time
intervals. If there is a directed path in graph G(n)(t) from a
node (the root) to every other node, then G(n)(t) is rooted. If



(j, k) ∈ E(n)(t) if and only if (k, j) ∈ E(n)(t), then graph
G(n)(t) is undirected. Note, G(n)(t) is undirected if all of
the particles have omnidirectional perception with respect to
perceptual zone n. An undirected graph is connected if and
only if there is a path between every pair nodes.

The Laplacian matrix of a graph can be used to ap-
proximate the ROA behavior rules. The Laplacian matrix
L(n) = [l(n)

kj (t)] of graph G(n)(t) is an N ×N matrix. The
off-diagonal entries of the Laplacian are l

(n)
kj (t) = −1, if

j ∈ N (n)
k (t), otherwise l

(n)
kj (t) = 0. The diagonal entries

of the Laplacian are l
(n)
kk (t) , |N (n)

k (t)|. Let d(n)
k (t) ,

max{|N (n)
k (t)|, 1} and d(n)(t) , (d(n)

1 (t), . . . , d(n)
N (t))T .

The normalized Laplacian L̃(n)(t) , [l̃(n)
kj (t)] has compo-

nents l̃(n)
kj (t) = l

(n)
kj (t)/d(n)

k (t) for all pairs j and k. Let
L̃

(n)
k (t) denote its kth row. We have

L̃
(n)
k r = rk − 1

d
(n)
k (t)

∑
j∈N (n)

k (t)
rj , (2)

which is a vector from the position centroid of the particles
in perceptual zone Γ(n)

k to position rk. Let 〈x, y〉 denote the
real inner product of two complex numbers x and y, that is,
〈x, y〉 , Re{x∗y}, where x∗ is the complex conjugate of x.

Let K0 be any real number not equal to zero. Consider

uk = K0〈ieiθk , L̃
(n)
k r〉. (3)

If |N (n)
k (t)| = 0 or L̃(n)

k r = 0, then θ̇k = uk = 0. The
rule (3) is also zero for motion of particle k toward or
away from the position centroid of the particles in zone
Γ(n)
k ; these are equilibrium states of θ̇k = uk. For non-

equilibrium states, if K0 > 0 and n = 1, then uk stabilizes
(resp. destabilizes) motion of particle k away from (resp.
toward) the position centroid of particles in the repulsion
zone Γ(1)

k . This is because if θk > arg{L̃(n)
k r}, then θ̇k < 0

and, if θk < arg{L̃(n)
k r}, then θ̇k > 0. By this reasoning, we

conclude (3) with K0 > 0 is a repulsion behavior rule. By
similar reasoning, if K0 < 0 and n = 3, then uk stabilizes
(resp. destabilizes) motion toward (resp. away from) the
position centroid of particles in the attraction zone Γ(3)

k (t),
which implies (3) with K0 < 0 is an attraction behavior rule.

We approximate the orientation behavior rule in a similar
way. Let eiθ , (eiθ1 , . . . , eiθN )T . Consider the behavior rule

uk=−〈ieiθk , L̃
(n)
k eiθ〉=〈ieiθk , 1

d
(n)
k

∑
j∈N (n)

k

eiθj 〉. (4)

Note that the term (1/d(n)
k )

∑
j∈N (n)

k

eiθj , p
(n)
k,θ represents

the polarization vector of the particles in zone Γ(n)
k . Let

n = 2. If |N (2)
k | = 0 or L̃(2)

k eiθ = 0, then uk = 0. The
rule (4) is also zero for motion of particle k parallel or anti-
parallel to the average direction of motion of the particles in
zone Γ(n)

k , which are equilibrium states of θ̇k = uk. For
non-equilibrium states, if θk > arg{p(2)

k,θ}, then θ̇k < 0
and, if θk < arg{p(2)

k,θ(t)}, then θ̇k > 0. This implies that
the behavior rule (4) stabilizes (resp. destabilizes) motion of
particle k parallel (resp. anti-parallel) to the average direction
of motion of the particles in its attraction zone.

(a) %(1) = 0.1, K0 = 1 (b) %(1) = 0.5, K0 = 0.1

Fig. 3. Bistability of circular and parallel motion of the particle model (1)
with the omnidirectional control (11). Parameters values: N = 20, ρ0 = 10,
%(2) = 1, and %(3) = 2. (a) Initial positions chosen randomly from a
uniform distribution on a ρ0×ρ0 domain, initial phases from [−π

5
, π

5
] mod

2π; (c) initial positions from 2ρ0 × 2ρ0, initial phases from [0, 2π).

Let sat(x) denote the saturation function, where sat(x) =
x, if |x| ≤ 1, and sat(x) = sgn(x), if |x| > 1. We use this
notation to approximate the deterministic version of the ROA
behavior in two dimensions: uk = ω0sat(〈ieiθk , (L̃(1)

k −
L̃

(3)
k )r − L̃(2)

k eiθ〉). The nondimensionalized form is

uk = sat(〈ieiθk , (L̃(1)
k − L̃

(3)
k )r− L̃(2)

k eiθ〉). (5)

For |f(x0)| ≤ 1, the first-order Taylor series approximation
of sat(f(x)) about x0 is f(x0)+(df/dx)(x−x0). Therefore,
linearization of (5) generates a constant term f(x0), which
is zero for parallel motion and nonzero for circular motion.

For the steering behavior (5), numerical simulations of
(1) indeed reveal the co-existence of different types of
cohesive collective motion in various parameter ranges. In
particular, we simulated a characteristic length scale ρ0 =
10, blind spot angle βk = π/4 for all k, and repulsion
and attraction zone dimensionless radii %(1) = 0.1 and
%(3) = 5, respectively. Starting from initial positions chosen
randomly from a uniform distribution in a 2×2 domain and
initial phases chosen randomly from a uniform distribution
in [0, 2π), we observe that swarm motion occurs in the
range 0 ≤ %(2) ≤ 0.5, circular motion occurs in the range
0.3 ≤ %(2) ≤ 0.7, and parallel motion occurs in the range
%(2) ≥ 0.5. This suggests that circular motion arises among
locally aligned individuals, whereas parallel motion occurs
when individuals are globally aligned. Saturating the angular
rate appears important to achieve circular motion; for the
steering behavior (5), particles traveling in circular motion
are turning at nearly the maximum rate.

For the steering behavior (5) and the parameter range for
which circular motion occurs, there exists a set of initial
conditions for which parallel motion results. For example,
consider the set of initial conditions for which θj(0) = θk(0)
for all pairs j and k. Assume the perceptual zone radii are in
a range that supports circular motion. Let E(1)(0) = ∅ and
E(3)(0) = ∅. If the graph G

(2)
k (t) = G

(2)
k (0) is undirected

and connected, then, by Proposition 1 below, the collective
exhibits parallel motion. Although this example is trivial, it
shows that the steering behavior (5) is bistable.

IV. OMNIDIRECTIONAL PERCEPTION

In this section, we describe analytical evidence for bista-
bility of circular and parallel motion in a steering behavior



that, like the ROA behavior, contains a linear combination
of behavior rules. The analysis, which is based on Lyapunov
stability theory, applies to collectives with omnidirectional
perception. Recall that omnidirectional perception generates
interaction networks that can be described by undirected
graphs. The Laplacian matrix of an undirected graph is, by
definition, symmetric, which leads to the definition of the
Laplacian quadratic form. We describe below two Laplacian
quadratic forms that serve as Lyapunov functions.

Let L(n) be the Laplacian of a time-invariant, undirected
graph G(n) = (N , E(n)). Let 〈x,y〉 ,

∑N
j=1〈xj , yj〉, where

x and y are N ×1 complex matrices. A Laplacian quadratic
form is QL(n)(x) , 〈x, L(n)x〉. Let 1 , (1, . . . , 1)T be a
N×1 matrix of ones. If G(n) is connected, then QL(n)(x) ≥
0 and QL(n)(x) = 0 if and only if x ∈ span{1} [15].

We use the Laplacian quadratic form QL(x) to define the
Laplacian phase potential WL(n)(θ) , (1/2)QL(n)(eiθ) =
(1/2)〈eiθ, L(n)eiθ〉 [8]. The gradient of WL(n)(θ) is
∂W

L(n)

∂θ ,
(
∂W

L(n)

∂θ1
, . . . ,

∂W
L(n)

∂θN

)T
, where, using L(n) =

(L(n))T , we have
∂W

L(n)

∂θk
= 〈ieiθk , L

(n)
k eiθ〉. Note, the kth

entry in the gradient of the Laplacian phase potential with
n = 2 is proportional to the orientation behavior rule (4).
This leads to the following result, based on [8, Section III.B].

Proposition 1: Let L(2)(t) be the Laplacian of the undi-
rected graph G(2)(t) = (N , E(2)(t)) that describes the ori-
entation zone interaction network. For the steering behavior
(4) with n = 2, consider the set Λ of solutions of (1)
where G(2)(t) is time-invariant and connected. All of the
solutions in Λ with a synchronized phase arrangement are
asymptotically stable.

Proof: The time-derivative of the Laplacian phase
potential WL(2)(θ) along solutions of (1) satisfies ẆL(2) ≤ 0.
By the invariance principle, all of the solutions converge to
the largest invariant set for which 〈ieiθk , L

(2)
k eiθ〉 = 0, which

contains the set of synchronized phase arrangements. The
synchronized set is asymptotically stable because it is the
global minimum of WL(2)(θ).

Proposition 1 is limited because it applies only to time-
invariant and undirected interaction networks. Nonetheless,
it provides analytic evidence to support the observations of
numerical simulations of the orientation behavior rule (4).
Next, we provide evidence to show that a variation of the
attraction/repulsion behavior (3) stabilizes circular motion.

A variation of behavior (3) is

uk = K0〈eiθk , L̃
(n)
k r〉. (6)

If |N (n)
k (t)| = 0 or L̃(n)

k r = 0, then θ̇k = uk = 0. The
rule (6) is also zero for motion of particle k perpendicular
to L̃(n)

k r; these are equilibrium states of θ̇k = uk. For non-
equilibrium states, if θk > arg{L̃(n)

k r}+(π/2)sgn(K0), then
θ̇k < 0 and, if θk < arg{L̃(n)

k r} + (π/2)sgn(K0), then
θ̇k > 0. By this reasoning, we conclude the behavior rule (6)
stabilizes revolute motion of particle k around the position
centroid of particles in zone Γ(n)

k ; we call (6) a revolution
behavior rule. The direction of revolution depends on the
sign of K0.

Consider collective circular motion about a fixed point.
Assume the radius of the circle is s0|ω0|−1 and the direction
of rotation is determined by sgn(ω0). Let ck denote the center
of the circle orbited by particle k, that is,

ck(t) , rk(t) + s0ω
−1
0 ieiθk(t). (7)

Let c(t) , (c1(t), . . . , cN (t))T . Let L(n) be the Laplacian
of a time-invariant, undirected graph G(n) = (N , E(n)). A
Laplacian quadratic form associated to the circular motion is
SL(n)(r,θ) , (1/2)QL(n)(c) = (1/2)〈c, L(n)c〉, which we
call the Laplacian circle potential. If G(n) is connected, then
SL(r,θ) ≥ 0 and SL(r,θ) = 0 if and only if ck = cj for
all pairs j and k. This leads to the following result, which
is based on [8, Theorem 5].

Proposition 2: Let L(3)(t) be the Laplacian of the undi-
rected graph G(3)(t) = (N , E(3)(t)) that describes the
attraction zone interaction network. For the steering behavior

uk = ω0(1 +K0〈eiθk , L̃
(3)
k c〉), K0 > 0, (8)

consider the set Λ of solutions of (1) where G(3)(t) is time-
invariant and connected. All of the solutions in Λ asymptot-
ically converge to circular motion with radius s0|ω0|−1 and
direction of rotation determined by sgn(ω0).

Proof: The time-derivative of the Laplacian circle
potential SL(3)(θ) along solutions of (1) satisfies ṠL(3) ≤ 0.
By the invariance principle, all of the solutions converge to
the largest invariant set for which 〈eiθj , L

(2)
j c〉 = 0. In this

set, θ̇ = ω01 and ck = cj for all pairs j and k.
It can be shown that a linear combination of the steering

behaviors (4) with n = 3 and (8) stabilizes circular motion
in which all of the phases are synchronized. In fact, using
(7), the circle steering behavior (8) can be written uk =
ω0(1 + K0〈eiθk , L̃

(3)
k r〉) − s0K0〈ieiθk , L̃

(3)
k eiθ〉, which is

a linear combination of a constant term ω0, the revolution
behavior rule (6), and the orientation behavior rule (4). Let
H(x) denote the Heaviside step function, where H(x) = 0
if x < 0, H(x) = 1/2 if x = 0, and H(x) = 1 if x > 0.

Theorem 1: Let L(n)(t) be the Laplacian of the undirected
graph G(n)(t) = (N , E(n)(t)) that describes the interaction
network for zone n ∈ {1, 2, 3}. For the steering behavior

uk = ω0(H(|N (3)
k |) +K0〈eiθk , L̃

(3)
k r〉)−

s0K0〈ieiθk , L̃
(2)
k eiθ − L̃(1)

k r〉, K0 > 0,
(9)

consider the set Λ of solutions of (1) where G(n)(t) =
G(n)(0) for all n. All of the solutions in Λ for which G(2) is
connected, E(1) = E(3) = ∅, and the phase arrangement is
synchronized are asymptotically stable. All of the solutions
in Λ for which G(3) is connected and E(1) = E(2) =
∅ asymptotically converge to circular motion with radius
s0|ω0|−1 and direction of rotation determined by sgn(ω0).

Proof: In the case G(2) is connected and E(1) = E(3) =
∅, then the proof follows from Proposition 1. Assuming G(3)

is connected and E(1) = E(2) = ∅, then (9) is equivalent to

uk = ω0(1 +K0〈eiθk , L̃
(3)
k r〉)+

(K − s0K0)〈ieiθk , L̃
(3)
k eiθ〉

= ω0(1 +K0〈eiθk , L̃
(3)
k c〉) +K〈ieiθk , L̃

(3)
k eiθ〉
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Fig. 4. For the behavior (11) with ρ0 = 10, %(1) = 0.1, %(3) = 0.4,
K0 = 0.1 and random initial conditions, increasing the orientation zone
radius %(2) generates transitions from swarm to circular to parallel motion.

where K = s0K0 > 0. For this steering behavior, the time-
derivative of the composite Laplacian potential VL(3)(r,θ) =
ω2

0SL(3)(r,θ) − KWL(3)(θ) satisfies V̇L(3) ≤ 0. By the
invariance principle, all of the solutions converge to the
largest invariant set Ω for which

ω0K0〈eiθj , L
(3)
j c〉+K〈ieiθj , L

(3)
j eiθ〉 = 0. (10)

By taking the time-derivative of (10) in Ω, one can show that
θ̇ = ω01 and ck = cj for all pairs j and k.

Theorem 1 shows that the steering behavior (9) stabilizes
both parallel and circular motion for the same parameter
values. Nondimensionalizing (9) yields

uk = ±(H(|N (3)
k |) +K0〈eiθk , L̃

(3)
k r〉)−

ρ0K0〈ieiθk , L̃
(2)
k eiθ − L(1)

k r〉,
(11)

where the positive (resp. negative) sign corresponds to coun-
terclockwise (resp. clockwise) rotation. In the simulation
shown in Figure 3(a), we used %(1) = 0.1 and %(3) = 5.
For these values, steering behavior (11) with %(2) = 1
generates either circular or parallel motion, depending on
the initial conditions. Increasing %(2) tends to yield parallel
motion only, whereas decreasing %(2) tends to yield only
circular motion; these tendencies are generally consistent
with observations of the ROA behavior. For these parameter
values, the circular motion is characterized by two opposing
clusters of particles. Increasing %(1) and/or decreasing %(2)

more evenly distributes the particle formation Figure 3(b).
Theorem 1 implies that the particle model may exhibit

hysteresis under slow variation of the radius of the zone
of orientation, although simulation results are inconclusive.
Figure 4 shows simulation results of the nondimensionalized
particle model with the control (11). Starting from random
initial conditions, slowly increasing the radius %(2) of the
orientation zone from 0.1 to 3.0 generates transitions from
swarm to circular to parallel; starting from parallel motion,
slowly decreasing %(2) causes fragmentation.

The repulsion behavior rule, which only activates if
|N (1)

k (t)| > 0, steers particle k away from collisions.
However, unlike the ROA behavior, the direction of rotation
of the circular motion generated by (9) is not random, even
for random initial conditions. This limitation has not yet been
addressed. Another limitation of (9) that has been addressed
(but omitted for space constraints) is the restriction to time-
invariant and undirected interaction networks. Lifting this
restriction comes at the cost of increased complexity.

V. CONCLUSIONS
This paper describes idealized yet understandable models

of collective motion that are bistable with respect to circular
and parallel motion. The primary contribution is to support
numerical simulation results of a collective behavior model
with analytical results for a related model, using tools
from cooperative control theory. The latter model and the
corresponding steering behaviors suffer overall from lack
of biological plausibility. However, the seemingly artificial
use of the Heaviside step function to “activate” the constant
turning rate in (9) when neighboring particles are perceived,
may be related to quorum sensing in bacteria [16].
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