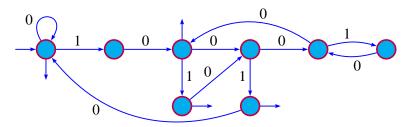
Structure of the minimal automaton of a numeration language & State complexity of testing divisibility

É. Charlier N. Rampersad M. Rigo L. Waxweiler

Département de mathématiques Université de Liège

Journées montoises d'informatique théorique 2010 Amiens, September 6

An example first



13	8	5	3	2	1	
				1	0	2
			1	0	1	4
		1	0	0	1	6
	1	0	0	0	0	8
	1	0	0	1	0	10
	1	0	1	0	1	12
						÷

The set $2\mathbb{N}$ of even integers is *F*-recognizable or *F*-automatic, i.e., the language $\operatorname{rep}_F(2\mathbb{N}) = \{\varepsilon, 10, 101, 1001, 10000, \ldots\}$ is accepted by some finite automaton.

Remark (in terms of the Chomsky hierarchy)

With respect to the Fibonacci system, *any F*-recognizable set can be considered as a "*particularly simple*" set of integers.

(日) (日) (日) (日) (日) (日) (日) (日)

We get a similar definition for other numeration systems.

Numeration systems

A numeration system is an increasing sequence of integers U = (U_n)_{n≥0} such that

• $U_0 = 1$ and

•
$$C_U := \sup_{n\geq 0} [U_{n+1}/U_n] < +\infty.$$

• U is *linear* if it satisfies a linear recurrence relation over \mathbb{Z} .

Example

Let $(F_n)_{n\geq 0}$ be the Fibonacci sequence with $F_0 = 1$ and $F_1 = 2$.

▶ Let $n \in \mathbb{N}$. A word $w = w_{\ell-1} \cdots w_0$ over \mathbb{N} represents n if

$$\sum_{i=0}^{\ell-1} w_i U_i = n.$$

▲□▶▲圖▶▲≣▶▲≣▶ = ● のQ@

Greedy representations

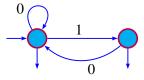
• A representation $w = w_{\ell-1} \cdots w_0$ of an integer is greedy if

$$\forall j, \ \sum_{i=0}^{j-1} w_i \, U_i < U_j.$$

- In that case, $w \in \{0, 1, \dots, C_U 1\}^*$.
- ▶ $\operatorname{rep}_U(n)$ is the greedy representation of *n* with $w_{\ell-1} \neq 0$.
- ► $X \subseteq \mathbb{N}$ *U*-recognizable \Leftrightarrow rep_{*U*}(*X*) is accepted by a finite automaton.

• $\operatorname{rep}_U(\mathbb{N})$ is the numeration language.

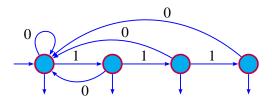
The Fibonacci numeration system



•
$$U_{n+2} = U_{n+1} + U_n (U_0 = 1, U_1 = 2)$$

• A_U accepts all words that do not contain 11.

The ℓ -bonacci numeration system



•
$$U_{n+\ell} = U_{n+\ell-1} + U_{n+\ell-2} + \dots + U_n$$

•
$$U_i = 2^i, i \in \{0, \dots, \ell - 1\}$$

• \mathcal{A}_U accepts all words that do not contain 1^{ℓ} .

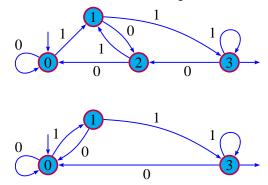
Motivations

- Cobham's theorem for integer base systems (1969) shows that recognizability depends on the choice of the base.
 Only ultimately periodic sets are recognizable in all bases.
- Introduction of non-standard numeration systems and study U-recognizable sets.
- If ℕ is *U*-recognizable, then *U* is linear and any ultimately periodic set is *U*-recognizable.

- V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, BBMS 1 (1994).
- V. Bruyère, G. Hansel, Bertrand numeration systems and recognizability, TCS 181 (1997).

Motivations

What is the "best automaton" we can get?



DFAs accepting the binary representations of $4\mathbb{N} + 3$.

Question

The general algorithm doesn't provide a minimal automaton. What is the state complexity of $0^* \operatorname{rep}_U(p\mathbb{N} + r)$?

ロトメロトメミトメミト

Background (I)

Theorem

If *L* accepted by an *n*-state DFA, then the minimal automaton accepting the language of words of *L* indexed by the multiples of *m* (w.r.t. the radix order) has at most nm^n states.

 D. Krieger, A. Miller, N. Rampersad, B. Ravikumar, J. Shallit, Decimations of languages and state complexity, TCS 410 (2009).

For $x, y \in \mathbb{N}$, we have $x < y \Leftrightarrow \operatorname{rep}_U(x) <_{\operatorname{rad}} \operatorname{rep}_U(y)$.

In particular, if $\operatorname{rep}_U(\mathbb{N})$ is accepted by an *n*-state DFA, then the minimal automaton accepting $\operatorname{rep}_U(m\mathbb{N})$ has at most nm^n states.

Background (II)

Alexeev's result

Let $b, m \ge 2$. Let N, M be such that $b^N < m \le b^{N+1}$ and

$$(m,1) < (m,b) < \dots < (m,b^M) = (m,b^{M+1}) = (m,b^{M+2}) = \dots$$

The minimal automaton accepting the base b representations of the multiples of m has exactly

$$rac{m}{(m,b^{N+1})} + \sum_{t=0}^{\inf\{N,M-1\}} rac{b^t}{(m,b^t)}$$
 states.

B. Alexeev, Minimal DFA for testing divisibility, JCSS 69 (2004).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Background (III)

Honkala's decision procedure

Given any finite automaton recognizing a set X of integers written in base b, it is decidable whether X is ultimately periodic.

- J. Honkala, A decision method for the recognizability of sets defined by number systems, *Theor. Inform. Appl.* 20 (1986).
- ► J.-P. Allouche, N. Rampersad, J. Shallit, Periodicity, repetitions, and orbits of an automatic sequence, *TCS* **410** (2009).
- J. Bell, É. C., A. S. Fraenkel, M. Rigo, A decision problem for ultimately periodic sets in non-standard numeration systems, *IJAC* 19 (2009).

Consider a linear numeration system U such that \mathbb{N} is U-recognizable. How many states does the minimal automaton recognizing $0^* \operatorname{rep}_U(m\mathbb{N})$ contain?

- 1. Give upper/lower bounds?
- 2. Study special cases, e.g., Fibonacci numeration system?
- 3. Get information on the minimal automaton \mathcal{A}_U recognizing $0^* \operatorname{rep}_U(\mathbb{N})$?

Study of the state complexity of $0^* \operatorname{rep}_U(m\mathbb{N})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Hankel matrix

- Let $U = (U_n)_{n \ge 0}$ be a linear numeration system.
- For $t \ge 1$ define

$$H_{t} := \begin{pmatrix} U_{0} & U_{1} & \cdots & U_{t-1} \\ U_{1} & U_{2} & \cdots & U_{t} \\ \vdots & \vdots & \ddots & \vdots \\ U_{t-1} & U_{t} & \cdots & U_{2t-2} \end{pmatrix}$$

٠

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

For m ≥ 2, define k_{U,m} to be the largest t such that det H_t ≠ 0 (mod m).

Calculating $k_{U,m}$

•
$$U_{n+2} = 2U_{n+1} + U_n$$
, $(U_0, U_1) = (1, 3)$

•
$$(U_n)_{n\geq 0} = 1, 3, 7, 17, 41, 99, 239, ...$$

- (U_n mod 2)_{n≥0} is constant and trivially satisfies the recurrence relation U_{n+1} = U_n with U₀ = 1.
- Hence $k_{U,2} = 1$.
- Modulo 4 we find: $(U_n \mod 4)_{n \ge 0} = 1, 3, 3, 1, 1, 3, 3, \dots$
- det $\begin{pmatrix} 1 & 3 \\ 3 & 3 \end{pmatrix} \equiv 2 \pmod{4}$ and $\forall t \ge 2$, det $H_t \equiv 0 \pmod{4}$.

• Hence $k_{U,4} = 2$.

A system of linear congruences

• Let
$$k = k_{U,m}$$
.

- Let $\mathbf{x} = (x_1, \dots, x_k)$.
- ► Let S_{U,m} denote the number of k-tuples b in {0,...,m-1}^k such that the system

$$H_k \mathbf{x} \equiv \mathbf{b} \pmod{m}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

has at least one solution.

• $S_{U,m} \leq m^k$.

Calculating $S_{U,m}$

•
$$U_{n+2} = 2U_{n+1} + U_n$$
, $(U_0, U_1) = (1, 3)$

- $(U_n)_{n\geq 0} = 1, 3, 7, 17, 41, 99, 239, \dots$
- Consider the system

$$\begin{cases} 1 x_1 + 3 x_2 \equiv b_1 \pmod{4} \\ 3 x_1 + 7 x_2 \equiv b_2 \pmod{4} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- $\blacktriangleright 2x_1 \equiv b_2 b_1 \pmod{4}$
- For each value of b_1 there are at most 2 values for b_2 .

• Hence
$$S_{U,4} = 8$$
.

Properties of the automata we consider

(H.1) *A_U* has a single strongly connected component *C_U*.
(H.2) For all states *p*, *q* in *C_U* with *p* ≠ *q*, there exists a word *x_{pq}* such that δ_U(*p*, *x_{pq}) ∈ C_U* and δ_U(*q*, *x_{pq}) ∉ C_U*, or vice-versa.

General state complexity result

Theorem

Let $m \ge 2$ be an integer. Let $U = (U_n)_{n\ge 0}$ be a linear numeration system such that

(a) \mathbb{N} is *U*-recognizable and \mathcal{A}_U satisfies (H.1) and (H.2),

(b) $(U_n \mod m)_{n \ge 0}$ is purely periodic.

The number of states of the trim minimal automaton accepting $0^* \operatorname{rep}_U(m\mathbb{N})$ from which infinitely many words are accepted is

 $|\mathcal{C}_U|S_{U,m}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

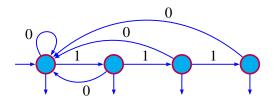
Result for strongly connected automata

Corollary

If *U* satisfies the conditions of the previous theorem and A_U is strongly connected, then the number of states of the trim minimal automaton accepting $0^* \operatorname{rep}_U(m\mathbb{N})$ is $|\mathcal{C}_U|S_{U,m}$.

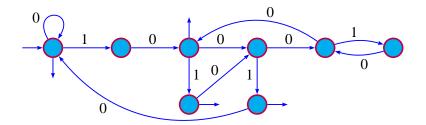
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Result for the ℓ -bonacci system



Corollary

For *U* the ℓ -bonacci numeration system, the number of states of the trim minimal automaton accepting $0^* \operatorname{rep}_U(m\mathbb{N})$ is ℓm^{ℓ} .



13	8	5	3	2	1	
				1	0	2
			1	0	1	4
		1	0	0	1 1	4 6 8 10 12
	1	0	0	0	0	8
	1	0	0	1	0	10
	1	0	1	0	1	12
						÷

▲口▶▲圖▶▲≣▶▲≣▶ ■ のQの

A lower bound

Theorem

Let *U* be any numeration system (not necessarily linear). The number of states of $A_{U,m}$ is at least $|\operatorname{rep}_U(m)|$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Structure of the minimal automaton \mathcal{A}_U recognizing $0^* \operatorname{rep}_U(\mathbb{N})$

First result

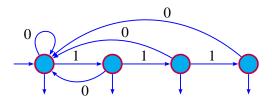
Theorem

Let U be a linear numeration system such that $\operatorname{rep}_U(\mathbb{N})$ is regular.

- (i) The automaton A_U has a non-trivial strongly connected component C_U containing the initial state.
- (ii) If *p* is a state in C_U , then there exists $N \in \mathbb{N}$ such that $\delta_U(p, 0^n) = q_{U,0}$ for all $n \ge N$. In particular, one cannot leave C_U by reading a 0.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

The ℓ -bonacci numeration system



•
$$U_{n+\ell} = U_{n+\ell-1} + U_{n+\ell-2} + \dots + U_n$$

•
$$U_i = 2^i, i \in \{0, \dots, \ell - 1\}$$

• \mathcal{A}_U accepts all words that do not contain 1^{ℓ} .

Dominant root condition

- U satisfies the *dominant root condition* if lim_{n→+∞} U_{n+1}/U_n = β for some real β > 1.
- β is the *dominant root* of the recurrence.
- E.g., Fibonacci: dominant root $\beta = (1 + \sqrt{5})/2$

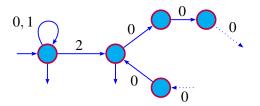
Theorem (cont'd.)

Suppose *U* has a dominant root $\beta > 1$.

- If A_U has more than one non-trivial strongly connected component, then any such component other than C_U is a cycle all of whose edges are labeled 0.
- ► If $\lim_{n \to +\infty} U_{n+1}/U_n = \beta^-$, then there is only one non-trivial strongly connected component.

An example with two components

- Let $t \geq 1$.
- Let $U_0 = 1$, $U_{tn+1} = 2U_{tn} + 1$, and
- $U_{tn+r} = 2U_{tn+r-1}$, for $1 < r \le t$.
- E.g., for t = 2 we have U = (1, 3, 6, 13, 26, 53, ...).
- Then $0^* \operatorname{rep}_U(\mathbb{N}) = \{0,1\}^* \cup \{0,1\}^* 2(0^t)^*$.
- ► The second component is a cycle of *t* 0's.



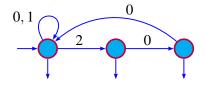
If *U* is a linear numeration system has a dominant root β and if $\operatorname{rep}_U(\mathbb{N})$ is regular, then β is a Parry number.

With any Parry number β is associated a canonical finite automaton \mathcal{A}_{β} .

We will study the relationship between A_U and A_β .

M. Hollander, Greedy numeration systems and regularity, *Theory Comput. Systems* 31 (1998).

An example of the automaton \mathcal{A}_{β}



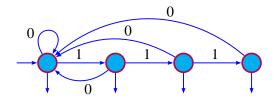
- Let β be the largest root of $X^3 2X^2 1$.
- ▶ $d_{\beta}(1) = 2010^{\omega}$ and $d^*_{\beta}(1) = (200)^{\omega}$.
- ► This automaton also accepts $\operatorname{rep}_U(\mathbb{N})$ for U defined by $U_{n+3} = 2U_{n+2} + U_n, (U_0, U_1, U_2) = (1, 3, 7).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

•
$$\mathcal{A}_U = \mathcal{A}_\beta$$

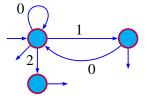
Bertrand numeration systems

- ▶ Bertrand numeration system: w is in rep_U(\mathbb{N}) if and only if w0 is in rep_U(\mathbb{N}).
- E.g., the ℓ -bonacci system is Bertrand.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A non-Bertrand system



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- $U_{n+2} = U_{n+1} + U_n, (U_0 = 1, U_1 = 3)$
- $(U_n)_{n\geq 0} = 1, 3, 4, 7, 11, 18, 29, 47, \dots$
- 2 is a greedy representation but 20 is not.

Theorem (Bertrand)

A system U is Bertrand if and only if there is a $\beta > 1$ such that

 $0^* \operatorname{rep}_U(\mathbb{N}) = \operatorname{Fact}(D_\beta).$

Moreover, the system is derived from the β -development of 1.

▶ If β is a Parry number, the system is linear and we have a minimal finite automaton A_β accepting Fact (D_β) .

• Consequently, $\operatorname{rep}_U(\mathbb{N})$ is regular and $\mathcal{A}_U = \mathcal{A}_{\beta}$.

Applying our state complexity result to the Bertrand systems

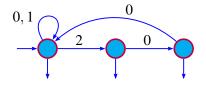
Proposition

Let *U* be the Bertrand numeration system associated with a non-integer Parry number $\beta > 1$. The set \mathbb{N} is *U*-recognizable and the trim minimal automaton \mathcal{A}_U of $0^* \operatorname{rep}_U(\mathbb{N})$ fulfills properties (H.1) and (H.2).

Our state complexity result thus applies to the class of Bertrand numeration systems.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Back to a previous example



- Let β be the largest root of $X^3 2X^2 1$.
- ▶ $d_{\beta}(1) = 2010^{\omega}$ and $d^*_{\beta}(1) = (200)^{\omega}$.
- ► This automaton accepts $\operatorname{rep}_U(\mathbb{N})$ for U defined by $U_{n+3} = 2U_{n+2} + U_n, (U_0, U_1, U_2) = (1, 3, 7).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

•
$$\mathcal{A}_U = \mathcal{A}_\beta$$

Changing the initial conditions 3,4 0 a 0 () 0

- $U_{n+3} = 2U_{n+2} + U_n, (U_0, U_1, U_2) = (1, 3, 7)$
- We change the initial values to $(U_0, U_1, U_2) = (1, 5, 6)$.

•
$$\mathcal{A}_U \neq \mathcal{A}_\beta$$

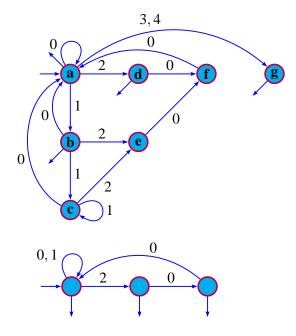
Relationship with A_{β}

Theorem (cont'd.)

Suppose *U* has a dominant root $\beta > 1$. There is a morphism of automata Φ from C_U to A_{β} .

 Φ maps the states of \mathcal{C}_U onto the states of \mathcal{A}_β so that

- $\Phi(q_{U,0}) = q_{\beta,0}$,
- For all states q and all letters σ such that q and δ_U(q, σ) are in C_U, we have Φ(δ_U(q, σ)) = δ_β(Φ(q), σ).



▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Other results

- When U has a dominant root $\beta > 1$, we can say more.
- ► E.g., if A_U has more than one non-trivial strongly connected component, then d_β(1) is finite.
- ► We can also give sufficient conditions for A_U to have more than one non-trivial strongly connected component.
- In addition, we can give an upper bound on the number of non-trivial strongly connected components.

When U has no dominant root, the situation is more complicated.

Further work

- ► Analyze the structure of A_U for systems with no dominant root.
- ► Remove the assumption that (U_n mod m)_{n≥0} is purely periodic in the state complexity result.
- Big open problem: Given an automaton accepting rep_U(X), is it decidable whether X is an ultimately periodic set?