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Abstract

Using the nonlinear analog of the Fake Riccati equation developed
for linear systems, we derive an inverse optimality result for several
receding horizon control schemes. This inverse optimality result uni-
fies stability proofs and shows that receding horizon control possesses
the stability margins of optimal control laws.
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1 Introduction

Several receding horizon control schemes for nonlinear systems have been
recently proposed which guarantee stability of the closed-loop system [9, 10,
12, 3, 4, 2]. In this note, we show that all these control laws, although based
on the (open-loop) solution of a finite horizon optimal control problem, also
yield the (feedback) solution of an associate infinite horizon optimal control
problem. This inverse optimal result is based on the derivation of a stationary
Hamilton-Jacobi-Belmann (HJB) equation which is the nonlinear analog of
the Fake Riccati equation developed for linear systems [5, 13]. The inverse op-
timality result unifies the stability proofs of different receding horizon control
schemes. More significantly, it establishes an important robustness property
of receding horizon control since the control laws are shown to possess the
stability margins of optimal control laws [6, 7, 14]. From a practical point of
view, this result underlines that, with some caution, highly desirable features
of control laws which solve an infinite horizon optimal control problem are
in fact retained with a limited horizon.

Section 2 reviews several receding horizon nonlinear control schemes. The
Fake HJB equation is derived in Section 3. A stability proof for the closed-
loop system and the stability margins of receding horizon control are derived
at once from the inverse optimality result in Section 4.

2 Receding horizon control

In receding horizon control, a static state feedback control law is constructed
by solving on-line at time ¢ an optimal control problem over the finite horizon
[t,t + L]. We consider a nonlinear system

&= F(z,u) = f(x) + g(x)u, f(0)=0 (1)

where x € IR", u € IR™ and F is at least twice continuously differentiable.
The Finite-Horizon Optimal Control Problem (FHOCP) is defined by the
minimization of the cost function

Teo,u), 1) = [ ale(t) u(e))ds + m(z(1)) )

subject to (1) and with 2(0) = . The choice ¢t = 0 for the initial time is
irrelevant since the problem is time-invariant.



Throughout this paper, we assume that the cost has the particular form
a(w,u) = U(x) + ' R(z)u, U(x) >0, 1(0) =0, R(x) = diag {r,(x)} >0

If [(z) is only positive semidefinite, we will also assume the “zero-state de-
tectability in the cost”, that is, that all the solutions of & = f(x) which
satisfy the constraint [(x(t)) = 0 converge to x = 0 as t — 0.

For a given initial condition z, € IR", we denote by u*(¢,z¢), 0 <t < L,
the optimal solution of the FHOCP, that is, a function u in LT[0, L] which
minimizes the cost (2). In the following, the optimal value of the FHOCP
will be denoted by V(z, L) , that is V(z,L) = J(z,u*(",z), L). In receding
horizon control, the value of the feedback control at state z is obtained by
solving the FHOC'P and setting

v(x) = u*(0,x) (3)

Repeating this on-line calculation continuously along the solutions yields a
feedback control as opposed to the open-loop control u*(t,z,). This strategy
is conceptually simple and attractive to determine a feedback control law for
nonlinear systems, in particular in the presence of constraints (no constraints
are considered in this paper). However, in contrast to infinite-horizon op-
timization which, under mild assumptions, ensures closed-loop stability, the
receding horizon control scheme does not guarantee stability unless the final
state penalty m(*) is chosen appropriately.

To ensure closed-loop stability, different alternatives have been proposed
in the literature, which we summarize hereafter:

(i) m(z(L)) = [;°q(x(t), Kz(t))dt. The final state penalty is the cost
incurred over [L,o0) by applying the linear control law u(t) = Kx(t)
from time ¢t = L. In this case, the solvability of the finite horizon
control problem is guaranteed if the linear control law v = Kx ensures
local exponential stability of the equilibrium z = 0, with a region
of attraction that can be reached from =z, within the time interval
[0,L]. Under such assumptions closed-loop stability of the receding
horizon control scheme is established in [3, 4] (the discrete-time case is
considered in these papers).

(ii) m(x(L)) = ax(L)" Pz(L) for some a € IR, a > 0 and for some positive
definite symmetric matrix P € IR™" [12, 2]. Choices of a and P which
ensure closed-loop stability are discussed in [12, 2].

3



(iii) The terminal state constraint z(L) = 0 is imposed, see [9, 10] where
the corresponding stability results are derived. This corresponds to
a terminal constraint m(x(L)) = px(L) where p is a costate of the
optimal control problem, see [10] for details. In this case, the feasibility
of the optimal control problem requires that the equilibrium x = 0 can
be reached from zy in a finite time L.

We now introduce the following regularity assumption:

Blanket Hypohesis: The control law (3) is continuously differentiable and
the value function V(x, L) is twice continuously differentiable in IR™.

The regularity of the value function of an optimal control problem is of course
a strong requirement. Sufficient conditions are given in [10] for the case (iii),
that is with a terminal state constraint x(L) = 0. The regularity issue is not
discussed in [12, 2] nor in the (discrete-time) treatment of [3].

3 A Fake HJB equation

In the literature, the stability analyses of the three receding horizon control
schemes recalled in Section 1, employ the value function V(z, L) as a Lya-
punov function to establish asymptotic stability of the equilibrium xz = 0 of
the closed-loop system. Hereafter, we show that the value function V(x, L)
also satisfies a “Fake” Hamilton-Jacobi-Bellman equation.

Theorem 1 Under the Blanket Hypothesis of Section 2, the value function
V(z,L) is a C? semipositive definite function. Defining the modified state
penalty

I(#) =1(e) ~ -V T) (1)

the value function V'(z, L) satisfies the HJB equation

_ 1
0= 1) +Val, L) [ () = 7Valw, L)g(x) R g(2)'Va(z, L) (5)
with the boundary condition V' (0, L) = 0.
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Proof: From standard optimal control results (see for instance [1]), the
value function V' satisfies the HJB equation

— 9V (zg, L —t) =
miany @ {U(x(t) + u(t) R(z(t))ut) + Va(z(t), L = O)'[f(x(t)) + g(z(t))u(t)]}, te€[0,L]

and the minimizing input u* (¢, zo) is

* 1 —
u'(t,x0) = =5 R(x(8)g(w(t))'Va(x(t), L — 1)
In particular, we have for ¢t =0

—%V(Qfo, L — t)|t:[) =

[(wo) + Vi(wo, L) f (o) — §Val@o, L)g(wo) R(20) ™" g(0)' Vi (w0, L)’
To establish (5), we note that
Ve, L — (t+ At)) = V(x, (L — At) — t)

which implies

0 0
—a‘/(l’g, L — t)|t:0 = a—LV(ZEo, L)

Finally V' (0, L) = 0 because J(0,0,L) =0 O

Remark: Note that Theorem 1 is true even if the terminal penalty m(z(L))
is substituted with a zero-state terminal constraint x(L) = 0.

The (stationary) HJB equation (5) is the nonlinear analog of the Fake
Riccati equation derived in [5, 13].

Stability and robustness of the receding horizon control scheme will be
derived from the corresponding optimality result provided that the modified
state penalty (4) is nonnegative and satisfies [(0) = 0, which follows from the
following proposition.

Proposition 1 For the three receding horizon control schemes recalled in
Section 2, the following holds:
0 0

— < — —
STV (@ L) <0, 52V(0,L) =0



Proof: Consider algorithm (i). Let u*(¢,z) be the optimal control over
the finite horizon [0, L]. Suppose that we apply the (open-loop) control u*
over the finite interval [0, L] and the (feedback) control u = Kz for t > L,

that is ( ) ; 0.1]
- u*(t, or te|0,
= { Kx(t;) for t>1L (6)

By construction, the cost of this suboptimal strategy is V(xg, L) for any
horizon larger than L:

J(xo, (), L+ AL) =V (xy,L) > m(lgl J(zo,u(-), L+ AL) = V(xo, L + AL)
(7)

Since V' is continuously differentiable in L, it follows that %V(xU,L) <0,
VL > 0.
Finally, V(0,L) = 0 for all L and then -2-V(0,L) = 0.

The proof for the algorithm (ii) is carried out in a similar way in [12]. For
(iii), the control @ guaranteeing (7) is

_ | ur(t, x) for tel0,L]
“ 0 for te[L,L+ AL

4 Inverse optimality and stability margins of
receding horizon control

Equation (5) is the stationary HJB equation associated to an infinite horizon
optimal control problem, namely the minimization of the modified cost

Jrr (2o, u(')) :/0 [(2() + ut) R(z)u(t)dt (8)
The following inverse optimality result directly follows (see for instance [14]):

Theorem 2 For the three receding horizon control schemes discussed in
Section 2, under the Blanket Hypothesis, the control law (z) is the optimal
stabilizing control which minimizes the cost Jrg(xo,u()) over all u guaran-
teeing limy_oox(t) = 0. Moreover, V*(z) := V(z, L) is the optimal value
function and the control law is of the form

1) = S R (@)ge)'Vy (o)
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If V*(x) is radially unbounded (i.e. V*(xq) — oo as ||zg]] = o0), all these
properties are global.

The fact that v(z) achieves asymptotic stability of z = 0 is standard if
I(z) is positive definite because V(x, L) is then positive definite and V <
—Il(z) < —I(z) is negative definite. If [(x) is only positive semidefinite,
V(z, L) and V(a:, L) are only semidefinite, but asymptotic stability of z =0
can still be concluded from the detectability in the cost (see [14] for details).

Radial unboundedness of the value function V*(z) can be guaranteed by
a growth assumption on f.

Proposition 2 Suppose that there exists a constant K; and radius r > 0
such that
(@, u)l| = r=[[f(zv)] < Kf q(z,u) (9)

Then V*(z) is radially unbounded.

Proof: a proof for algorithm (iii) is given in [10]. We give a proof for
algorithm (i), which is easily extended to (ii).

Let z(t) be the solution obtained for the initial condition z, and the
control (") defined by (6). If ||(z(0),@(0))|| > r, then, because z(t) (expo-
nentially) converges to zero and u(t) = Kx(t) for t > L, there exists a time
T, > 0 such that ||(z(¢), a(t))|| > r, for t < T, and ||(z(T), a(T}))|| = r. The
distance between the solution at time ¢ = 0 and ¢ = 7, satisfies

lzo —2(T)Il = | Jom 2(@)dtl] = [| Jo~ f (), a®)di]| < Jo I/ (x(t), u(t))]|d

Using the growth assumption (9), we obtain

lzo — 2(T)|| < Kf/ ))dt < Kf/ Ja(t))dt = K,V (o, L)

(10)
Because ||z(T)|| < r, the left hand side grows unbounded as xy — 0o, which
shows that V' (zo, L) = V*(zy) is radially unbounded. O



The main engineering significance of the inverse optimality result of The-
orem 2 is in the stability margins that it guarantees for the closed-loop sys-
tem. This important indicator of robustness refers to uncertainties A that
can be tolerated at the input, see Figure 1, without causing the loss of sta-
bility.

A classical property of optimal feedback systems is that stabilizing con-
trol laws which minimize a cost of the form (8), achieve a sector margin
(3,00), see [6]. This means that the closed-loop system in Figure 1 remains
asymptotically stable if A is any static nonlinearity u = ¢(-) in the sector

1.

(3,00), that is, $s's < s'¢(s) < oo for all s in JR™.

If R(x) =1 in (8), the cost becomes

Trat (o, u()) = /0°°1(g;(t)) +u(t)u(t)dt (11)

and the closed-loop system also tolerates a class of dynamic uncertainties at
the input. This is because the optimality property of « = ~(z) is in this case
equivalent to a passivity property for the system

(H) &= f(r)+g(@)u, y=-—() (12)

Connections between optimality and passivity were established in [8] for the
linear case and generalized to the nonlinear case in [11]. If u = ~(z) is
optimal stabilizing for (11), then the input-output system (12) has a shortage
of passivity characterized by the fact that it is rendered passive by the output
feedback transformation u = —%y + v. In the linear case, this shortage of
passivity translates into the fact that the Nyquist plot of the input-output
transfer function of (12) does not enter the circle of radius one and centered
at (—1,0). By analogy, the shortage of passivity of (12) is referred to as a
disk margin property.

To guarantee the stability of the feedback interconnection in Figure 1, the
shortage of passivity of (12) must be compensated for by a sufficient excess
of passivity of the uncertainty A. This excess of passivity characterizes the
class of uncertainties that can be tolerated at the input if the system possess
a disk margin. These uncertainties include static sector nonlinearities but
also all the linear dynamic uncertainties whose Nyquist plot lies to the right

of the vertical axis s = %



The above connections between optimality and passivity and their engin-
eering significance for the stability margins of optimal feedback systems are
reviewed in the recent monograph [14].

5 Conclusions

In this paper we have shown that, under regularity assumptions, stabilizing
nonlinear receding control laws which are based on the on-line solution of a
finite horizon optimal control problem are (inverse) optimal with respect to a
modified infinite horizon optimal control problem. This inverse optimal result
has been obtained by showing that the value function of the finite horizon
problem is solution of a stationary HJB equation, the nonlinear analog of the
Fake Riccati equation derived for linear systems [5, 13]. The main significance
of the inverse optimal property of receding horizon control laws is in the
stability margins that it guarantees for the closed-loop system.
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Figure 1: Nonlinear feedback loop with the control law 7v(z) and input un-
certainty A.
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