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Abstract

The problem of robust stabilization of nonlinear systems in the presence of input un-
certainties is of great importance in practical implementation. Stabilizing control laws
may not be robust to this type of uncertainty, especially if cancellation of nonlinearities
is used in the design. By exploiting a connection between robustness and optimality,
“domination redesign” of the control Lyapunov function (CLF) based Sontag’s formula
has been shown to possess robustness to static and dynamic input uncertainties. In
this paper we provide a sufficient condition for the domination redesign to apply. This
condition relies on properties of local homogeneous approximations of the system and
of the CLF. We show that an inverse optimal control law may not exist when these
conditions are violated and illustrate how these conditions may guide the choice of a
CLF which is suitable for domination redesign.

*This work was supported in part by the National Science Foundation under Grant ECS-9203491 and in
part by the Air Force Office of Scientific Research under Grant F-49620-95-J-0409.



1 Introduction

In this paper we revisit the problem of designing globally stabilizing control laws which
minimize a cost function of the form

/000 I(x) +u"u dt, I(x) >0 (1.1)

This is an inverse optimal control problem because the state penalty [(x) in not specified in
advance. Instead, the minimization is to be achieved for some [(x) > 0.

Following the recent works [4, 14], our interest in inverse optimality is motivated by the
desire to achieve robustness with respect to uncertainties which appear at the plant input,
as shown in Figure 1. In the absence of uncertainty, A is identity and the feedback loop
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Figure 1: Nonlinear feedback loop with the control law k(z) and input uncertainty A.

consists of the nominal plant H given by
= f(z)+g@)u, zeR", ueR™ (1.2)

and the nominal control law

u=—k(x)=:—y (1.3)

The situation in which uncertainty is at the input is common in applications, especially when
simplified models of actuators are used for the design.

Early results in optimal control theory [9, 11] have related the optimality of the control
law u = —k(x) with respect to a cost (1.1) to a dissipativity property of the system (1.2)
with output y = k(z). This dissipativity property implies that the stability of the feedback
system in Figure 1 is preserved for a class of uncertainties. This class, which we denote by
Z, includes all uncertainties that are stable and satisfy the dissipativity inequality

. 1
Wa(z) < yaua — §U£UA (1.4)

for some positive definite radially unbounded function Wa(z), where ua € IR™ is the input,
ya € IR™ is the output, and 2z € IR™ is a state vector for the system A.



An uncertainty in Z may be an unknown gain x € (%, 00), or a static sector nonlinearity!
©(-) € (3,00), because both satisfy the dissipativity inequality (1.4) with Wx = 0. An
uncertainty in Z may also be dynamic provided that it has relative degree zero. For instance,
any stable linear system with the transfer function having the real part greater than % belongs
to Z. For linear optimal systems the robustness to such uncertainties is guaranteed by the
fact that the Nyquist curve of the optimal system lies outside a disk in the complex plane
[1]. A familiar interpretation is (3,00) gain margin and (£60°) phase margin of optimal
systems. In analogy with this property of linear optimal systems, we have defined in [14] the
disk stability margin D(3): the system (1.2), (1.3) is said to have a disk margin D(3) if the
closed loop system in Figure 1 remains stable for any A in Z.

Several recent works [8, 10, 12] deal with the problem of designing control laws for
nonlinear systems which are robust to dynamic input uncertainties. These methods, based
on the small gain theorem, require that the input-output gain of the system A — I,, (I, is
the m x m identity matrix) be sufficiently small; in any case, strictly smaller than one. In
contrast, our class of uncertainties Z contains systems for which no gain can be defined, like
for example ,

Z=—z4 2°Uua
ya = 2° + un (15)

The starting point to achieve a disk margin from the knowledge of a CLF is the Sontag’s
formula [15]. In [14] we have shown that the Sontag’s formula achieves optimality with
respect to a cost functional of the form

J = /OOO I(x) + u" R(z)u dt (1.6)

for some I(z) > 0 and R(z) > 0 which are not chosen by the designer, but directly obtained
from the CLF V(z) and the vector fields f(z) and g(z). This inverse optimal result is
sufficient to establish robustness to static uncertainties in Z. However, the presence of the
state dependent matrix R(x) in the cost makes it impossible to guarantee any robustness to
dynamic uncertainties. We have further shown in [14] that, if R~'(x) is bounded on compact
sets, a domination redesign achieves optimality for a cost of the form (1.1) and the disk
margin D(3).

In this paper we provide conditions for the boundedness of R~!(z) on compact sets. As
we illustrate by an example, Sontag’s formula, in general, does not provide a locally bounded
R™'(x). The same is true for the Freeman’s formula [4]. A result of this paper shows that in
both cases R™!(z) is bounded if the CLF property is retained for some local (homogeneous)
approximation of the system and of the CLF. This condition is only sufficient because it
implies the stabilizability of the considered local approximation but it may guide the choice
of a CLF which is suitable for domination redesign.

In Section 2, we review the derivation of inverse optimal control laws from the knowledge
of a CLF. In Section 3 we provide a sufficient condition for a domination redesign to achieve
the desired disk stability margin and illustrate different situations with examples.

LA function (s) is said to belong to a sector (a,b) if as? < sp(s) < bs?; it is said to belong to a sector
[a,b] if as® < sp(s) < bs?.



2 CLF for inverse optimal control

2.1 Inverse optimality

In the direct optimal design we would have to solve the Hamilton-Jacobi-Bellman (HJB)
equation which, in general, is not a feasible task. On the other hand, in the inverse approach,
a stabilizing feedback is designed first and then shown to be optimal.

A globally stabilizing control law u(z) solves an inverse optimal problem for the system

&= f(z) + g(v)u (2.1)

with the cost functional of the form (1.6), if it can be expressed as

1
u=—k(z)= —§R_1(x)(LgV(x))T, R(z) > 0, (2.2)
where V(z) is a positive definite?, radially unbounded function, such that the negative
semidefiniteness of V' is achieved with the control u = —$k(z), that is
. 1
V=L;V(zx)— §L9V(:L")k(x) <0 (2.3)

Indeed, if the function I(z) is set to be the negative right-hand side of (2.3)
1
l(z) == —LsV(x) + §LQV(x)k(:1:) >0 (2.4)
then V'(z) is a solution of the Hamilton-Jacobi-Bellman (HJB) equation
1 _
Uz) + LV (x) = 7 (LgV(@) BT () (L V()" =0 (2:5)
Hence, according to the standard results of the optimal control theory (c.f. [7]) u = —k(z)
is optimal among all u(t) which achieve z(t) — 0 as ¢ — oco. What is of interest to us is

that u = —k(z) achieves robustness to static uncertainties in Z. Moreover, if R(z) = I,

u = —k(z) achieves robustness to all uncertainties in Z, that is, it possesses a disk margin
D(1) [5, 14, 16].

2.2 Sontag’s and Freeman’s formulas

The starting point for our design with stability margins for the nonlinear system

H: &= f(z)+g(z)u (2.6)

2Positive semidefiniteness is sufficient for global optimality [14]. However, in this paper all Lyapunov and
optimal value functions are positive definite because they are CLF’s.



is the knowledge of a control Lyapunov function (CLF): a smooth, positive definite, radially
unbounded function V' (z) which satisfies

LV(z)=0=L;V(zr) <0 Vz#0 (2.7)

A stabilizing optimal control law for the cost of the form (1.6) can be selected such that
the CLF V' becomes an optimal value function. A particular optimal stabilizing control law
is given by the Sontag’s formula [15]:

us(z) = —ps(w)(LyV (2))" (2.8)
with y
a(@)+4/a?(z)+ (b7 (z)b(z))?
pS(x) — Co + bT(x)b(x) ) b(I’) # 0 (29)
o , b(x)=0

where L;V (z) = a(z), (L,V(x))T = b(x). The positive constant ¢ is needed in order for
R(x) in the cost functional to be well defined. Indeed, by defining Rg'(z) := 2ps(7)I,, the
Sontag’s formula takes the form

us(r) = —3 Bs (0)(LyV (2))"

Because one half of ug(x) achieves

. 1 1 1
Vl]ws@ = 5@(35) - 5\/a2(:v) + (b7 (2)b(x))? — §cng(x)b(x) =: —lg(x) <0
for all z # 0, we conclude that it is optimal for the cost functional of the form [;°ls(z) +
u” Rg(x)u dt. Hence, this control law is robust to all static uncertainties in Z.
If we strengthen the CLF condition (2.7) to require that a smooth, positive definite
function a(z) be known such that

LyV(z)=0=L;V(z) < —a(z) Vo #0 (2.10)

we can construct a formula for an optimal stabilizing control law motivated by the pointwise
minimum norm control introduced in [4]. We shall call this control law Freeman’s formula
and, for notational convenience, the Lyapunov function V' that satisfies (2.10) an «-CLF.
Because the exact pointwise minimum norm control does not possess the robustness to static
uncertainties in Z, for the Freeman’s formula we double its value:

up(z) = —pF(x)(LgV(x))T (2.11)

with

b (2)b(x)
Co if a(z)+a(z) <0

co 4 2%@a@) e g0y 4 afz) > 0
pr(r) =



As it was the case with the Sontag’s formula, the control law (2.11) is of the form
1
ur(x) = =5 Rp' (@)(LgV ()"

With u = %uF(x), the time derivative of V' along the trajectories of the closed loop system
satisfies

Vo = minfa(x), —a(x)} - %cobT(x)b(x) — —lp(z) <0

for all x # 0. Hence, Freeman’s formula (2.11) provides a control law which is optimal for
the cost functional J = [ lp(x) + uT Rp(z)u dt.

Both control laws (2.8) and (2.11) are smooth everywhere except possibly at the origin
[4, 15]. The control law (2.8) is continuous at x = 0 if the CLF satisfies the small control
property: for each € > 0, we can find d(€) > 0 such that, if 0 <|| z ||< J, there exists u which
satisfies L;V (z) + (L,V)T(z)u < 0 and || u ||< € [15]. The same is true for the Freeman’s
formula if the a-CLF V has the small control property [4].

In summary, the control laws ug(z) and upr(x) are optimal, globally stabilizing, smooth
away from the origin, and, under a mild assumption, continuous at the origin. They are
robust to static uncertainties in Z. However, a disk margin is not guaranteed because Rg(x)
and Rp(x) are not constant (for a counterexample see Section 3.4 in [14]).

2.3 Domination redesign

Sontag’s and Freeman’s formula achieve optimality for the cost J = [{°I(z) + u” R(z)u dt.
The functions [(z) and R(z) are uniquely determined by the vector fields f(z) and g(z) and
the (o)CLF V(z). If R~!(x) happens to be bounded on compact sets, we can proceed with
the domination redesign to obtain a control law with a disk margin [14].

Consider an optimal globally stabilizing control

I _
u(w) = =5 R (@) (L V()" (2.1)
determined from a C*, positive definite, radially unbounded optimal value function V' and

assume that R~'(z) is bounded on compact sets. Define a continuous dominating function
v : IR™ — IR* which satisfies

y(V(z) > R '(z), Vo€ R" (2.2)
Jim Otv(s) ds = +00 (2.3)

Such a function always exists. If R(z) is continuous, a possible choice is

7(8) = sup )\maX(Ril(l')) + d, d>0
[V () <)



with A\nax denoting the largest eigenvalue. The redesigned optimal value function

V(z) = /OV(I) v(s)ds

inherits the properties of V(z): it is C*, positive definite and radially unbounded.
The redesigned control law

achieves
1
Vo= ’Y(V)Lfv_§72(V)LgV(LgV)T

< V)L = LV RV <0

Boundedness of solutions follows because V' is radially unbounded. To establish GAS, we
examine the set F where V = 0. In E we have L,V (z) = 0 so that ii(z) = 0 and hence,
u(z) = 0. Because u(z) is optimal stabilizing, the solutions of # = f(x)+ g(z)u(z) contained
in F converge to the origin. But, since in E the two closed-loop systems corresponding to
u(z) and u(z) coincide, we conclude that the redesigned feedback u(x) achieves GAS.

The function I(z) := —L;V + L(L,V)(L,V)7 is positive semidefinite because

= L VDY = VIV = (V) EV )V

1 _
< Y(VLgV = (LV)RTH(LyV)T) = =1(V)I <0
Therefore, by construction, V is a radially unbounded, positive definite solution of the
Hamilton-Jacobi-Bellman equation which implies that the control law (2.4) minimizes the
modified cost functional

J = /OOO I(z) + u"u dt (2.5)

hence providing a D(3) disk margin.

3 Boundedness of R§1 and R}l

The control laws (2.8) and (2.11) can be used for domination redesign if R5'(x) and Rp'(z)
are bounded on compact sets. The boundedness of Rg'(z) and Ry'(z), however, is not
guaranteed by the present assumptions as illustrated by the next example.

Example 1  For the system
i =2® + 2%u (3.1)



the CLF V(z) = £2? provides the control law

—(co + 7’”4+W)x3 if ©#0
ug(z) = )
0 ifxz=0

(From Rg(z) = 1p5'(x), we obtain that, for = # 0,

1 28

= - — 0
2 coab + xt + 2 + 12

as x converges to 0. This means that Rg'(z) is not bounded around the origin. Hence, the
domination redesign fails to provide an optimal stabilizing feedback with a disk margin.

It turns out that the solution to the optimal control problem with R(xz) = 1 does not
exist. Regardless of the choice of [(x) there is no positive semidefinite optimal value function
which satisfies the corresponding HJB equation

ov. 1 ,,0V
3OV 1 4OV e _
l(z) + = 5 1° (ax) 0 (3.2)

Rs(ZL’)

and results in a stabilizing optimal control law. Solving (3.2) for 2% we obtain

ov. 2 1 I(x)

S I TV Bl s

or x? * xt
The only way to make 2° (and V/(z)) bounded is to select the negative sign in front of the
square root when x > 0. Then V' is positive semidefinite only if /(x) = 0. But this choice of

[(x) results in u = 0 for x > 0 and the closed loop system is unstable. a

In view of Example 1 it is important to establish conditions on the CLF V', and on
the vector fields ¢°, 4 € {1,...,m}, under which the domination redesign is possible. The
following theorem provides a sufficient condition based on the properties of homogeneous
local approximations of the system and of the CLF. Basic homogeneity definitions are recalled
in Appendix.

Theorem 1 For a given dilation d.(z), let fu(z), gi(z) and Vj(x) be the homogeneous
approximations of the vector fields f(z) and g*(z) and of the CLF V(z), respectively. Denote
by dy, dgi and dy the degrees of these approximations.

If V}, is a CLF for the homogeneous system

&= fr(x) + g(@)u = fu(z) +_ g;(@)u;, (3-3)
i=1
then Rg'(x) is bounded on compact sets provided that
df >2dyi+d,, i€{1l,...,m} (3.4)
Similarly, if V3 (x) is an a-CLF for (3.3) with respect to oy (), the homogeneous approxima-

tion of a(z), then Ry'(x) is bounded on compact sets.

8



Proof: We only prove the theorem for Sontag’s formula (the proof is analog for Freeman’s
formula).
If L;V(x) <0, we have 0 < L;V + \/(LfV)2 + (L,V(L,V)T)2 < LQV(LQV)T which

implies

LV 4+ \J(LeV)2 + (LgV (L, V)T)?

<
st V(L)

<1l+c¢ (3.5)

Hence, Rg'(z) is uniformly bounded in the region of the state space where LV (z) < 0 and
we only need to consider regions where L,V (z) > 0.

On any compact set which does not contain the origin, L,V (z) must be bounded away
from 0 for those x for which LV > 0. Otherwise, because L,V is continuous, there must
exists xo # 0 such that L,V (x¢) = 0 and LV (zp) > 0 which violates the assumption that V’
is a CLF. This means that we only need to prove that Rg'(x) is bounded on an arbitrarily
small open ball Us := {z € R" : ||z|| < ¢}, § > 0, around of the origin.

Because V}, is a homogeneous CLF for the homogeneous system (3.3), a standard argu-
ment (see for instance [3, 13]) shows that V}, is rendered strictly negative by the homogeneous
control law g d

ui(z) = —cllally" " (Lyg Valx))
where ¢ > 0 is a sufficiently large constant and ||.||;, is any homogeneous norm (the homo-
geneous scaling factor is used to adjust the homogeneity degrees of f; and giu;). With this
control law, the closed-loop vector field is homogeneous of degree d; and v, satisfies

m
- dy—2dg—d, dj+dy
Vi =Ly Vi — e 3 (L Va)*lllly” ™ < —plllf
i=1

for some constant p > 0. If (3.4) holds, then for ||z||, small, we have a fortiori

m

- dj+dy
L Vi — CZ(L%V’Z)Z < Vi < =y
i=1
Returning to the original system, and applying the control law u = —c(L,V)7, we write V

in the form

: : dy+d, dy+d,
V ume(mev)t= Vi lu=—e(rg, viyr +0(Lyp, Vi) < —pllll,” + 0(ll2[,"™)

By definition, this means that Vu:,C(LQV)T is negative definite in a neighborhood Uy of the
origin, that is
L;V — || L,V|> <0, x #0
Hence, we obtain
L_ LVl

0
< c L;V(x)



for all x € U; for which LV (x) > 0. This implies that in a neighborhood of the origin

1LV ()]

I >el >0
col| LV (@) 1> + LV + /(LV)? + [|LyV (2)]|*

Rs(z) =

Therefore, Rg'(x) is bounded on compact sets and the domination redesign applies.
O

If the standard dilation d.(z) = ex is considered, then the homogeneous approximation
of the system typically reduces to its Jacobian linearization. If the CLF has a nontrivial
quadratic approximation, the homogeneity degrees defined in Theorem 1 are d;y = 0, d,; =
—1, and d, = 2, so that the condition (3.4) is satisfied. This particular case of Theorem 1
yields the following corollary.

Corollary 1 If the quadratic approximation of V' is a CLF for the Jacobian linearization of
i = f(x) + g(z)u, then Rg'(x) is bounded on compact sets. Similarly, R,'(z) is bounded
on compact sets if the quadratic approximation of V(x) is an a-CLF for the Jacobian lin-
earization of & = f(z) + g(x)u with respect to the quadratic approximation of «(z). O

The degree condition (3.4) of Theorem 1 excludes situations where the degree of the drift
vector field is lower than the degree of the control vector field, i.e. dy < d,. Example 1 has
indeed illustrated that this is a typical situation where the domination redesign might fail,
regardless of the choice of the CLF.

In other situations, the conditions of Theorem 1 may be violated or satisfied depending
on the choice of the dilation and of the CLF. The next example illustrates that the conditions
of Theorem 1 may then guide the choice of a CLF which will be suitable for a domination
redesign.

Example 2  For the system

: 5

Ty = —x + Z1X2
the CLF W = %ZL’% + %x% is not suitable for domination redesign. Indeed, substituting

LW = —28 + 2%zy + 25 and L,WW = z, into Sontag’s formula we obtain

—af + 23wy + o + /(=28 + 23y + 1) + o)

x5

Rg'(x) =

As z converges to the origin along the curve defined by z, = 23, Rg' grows to infinity
because

. 28+ 2?ry + 2y -2+ 42?2 (—a+ 1+ 2D)ad 1
RS’ (I) > 2 = 6 = 6 > - (37)
x5 ] ] 214

Hence, Rg'(z) is not bounded in a neighborhood of the origin and the domination redesign
does not apply.

10



A reason why the quadratic CLF is not suitable for domination redesign is suggested by
the fact that this CLF violates the assumptions of Corollary 1: the function 2% + z3 is not
a CLF for the Jacobian linearization of (2) because the stabilizing term —zx7 is not retained
in the linear approximation.

To retain the term —z? in the approximation, we choose the dilation 6. (z) = (€', ex).
The homogeneous approximation of (2) now becomes

1"1 = _'1.'51) + Z1X2 (38)

To = U
The degrees are df =1 and d, = —1 so that the degree condition (3.4) will be satisfied with
a CLF of degree d, = 2. This suggests the homogeneous CLF V}, = 2% + 3. Because V}, is
also a CLF for the original system, Theorem 1 shows that a domination redesign applies to
the CLF V =V, = 2% + 22.

4 Conclusion

Because of the guaranteed robustness to input uncertainties, we are interested in designing
control laws which are optimal with respect to cost functionals of the form [5°1(x) 4+ uTu dt.
The domination redesign method achieves this goal provided that R~'(z) obtained from
Sontag’s or Freeman’s formula is bounded in a neighborhood of the origin. However, this
may not be the case, and for some nonlinear systems our inverse optimal control problem
cannot be solved regardless of the choice of a CLF.

We have shown that the domination redesign applies when the CLF property is retained
for some local homogeneous approximation of the system and of the CLF. This local con-
dition may be used to select or construct a CLF which is suitable for the domination redesign.

Acknowledgment
The authors would like to thank Randy Freeman, Ilya Kolmanovsky, and Miroslav Krstic
for useful discussions and suggestions.

5 Appendix: homogeneous approximations
A standard reference for the use of homogeneous approximations as local approximations of

control systems is [6]. Here we recall the basic definitions.
A homogeneous approximation is defined with respect to a given dilation

de(x) = (€M xy, ..., €mxy), €>0
where the weights (rq,...,r,) are fixed real numbers, possibly different for each variable.
The standard dilation is defined by r, =...=r, = 1.

11



For a given dilation, a continuous function [ : IR™ — IR is homogeneous of degree d > 0
if 1(0.(x)) = €%l(x) for every € > 0. A continuous vector field f : IR® — IR"™ is homogeneous
of degree d if Ll is homogeneous of degree d + 7 whenever [ is homogeneous of degree .
In coordinates, this means that f;(x), the i-th component of f(z), is homogeneous of degree
r;+d. A homogeneous norm ||.||; is a norm which is homogeneous of degree one, for instance

n 2.1
2]l = (3 lws] )
=1

with p large enough for the norm to be differentiable at the origin.

Local homogeneous approximations are defined by extension of the classical notion of
approximation (which is defined with respect to the standard dilation). For a given dilation,
the local approximation I,(x) of a smooth function [ which satisfies [(0) = 0 is the first non
trivial term in the series expansion of /(z) in homogeneous terms: I(z) = Iy(z) + 0(In(x))

where o1
i 22)) _
20 ||z]|5

if d is the degree of [,(x). The local approximation of a vector field is defined in a similar
way.
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