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INTRODUCTION

There is a growing concern about the long-term
viability of harbour porpoise Phocoena phocoena pop-
ulations in the North Sea and adjacent areas. Since
1998, the southern North Sea regions, including the
northern French, Belgian and Dutch coasts have been
characterised by an increased number of stranded
marine mammals, in particular the harbour porpoise

(Jauniaux et al. 2002). Marine mammals are the final
trophic link in the southern North Sea (Das et al.
2003b), and therefore a potential impact of pollutants
on their health is of concern. Several investigations
have attempted to evaluate organic contaminant effects
at ambient environmental levels (e.g. Reijnders 1986,
Aguilar & Borrell 1994, de Swart et al. 1994, De Guise
et al. 1995, Jepson et al. 1999); fewer studies have
tried to link marine mammal health and metal levels
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(Hyvärinen & Sipilä 1984, Siebert et al. 1999, Bennet et
al. 2001). While zinc (Zn), iron (Fe), copper (Cu) and
selenium (Se) are key components associated with
hundreds of metalloenzymes, mercury (Hg) and cad-
mium (Cd) have no vital functions in mammals and
may cause immunosuppression in various species
(Zelikoff & Tomas 1998). However, a clear cause-effect
relationship between the residue levels of contami-
nants in marine mammals and the observed effects has
been demonstrated in only a few studies (Reijnders &
Aguilar 2002). The main reasons for the lack of proof of
the impact of pollutants on marine mammals are the
difficulty of experimenting in laboratory conditions
and the frequent occurrence of confounding factors
that hamper the establishment of cause-effect relation-
ships (Reijnders & Aguilar 2002). An alternative to
undesirable experimental manipulation of marine
mammals is systematic post-mortem investigations to
establish the health status of stranded and by-catch
animals coupled with pollutant analysis (Jepson et al.
1999, Siebert et al. 1999, Bennet et al. 2001, Anan et
al. 2002). 

Heavy metal concentrations in marine mammals
depend not only on environmental contamination, but
also on several biological and ecological factors such as
age, body condition or diet (Caurant et al. 1994, Law
1996, Bennet et al. 2001, Das et al. 2002). Diet studies
often comprise stomach-content analysis or field obser-
vations (Santos & Pierce 2003). In marine mammals,
the use of naturally occurring stable isotope ratios of
carbon and nitrogen (13C/12C and 15N/14N; in delta
notation, δ13C and δ15N) has recently provided interest-
ing insights into their feeding ecology (e.g. Hobson &
Welch 1992, Abend & Smith 1995, Hobson et al. 1996,
Smith et al. 1996, Burns et al. 1998, Lesage et al. 2001,
Das et al. 2003b). The use of δ13C and δ15N measure-
ments is based on the assumption that the isotopic
composition of an animal reflects that of its prey
(reviewed by Gannes et al. 1998, Kelly 2000). Stable
isotope analysis has been used previously to provide a
continuous variable with which to assess both trophic
level (Michener & Schell 1994, Hobson et al. 1995, Das
et al. 2003b) and transfer of contaminants (Kidd et al.
1995, Das et al. 2000, 2003a). 

Using an ordinal logistic regression, the present
study investigated the potential relationship between
the health status of the harbour porpoise and trace
metal concentrations (Zn, Cd, Cu, Fe, Se, Hg), in the
tissues of 132 harbour porpoises from northern France,
Belgium, Germany (North and Baltic Seas), Denmark,
Iceland and Norway by combining toxicological results
and the most common pathological findings, namely
emaciation and lesions of the respiratory system. This
indirect approach was intended to test the prediction
that increased exposure to toxic metals lowers the

resistance to disease of harbour porpoises off Euro-
pean coasts. Furthermore, we compared stable isotope
ratios in the muscles of porpoises displaying good,
moderate and poor body conditions. Nutritional stress
and starvation may modify stable isotope ratios in birds
and mammals, raising the question of the suitability
of these isotopes for studying the feeding ecology of
debilitated marine mammals (Hobson & Clark 1992,
Gannes et al. 1998). The relationship between δ13C and
δ15N measurements and trace metal concentrations
was examined for evidence of diet transfer or biomag-
nification. Finally, discriminant analysis was used to
assess the ability of trace element (hepatic Zn, Cd, Fe,
Cu, Se, Hg) and stable isotope (muscle δ13C and δ15N)
values to discriminate among the different locations,
i.e. northern France and Belgium, Germany (North
and Baltic Seas), Denmark (Skagerrak, Kattegat and
Baltic Sea), Iceland and Norway.

MATERIALS AND METHODS

Sample collection and storage. Liver, kidney and
muscle were collected from 132 harbour porpoises
stranded along the northern France, Belgian and Ger-
man coasts between 1994 and 2001 (sample numbers
in Table 1). Tissue samples were similarly collected
from harbour porpoises caught incidentally (by-catch)
in fishing nets along the coasts of Germany (Baltic
Sea), Denmark (Skagerrat, Kattegat and Baltic Seas),
Iceland and Norway. Post-mortem investigations were
performed according to standard protocol (Kuiken &
Hartmann 1993). The samples of liver, kidney and
muscle were stored at –20°C until analysis. 

Age was determined by quantification of growth-
layer groups from analyses of decalcified tooth sec-
tions (Lockyer 1995) of 85 porpoises. The liver and left
kidney mass was available for 78 and 32 porpoises
respectively. 

Pathology. The nutritional status (or body condition)
was judged on the basis of blubber thickness, mea-
sured at 4 different locations (sternal, caudodorsal,
caudolateral and caudoventral to the dorsal fin) and on
the state of muscles and was divided into 3 categories:
good, moderate, poor (i.e. emaciated), as previously
described (Siebert et al. 1999, 2001, Jauniaux 2002).
The lesions of the respiratory system were grouped
into absence of lesions, mild (pulmonary oedema,
pulmonary congestion, no nematode infestation, no
pneumonia) and moderate-to-severe lesions (pulmon-
ary oedema, pulmonary congestion, mild-to-severe
nematode infestation and mild-to-severe pneumonia).
Lesions of the respiratory tract were classified in a
different way for porpoises from northern France and
Belgium, and so were not included in this study. 
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Table 1. Phocoena phocoena. Trace element (µg g–1 dry wt) concentrations in tissues of harbour porpoises from North Sea and
adjacent areas. Mean (median) ± SD, range of concentrations (minimum–maximum); n: number of samples; nd: not determined

North Sea North Sea Baltic Sea North Sea Atlantic Atlantic
Belgium and Germany Germany Denmark Iceland Norway

northern France

Zn Liver 234 (163) ± 172 219 (172) ± 181 135 (120) ± 56 117 (104) ± 44 135 (120) ± 26 98 (94) ± 20
(40–684) (71–727) (78–242) (75–261) (114–187) (69–140)

n = 49 n = 14 n = 9 n = 17 n = 11 n = 21

Kidney 107 (101) ± 27 103 (99) ± 26 90 (88) ± 20 92 (83) ± 23 101 (105) ± 16 90 (87) ± 17
(68–201) (69–157) (68–136) (74–166) (78–120) (73–134)

n = 48 n = 12 n = 9 n = 15 n = 11 n = 20

Muscle 74 (65) ± 33 79 (77) ± 23 58 (53) ± 27 71 (56) ± 34 44 (47) ± 13 44 (39) ± 26
(24–193) (51–123) (27–124) (39–148) (20–61) (19–149)

n = 51 n = 13 n = 9 n = 15 n = 10 n = 21

Cd Liver 0.5 (0.2) ± 0.6 0.7 (0.2) ± 1.3 0.2 (0.1) ± 0.2 0.2 (0.1) ± 0.1 6 (2.5) ± 11 0.5 (0.4) ± 0.5
(<0.05–2.5) (<0.05–5) (< 0.05–0.5) (<0.05–0.4) (0.4–39) (<0.05–2)

n = 49 n = 14 n = 9 n = 17 n = 11 n = 21

Kidney 3.1 (2.0) ± 3.1 4 (1) ± 9 1.1 (0.5) ± 1.5 1.1 (0.8) ± 1.0 19 (14) ± 17 6 (5) ± 4.5
(<0.05–12) (<0.05–33) (<0.05–5) (0.1–3.5) (238) (<0.05–16)

n = 48 n = 12 n = 9 n = 15 n = 11 n = 20

Muscle <0.05 (<0.05) <0.05 <0.05 0.1 (0.1) ± 0.3 0.1 (<0.05) ± 0.15 <0.05
(<0.05–0.2) (<0.05–0.2) (<0.05) (<0.05–1.2) (<0.05–0.4) (<0.05–0.8)

n = 51 n = 13 n = 9 n = 15 n = 10 n = 21

Fe Liver 1435 (1073) ± 995 1194 (1069) ± 762 962 (927) ± 461 1287(1135)± 573 1567(1638)± 544 1200(1189)± 265
(324–4490) (235–2556) (349–1826) (527–2588) (697–2378) (792–1770)

n = 49 n = 14 n = 9 n = 17 n = 11 n = 21

Kidney 621 (579) ± 375 499 (516) ± 207 914 (606) ± 1091 750 (753) ± 183 819 (776) ± 255 806 (786) ± 250
(267–2539) (219–844) (425–3808) (541–1203) (511–1368) (489–1681)

n = 48 n = 12 n = 9 n = 15 n = 11 n = 20

Muscle 752 (775) ± 246 667 (699) ± 234 467 (400) ± 193 544 (573) ± 112 651 (666) ± 143 584 (609) ± 154
(262–1204) (296–1168) (225–802) (327–671) (373–842) (256–887)

n = 51 n = 13 n = 9 n = 15 n = 10 n = 21

Cu Liver 39 (30) ± 38 58 (36) ± 49 62 (30) ± 77 28 (25) ± 16 30 (31) ± 11 31 (24) ± 31
(9–257) (20–169) (18–260) (15–88) (13–53) (12–161)
n = 49 n = 14 n = 9 n = 17 n = 11 n = 20

Kidney 17 (15) ± 11 15 (15) ± 2 16 (16) ± 3 15 (13) ± 6 16 (15) ± 4 16 (16) ± 4
(7–73) (12–19) (13–21) (11–36) (11–23) (10–32)
n = 48 n = 12 n = 9 n = 15 n = 11 n = 20

Muscle 7 (6) ± 4 7 (7) ± 2 7 (7) ± 2 5 (5) ± 1.3 5 (5) ± 1.5 6 (7) ± 2
(2–22) (3–11) (4–10) (3–8) (1.8–7) (2–9)
n = 51 n = 13 n = 9 n = 15 n = 10 n = 21

Se Liver 14 (7) ± 21 11 (7) ± 11 6 (6) ± 3 9 (7) ± 7 10 (7) ± 8.5 14 (13) ± 7
(0.6–99) (1–39) (2–10) (3–32) (23–26) (5–34)
n = 37 n = 13 n = 8 n = 14 n = 6 n = 21

Kidney 6 (5) ± 4 18 (15) ± 9
(1–21) nd nd nd nd (2–33)
n = 34 n = 20

Muscle 3.8 (1.5) ± 8.5 1.7 (1.4) ± 1.5
(0.4–39) nd nd nd nd (0.5–5)
n = 20 n = 20

Hg Liver 23 (5) ± 66 14 (6) ± 18 4.5 (4.1) ± 3.6 22 (8) ± 36 16 (15) ± 14 14 (13) ± 10
(0.6–344) (1–56) (0.9–12) (1–147) (1.4–44) (1–32)

n = 27 n = 14 n = 9 n = 17 n = 11 n = 21

Kidney 8 (3) ± 13 7 (5) ± 9
(0.9–42) nd nd nd nd (1–43)
n = 18 n = 20

Muscle 5 (2.4) ± 7 2 (2) ± 1.5
(0.7–28) nd nd nd nd (0–5)
n = 17 n = 20
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Trace metal analyses. After being weighed and dried
for 48 h at 110°C, liver, kidney and muscle samples
were digested in a solution of nitric acid (Merck 456)
and slowly heated to 100°C until complete digestion
was achieved. Atomic absorption spectrophotometry
(ARL 3510) was used to determine heavy metal
concentrations (Cu, Zn, Cd, Fe). Concentrations are
expressed as µg g–1 dry weight (DW).

Parallel to the samples, a set of certified material
samples (CRM 278 Community Bureau of Reference,
Commission of European Communities) was also
analysed to monitor the method’s sensitivity. Recover-
ies ranged from 88 to 102 % for Cd, Cu, Zn and Fe.
Limits of detection were 0.01 µg g–1 DW for Cu, 0.33 for
Zn, 0.16 for Fe and 0.22 for Cd. Total Hg was analysed
by flameless atomic absorption spectrophotometry
(Perkin-Elmer MAS-50A) after sulphuric acid diges-
tion (Joiris et al. 1991). Se was analysed by fluorimetry
following complete digestion of the tissue by nitric,
perchloric and hydrochloric acids, coupling to EDTA
and 2,3-diaminonaphtalene and extraction by cyclo-
hexane (Mejuto et al. 1987). The fluorimeter was set at
an excitation wavelength of 364 nm and an emission
wavelength of 523 nm, with an emission slit of 2 nm
and an integration time for read mode of 2s. Quality
control measurements for total Hg and Se included
replicate analysis resulting in coefficients of variation
<10% and analysis of certified material (DORM-1 and
DORM-2, National Research Council, Canada).

Trace metal concentrations in porpoises from the
Norwegian coasts will be presented elsewhere, but
have also been included in this study (M. Fontaine et
al. unpubl. data). 

Stable isotope measurements. After drying at 50°C
(48 h), samples were ground into a homogeneous
powder and treated with a 2:1 chloroform:methanol so-
lution to remove lipids. Carbon dioxide and nitrogen gas
were analysed on a V.G. Optima (Micromass) isotope
ratio-mass spectrometer (IR-MS) coupled to an N-C-S
elemental analyser (Carlo Erba). Routine measurements
are precise to 0.3‰ for both δ13C and δ15N. Stable isotope
ratios were expressed in delta notation according to: 

δX =  [(Rsample�Rstandard) – 1] × 1000

where X is 13C or 15N and R is the corresponding ratio
(13C/12C or 15N/14N).

Carbon and nitrogen ratios are expressed relative to
the V-PDB (Vienna Peedee Belemnite) standard and to
atmospheric nitrogen respectively. Reference materi-
als were IAEA CH-6 (sucrose) (δ13C = –10.4 ± 0.2‰)
and IAEA-N1 (δ15N = +0.4 ± 0.2‰) respectively. 

δ13C and δ15N measurements were determined in the
muscles of harbour porpoises from Germany, Den-
mark, Iceland and Norway. Muscle δ13C and δ15N data
of harbour porpoises from the coasts of northern

France, Belgium and Norway (Das et al. 2003b, M.
Fontaine et al. unpubl. data) were integrated to
present results. 

Data treatment. Statistical analysis of the data was
performed using the SAS statistical package (SAS
Institute, Version 6.12). Contaminant values were log-
transformed to achieve homogeneity of variances and
normal distribution. Ordinal logistic regression was
performed to examine the relationship between each
individual test variable (biometric data, geographical
location and trace metal concentrations and stable
isotope values in the tissues) and the severity of patho-
logical lesions (emaciation and lesions of the respira-
tory tract), controlling for all other test variables (see
Table 2). The effect of body condition on stable isotope
values was investigated using only porpoises from
the southern North Sea (France, Belgian and German
North Sea coasts) to limit bias linked to natural geo-
graphical variations in stable isotopes. Spearman’s
rank coefficient was used to test relationship between
Hg and Se and between Zn and Cu. Multiple linear
regressions were used taking into consideration for
each individual, δ13C and δ15N values, age and metal
analyses of the liver and kidney. 

Inter-site comparison was realised using ANOVA/
ANCOVA followed by post-hoc Tukey tests. Cd and
Hg comparisons were adjusted for age. Finally, dis-
criminant analysis was used to assess the ability of
trace elements (hepatic Zn, Cd, Fe, Cu, Se, Hg) and
stable isotopes (muscle δ13C and δ15N) to discriminate
among the different locations (northern France, Bel-
gium, German North Sea, German Baltic Sea, Den-
mark, Iceland and Norway).

RESULTS

Pathology and biometric data

Body mass and blubber thickness decreased signifi-
cantly with deteriorating body condition, while liver and
kidney mass remained constant (Table 2). As a result, the
liver mass to body mass ratio increased from 2.4 to 3.9%.
This liver to total body mass ratio was not linked to the
age or length of the porpoises, making it potentially suit-
able as a body condition index. In contrast to emaciation,
lesions of the respiratory tract (bronchopneumonia) were
never associated with body mass, blubber thickness or
the liver to body mass ratio (Table 2).

Trace metals, stable isotopes and health status

Hepatic, renal and muscle Zn concentrations, hepatic
Zn burden and muscle Fe concentrations increased,
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while renal Fe and Se concentrations decreased sig-
nificantly with deteriorating body condition (Table 2,
Fig. 1). Cu, Cd and Hg did not vary significantly be-
tween body conditions. Porpoises displaying lesions of
the respiratory tract had a higher hepatic Zn burden,
higher Fe concentrations and lower Cu concentrations
than porpoises without lung lesions. Muscle δ13C and
δ15N did not differ from year to year or between
seasons; all data were therefore pooled. Stable isotope
ratios were similar between porpoises displaying a
good, moderate and poor body condition (Table 2,
Fig. 2). 

A significant relationship was observed between Zn
and Cu in the liver of harbour porpoises from Norway
(Rs = 0.6, p < 0.005, Fig. 3). This relationship was not
observed in the liver of porpoises stranded along the
French, Belgian and German coasts (Rs = 0.1, p < 0.3,
Fig. 3). Hepatic Hg was positively correlated with Se
(Rs = 0.7, p < 0.0001) and with age (Rs = 0.6, p < 0.0001,
Fig. 4).

Relationship between stables isotopes and 
trace metal concentrations

Multiple linear regressions revealed relationships
between muscle δ15N and hepatic and renal Cd and
renal Fe (Table 3, Fig. 5). Weaker relationships were
also observed between δ13C and renal Se and Hg
(Table 3).

Geographical comparisons and discriminant 
analyses

Porpoises from the German North Sea displayed sig-
nificantly higher δ15N values than porpoises from the
coasts of Belgium, Denmark, the German Baltic Sea,
Iceland and Norway (ANOVA, p < 0.001; Fig. 6).
Porpoises from the Belgian and French coasts were
significantly enriched in 13-carbon, compared to indi-
viduals from Denmark, German Baltic Sea, Iceland
and Norway (p < 0.005). 
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Fig. 1. Phocoena phocoena. Mean (±SD) hepatic Zn concen-
trations in relation to nutritional status (good, moderate, poor)
and sampling location. Number of samples shown inside each
bar. B: Belgian and French coasts; GNS: German North Sea
coasts; GBS: German Baltic coasts; DK: Denmark; I: Iceland; 

N: Norway

Fig. 2. Phocoena phocoena. Mean (±SD) muscle δ15N values
in relation to the nutritional status and sampling location. 

Further details as for Fig. 1

Fig. 3. Phocoena phocoena. Relationship between hepatic Zn
and Cu concentrations in porpoises (a) caught accidentally in
fishing nets in Norway and (b) stranded along the Belgian coast
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Porpoises from the Belgian and German North Sea
coasts displayed higher hepatic Zn concentrations than
porpoises from Norway, even when emaciated por-
poises were excluded from the test (ANOVA, p < 0.05;
Table 1, Fig. 1). Porpoises from Iceland displayed
significantly higher hepatic and renal Cd concentra-
tions than porpoises from Norway, Denmark, the Ger-
man Baltic Sea and the southern North Sea (ANOVA,
p < 0.05). Hepatic Fe and Cu levels remained similar
between locations. Porpoises from the Belgian and
French coasts displayed significantly higher hepatic
Hg concentrations than porpoises from the Baltic Sea
(ANCOVA, F5,76 = 2.5, p < 0.05). 

Site differences were also explored by discriminant
analysis to simultaneously evaluate similarities in the
concentrations of stable isotopes and 6 hepatic element

concentrations (δ13C, δ15N, Zn, Cu, Cd, Fe, Se, Hg)
among porpoises sampled at the 6 locations (Fig. 7).
Discriminant analysis shows how several predefined
groups of individuals may be separated, given mea-
surements of several variables. It provides linear func-
tions of the variables that best separate the cases into
the predefined groups. We could discriminate 4 por-
poise groups discriminated by their δ15N, Cd, δ13C and
Zn values (in order of decreasing importance; Fig. 7).
The first discriminant function (root) explained 62 % of
the variations between groups (Fig. 7). This horizontal
axis (Root 1, δ15N and Zn) discriminated mostly be-
tween North Sea (Group IV), Baltic Sea (Group III),
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Fig. 4. Phocoena phocoena. Relationship between age (yr) 
and hepatic Hg

Fig. 5. Phocoena phocoena. Relationship between muscle
δ15N and renal Cd concentrations of harbour porpoises from 

Northeast Atlantic (log-scale)

Table 3. Phocoena phocoena. Multiple linear regression 
analysis (p-values) between muscle δ13C and δ15N, age (yr),
liver to total body mass ratio (%) and metal concentrations 

(µg g–1 dry wt)

Parameter δ13C δ15N

Age 0.3 0.2

Liver
Zn 0.7 0.1
Cd 0.9 <0.01
Fe 0.4 0.8
Cu 0.7 0.8
Se 0.5 0.7
Hg 0.2 0.1

Kidney
Zn 0.6 0.2
Cd 0.6 <0.005
Fe 0.5 <0.05
Cu 0.3 0.4
Se 0.05 0.2
Hg <0.05. 0.9

Fig. 6. Phocoena phocoena. Muscle δ13C and δ15N values
of harbour porpoises from North Sea and adjacent areas. 

Abbreviations as for Fig. 1
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Norway (Group II) and Iceland (Group I) porpoises.
The second discriminant function explained a further
31% of the variations between groups. This vertical
axis (Root 2), reflecting mostly Cd and δ13C, discrimi-
nated mostly between the North Atlantic, on one side
(Groups I and II), and the North and Baltic seas
(Groups III and IV) on the other side (Fig. 7). Together,
the 2 discriminant functions explained 93% of the
variance. Owing to the highest discriminating value of
cadmium, porpoises from Iceland (Group I) are clearly
separated from the other locations. Porpoises from
Denmark and the German Baltic Sea (Group III) are
situated close together in the diagram and could not be
discriminated on the basis of their metal and stable iso-
topes values. Porpoises from Norway (Group II) were
clearly discriminated from porpoises from the North
Sea (Group IV) by their δ15N and Zn values.

DISCUSSION

Body condition of harbour porpoises

Seasonal changes in body fat condition have already
been observed in captive and free-living harbour por-
poises, and were correlated with water temperature in
relation to the functional role of blubber as insulation
and energy reserves (Iverson 2002, Koopman et al.
2002, Lockyer et al. 2003). However, a decrease in
blubber thickness can also be linked to emaciation,

which is characterised by moderate to severe
amyotrophy (Siebert et al. 2001, Jauniaux et al.
2002). The poor nutritional condition of harbour
porpoises has been previously related to a re-
duced food intake linked to parasitic infections
(Siebert et al. 1999), ulceration of the upper
gastro-intestinal tract or bronchopneumonia
(Jauniaux et al. 2002). 

In mammals and birds, fasting results in a
significant reduction of body and liver mass
(Krämer et al. 1993, Debacker et al. 2000, 2001).
Liver mass was reduced by two-thirds in experi-
mentally starved rats (Hashimoto et al. 1998) as a
result of glycogenolysis and protein catabolism
(Krämer et al. 1993). The liver mass of harbour
porpoises increased with increasing length (and
body mass) of the individuals, but remained
strikingly unchanged between porpoises in good,
moderate and poor body condition. This means
that during the starvation process, blubber lipids
and muscle proteins were preferentially meta-
bolised (Markussen 1995). The ratio of liver to
total body mass increased significantly with
deteriorating body condition as a result of the
loss of total body mass (Table 2). As expected,

by-catch individuals from Iceland and Norway dis-
played a better nutritional status than stranded por-
poises from the southern North Sea, as evidenced by
their higher blubber thickness and lower hepatic to
total body-mass ratio. This may reflect the ability of
healthy porpoises to mobilize fat from their blubber
as primary energy source and spare their protein
reserves, while porpoises in poor body condition
depend primarily on catabolism of muscle proteins. 

Toxicology

Porpoises from the southern North Sea (northern
France, Belgium and German coasts) had the highest
Zn and Hg burdens compared to porpoises from
Norwegian waters and Baltic Sea respectively. These
differences may be linked to both a difference in
pollutant exposure and nutritional status between
individuals. Short-term fasting or prolonged starvation,
through decomposition of energy storage and mobili-
sation of body reserves, are known to influence the
metabolism of trace elements such as Zn or Cu (Filteau
& Woodward 1982, Spencer et al. 1985, Eisler 1993,
Krämer et al. 1993, Debacker et al. 2001). Previous
studies have mentioned higher metal and organo-
chlorine levels associated with stranded or debilitated
marine mammals compared to individuals displaying
good body condition (Jepson et al. 1999, Siebert et al.
1999, Bennet et al. 2001, Anan et al. 2002). The present
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Fig. 7. Phocoena phocoena. Results of discriminant analysis of geo-
graphical separation, basis of metal concentrations and stable isotope
value (Zn, Cd, Fe, Cu, Se, Hg, δ13C and δ15N) of harbour porpoises. 

I–IV: 4 groups discriminated (see ‘Results’)
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study clearly revealed a general rise in Zn of the liver,
kidney and muscle and Fe of the muscle in harbour
porpoises as emaciation progressed, while renal Fe
and Se decreased with increasing to emaciation. 

In contrast to previous studies (Krämer et al. 1993,
Debacker et al. 2000, 2001), the increased concentra-
tions were not linked to a loss of liver (or kidney) mass
during emaciation, indicating that metal burdens also
increased. 

Zn and Hg contamination may lead to a decrease in
total body mass of various wild stock or laboratory ani-
mals (Eisler 1993, Debacker et al. 2001). Zn and
Hg also exert a critical influence on the mammalian
immune system (Salgueiro et al. 2000, Rink & Gabriel
2001). 

Zn absorption from the intestine is known to increase
during of malnutrition (Spencer et al. 1985). Adverse
biochemical effects of a high Zn intake on Cu metabo-
lism have been reported (Spencer et al. 1985, Fosmire
1990). A high Zn intake may cause substantial changes
in the Zn/Cu ratio in various tissues. In marine mam-
mals, Zn is generally correlated with Cu as a result of
both antagonistic behaviour and binding to metallo-
thioneins (Anan et al. 2002). In the present study, this
relationship was observed for the by-catch porpoises
from Norway but not for stranded porpoises from the
southern North Sea (France, Belgian and German
coasts), reflecting a severe homeostasis disturbance
linked to both emaciation and high Zn concentrations
(Fig. 3). Increasing hepatic Zn concentration in har-
bour porpoises from the Belgian coasts led to an
increase in Zn linked to metallothioneins, but not in Zn
linked to soluble high molecular weight proteins, sug-
gesting that these small proteins involved in metal
homeostasis and detoxication may take over the Zn
overload resulting from proteolysis (Das 2002). How-
ever the question arises as to whether debilitated
individuals can still afford the cost of metallothionein
synthesis whilst consuming their protein reserves. 

Hg was significantly linked to Se, in agreement, with
the formation of tiemmanite, well described for marine
mammals (Martoja & Berry 1980, Nigro & Leonzio
1996). Hg was also linked to age. The Hg levels of the 4
older porpoises were strikingly low, presumably linked
to a lower exposure or lower prey intake of these older
individuals related to the ageing process (Fig. 4). 

As a great proportion of the blubber and muscle
mass is lost during emaciation, Zn and the highly toxic
methyl-Hg bound to muscle metalloproteins could also
be redistributed in other tissues, such as the liver and
kidney, after proteolysis (Spencer et al. 1985, Krämer
et al. 1993). 

Total and organic Hg were previously associated
with the severity of disease of harbour porpoises from
German waters, acting as a non-specific morbidity fac-

tor (Siebert et al. 1999). Hepatic Zn, Hg, Se and Hg:Se
ratio were significantly higher in the porpoises that
had died from infectious diseases compared to healthy
porpoises that had died from physical trauma (Bennet
et al. 2001). The question of whether methyl-Hg con-
centrations may lead to immunosuppression has been
raised (Bennet et al. 2001). In the present study, the
increase in Hg and Se increase with increasingly dete-
riorating body condition was not significant; however
noted that the absence of age data for 46 porpoises
very probably weakened the statistical tests. One
further (but not contradictory) interpretation is that Zn
and methyl-Hg resulting from blubber and muscle
catabolism are redistributed partly to the liver and
kidney, leading to a severe metal homeostasis and
secondary immunotoxicity. 

A combination of high Zn and Hg levels and poor
body condition could well represent an additional
source of stress to porpoises from the southern North
Sea, already facing stressful conditions such as ele-
vated levels of organochlorines and other toxic com-
pounds (Jepson et al. 1999, Covaci et al. 2002, Van De
Vijver et al. 2003). 

Renal Cd concentrations of harbour porpoises
increased with increasing age and decreasing δ15N
values (Fig. 5). This relationship has also been ob-
served for other marine mammal species from the
English Channel and the Irish coast (Das et al. 2003a).
Even higher Cd concentrations were previously mea-
sured in harbour porpoises from Greenland (Paludan-
Müller et al. 1993, Szefer et al. 2002), indicating a
south-north increase in Cd concentrations in this spe-
cies. The relationship suggests that part of the high
Cd concentrations measured in the kidneys of harbour
porpoises from Iceland and Norway are diet-related
resulting from ingestion of Cd-contaminated prey.
Indeed, Cd content has always been high in Arctic
sediments and organisms, especially in squids, which
are an important dietary item of Greenlander por-
poises (AMAP 1998, Bustamante et al. 1998, Dietz et
al. 1998, Szefer et al. 2002). 

In contrast, hepatic Zn, Fe, Cu, Se and Hg were not
associated with stable isotope measurements. This
absence of a relationship, especially for Hg, has previ-
ously been reported for other marine mammals from
the northeast Atlantic (Das et al. 2003a). Relationships
between metals and lesions of the respiratory tract
were weak, suggesting that other driving factors, such
as age and geographic locations, are involved. 

Trophic position of harbour porpoises

Previous studies have documented an increase in the
δ15N values of starving animals, as they may use their
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protein reserves for survival (Gannes et al. 1998). In
birds, nutritional stress causes substantial increases in
diet-fractionation values due either to mobilisation and
redeposition of proteins elsewhere in the body or to
amino acid composition changes in the tissues (Hobson
& Clark 1992, Gannes et al. 1998). In contrast, in the
present study, muscle δ13C and δ15N values did not
differ among porpoises from the southern North Sea
displaying poor, moderate or good body condition.
Inability to detect an increase could be linked to lipid
extraction prior to isotope analysis of the samples: iso-
topic change would be expected to be entirely due to
the depletion of lipids during starvation. Furthermore,
mammals, especially species that experience natural
cycles of starvation (i.e. marine or hibernating mam-
mals), may possess biochemical pathways (different
from those of birds) in which no additional frac-
tionation of nitrogen occurs (Ben-David et al. 1999).
For instance, Arctic ground squirrels Spermophilus
parryii plesius in poor and excellent body condition
had similar blood δ15N values (Ben-David et al. 1999). 

The absence of stable isotope fractionation due to
starvation in harbour porpoises makes stable isotope
comparisons possible between individuals (including
stranded animals) displaying various body conditions. 

The δ15N of marine predator tissues is initially deter-
mined by the isotopic composition of the phytoplank-
ton and zooplankton sources, technically measured in
particulate organic matter (POM). Data may vary as a
function of sampling origin, from 4.4‰ in some Norwe-
gian fjords to values as high as 9‰ in coastal parts of
the North Sea (Middelburg & Nieuwenhuize 1998,
Fredrikesen 2003). As a result, part of the δ15N inter-
specific variation in marine mammals may be related
to coastal versus offshore δ15N signatures of the pri-
mary producers. 

Porpoises from the German Baltic Sea and the Dan-
ish and Belgian coasts had similar δ15N values, while
δ13C varied widely between locations (Fig. 6). Accord-
ing to their δ15N values, porpoises from the German
coast occupy a slightly higher trophic position and por-
poises from the Norwegian coasts a lower trophic posi-
tion. The isotope data are in agreement with those
from previous studies on the diet of harbour porpoise
(Aarefjord et al. 1995, Santos & Pierce 2003). Several
studies in the northeast Atlantic revealed geographical
variations in the main prey consumed (reviewed by
Santos & Pierce 2003). Capelin was the most important
prey species of harbour porpoises collected off the
coast of northern Norway (Aarefjord et al. 1995, Santos
& Pierce 2003). In general, pelagic fishes predomi-
nated in the diet of harbour porpoises from the north-
ern areas, whereas benthic species predominated in
the diet of individuals from the southern areas (Aare-
fjord et al. 1995). In the North Sea, the harbour por-

poise is known to feed on a wide range of pelagic and
demersal fish species such as cod, herring, sole, goby
or dab (reviewed by Santos & Pierce 2003). Expressed
as fish biomass, sole and cod represented 41 and 25%
respectively of the stomach content of the harbour por-
poises from German waters. In contrast, in the German
Baltic Sea, cod can represent 70% of the dietary bio-
mass of the harbour porpoises (Lick 1991). In the North
Sea, cod and sole had higher δ15N values than plank-
tivorous fishes such as sand eels and herrings (Das et
al. 2003b). 

The depletion in δ13C content of individuals from Ice-
land and Norway could be related to greater offshore
feeding, as the continental shelf is considerably
reduced along the Icelandic and Norwegian coasts.
These results are supported by the high hepatic and
renal Cd concentrations in porpoises from Iceland
and Norway which suggest a significant contribution
of oceanic and Cd contaminated prey to their diet. 

Trace elements and stable isotopes were able to dis-
criminate porpoises from different locations. However,
tissue contaminant burdens are not directly related to
genetics, but rather to the migratory and feeding
characteristics of the animals (Aguilar 1987). Stable
isotopes and metals in harbour porpoises are linked to
both food availability and corresponding levels in the
prey. Therefore, the possibility that different stocks are
mixed in the studied areas cannot be ruled out. 

Fine-scale population structure in the eastern North
Atlantic has been suggested, and porpoises from the
Kattegat and Skagerrak have been found to be geneti-
cally different from those from the west coasts of Nor-
way. Porpoises from Iceland have been found to be
genetically closer to western populations (west Green-
land, Gulf of St. Lawrence, Newfoundland, Gulf of
Maine) than to Norwegian populations (Tolley et al.
2001). This difference probably results from isolating
events caused by repeated range contractions and
expansions throughout Quaternary glaciations events
within the North Atlantic. Our results suggest that eco-
logical separation of porpoises occurs in the Northeast
Atlantic, enhancing genetic separations of the stocks. 

In summary, heavy metal absorption depends on a
variety of factors often directly related to the metabo-
lism and physiology of the animal concerned. Harbour
porpoises from the North Sea displayed wide varia-
tions linked to geographic location, nutritional status,
age and diet. Zn, Fe and Se concentrations were
clearly linked to emaciation and lesions of the respira-
tory system. In addition, the unchanged liver mass and
concomitant increase in the hepatic Zn load during
emaciation indicate a specific metabolism during star-
vation, which differs from that of other mammals.
Although facing limited toxicological risk when in nor-
mal healthy condition, with deteriorating body condi-
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tion, the porpoises could well be adversely affected by
Zn and Hg. The observed relationship between Cd
levels and stable isotopes for harbour porpoises and
other species suggests that such variations are diet-
related and that porpoises have local specific diets
throughout their distribution area.

Further investigations are needed before we can
reach any definite conclusions, but we cannot reject
the hypothesis that trace metal exposure may influ-
ence marine mammal health status, and may thus have
contributed to the high mortality rates in the past few
years. Hence, stable isotope and contaminant analy-
ses, together with traditional approaches (genetic and
morphological), could provide valuable information on
the population biology of harbour porpoises in the
Northeast Atlantic. 
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