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Phylogenetic relationships between 32 species of rodents representing 14 subfamilies of Muridae and four subfam-
ilies of Dipodidae were studied using sequences of the nuclear protein-coding genes Lecithin Cholesterol Acyl
Transferase (LCAT) and von Willebrand Factor (VWF). An examination of some evolutionary properties of each
data matrix indicates that the two genes are rather complementary, with lower rates of honsynonymous substitutions
for LCAT. Both markers exhibit a wide range of GC3 percentages (55%-89%), with several taxa above 70% GC3
for VWF, which indicates that those exonic regions might belong to the richest class of isochores. The primary
sequence data apparently harbor few saturations, except for transitions on third codon positions for vVWF, asindicated
by comparisons of observed and expected pairwise values of substitutions. Phylogenetic trees based on 1,962
nucleotidic sites from the two genes indicate that the 14 Muridae subfamilies are organized into five major lineages.
An early isolation leads to the clade uniting the fossorial Spalacinae and semifossorial Rhizomyinae with a strong
robustness. The second lineage includes a series of African taxa representing nesomyines, dendromurines, criceto-
myines, and the sole living member of mystromyines. The third one comprises only the mouselike hamster Calo-
myscus. The fourth clade represents the cricetines, myospal acines, sigmodontines, and arvicolines, whereas the fifth
one comprises four “traditional” subfamilies (Gerbillinae, Murinae, Otomyinae, and Acomyinae). Within these
groups, we confirm the monophyly of amost all studied subfamilies, namely, Spalacinae, Rhizomyinae, Nesomyi-
nae, Cricetomyinae, Arvicolinae, Sigmodontinae, Cricetinae, Gerbillinae, Acomyinae, and Murinae. Finaly, we
present evidence that the sister group of Acomyinae is Gerbillinae, and we confirm a nested position of Myospa-
lacinae within Cricetinae and Otomyinae within Murinae. From a biogeographical point of view, the five main
lineages spread and radiated from Asia with different degrees of success: the first three groups are now represented
by a limited number of species and genera localized in some regions, whereas the last two groups radiated in a
large variety of species and genera dispersed al over the world.

Introduction

The rodents of the family Muridae are the most
diverse group of mammals, encompassing at least 1,326
species spanning more than 281 genera (Musser and
Carleton 1993). The evolutionary systematics of this
family have been very difficult, and in spite of many
attempts (Miller and Gidley 1918; Simpson 1945; Hoop-
er and Musser 1964; Chaline, Mein, and Petter 1977,
Carleton and Musser 1984), severa uncertainties, con-
fusions, and conflicting views have persisted for these
animals. For this reason, in their recent review, Musser
and Carleton (1993) decided to keep a prudent state of
uncertainty about the hierarchical pattern of muroid su-
prageneric groups and to divide the family Muridae into
17 subfamilies considered at the same taxonomic level.
These “major lineages” within murids are Arvicolinae
(26 genera/143 species), Calomyscinae (1/6), Cricetinae
(7/18), Cricetomyinae (3/6), Dendromurinae (8/23),
Gerbillinae (14/110), Lophiomyinae (1/1), Murinae
(122/529), Myospalacinae (1/7), Mystromyinae (1/1),
Nesomyinae (7/14), Otomyinae (2/14), Petromyscinae
(2/5), Platacanthomyinae (2/3), Rhizomyinae (3/15),
Sigmodontinae (79/423), and Spalacinae (2/8).
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However, there remains a strong need to better de-
fine the taxonomic boundaries of these subfamilies and
especially the relationships existing between them.
Many important questions have not yet been adequately
answered concerning the evolutionary origins of most
of the 17 subfamilies or of their rates of evolution.

In arecent publication based on 40 rodent sequenc-
es of the nuclear protein-coding gene Lecithin Choles-
terol Acyl Transferase (LCAT) (Michaux and Catzeflis
2000) representing 13 Muridae subfamilies, we pro-
posed afirst step toward a better knowledge of this spe-
ciose group. The results showed that within Muridae, a
first branching leads to the fossorial Spalacinae and the
semifossorial Rhyzomyinae. The remaining components
of Muridae appeared as a polytomy from which Sig-
modontinae, Calomyscinae, Arvicolinae, Cricetinae,
Mystromyinae, Nesomyinae and some Dendromurinae
(Steatomys and Dendromus) were issued. This phylog-
eny was interpreted by Michaux and Catzeflis (2000) as
the result of a bushlike radiation at the end of the early
Miocene, leading to emergence of most living subfam-
ilies. The separation between three additional taxa, Mu-
rinae, Gerbillinag, and “* Acomyinag’” (which comprises
the genera Acomys, Deomys, Uranomys, and Lophuro-
mys), occurred more recently, from a common ancestor
issued from the main basal radiation. As previously
shown by other molecular studies, the viei rats Otomyi-
nae are nested within Old World Murinae. In the same
way, the zokors Myospalacinae appear strongly nested
within the hamsters Cricetinae. Finally, Michaux and
Catzeflis (2000) proposed a sister group relationship be-
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Table1
References for Rodent Tissues Used in the Experiments
Suprafamily Subfamily Species Tissue Sample
Dipodoidea . ....... Sicistinae Sicista kazbegica T-762
Allactaginae Allactaga elater T-1045
Dipodinae Dipus sagitta T-869
Jaculus jaculus T-552
Muroidea. ......... Caomyscinae Calomyscus mystax T-1067
Dendromurinae Seatomys sp. T-1167
Deomys ferrugineus T-778
Dendromus mystacalis T-1422
Gerbillinae Tatera gambiana T-913
Gerbillus henleyi T-1165
Mystromyinae Mystromys albicaudatus T-1365
Nesomyinae Macrotarsomys ingens T-1150
Nesomys rufus T-1125
Cricetomyinae Saccostomus campestris T-2088
Cricetomys gambianus T-968
Sigmodontinae Neotoma fuscipes T-385
Peromyscus maniculatus T-142
Cricetinae Phodopus roborovskii T-714
Mescocricetus auratus T-1162
Cricetulus migratorius T-325
Myospalacinae Myospalax sp. T-394
Arvicolinae Dicrostonyx torquatus T-1337
Clethrionomys glareolus T-357
Murinae Lophuromys sikapusi T-1179
Rattus norvegicus GenBank
Mus musculus GenBank
Micromys minutus T-1196
Uranomys ruddi T-1184
Acomys cahirinus T-1670
Otomyinae Otomys angoniensis T-718
Spalacinae Nanospalax ehrenbergi T-268
Rhizomyinae Rhizomys pruinosus T-1284
Tachyoryctes sp. T-4991

NoTte.—The taxonomic arrangement follows Wilson and Reeder (1993). The geographic origins of collected/preserved
animals, as well as collector’s names and individual accession numbers, are available on request from the senior author.

tween Malagasy Nesomyinae and South African
Mystromyinae.

In order to verify these hypotheses and to know if
the majority of the modern Muridae subfamilies indeed
appeared as a bushlike radiation, we here tested the re-
lationships between 14 Muridae subfamilies using an-
other nuclear gene: the von Willebrand Factor (VWF).
Then, we combined these new sequences with those of
the LCAT gene.

Materials and Methods

DNA used to sequence exon 28 of the vVWF gene
was extracted and purified from ethanol-preserved tis-
sues taken from the collection of mammal tissues
housed at Montpellier (Catzeflis 1991). Whenever pos-
sible, we selected two species for each studied subfamily
(see table 1). This biological sampling was aimed at
getting an equilibrated representation of each murid lin-
eage diminishing a possible ‘‘long-branch attraction ef-
fect.” These species were also chosen according to the
sampling already performed on the nuclear LCAT gene
(Michaux and Catzeflis 2000) in order to combine the
sequences of both genes.

DNA Sequencing of VWF Gene Exon 28

DNA extraction from the 95% ethanol-preserved
tissues was performed according to Sambrook, Fritsch,

and Maniatis (1989). The main part of exon 28 from the
VWF gene (1,265 bp) was amplified using the PCR
primers V1 (5-TGTCAACCTCACCTGTGAAGCCTG-
3’) and W1 (5'-TGCAGGACCAGGTCAGGAGCC
TCTC-3') previously designed by Huchon, Catzeflis,
and Douzery (1999). All PCRs used 5 min at 94°C; 33
cycles of 45 sat 94°C, 30 sat 52°C, and 1 min at 72°C;
and 10 min at 72°C in an Appligen Crocodile 3 or a
Labover PTC100 thermal cycler. The total reaction vol-
ume was 50 pl. PCR products were purified using the
Ultra-free DNA Amicon kit (Millipore) and directly se-
quenced. Sequencing on both strands was done using a
dye terminator or Big dye terminator (Perkin Elmer) se-
quencing kit and ABI 373 and ABI 310 (Perkin EImer)
automatic sequencers. The external (V1 and W1) and
internal (V2 and W2) primers designed by Huchon,
Catzeflis, and Douzery (1999) were used for sequencing.

Technical difficulties prevented us from obtaining
a high-quality sequence of Tachyoryctes for the LCAT
gene, whereas we obtained only a partial sequence (624
nt) for Rhizomys exon 28 of the vVWF gene. Thus, our
representation of the taxon Rhizomyinae is chimeric:
complete sequence of VWF for Tachyoryctes and of
LCAT for Rhizomys. We nevertheless checked that
Tachyoryctes and Rhizomys were sister taxa (100%
bootstrap support; data not shown) when the only 624
available sites of VWF were compared for 33 Myodonta



taxa. Thus, we feel confident that, as documented by
comparative morphology of fossil and living taxa (Flynn
1990), Rhizomys and Tachyoryctes are sister genera
among all other rodents of our study.

Sequence Alignment and Saturation Analysis

Previously known sequences for vWF and LCAT
genes were extracted from GenBank and aligned with
the new sequences using CLUSTAL W (Thompson,
Higgins, and Gibson 1994) and the ED editor (MUST
package; Philippe 1993). The program AFAS (MUST
package; Philippe 1993) was used to combine the
aligned matrices of VWF and LCAT.

We performed a saturation analysis for VWF as de-
scribed by Philippe and Douzery (1994) and Hassanin,
Lecointre, and Tillier (1998). Details for such an anal-
ysis are provided by Michaux and Catzeflis (2000).

Phylogenetic Reconstructions

The aligned sequences were treated with different
approaches: the stationary Markov model (Saccone et
al. 1990) (also called general time reversible [GTR]) in
PAUP 4.0b2 (Swofford 1998), the Tamura and Nei
(1993) model, and the LogDet (Lockhaert et al. 1994)
estimator were used for the calculation of genetic dis-
tances. The last estimator was used to take into account
the differences in GC composition between species. The
GTR analyses were also performed assuming a gamma
distribution for substitution rates across sites, where the
parameter alpha (Yang 1996) and the proportion of in-
variant sites (1) were estimated with the maximum-like-
lihood (ML) method assuming the GTR-Markov evo-
lution (ME) phylogeny using PAUP 4.0b2. Maximum-
parsimony (MP; heuristic search, TBR branch swapping
option) and ML (GTR model of sequence evolution)
analyses were also conducted using PAUP 4.0b2 (Swof-
ford 1998).

The robustness of inferences was assessed through
bootstrap resampling (BP) under ML after 100 replicates
(with neighbor-joining [NJ] starting trees, NNI branch
swapping, and model parameters fixed to values esti-
mated from the original data) and under MP and NJ or
ME after 1,000 replicates. Bremer’s support index (BSI,
Bremer 1988) was also calculated on the most parsi-
monious tree with enforcement of topological con-
straints. Alternative topologies were evaluated by the
Kishino and Hasegawa (1989) test implemented in
PAUP 4.0b2.

The level of incongruence between the two genes
was tested using PAUP4 (option Hompart; Swofford
1998). This approach used the incongruence length dif-
ference (ILD) test with the parsimony criterion (Farris
et a. 1995). One thousand randomizations were per-
formed on variable sites only (Cunningham 1997).

Relative-Rate Test

Relative-rate tests were conducted both with
RRTree, version 1.0 (Robinson et a. 1998) (which im-
proves the test of Wu and Li [1985]), by taking into
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account the taxonomic representativity and its phylo-
genetic relationships, and with the likelihood approach
of Muse and Gaut (1994). In the latter case, statistical
significance of the test was assessed by means of the
chi-square test (P < 0.05). Quantifications of the rate
differences were performed either on the proportions of
synonymous (K¢) and nonsynonymous (K,) substitutions
for RRTree, or on al three codon positions and GTR
model for the likelihood approach. Relative-rate tests
were performed among rodents at intrafamilial levels;
Dipodidae were chosen as outgroups.

Results
Sequenced Species

The 27 new rodent sequences of VWF gene exon
28 have been deposited in the EMBL gene bank under
accession numbers AJ297764, AJ297765, and
AJA02693-AJ02717. The newly determined sequences
were compared with four rodent sequences determined
by Huchon, Catzeflis, and Douzery (1999), as well as
with a Mus musculus sequence available in GenBank
(U27810).

Evolutionary Properties of LCAT and Exon 28
VWF Genes

The data matrix for 32 Myodonta taxa had 1,962
nucleotidic sites, of which 711 (about 36%) were par-
simony-informative. Exons of LCAT comprised 804
sites; about half of them were variable, and 239 (30%)
were parsimony-informative; exon 28 of the vWF gene
included 1,158 positions, of which 710 (61%) were var-
iable and 472 (41%) were parsimony-informative. Thus,
there was more absolute and relative variation in VWF
than in LCAT. The average ratio of transitions to trans-
versions was 2.00 for LCAT, ranging from 1.1 (Urano-
mys ruddi/M. musculus comparison) to 5.00 (Allactaga
elater/Dipus sagitta). For vVWE thisratio was 1.94, rang-
ing from 1.23 (Saccostomus campestris/D. sagitta and
S, campestris/Jaculus jaculus comparisons) to 3.52 (Me-
socricetus auratus/Myospalax sp.).

From comparing the 496 pairs of sequences, it ap-
pears that LCAT exons have evolved slower than exon
28 of VWF in muroids and dipodoids. The LCAT/VWF
ratios for nucleotidic and amino acid percentages of dif-
ferences were 0.78% = 0.16% and 0.63% = 0.21%,
respectively. Nonsynonymous changes (K, values) were
much less frequent in LCAT (values of up to 0.08), on
average 59% =+ 20% of the values observed in VWF
(values of up to 0.15); synonymous changes were as
frequent in LCAT as in VWF (values of up to 0.45 and
0.55, respectively), and this might well be due to satu-
ration of both genes for this kind of change (fig. 1).

The nucleotidic and amino acid compositions were
different for each gene (P < 0.05; nonparametric Mann-
Whitney t-tests) at each codon position (nucleotides)
and for each amino acid except proline (P = 0.47).
LCAT had much more T in first codon positions and A
and T in third positions, whereas VWF contained much
more A in first positions and G in third positions. The
most pronounced differences in frequencies of amino
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Fic. 1.—Synonymous (K¢) and nonsynonymous (K,) changes for
496 pairs of rodent sequences in the LCAT gene and exon 28 of the
VWEF gene. In the two curves, data are organized by increasing values
in order to illustrate (A) the similar rates of synonymous change in
both genes and (B) the faster rate of nonsynonymous change in VWF
sequences.

acids concerned an excess of C, N, D, and Y as opposed
to adeficiency of K, I, S, A, and E for LCAT. Exon 28
of VWF had a very low representation of amino acids
C (0.51% = 0.06%) and W (0.03% = 0.09%) (data not
shown).

GC; Content

The percentages of GC at third codon positions
(GCy,) spanned amuch larger scatter in vVWF (64.1-89.1)
than in LCAT (54.8-67.6) (data available on request).

On average, the four dipodoids had a higher GC; (81.7
+ 83 for VWF; 64.4 = 3.1 for LCAT) than the 28
muroids (68.6 + 2.9 for VWF; 59.7 = 3.1 for LCAT)
(unpaired Mann-Whitney t-tests, P < 0.009). These dif-
ferences held aso for VWF (P < 0.005) in comparisons
of dipodoids and several subsets of muroids, such as
Gerbillinae + Murinae + Acomyinae, or Arvicolinae +
Sigmodontinae + Cricetinae, or Nesomyinae + Crice-
tomyinae + Dendromurinae. For LCAT, such compari-
sons also indicated that advanced muroids had a lower
GC content, although the differences were marginally
significant (P values of 0.070, 0.019, and 0.052, respec-
tively). We here confirm, based on a larger data set, that
the murids have a lower GC; value for LCAT (Robin-
son, Gautier, and Mouchiroud 1997), and demonstrate
that for VWF the average GC; difference is till larger
for murids and nonmurids.

Saturation Analyses

The levels of saturation for LCAT had already been
assessed by Michaux and Catzeflis (2000), showing that
the C-T and A-G transitions exhibit a lower slope (av-
erage of 0.33 for A-G and 0.35 for C-T) with regard to
the transversions, whatever the codon position. Conse-
quently, Michaux and Catzeflis (2000) performed a
weighted analysis according to the slopes of each sub-
stitution. However, although the slopes were signifi-
cantly lower than those observed for VWF (see below),
the results of the weighted analysis did not show any
interesting differences with regard to the unweighted
parsimony analysis. Thus, all substitutions were retained
for phylogenetic reconstruction performed with the
LCAT gene.

The levels of saturation for vVWF were moderate on
each kind of nucleotide substitution and position (slopes
of regression analysis of 0.51 for TS1 and 0.54 for TS2
and of 0.86, 0.87, and 0.87, respectively, for TV1, TV2
and TV3), with the exception of the TS at the third
position (fig. 2). However, the graph shows that intra-
Muridae pairwise comparisons also appear to be mod-
erately subjected to saturation (slope of the regression
analysis S = 0.50). Thus, our mgjor interest being in
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FiG. 2—Graphic estimation of saturation in VWF for transitions at third codon positions. The inferred number of changes, derived from
the patristic distance matrix taken from a most-parsimonious tree, are plotted against the pairwise numbers of observed differences. Equations
of the linear regression (straight lines) and correlation coefficients are given for Dipodidae-Muridae and intra-Muridae pairwise comparisons.



intra-Muridae relationships, all substitutions were re-
tained for phylogenetic reconstructions derived from the
VWF gene.

Phylogenetic Reconstructions

According to the results obtained with the LCAT
nuclear gene (Michaux and Catzeflis 2000) and other
nuclear genes (GHR [Adkins et al. 2001], IRBP [DeBry
and Sagel 2001], A2AB [D. Huchon, personal commu-
nication]) which showed a high robustness for a sister
group relationship between Dipodidae and Muridae and
for the monophyly of each superfamily, we used four
species of Dipodidae as an outgroup for the Muridae.

LCAT Gene

The first set of analyses considered the 32 rodent
species sequenced for the LCAT gene. The MP recon-
struction yielded one most-parsimonioustree (L = 1,080
steps; consistency index [CI] = 0.41 and retention index
[RI] = 0.52). Bootstrapping and BSI values are indi-
cated in table 2 for the ancestral segments labeled 1-30
in figure 3. The majority of the results of this analysis
and those of the ML and distance approaches have been
presented in Michaux and Catzeflis (2000). To summa-
rize, the first dichotomy isolates the Spalacinae and the
Rhizomyinae. The remaining 13 Muridae subfamilies
are clustered together in a strongly supported clade. The
first branching event of this clade is a large polytomy
leading to eight lineages, of which only four encompass
more than one subfamily: Mystromyinae and Nesomyi-
nae (node 10), Cricetomyinae and Dendromurinae (node
12), Cricetinae and Myospalacinae (node 19), and Mu-
rinae, Otomyinae, Gerbillinae, and Acomyinae (node
21). Thus, with this gene, most of the ** advanced” murid
subfamilies appear to be of a polytomous origin, sug-
gesting the phenomenon of a spectacular bushlike ra-
diation having led to the majority of them.

Exon 28 of VWWF

The second set of analyses considered the 32 rodent
species sequenced for VWE The MP reconstruction
yielded one most-parsimonious tree (L = 2,043 steps;
Cl = 0.42 and RI = 0.51). Bootstrapping and BSI val-
ues are indicated in table 2 for the ancestral segments
labeled 1-30 in figure 3. As aready observed with
LCAT, the first dichotomy isolates the Spalacinae and
the Rhizomyinae. The remaining Muridae built up a
strongly supported clade (node 4: BP = 100%, °BS| =
+17). However, in contrast to the LCAT gene results,
these ““modern” subfamilies do not appear to be of a
polytomous origin. Several clades appear clearly, i.e., an
“African” clade (node 6) clustering the Nesomyinae,
Mystromyinae, Cricetomyinae, and Dendromurinae (as
defined in Michaux and Catzeflis 2000) or a** Cricetoid”
clade (node 15) uniting the Arvicolinae, the Cricetinae,
the Sigmodontinae, and the Myospalacinae.

However, some terminal nodes (i.e., the monophyly
of the Cricetomyinae, the position of Otomys within the
Murinae) appear less robust with the vWF gene than
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with LCAT. Thus, as these two genes seem complemen-
tary, we decided to combine the two data matrices in
order to perform a new combined analysis.

Combined Analysis of the LCAT and VWWF Genes

The ILD test revealed that there was some incon-
gruence between the two nuclear genes (P = 0.002 <
0.05). This result might be explained by the extensive
heterogeneity of the two data matrices (large differences
in GC contents, some species are evolving very quickly
or slowly with regard to the other taxa, etc.) and by the
fact that these genes seem to evolve at different rates
(see above). According to our results, LCAT yields a
better (i.e., more robust) resolution for termina nodes,
whereas VWF seems to perform better for the deeper
ancestral segments.

Thus, these genes, although they are suggested to
be incongruent by the ILD test, also appear rather com-
plementary. For this reason, the two data sets were
concatenated.

The MP analysis yielded one most-parsimonious
tree (L = 3,145 steps;, Cl = 0.41 and Rl = 0.51) iden-
tical to the ML and NJ and ME trees (fig. 4 and table
2). Once again, the first dichotomy isolates Spalacinae
and Rhizomyinae, and the remaining Muridae built up
a strongly supported clade (node 4: BP = 100%, °BSI
= +24).

The monophyly of amost al subfamilies repre-
sented by at least two genera is robust (nodes 7, 9, 11,
16, 17, 19, 23, 24, 28 supported by BP of 97%-100%
and by BSI of +10—+40): Nesomyinae (node 7), Den-
dromurinae (as previously defined in Michaux and Catz-
eflis 2000) (node 9), Cricetomyinae (node 11), Arvicol-
inae (node 16), Sigmodontinae (node 17), Cricetinae
(node 19), Gerhillinae (node 23), Acomyinae (as pre-
viously defined in Michaux and Catzeflis 2000) (node
24), and Murinae (node 28). These different subfamilies
are divided into four clades. The first (node 6), highly
supported (BP = 97%, BSI = +9), includes the Den-
dromurinae, Mystromys, the Cricetomyinae, and the Ne-
somyinae. Within it, the first three subfamilies seem re-
lated, although with alower robustness (BP = 75%, BSI
= +3) (node 8). Thisresult is probably linked to a con-
flict between the two genes. Indeed, LCAT associates
Mystromys with the Nesomyinae (node 10, fig. 3). The
second major lineage includes Calomyscus only. The
third clade associates the Arvicolinae, the Cricetinae, the
Sigmodontinae, and the Myospalacinae (node 15: BP =
89%, BSI = +5). Finally, the last group includes the
Murinae, the Gerbillinag, and the Acomyinae (BP =
98%, BSI = +13) (node 21). Within it, the ancestral
fragment uniting the Gerbillinae with Acomyinae is
strongly supported (BP = 96%, BSl = +8) (node 22).
A relationship between the third and the fourth lineages
is also observed (node 14: BP = 86%, BSI = +5).

The NJ (GTR and LogDet), ML, and ME analyses
yielded results similar to those obtained with the parsi-
mony approach. However, some ancestral segments
merit further comment, as they appear to be more ro-
bustly supported by some analyses—the *‘Holarctic”
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FiG. 3.—Synthetic trees summarizing the results derived from four approaches on 32 mammalian DNA sequences of the LCAT and VWF
genes. The robustness of each node (labeled 1-30) is described in table 2 for maximum-parsimony (bootstrap percentage [BP] and Bremer’'s
support index), distance (BP), maximum-likelihood (BP), and Markov evolution analyses (BP). The trees were rooted by the four Dipodidae

sequences.

group uniting the third and fourth clades (node 14) (BP
for ML = 97%); sister group relationships between the
“Holarctic’ group and Calomyscus (node 13) (BP for
ML = 91%) and between Sigmodontinae and Cricetinae
(node 18) (BP for ME = 94%); within Acomyinae, an
external position of Lophuromys (node 25) (BP for NJ
and ME = 87% and 88%, respectively); and the node
26, uniting Uranomys and Acomys (BP for NJ and ME
= 80% and 86%, respectively).

Likelihood Alternatives to the Best Tree

The highest-likelihood tree (In L = —18,177.01)
for 32 Myodonta species was identified with PUZZLE
(Strimmer and von Haeseler 1996) among 945 aterna-
tive trees constructed using MOLPHY 2.3b3 (Adachi
and Hasegawa 1996). This tree has the same topol ogy
previously obtained by the parsimony and distance cri-

teria and was used as the reference topology to apply
Kishino-Hasegawa tests (Kishino and Hasegawa 1989)
for assessing the following clades: the existence of the
five Muridae lineages (Spalacinae + Rhizomyinae and
the four modern groups); the existence of a ‘‘Holarctic”
group; an isolated position of Calomyscus; a closer re-
lationship between Calomyscus and the ‘‘Holarctic”
subfamilies than with the ““ African” clade (Nesomyinae,
Dendromurinae, Cricetomyinae, Mystromyinae); the sis-
ter group relationships between (a) Mystromys, Crice-
tomyinae, and Dendromurinae, (b) Gerbillinae + Aco-
myinae, and (c) Sigmodontinae and Cricetinae; within
the Acomyinae, (a) an early offshoot of Lophuromysand
(b) acloser relationship between Uranomys and Acomys,
the monophyly of (a) the Sigmodontinae, (b) the Ne-
somyinae, and (c) the Acomyinae; and the nested posi-
tion of (&) Otomyinae within Murinae and (b) Myos-
palacinae within Cricetinae.
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Fic. 4—Synthetic tree summarizing the results from the combined analysis using LCAT and VWF genes. The robustness of each node
(Iabeled 1-30) is described in table 2 for maximum-parsimony (bootstrap percentage [BP] and Bremer’s support index), distance (BP), maximum-
likelihood (reliability percentages), and Markov evolution analyses (BP). The tree was rooted by four Dipodidae sequences.

For doing so, we tested 19 different alternative to-
pologies derived from previous morphological or mo-
lecular studies (Thomas 1896; Miller and Gidley 1918;
Misonne 1971; Chaline, Mein, and Petter 1977; de
Graaff 1981; Ameur 1984; Carleton 1984; Flynn, Ja-
cobs, and Lindsay 1985; Dickerman 1992; Musser and
Carleton 1993; Dubois, Catzeflis, and Beintema 1999;
Michaux and Catzeflis 2000; Chevret, Catzeflis, and Mi-
chaux 2001).

Almost all the alternative topologies exhibited sig-
nificantly worse log likelihoods at 5% probability. How-
ever, the aternative hypotheses against a Holarctic
group and the sister group relationships between Sig-
modontinae and Cricetinae were only significantly
worse at 8% probability. Moreover, the topologies unit-
ing Mystromys to the Nesomyinae and Acomys to Deo-
mys and proposing Uranomys as an early offshoot of the
Acomyinae were not significantly worse than the best
tree.

Relative-Rate Tests

To determine if differences of rates of VWF change
existed between the different Muridae subfamilies, rel-
ative-rate tests were conducted with each of these sub-
families against the remaining lineages. The Dipodidae

were used as the outgroup. As previously, synonymous
(K9 changes did not show significant differences be-
tween the different Muridae subfamilies. However, K,
comparisons showed that Spalacinae, Nesomyinae, Cal-
omyscinae (Calomyscus), and Sigmodontinae were
slowly evolving (P < 0.00001, 0.01, 0.04, and 0.002,
respectively) and that Cricetomyinae and Rhizomyinae
were quickly evolving (P < 0.0001 and 0.00001). With-
in Malagasy rodents and the New World Sigmodontinae,
further analyses showed that only Macrotarsomys and
Neotoma, respectively, had a lower rate of evolution (P
< 0.02). Within the African Cricetomyinae, only Sac-
costomus was significantly more quickly evolving (P <
0.0001).

As the RRTree test is rather sensitive to the rate of
the species used as outgroups (Robinson et al. 1998),
we aso applied the likelihood approach of Muse and
Gaut (1994). This confirmed the results derived from the
above RRTree tests based on K, values.

The different behaviors obtained between K, and
K, can be explained by the fact that, for the muroids,
synonymous substitutions saturate when the phyloge-
netic level is higher than within the subfamily, as al-
ready suggested in Michaux and Catzeflis (2000).

Consequently, in order to apply a molecular clock
and date the separation between the murid genera and
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Table 3
Estimates of the Separation Times of Different Events Within Muridae on the Basis of the Molecular Data
SEPARATION SEPARATION
SEPARATION EVENTS Mug/Rattus SE Tatera/Gerbillus SE PALEONTOLOGICAL ESTIMATES

Mug/Rattus. . ................... 12 — 12 1 12 Myr (Jaeger, Tong, and Buffe-
taut 1986; Jacobs and Downs
1994)

GerbillugTatera . ............... 6.7 0.6 8 — 8-10 Myr (Tong 1989)

Gerbillinae/Murinae/Acomyinae . . . 179 0.3 20.8 0 16 Myr (Tong and Jaeger 1993)

Dendromurinae/Cricetomyinae/ 16.1 0.5 18.8 1 14-15 Myr (Conroy et al. 1992)

Mystromyinae/Nesomyinae . . . ..
Cricetinag/Arvicolinae/ 155 0.6 18.2 1 ?
Sigmodontinae/Myospalacinae. . .

Acomyinae/Gerbillinae. .......... 16.1 0.5 18.8 1 ?

Myospalax/Phodopus . . .......... 5.7 0.5 6.5 1 2 Myr (Chaline, Mein, and Petter
1977; Carleton and Musser,
1984)

Seatomys/Dendromus. .. ......... 114 0.6 133 1 8-11 Myr (McKenna and Bell
1997)

Dicrostonys/Clethrionomys. . . . .. .. 8 0.6 9.3 1 3-4 Myr Chaline and Graf 1988)

NoTe.—The numbers in bold correspond to the two calibration points used for this analysis: 12 Myr for the separation between Mus and Rattus (Jaeger, Tong,
and Buffetaut 1986; Jacobs and Downs 1994) and 8 Myr for the Tatera/Gerbillus dichotomy (Tong 1989). SE = standard error values provided by the maximum-

likelihood analysis of Puzzle 4.0.

subfamilies, we performed another ML analysis with Di-
podidae as the outgroup and all the Muridae except the
slowest- and fastest-evolving species (Spalax, Calomys-
cus, Rhizomys, Macrotarsomys, Neotoma, and Saccos-
tomus). The inferred ML distances were the basis for
estimating separation times. Two calibration points de-
rived from paleontological data were chosen: (1) the
Mus/Rattus dichotomy, set at 12 MYA (Jaeger, Tong,
and Buffetaut 1986; Jacobs, Winkler, and Murry 1989;
Jacobs et al. 1990; Jacobs and Downs 1994; Muse and
Gaut 1994) and (2) The Gerbillus/Tatera separation, set
a 8 MYA (Tong 1989). The estimated time of diver-
gence (41 MYA) between Mus and Rattus obtained from
molecular data (Kumar and Hedges 1998) was not used
in this study because recent publications (Adkins et al.
2001; Murphy et al. 2001) have confirmed that it is an
overestimate. The ML distance between Mus and Rattus
is 0.049, whereas that between Tatera and Gerbillus is
0.028. These values give a rate of 0.0041 (Mus/Rattus)
or 0.0035 ML distance per million years. When these
rates are applied to the different lineages of Muridae,
molecular datings can be suggested for several dichot-
omies of interest (table 3), such as 17.9-20.8 MYA for
the separation between Murinae, Gerbillinag, and Aco-
myinae or 11.4-13.3 MYA between the two dendro-
murines Seatomys and Dendromus.

Discussion
Base Composition

The GC; compositions of VWF and LCAT (64.1%—
89.1% and 54.8%—-67.6%, respectively) indicate that
these genes belong to the richest class of isochores, as
already observed in Huchon, Catzeflis, and Douzery
(1999) and Robinson, Gautier, and Mouchiroud (1997).
Also, other nuclear genes sequenced in different rodent
species show similar GC; contents, such as the nuclear
ribonuclease (67.7%—82.3%; Dubois, Catzeflis, and
Bientema 1999) or the p53 gene (54.3%—61.3%;

D’Erchia et al. 1999). Accordingly, most of the genes
would be distributed in the GC-rich fractions of DNA,
which seems to be a general trend in mammals. Indeed,
for humans, it has been shown that about 90% of genes
are distributed in the two most GC-rich isochores, H2
and H3 (Zoubak, Clay, and Bernardi 1996).

Nevertheless, large differences between Muridae
(VWF: 68.6% = 2.9%; LCAT: 59.7% = 3.1%), Dipod-
idae (VWF: 81.7% = 8.3%; LCAT: 64.4% = 3.1%), and
human (VWF:. 82%; LCAT: 77%) base compositions
have been observed, being more pronounced for GCs.
These results are in agreement with previous surveys of
both LCAT (Robinson, Gautier, and Mouchiroud 1997)
and VWF (Huchon, Catzeflis, and Douzery 1999). The
observed pattern for murid LCAT and VWF has proved
to follow a general trend described for the whole ge-
nome of murids and known as the murid pattern (Sabeur
et al. 1993; Robinson, Gautier, and Mouchiroud 1997).
Accordingly, murids would be characterized by a shift
in base composition toward GC-poorer DNA when com-
pared with the pattern observed in nonmurid rodents and
al other mammals (general pattern). For Dipodidae, we
found that GC; values were between human and Muri-
dae values. Similar results were obtained from CsCl pro-
files, in which Dipodidae showed a skewness value
higher than those of murids but slightly lower than those
of nonmurid rodents (Douady et al. 2000).

Even though these two genes are characterized by
large GC; values, the LCAT gene shows lower values
than VWF, regardless of the species, Muridae, Dipodi-
dae, or humans. For humans, this difference may be due
to the fact that these two genes belong to different GC-
rich isochores, namely, H2 and H3 (Zoubak, Clay, and
Bernardi 1996). The same thing can be postulated for
Muridae and Diopodidae, but taking into account the
genera shift toward GC-poorer DNA.

From the taxonomic point of view, no apparent re-
lationship between taxonomy (or systematics) and GC,
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content is readily observable for either LCAT or vVWF
genes within Muridae (data available on request). Av-
erage GC; percentages for selected taxa are as follows
for VWF and LCAT, respectively: Acomyinae (69.3%
and 60.0%), Arvicolinae (68.7% and 62.7%), Cricetinae
(66.0% and 56.0%), Cricetomyinae (69.5% and 62.5%),
Dendromurinae (69.2% and 60.5%), Gerbillinae (71.0%
and 61.6%), Murinae (69.1% and 60.2%), Nesomyinae
(69.9% and 60.5%), and Sigmodontinae (66.2% and
59.8%).

Rate of Evolution

As we have stressed for base composition, LCAT
and VWF show different properties that can be also de-
tected at the level of rate of evolution and, subsequently,
at the level of saturation. Indeed, LCAT is more con-
served at both the amino acid and the nucleotide levels
than is VWF and presents a lower asynonymous substi-
tution rate value than the latter (fig. 1). This variation is
thought to reflect differences in functional constraintsin
both genes, mainly in the proportion of the sequences
that are critical to the function of the proteins. Nucleo-
tide substitution rate, and thus the degree of sequence
conservation, may be influenced by different factors af-
fecting either mutation or fixation rates:

® Chromosomal position of the gene and even the po-
sition within the chromosome (Matassi, Sharp, and Gau-
tier 1999; Perry and Ashworth 1999). The LCAT gene
has been mapped on chromosomes 16 and 8 in humans
and mice, respectively, while VWF has been mapped on
chromosomes 12 and 6, respectively. We can assume
that also in most or all other rodent species, these two
genes are placed on different chromosomes and thus in
different **evolutionary rate units,” which could explain
the different substitution rates.

® The tissue in which proteins are expressed (Kuma,
Iwabe, and Miyata 1995; Hughes 1997; Hurst and Smith
1999). Even though both are plasmatic proteins, VWF is
expressed in megakaryocytes and endothelial cells,
while LCAT is synthesized by the liver and brain. The
existence of differences in asynonymous rates in differ-
ent tissue-specific proteins may reflect differencesin se-
lective pressures rather than differences in mutation
rates, as demonstrated by Duret and Mouchiroud (2000).

Regarding synonymous rates of substitution, LCAT
and VWF genes show similar substitution rates, as
shown in figure 1. Since it seems there is no significant
variation of synonymous rates between tissue-specific
genes (Duret and Mouchiroud 2000), the observed dif-
ference between both genes may be due to differences
in mutation rates. Nevertheless, the observed difference
is most likely an underestimation of the real values be-
cause of a certain level of saturation in the transitions
of both the vVWF (fig. 2) and the LCAT genes (Michaux
and Catzeflis 2000).

Because of the different evolutionary properties of
VWF and LCAT, their combination for resolving phy-
logenetic relationships among muroid rodents has prov-
en to give results with more resolution than those ob-

tained using each single gene (Huchon, Catzeflis, and
Douzery 1999; Michaux and Catzeflis 2000)

Fourteen Subfamilies of Muroids Are Organized into
Five Major Lineages

An examination of figure 4, with the associated ro-
bustness values indicated in table 2, indicates that the
combined LCAT and VWF genes suggest a muroid
branching pattern with five clades comprising one or
more traditional subfamilies.

The most ancient speciation event leads to ancestral
segments 4 and 5, a dichotomy separating spalacines
and rhizomyines from the rest of the muroids. Both
clades are robust (bootstrap values from 91 to 100, Bre-
mer’s decay indices of 24 and 10). Moreover, the ater-
native topologies against this first isolation were always
significantly worse. Following other authors (Thomas
1896; Sen 1977), we are tempted to consider spalacines
and rhizomyines as the two living components of a mu-
roid family Spalacidae, keeping the taxon name Muridae
(Iliger 1811) for all the remaining muroid taxa.

Thus, the ancestral segment 5 would define Muri-
dae, for which our data set includes representatives of
12 subfamilies. The reliability of our Muridae/Spalaci-
dae split will be settled after the inclusion of the three
missing subfamilies listed by Musser and Carleton
(1993): Lophiomyinae (one genus), Petromyscinae (two
genera), and Platacanthomyinae (two genera).

Among the four major lineages of murids, a first
clade (ancestral segment 6, bootstrap values from 95%
to 99%) unites African taxa representing nesomyines,
dendromurines, cricetomyines, and the sole living mem-
ber of mystromyines. This cluster of genera is reminis-
cent of Lavocat’'s (1973, 1978) concept of Nesomyidae,
a taxon comprising archaic African ““cricetids” which
could all be derived from the fossil Afrocricetodontinae
subfamily. Until additional taxa are examined for their
molecular relationships (Malagasy Eliurus and Gymnu-
romys, African Petromyscus and Beamys, additional
dendromurines), we refrain from suggesting a name for
this clade.

The second lineage in murids includes Calomyscus
only (see below). The third (ancestral segment 15) and
fourth (ancestral segment 21) major murid clades are
related, although not convincingly so (bootstrap values
from <50% to 97%; a Bremer’s decay index of 5; al-
ternative topologies against this relationship were only
significantly worse at 8% probability). All taxa repre-
senting the cricetines, myospalacines, sigmodontines,
and arvicolines are united by a strong ancestral segment
(15) (BP 89%—99%).

Finally, four **traditional’” subfamilies (Gerbillinae,
Murinag, Otomyinae, and Acomyines) cluster in a ro-
bust clade (ancestral segment 21: bootstrap values from
94% to 100%; a Bremer’s decay index of 13).

An Isolated and Ancient Muroid: Calomyscus

The mouselike hamster Calomyscus (six living spe-
cies) was only recently given a subfamilial rank (Calo-
myscinae) (Vorontsov and Potapova 1979) with regard



to sharp differences in several morphological characters.
Although previous studies had suggested affinities of
Calomyscus with different muroid taxa, sometimes with
compelling evidence (similarities in the auditory ossi-
cles led Pavlinov [1980] to relate mouselike hamsters
with sigmodontine Reithrodontomys), its relationships
have remained obscure. Even chromosomal data were
ambiguous (Matthey 1961), with autosomal chromo-
somes similar to those of Eurasian cricetines, and sexual
chromosomes reminiscent of North American peromys-
cines. Following Fahlbusch (1969) and other paleontol-
ogists, Carleton (1984) and Carleton and Musser (1984)
concluded that **Calomyscus could be justifiably clas-
sified among the cricetodontines, a group hitherto sup-
posed extinct.”

Both LCAT and exon 28 of the VWF gene concur
for an isolated position of Calomyscus, which might be
more related (node 13: bootstrap values from 64% to
91%) to Holarctic cricetids (arvicolines, sigmodontines,
cricetines) and advanced murids (gerbillines, murines,
acomyines) than to the African muroids (nesomyines,
cricetomyines, dendromurines). Moreover, this hypoth-
esis was confirmed with the Kishino-Hazegawa test,
which showed that alternative topologies against these
relationships always exhibit significantly worse log like-
lihood values. In any case, Calomyscus belongs to the
same radiation (nodes 5, 13, and 14 combined) which
has led to the three major clades (ancestral segments 6,
15, and 21) of murids.

Acomyines: A Clade Sster to the Gerbils

Much progress with regard to the systematics of
Acomys has been made since Sarich’s (1985) immuno-
logical study, which was the first to suggest that spiny
mice were not related to true murines (rats and mice).
Different morphological and molecular studies have
since shown evidence of a cluster of related genera,
comprising Acomys, Uranomys, Lophuromys, and Deo-
mys, which are neither murines nor dendromurines (see
references cited in Denys et a. 1992; Chevret et al.
1994; Hanni et al. 1995; Dubois, Catzeflis, and Beinte-
ma 1999). Hanni et al. (1995) named ‘*‘acomyines’ the
clade containing Acomys, Uranomys, and Lophuromys,
to which Deomys was subsequently added (Denys et al.
1995; Verheyen, Colyn, and Verheyen 1996; Chevret,
Catzeflis, and Michaux 2001).

Although convincing biochemical and molecular
data exist for sustaining this cluster, the relationships of
acomyines with regard to other living muroids have re-
mained obscure or controversial. Whereas the DNA-
DNA hybridization of Chevret et al. (1993) suggested
an acomyine—gerbilline relationship, more recent exper-
iments with additional taxa have been equivocal (Chev-
ret, Catzeflis, and Michaux 2001). Sequence data have
provided contradictory and weakly supported results
(Hanni et al. 1995; Dubois, Catzeflis, and Beintema
1999; Chevret, Catzeflis, and Michaux 2001), with aco-
myines being either externa to a murine + gerbilline
clade or belonging to a polytomy also comprising mu-
rines and cricetines.
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The combined use of two nuclear genes (LCAT and
exon 28 of VWF) provides a clear and strong picture:
acomyines cluster with gerbillines (ancestral segment
22; bootstrap values 96%-100%; BSI = 8, alternative
topologies always significantly worse), and these two
lineages are sister to murines (segment 21: BP = 94%-—
100%; BSI = 13). That these relationships are not bi-
ased by saturation is indicated by the robustness of
deeper ancestral segments such as 14, 13, and 5 of figure
4. Although our taxonomic sampling is rather limited,
each of the clades acomyines, gerbillines, and murines
is defined by high values of robustness (BP = 100%;
BSI = 22, 40, and 34, respectively). According to the
molecular-clock analysis, the separation between the
three subfamilies appeared 17.9-20.8 MYA. This ap-
proximation is dlightly older than those obtained with
the previous paleontological (16 MYA; Tong and Jaeger
1993) and molecular (15.5-17 MYA; Michaux and
Catzeflis 2000) data. Thus, on the basis of these results,
the first radiation event within the modern muroids
should have appeared earlier than previously supposed.
Moreover, a second event of separation seems to have
occurred 16.5-18.5 MYA. This led to the separation be-
tween Acomyinae and Gerbillinae, but also to the radi-
ation of the ““Cricetid” group (Arvicolinae, Sigmodon-
tinae, Cricetinae, Myospalacinae) and the **African”
clade (Nesomyinae, Mystromyinae, Cricetomyinae,
Dendromurinae) (see table 3). According to Aguilar et
a. (1996) and Aguilar, Escarguel, and Michaux (1999),
this period (end of early Miocene) was characterized by
changes in climate which favored the spread in Europe,
Africa, and America of allochtonous rodent groups
probably coming from Asia.

The South African Mystromys Clusters with
African Murids

Carleton (1984) and Carleton and Musser (1984)
summarize perfectly the uncertain classification of the
African white-tailed hamster Mystromys, which has been
either allied to Holarctic cricetines or placed in its own
subfamily (Mystromyinae) (Vorontsov 1966). Lavocat
(1973) suggested that Miocene Cricetodontidae found in
African (Ethiopia) deposits were ancestral to fossil and
recent Mystromys and proposed a classification of Af-
rican muroids into two families: the family Nesomyidae,
including not only the Malagasy Nesomyinae and the
Mystromyinae, but also Cricetomyinae, Lophiomyinae,
Tachyoryctinae, and Otomyinae; and the family Muri-
dae, comprising Murinae, Rhizomyinae, and Dendro-
murinae. Gerbillinae were not allocated by Lavocat
(1973, p. 237), and were left incertae sedis.

Our present knowledge allows us to exclude Oto-
myinae and Tachyoryctinae from the Nesomyidae of
Lavocat (1973), whose emended taxon thus corresponds
to the clade defined by ancestral segment 6 in figure 4.
Thus, Mystromys belongs to a group of archaic African
muroids, together with nesomyines, cricetomyines, and
some dendromurines. Its relationships among this clus-
ter are not resolved in this study, although exon 28 of
the VWF gene suggests the tritomy Mystromys-criceto-
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myines-dendromurines. Additional taxa (such as Petro-
myscus or Beamys, Lophiomys) and gene sequences will
be necessary to confirm these observations.

A Nesting Position of Myospalacinae Within
Cricetinae and of Otomyinae Within Murinae

The analyses performed on the basis of the vVWF
sequences confirm those obtained with the LCAT gene
(Michaux and Catzeflis 2000) about a nesting position
of Myospaacinae within Cricetinae, particularly with
the Asiatic species Phodopus. Thus, following a previ-
ous hypothesis based on morphological characters
(Simpson 1945), we propose invalidation of the Myos-
palacinae subfamily and consideration of the genus
Myospalax as defining a tribe among the subfamily Cri-
cetinae. In the same way, the Otomyinae must be defin-
itively considered a tribe of the Murinae subfamily, as
aready suggested by several morphological studies
(Tullberg 1899; Miller and Gidley 1918; Simpson 1945;
Carleton 1984).

Differences Between Datings Estimated by Fossils
and Molecules

Although showing a trend toward overvaluation,
most of the separation times estimated on the basis of
the molecular data are in good agreement with those
obtained with the fossil records (table 3). However,
some of them seem more unclear. As aready observed
in Michaux and Catzeflis (2000), the divergence time
estimation based on our molecular data suggests that the
separation between Myospalax and the other Cricetinae
appeared earlier (Late Miocene-Early Pliocene: 5-6
MYA) than the Pleistocene. Further paleontological in-
vestigations on this genus should be very useful to test
our hypotheses.

Moreover, the value of 8.0-9.3 (standard error =
0.6) MYA for the split between the Arvicolinae Cleth-
rionomys and Dicrostonyx is much older than the esti-
mate of 4-6.0 MYA suggested by Chaline and Graf
(1988). Our estimate is similar to the one calculated by
Michaux and Catzeflis (2000), obtained with the nuclear
LCAT gene only, but is at odds with other molecular
studies based on DNA/DNA hybridization (Catzeflis et
al. 1987) or on the nuclear ribonuclease gene sequences
(Dubois, Catzeflis, and Beintema 1999). The relative-
rate tests for the combined molecular data showed that
the two Arvicolinae taxa do not evolve at a particular
rate of evolution with regard to the other Muridae. Thus,
the molecular clock of the LCAT and VWF genes seems
also valid for these taxa. New paleontological investi-
gations are needed to confirm this older Dicrostonyx/
Clethrionomys divergence.

Conclusions

The present molecular study was performed on two
nuclear genes sequenced for representatives of 14
among 17 Muridae subfamilies and four of the seven
Dipodidae subfamilies.

Clade 1 : 23 species

[E Spalacinae : (8)
Rhizomyinae : (15)

Clade 2 : 43 species

@ Nesomyinae (14),
Mystromyinae (1),
Cricetomyinae (6),
Dendromurinae (22)

Clade 3 : 6 species

M Calomyscinae : (6)

Clade 4 : 591 species

m Arvicolinae (143),
Sigmodontinae (423),
Cricetinae (18),
"Myospalacinae” (7)

Clade 5 : 654 species

I Gerbillinae (110),
Acomyinae (25),
Murinae (505),
"Otomyinae" (14)

Fic. 5.—Approximate geographic distribution (from data in Wil-
son and Reeder 1993) of living species in each mgjor lineage within
Muridae. The numbers of species are those derived from Musser and
Carleton (1993) assuming that each subfamily is monophyletic.

This taxonomic sampling led to evidence that from
the base composition and rate-of-evolution points of
view, muroids would be characterized by a shift in base
composition toward GC-poorer DNA when compared
with the pattern observed in nonmurid rodents and all
other mammals (general pattern). The LCAT gene shows
lower GC; values than VWE, regardless of the taxa under
consideration (Muridae, Dipodidage, or humans), and is
more conserved at both the amino acid and the nucle-
otide levels than is VWFE No apparent relation between
taxonomy (or systematics) and GC; content is readily
observable.

The sampling also led to evidence that the studied
subfamilies of muroids are organized into five mgjor lin-
eages. a first isolation unites the Spalacinae and Rhi-
zomyinae with a strong robustness; the second one in-
cludes the African taxa representing nesomyines, den-
dromurines, cricetomyines, and the sole living member
of mystromyines; the third one comprises only the genus
Calomyscus; the fourth one represents the cricetines,
myospalacine, sigmodontines, and arvicolines;, and the
fifth one comprises four ““traditional’” subfamilies (Ger-
billinae, Murinae, Otomyinae, and Acomyines).



Also evidenced by the present study were the
monophyly of almost all studied subfamilies, including
the Spalacinae, the Rhizomyinae, the Nesomyinae, the
Dendromurinae (as understood by Michaux and Catze-
flis 2000), the Cricetomyinae, the Arvicolinae, the Sig-
modontinae, the Cricetinae, the Gerbillinae, the Aco-
myinae (as defined in Michaux and Catzeflis 2000), and
the Murinag; an isolated position of Calomyscus with
regard to the other modern subfamilies; a sister group
relationship of the Acomyinae and the Gerbillinae; con-
firmation of a nested position of Myospalacinae within
Cricetinae and Otomyinae within Murinae; and a close
relationship between the South African Mystromys and
the African murids (Nesomyinae, Cricetomyinae,
Dendromurinae).

Future studies including members of the remaining
subfamilies listed by Musser and Carleton (1993) (Lo-
phiomyinae, Petromyscinae, and Platacanthomyinag), as
well as some important missing genera for several sub-
families considered in our study (i.e., Murinae, Arvi-
colinag, Sigmodontinae), will confirm definitively the
reliability of these results.

From the biogeographical point of view, an ex-
amination of the recent distribution of members of those
five magjor lineages (fig. 5) alows the following com-
ments, assuming that all muroids originated, spread, and
radiated from Asiawith different degrees of success. the
first three groups radiated in alimited number of species
(23, 43, and one, respectively) and genera (five, 18, and
one, respectively) (Wilson and Reeder 1993) localized
in some regions, whereas the last two groups literaly
exploded in awide variety of species (591 and 654) and
genera (109 and 139) dispersed al over the world.
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