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The broad-toothed field mouse (

 

Apodemus mystacinus

 

) is distributed throughout the Balkan Peninsula, Asia Minor
and the Middle East. It is generally split into two different specific entities: 

 

Apodemus epimelas

 

 occurs on the Balkan
Peninsula and 

 

A. mystacinus

 

 inhabits Asia Minor and the Middle East. This analysis, based on two mitochondrial
regions (cytochrome 

 

b

 

 and the D-loop) and the 

 

interstitial retinol binding protein (IRBP)

 

 nuclear gene, confirms an
important level of genetic divergence between the animals from these regions and their separation from each other
at least 4.2–5.1 Mya, which is in favour of a distinct specific status. Finally, the broad-toothed field mice from south-
western Turkey appear to be closely related to the animals from Crete but highly distinct from the populations of the
other Oriental regions. This supports a distinct subspecific level (

 

A. m. rhodius

 

) for the insular animals and also for
those from south-western Turkey. From a biogeographical point of view, it can be assumed that either late Pliocene
or early Pleistocene cooling led to the isolation of two main groups of 

 

A. mystacinus

 

, one in the Balkan region and
the other one in Turkey and the Near East (Syria and Israel). In this region, it is suggested that a more recent event
appeared during the Quaternary period, isolating broad-toothed field mice in Crete and leading to the appearance
of two well-differentiated genetic groups: one in Crete and south-western Turkey, and the other widespread in north-
ern and eastern Turkey as well as in the Near East. © 2005 The Linnean Society of London, 

 

Biological Journal of
the Linnean Society

 

, 2005, 

 

85

 

, 53–63.
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INTRODUCTION

 

The broad-toothed field mouse, 

 

Apodemus mystacinus

 

(Danford & Alston, 1877), is a small rodent of the
Murinae subfamily distributed throughout the east-
ern Mediterranean region. It lives in rocky and stony
habitats in various environments such as cultivated
areas, woodlands or ruins. It is clearly distinguishable
from the other European 

 

Apodemus

 

 species by differ-
ent morphological characters such as a greater body

size and a dark-grey coloration of the fur. Its range
extends from the Balkan region (Albania, the former
Yugoslavia, Bulgaria and Greece) (Mitchell-Jones

 

et al

 

., 1999) to the Near East (Turkey, Georgia, Jor-
dan, Lebanon, Israel and Iraq) (Kock, Malec & Storch,
1972). It is also present in Corfu, Rhodes, Karphatos
and Crete, as well as in several Aegean islands
(Niethammer, 1978).

The taxonomic status of this species is still unclear.
Two subspecies were firstly described within

 

A. mystacinus

 

: 

 

A. m. epimelas

 

 (Nehring, 1902) occur-
ring on the Balkan peninsula (Terra typica: Parnas
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Mountains, Greece) and 

 

A. m. mystacinus

 

 (Danford &
Alston, 1877) inhabiting Asia Minor and the Middle
east (Terra typica: Bolkar Daglari Mountains, Asia
Minor). This classification is supported by Spitzen-
berger (1973) on the basis of morphological studies.
Another subspecies has also been described in the
islands of Crete, Karpathos and Rhodes, namely

 

A. m. rhodius

 

 (Ondrias, 1966).
On the basis of palaeontological data, however,

Storch (1977) considers that 

 

A. epimelas

 

 and

 

A. mystacinus

 

 are two distinct species, an opinion also
shared by Mezhzherin (1997), in his systematic revi-
sion of the 

 

Apodemus

 

 species of northern Eurasia.
To date only a single genetic study based on allozyme

data (Filippucci, Macholán & Michaux, 2002) has been
performed on this species and tends to confirm a
specific status for 

 

A. epimelas

 

 and 

 

A. mystacinus

 

.
Nevertheless, a new molecular study based on DNA
sequences and carried out on different specimens from
European and oriental regions would be extremely
useful to highlight the taxonomic debate.

From a biogeographical point of view, the existence
of these various taxa raises many interesting
questions:

1. How old are the morphologic differences between
the European and oriental populations? Are they
resulting from an ancient allopatric isolation asso-
ciated to a previous geological phenomenon or cli-
mate change (e.g. the Quaternary ice ages)?

2. As the Marmara Sea was frequently replaced by
dry lands during the Quaternary ice ages, why is
the  European  form  absent  from  Turkey  and
vice-versa?

3. As suggested by the description of several subspe-
cies within the oriental group (Spitzenberger,
1973), is it possible to distinguish different genetic
lineages in this region. How and when did they
eventually appear?

4. What is the origin of the 

 

A. mystacinus

 

 populations
in Crete? As 

 

Apodemus sylvaticus

 

 (J. Michaux,
unpubl. data), did it invade this island from Greece,
or did it come from oriental regions, similar to
another rodent, 

 

Acomys minous

 

 (Barome 

 

et al

 

.,
2001)?

5. When did it invade the oriental Mediterranean
islands? Is it, like 

 

A. sylvaticus

 

 (J. Michaux,
unpubl. data) and 

 

Acomys minous

 

 (Barome 

 

et al

 

.,
2001), a recent colonist associated with anthropo-
genic introductions?

The aims of this study are to address these ques-
tions and to better determine the taxonomic status of

 

A. mystacinus.

 

 Several well-distributed populations
are analysed using sequences of the nuclear 

 

IRBP

 

gene and two mitochondrial regions, the 

 

cytochrome b

 

gene and the D-loop region.

 

MATERIAL AND METHODS

B

 

IOLOGICAL

 

 

 

MATERIAL

 

A total of 21 

 

Apodemus mystacinus

 

 from 15 localities
widespread throughout a large part of the species dis-
tribution area were analysed (Table 1, Fig. 1). One

 

Apodemus agrarius

 

 and one 

 

Apodemus peninsulae

 

were also analysed to sequence their D-loop region

 

.

 

L

 

ABORATORY

 

 

 

METHODS

 

DNA was extracted from ethanol-preserved tissue fol-
lowing Sambrook, Fritsch & Maniatis (1989) or Bahl
& Pfenninger (1996). Tissues were taken from the

 

Apodemus

 

 tissue collection of J. R. Michaux (JRM
numbers) and those of E. Bellinvia (EB numbers).

A large portion of the 

 

cytochrome b

 

 gene (972 bp)
was  amplified  using  the  universal  PCR  primers  L7
(5

 

¢

 

-ACCAATGACATGAAAAATCATCGTT-3

 

¢

 

) and H16
(5

 

¢

 

-ACATGAATYGGAGGYCAACCWG-3

 

¢

 

) (Kocher

 

et al

 

., 1989). Moreover, 782 bp of the 

 

IRBP

 

 gene were
amplified using the PCR primers I1 and J2 (Stanhope

 

et al

 

., 1992). Finally, the whole D-loop and flanking
tRNA genes (about 1000 bp) were amplified in two
overlapping  segments  of  about  600 bp  each.  Primers
1 (5

 

¢

 

-ATAAACATTACTCTGGTCTTGTAAAC-3

 

¢

 

) and
2 bi (5

 

¢

 

-CACAGTTATGGAAGTCTTGG-3

 

¢

 

) were used
to obtain a PCR product including the whole 

 

tRNAThr

 

and 

 

tRNAPro

 

 genes and about 460 bp of the D-loop up
to about half of the central domain. The second
segment, extending from about one half of the D-loop
central domain to the beginning of the 12S tRNA
region, including the 

 

tRNAPhe

 

 gene, was produced
with primers 3 (5

 

¢

 

-CGTTCCCCTAAATAAGACA-3

 

¢

 

)
and 4 (5

 

¢

 

-TAATTATAAGGCCAGGACCA-3

 

¢

 

).
Amplification reactions were carried out in

2 

 

¥

 

 50 

 

m

 

L volumes including 25 

 

m

 

L of each 2 

 

m

 

M

 

primer, 20 

 

m

 

L of 1 m

 

M

 

 dNTP, 10 

 

m

 

L of 10

 

¥

 

 reaction

 

Figure 1.

 

Geographic distribution of the 

 

Apodemus myst-
acinus

 

 samples. The shaded zones correspond to the distri-
bution area of this species (as described by Mitchell-Jones

 

et al

 

., 1999 and Kock 

 

et al

 

., 1972). White circles, black
circles and triangles correspond to clades A, B1 and B2,
respectively. See Table 1 for sample symbols.
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buffer, 10 mL of purified water and 0.2 mL of 5 U mL-1

Promega Taq DNA polymerase. Approximately 200 ng
of DNA extract were used per PCR amplification.
Amplifications were carried out in a Labover PTC100
thermal cycler using 33 cycles (20 s at 94 ∞C, 30 s at
50 ∞C and 1 min 30 s at 68 ∞C) with a final extension
cycle of 10 min at 68 ∞C. PCR products were purified
using the Ultra-free DA Amicon kit (Millipore) and
directly sequenced. Both strands were sequenced
using a Bigdye terminator (Applied Biosystems)
sequencing kit and run on an ABI 310 (Applied Bio-
systems) automated sequencer.

SEQUENCE ALIGNMENT AND SATURATION ANALYSIS

Published sequences for cytochrome b and IRBP of
A. agrarius, A. peninsulae, Mus musculus and Rattus
norvegicus were downloaded from GenBank (Table 1)
and aligned to our new sequences using the ED editor
(MUST package; Philippe, 1993). The program AFAS
(MUST package; Philippe, 1993) was used to combine
the aligned matrices of IRBP, D-loop and
cytochrome b.

Following Philippe & Douzery (1994) and Hassanin,
Lecointre & Tillier (1998), we examined the IRBP, D-
loop and cytochrome b data sets for saturation. Using
the matrices of patristic and inferred substitutions
calculated by PAUP v. 4b8 (Swofford, 2000), the pair-
wise numbers of observed differences was plotted
against the corresponding values for inferred substi-
tutions (Philippe & Douzery, 1994). The slope of the
linear regression (S) was used to evaluate the level of
saturation (Hassanin et al., 1998). When no saturation
is observed in the data set, the slope equals one
whereas the slope tends towards zero as the level of
saturation increases.

PHYLOGENETIC RECONSTRUCTIONS

Firstly, each gene was studied separately, then the
combined matrix for IRBP (736 bp), cytochrome b
(976 bp) and D-loop (1063 bp) sequences was used to
determine more precisely the phylogenetic position of
the different A. mystacinus lineages.

Before combining these different genes into single
matrices, the level of incongruence between genes was
tested using PAUP v. 4b5 (option Hompart). This
approach uses the incongruence length difference
(ILD) test with the parsimony criterion; 1000 random-
izations were performed on variable sites only (Farris,
1985).

After alignment of the sequences, the general time
reversible model (GTR) and the Kimura’s 2 parame-
ters (K2P) estimator were used for the calculation of
genetic distances. The GTR analyses were performed
assuming a gamma distribution for substitution rates

across sites, where the parameter alpha (Yang, 1996)
and the proportion of invariant sites (I) were esti-
mated with the maximum-likelihood method assum-
ing the GTR phylogeny using PAUP v. 4.0b8.
Maximum parsimony (MP; heuristic search, tree
bisection reconnection (TBR) branch swapping option)
and maximum likelihood (ML; GTR model of sequence
evolution) analyses were also conducted using PAUP
4.0b8 (Swofford, 2000).

The robustness of inferences was assessed by boot-
strap resampling (BP) using 1000 random repetitions
for MP and distance analyses, and 100 for ML.

DIVERGENCE TIME

Firstly, to identify whether there are differences in
rates of cytochrome b, D-loop and IRBP changes
between the different A. mystacinus lineages, relative
rate tests were conducted with each lineage against
the remaining ones. The relative-rate tests were done
with RRTree, version 1.0 (Robinson et al., 1998) which
improves the test of Wu & Li (1985) by taking into
account taxonomic sampling and phylogenetic rela-
tionships. The three DNA regions were analysed sep-
arately. The ML tree for each region was chosen as the
reference topology and A. peninsulae and A. agrarius
were used as outgroups. For non-coding regions (D-
loop), relative-rate tests were performed on the pro-
portion of all the substitutions types (K). For coding
sequences (cytochrome b), relative-rate tests were per-
formed on the proportions of synonymous (Ks) and
non-synonymous (Ka) substitutions.

Secondly, to apply a molecular clock and to estimate
times of divergence, we estimated the ML (the search
was constrained to clock-like evolution) tree based on
the cytochrome b data set with M. musculus and
R. norvegicus as outgroups. The D-loop and IRBP data
matrices were not used for this analysis as explained
in the Results. The inferred maximum likelihood
distances were used to estimate separation times
(Michaux et al., 2001). Two calibration points derived
from palaeontological data were used. Firstly, the
Mus/Rattus dichotomy at 12 Mya (Jaeger, Tong &
Denys, 1986; Jacobs, Winkler & Murry 1989, Jacobs
et al., 1990; Jacobs & Downs, 1994) and secondly, the
divergence time between the Apodemus and Sylvae-
mus subgenera estimated at 7.9 Myr (Michaux et al.,
1997, 2002).

RESULTS

NEW SEQUENCES

All of the sequences generated in this study were
deposited in GenBank under accession numbers
AY623063 to AY623083, AY588250 and AY588251 (D-
loop), AJ748225 to AJ748240 (cytochrome b) and
AJ748208 to AJ748224 (IRBP) (Table 1).
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For methodological reasons, 17 A. mystacinus
sequences were obtained for IRBP, 16 for cytochrome b
and 21 for the D-loop. The D-loop of one A. agrarius
and one A. peninsulae was also sequenced.

The alignment of the IRBP sequences of 19 indi-
viduals comprises 736 nucleotides of which 71 (9.6%)
are variable and 25 (3.4%) are parsimony informa-
tive. No heterozygotic sites were found on the
sequences studied. The average ratio of transitions to
transversions (TS/TV) is 2.39, ranging from 1.2 to
5.1. The alignment of the cytochrome b gene consists
of 976 nucleotides for 18 specimens, 266 (27%) of
which are variable and 215 (22%) parsimony infor-
mative. The average ratio of TS/TV is 1.79, ranging
from 0.80 to 5.34. The complete alignment of the D-
loop mitochondrial region comprises 1063 sites for 23
individuals. Of these, 272 (25.6%) are variable and
173 (16.3%) are parsimony informative. The average
ratio of TS/TV is 1.56, ranging from 0.8 to 6.7. The
concatenated sequence data matrix for the 16
A. mystacinus and the two outgroups comprises 2775
nucleotide sites, 606 (21.8%) variable and 368
(13.3%) parsimony informative.

SATURATION ANALYSIS

Saturation analysis of the IRBP and cytochrome b
data set indicates that there is no saturation for tran-
sitions and transversions at the three-codon positions.
Therefore we included all events at the three-codon
positions of these two genes for all phylogenetic
analyses. Saturation analysis of the D-loop data
showed that transversions are moderately affected by
homoplasy. On the contrary, transitions are more sat-
urated (S = 0.45). However, as exclusion of transitions
leads to an important lack of information, they were
retained in further analyses.

PHYLOGENETIC RELATIONSHIPS BETWEEN THE 
APODEMUS MYSTACINUS LINEAGES

(1) Independent analysis of the three genetic regions
Whatever the genetic region, it can be seen (Fig. 2)
that the specimens are split into two main clades. The
first (clade A) corresponds to the Balkan animals,
while the second represents the populations from Tur-
key, Syria, Georgia and Crete. These clades are very
well supported for the D-loop and the cytochrome b
gene (BP: 99–100%) but they are less well supported
for the IRBP gene (BP: 49–87%).

Within the second clade, two subclades are also dis-
tinct. Subclade B1 corresponds to the animals from
north-western and eastern Turkey, Syria and Georgia;
subclade B2 corresponds to the animals from Crete
and south-western Turkey (the exception being for
IRBP, which only corresponds to the specimens from

Crete). These two groups are strongly supported for
the cytochrome b gene (BP: 85–98%). On the contrary,
the robustness of subclade B1 is lower for the D-loop
and IRBP (BP: 36–62%).

(2) Combined analysis of the three genetic regions
Notwithstanding minor discrepancies between the
branching patterns obtained from the D-loop and
cytochrome b data sets, the ILD test showed no signif-
icant incongruence between the two mitochondrial
markers (P = 0.15). Despite significant incongruences
found when all three regions are combined (P = 0.001),
they were concatenated for the 16 A. mystacinus, one
A. agrarius and one A. peninsulae samples sequenced
for all the three markers. Therefore, more sites were
available for analysis.

A consensus tree, constructed from the topologies
retrieved by MP, ML and neighbour-joining, is pre-
sented in Fig. 3. Again, the two main clades (A and B)
are strongly supported (BP: 100%). Moreover, the two
subclades B1 and B2 appear much more robust (BP:
67–100%). Within them, the animals from south-west-
ern Turkey are associated with the population from
Crete.

A summary of the K2P sequence divergence values
is presented in Table 2, both within and between the
observed clades. To determine the precise genetic
relationships between the animals from Crete and
those from south-western Turkey, subclade B2 was
divided into two parts. The cytochrome b, D-loop and
IRBP sequences indicate that the Balkan popula-
tions are strongly separated from the oriental ani-
mals with an important level of genetic divergence
(means of 13.3, 10.7 and 1.7% of K2P distance,
respectively). Within this last group, the two mito-
chondrial regions show that the animals from south-
western Turkey are separated from those from other
oriental regions (2.9 and 1.7%, respectively). On the
contrary, they are very similar to those from Crete
(0.9 and 0.85%, respectively). The IRBP results are
less clear and show a closer relationship between all
the Turkish populations compared to the animals
from Crete.

DIVERGENCE TIME

The relative rate test (Robinson et al., 1998) indicated
no significant rate heterogeneity (both Ks and Ka) for
the cytochrome b and D-loop regions between the
different clades. On the contrary, Ks comparisons for
IRBP showed marked differences in evolutionary
rates, clade A exhibiting an elevated rate as compared
to the other clades. This excluded the use of IRBP data
for divergence time estimates as the molecular clock is
not homogeneous for it. Moreover, the use of the D-
loop was also impossible for divergence time estimates
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Figure 2. Neighbour-joining tree obtained for the three studied genetic regions, the mitochondrial cytochrome b and D-
loop regions, and the nuclear IRBP gene. Apodemus agrarius and A. peninsulae are used to root the tree. For each main
node, the different robustness indices are indicated as follows: distance bootstrap support/maximum parsimony bootstrap
support/maximum likelihood bootstrap support.
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as the data matrix was saturated when sequences of
Mus and Rattus (used as calibration points) were
added. The analysis was therefore performed only
using the cytochrome b region.

The ML distance between Mus and Rattus, which
diverged 12 Mya, is 0.211. That between the subgenus
Apodemus (A. agrarius and A. peninsulae) and the
subgenus Sylvaemus (A. mystacinus), which diverged
7.9 Mya, is 0.167. These values give a rate of 0.0175–
0.0211 (Mus/Rattus and Apodemus/Sylvaemus) ML
distance per million years. When this rate is applied to
the different dichotomies within A. mystacinus, the
following molecular dates are obtained: 4.2–5.1 Myr
for the separation between the Balkan and Oriental
lineages, and 1.0–0.9 Myr for the separation between

the animals from Crete/south-western Turkey and the
other Middle East populations.

DISCUSSION

TAXONOMY OF APODEMUS MYSTACINUS

Johns & Avise (1998) stated that cytochrome b differ-
entiation is highly congruent with traditional species
boundaries. More recently, Bradley & Baker (2001)
used a partition of genetic distances values (using the
K2P parameters) in determining specific boundaries
under the ‘genetic species concept’. They also evi-
denced a strong correlation between genetic distance
values and species boundaries, at least for different

Figure 3. Neighbour-joining tree obtained from the analysis of the concatenation of the three genetic regions for 16
Apodemus mystacinus individuals and 2775 positions. A. agrarius and A. peninsulae are used to root the tree. For each
main node, the different robustness indices are indicated as follows: distance bootstrap support/maximum parsimony
bootstrap support/maximum likelihood bootstrap support.
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rodent and bat genera. Taking this concept into
account and the values of genetic divergence observed
between other closely related and well-defined Apode-
mus species such as A. sylvaticus, A. flavicollis,
A. hermonensis, A. alpicola and A. uralensis (always
10–12% K2P distance, Michaux et al., 2002, 2003;
2004a, b), it can be assumed that the level of genetic
divergence between clade 1 (Balkan population) and
clade 2 (Turkish and near-east populations) (13.3%
K2P distance) corresponds to different species. Simi-
lar results are obtained by considering the other
genetic regions (Table 2).

Therefore, this strongly confirms Storch’s (1977)
and Mezhzherin’s (1997) statements about the specific
status of A. epimelas and A. mystacinus. These results
are also consistent with the recent morphometric
study of Vohralík et al. (2002) as well as with the allo-
zyme research of Filippucci et al. (2002).

Moreover, they show for the first time, the existence
of two well-separated genetic groups in Turkey and in
the near-east. The first one corresponds to the popu-
lations from south-western Turkey and Crete; the sec-
ond to all the other populations from Turkey, Syria
and Georgia. They are separated by a quite important
level of genetic divergence (3% K2P distance for
cytochrome b), which suggests that they could be con-
sidered as different subspecies. Ondrias (1966) distin-
guishes a subspecies, A. mystacinus rhodius, in the
islands of Crete, Karpathos and Rhodos, which is
likely to be present also in south-western Turkey, con-
sidering these results. However, Vohralík et al. (2002),
failed to show any morphometrical differentiation
between these last populations as compared to the

other oriental ones. Additional genetic but also mor-
phological studies on further samples of Turkish
A. mystacinus would be extremely useful to confirm
this hypothesis.

BIOGEOGRAPHY OF APODEMUS MYSTACINUS

Appearance of A. mystacinus and A. epimelas
A. mystacinus appeared during the Middle Pliocene
(Martín Suárez & Mein, 1998). During this period, the
species was widespread throughout Europe, although
with lower densities due to competition with many
other rodents present at that time (Gliridae, Eomy-
idae, Sciuridae) (Michaux & Pasquier, 1974). It can
therefore be assumed that one of the late Pliocene
(4.2–5.1 Mya) climate change (maybe associated with
the Messinian crisis), linked with low populations
densities, led to the disappearance of many animals
and the isolation of the two main groups, one in the
Balkan region (where it is still confined at present;
A. epimelas) and the other, A. mystacinus s.s. in the
near and middle east (Turkey, Israel).

Although the Marmara Sea was frequently replaced
by dry lands during the Quaternary ice ages, the Euro-
pean lineages do not seem to have invaded the oriental
region and vice-versa (Vohralík et al., 2002). During
the Quaternary, the two broad-toothed field mice lin-
eages were probably established in the Balkan and
Oriental regions a long time ago (Michaux & Pasquier,
1974). Therefore, each lineage could have prevented
the colonization of invaders from the other. Indeed,
once established, resident rodents often aggressively
exclude newcomers (Granjon & Cheylan, 1989).

Table 2. Degree of within and between clades sequence divergence (in per cent) with Kimura 2 parameters distance for
the cytochrome b gene, D-loop and IRBP gene

Regions compared
Crete
(B2)

South-western
Turkey (B2)

Other Turkish regions
Syria and Georgia (B1)

Greece
(A)

Cytochrome b
Crete (B2) 0.5
South-western Turkey (B2) 0.9 0.7
Other Turkish regions, Syria and Georgia (B1) 3.1 2.9 1.0
Greece (A) 13.1 13.6 13.3 1.1
D-loop
Crete (B2) 0.5
South-western Turkey (B2) 0.85 1.0
Other Turkish regions, Syria and Georgia (B1) 1.7 1.7 0.9
Greece (A) 10.6 10.9 10.9 1.1
IRBP
Crete (B2) 0.1
South-western Turkey (B2) 1.0 0.3
Other Turkish regions, Syria and Georgia (B1) 1.4 0.4 0.6
Greece (A) 1.9 1.6 1.7 0.8



BIOGEOGRAPHY OF THE BROAD-TOOTHED FIELD MOUSE 61

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 85, 53–63

THE PRESENCE OF TWO GENETIC GROUPS IN TURKEY 
AND THEIR RELATIONSHIP WITH THE CRETAN 

POPULATION

According to the mitochondrial DNA data (Fig. 2), two
different genetic groups appear to live in Turkey: the
first one corresponding to the majority of Turkish and
Syrian populations (clade B1); the second one associ-
ating the animals from south-western Turkey (Anta-
lya region) with those from Crete (clade B2). The
divergence time analysis estimates a separation
between them approximately 1–0.9 Mya. During this
period, important climatic alterations arose through-
out Europe and the near east (Fauquette, Guiot & Suc,
1998), so this structure could be explained by isolation
of two groups of A. mystacinus in two different Turk-
ish refugia (one in the south-western region, the sec-
ond somewhere in another oriental region) during one
of the Quaternary climatic oscillations. Indeed, as
these climatic changes also altered the vegetation
cover of the region (Borisova, 1993; Fauquette et al.,
1998, 1999), the distribution of A. mystacinus in Tur-
key was probably deeply influenced during this period.
Crete would have been colonized recently from ani-
mals living in south-western Turkey.

However, the nuclear IRBP gene does not show the
same pattern at all, which suggests that the animals
from Crete are well separated from the Turkish pop-
ulations although they seem closely related. As IRBP
genes evolve more slowly than the two mtDNA
regions, it would better reflect an ancient and more
complex evolutionary history of the broad-toothed
field mouse in this region and suggest that a limited
number of animals colonized Crete from Turkey a long
time ago. This hypothesis is corroborated by the
important number of DNA types (five different DNA
sequences for five samples observed in the three stud-
ied genes) that are genetically weakly differentiated
(Table 2), characterizing the Cretan population.
Indeed, this kind of pattern generally corresponds to a
recent genetic differentiation after an important
ancient bottleneck or founder effect (Avise, 2000). The
colonization of Crete from Turkish populations would
have occurred via the Rhodes and Karpathos islands
during one of the Quaternary ice ages, when the sea
level decreased. When it rose again, A. mystacinus
stayed isolated on the island for some time, leading to
the emergence of a particular genetic lineage. It later
invaded south-western Turkey from Crete, Rhodes
and Karpathos during a new drop in sea level or via
recent anthropogenic introductions and hybridized
with south-western Turkish animals, giving them
their particular mtDNA. This would explain the pres-
ence of two genetically differentiated mtDNA lineages
in continental Turkey that are not evidenced by the
nuclear gene.

However, this hypothesis is not corroborated by
palaeogeographical and geodynamic data (Meulen-
kamp et al., 1988; Dermitzakis, 1990) attesting that
Crete has not been connected with the mainland since
the Early Pliocene, 5 Mya, even during the main
dramatic Quaternary ice ages. Fossil records of
A. mystacinus are also lacking in Crete (Kotsakis,
1990) despite well-documented palaeontological sites.
Finally, as explained above, the colonization of Turkey
from an insular lineage would have been difficult con-
sidering that an A. mystacinus population was already
present in Turkey during the Quaternary period
(Storch, 1977) and that they could have prevented the
colonization of new invaders. This hypothesis is cor-
roborated by the study of Darlington (1959), which
suggested that the majority of islands were invaded by
mainland taxa and not the reverse. This was the case
for the spiny mouse, Acomys minous, which colonized
Crete recently from oriental regions, via anthropo-
genic introductions associated with the important
maritime traffic between Turkey and many eastern
Mediterranean islands since the Bronze Age (Pulak,
1995; Barome et al., 2001). As far as another closely
related species, the wood mouse Apodemus sylvaticus,
is concerned, it seems that the colonists of Crete find
their origin in Greece (J. Michaux, unpubl. data) and
were also introduced recently by man.

Therefore, although our genetic data strongly sug-
gest an ancient colonization of Crete by the broad-
toothed field mouse followed by a secondary invasion
of this insular population in continental Turkey, the
question still remains open about the origin of the
south-western Turkish genetic lineage. The study of a
larger sample from this region, as well as from the
islands of Rhodes and Karpathos, should help to con-
clude definitively about this question.

CONCLUSIONS

The phylogenetic relationships between the different
lineages existing within A. mystacinus inferred from
cytochrome b, D-loop and IRBP sequences show evi-
dence for an important level of genetic divergence
between the animals from the Balkans and those from
Turkey and the near east. This is in favour of a dis-
tinctive specific status for these populations, namely
A. epimelas and A. mystacinus, respectively. Moreover,
the broad-toothed field mice from south-western Tur-
key appear to be closely related to the animals from
Crete but clearly distinct from the populations of the
other oriental regions. This supports a distinct subspe-
cific level (A. m. rhodius) for the insular as well as for
the south-western Turkish broad-toothed field mice.

From a biogeographical point of view, it can be
assumed that one of the late Pliocene or early Pleis-
tocene cooling periods led to the isolation of two main
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groups of A. mystacinus: one in the Balkan region and
the other one in Turkey and the near east (Syria,
Israel). Moreover, it is suggested that the isolation of
one population of A. mystacinus in Crete during one of
the Quaternary ice ages would have led to the emer-
gence of two well-differentiated genetic groups in the
eastern Mediterranean region. One of these was in
Crete and south-western Turkey, after a recent sec-
ondary invasion of the insular population in Turkey;
the other in northern and eastern Turkey as well as in
the near east. If this hypothesis is confirmed, the
broad-toothed field mouse would be a rare example of
current mammalian species that colonized the Medi-
terranean islands naturally without human interven-
tion (Vigne, 1999).
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