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The Hedgehog (Hh) signaling pathway plays an important role in
human development. Abnormal activation of this pathway has
been observed in several types of human cancers, such as the
upper gastro-intestinal tract cancers. However, activation of the
Hh pathway in colorectal cancers is controversial. We analyzed
the expression of the main key members of the Hh pathway in 7
colon cancer cell lines in order to discover whether the pathway is
constitutively active in these cells. We estimated the expression of
SHH, IHH, PTCH, SMO, GLI1, GLI2, GLI3, SUFU and HHIP
genes by RT-PCR. Moreover, Hh ligand, Gli3 and Sufu protein
levels were quantified by western blotting. None of the cell lines
expressed the complete set of Hh pathway members. The ligands
were absent from Colo320 and HCT116 cells, Smo from Colo205,
HT29 and WiDr. GLI1 gene was not expressed in SW480 cells nor
were GLI2/GLI3 in Colo205 or Caco-2 cells. Furthermore the re-
pressive form of Gli3, characteristic of an inactive pathway, was
detected in SW480 and Colo320 cells. Finally treatment of colon
cancer cells with cyclopamine, a specific inhibitor of the Hh path-
way, did not downregulate PTCH and GLI1 genes expression in
the colorectal cells, whereas it did so in PANC1 control cells.
Taken together, these results indicate that the aberrant activation
of the Hh signaling pathway is not common in colorectal cancer
cell lines.
' 2007 Wiley-Liss, Inc.
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The Hedgehog (Hh) signaling pathway is involved in the pat-
terning of various tissues in many species.1 The details of Hh
pathway regulation are still being unravelled. Briefly, 3 vertebrate
genes code for Hh ligands, Sonic- (SHH), Indian- (IHH), and De-
sert- (DHH) Hh. The ligands are processed and secreted and bind
the Patched (Ptch) transmembrane receptor at the surface of
responding cells. Ligand binding overcomes the repressive action
of Ptch on the Smoothened (Smo) receptor and triggers the activa-
tion and nuclear translocation of Gli zinc finger transcription fac-
tors. Vertebrate cells contain 3 GLI genes, GLI -1, -2 and -3. Gli2
and Gli3 proteins possess transcription activation and repression
domains, while Gli1 has only an activation domain. In unstimu-
lated cells Gli2 and Gli3 are cleaved to give rise to a repressive
N-terminal form. Hh pathway activation inhibits Gli2 and Gli3
cleavage and stabilizes the full-length transcription factors that
activate transcription.2,3 It seems likely that Gli2 and Gli3 are the
initial transducers of the Hh signal, necessary for the induction of
GLI1 expression.4–7 Gli1 activates transcription of most of the Hh
pathway target genes.8–10 The transmembrane protein Hhip (Hh
interacting protein) binds Hh ligands and attenuates the sig-
nal.11,12 Recently, Sufu (suppressor of fused) was identified as the
main repressor of the mammalian Hh signaling pathway.13 Sufu
inhibits the Hh signal by binding Gli factors in the cytoplasm and
the nucleus.14

The GLI1, PTCH and HHIP genes are pathway members and
target genes, their expression being upregulated when the signal is
triggered.11,15,16

The Hh pathway is involved in gastro-intestinal tract develop-
ment, as documented by the phenotype of mice where genes cod-
ing for Hh pathway members have been inactivated. Indeed, colon
malformations have been observed in Shh–/–, Ihh–/–, Gli2–/– and
Gli3–/– mice.17 Organization in crypts has been shown to be lost in
the colonic epithelium of Ihh–/– mice.18,19 Moreover, in a rat
model, Ihh has been shown to restrict the activity of the WNT/

b-catenin pathway to cells located at the base of the crypts and
thus maintain the differentiation of colonocytes at the tip of the
crypts.19

The Hh pathway is constitutively activated in some types of
human cancers.20 Loss of function mutations of PTCH or SUFU
genes, and gain of function mutations of SMO gene have been
shown to be responsible for ligand independent activation of the
pathway in basal cell carcinoma, medulloblastoma, or rhabdomyo-
sarcoma. In most other tumor types the pathway has been shown
to be activated by ligand overexpression.21

Several studies have aimed at understanding the role of the Hh
pathway in colon cancer, but their results have been conflicting.
Rare mutations of PTCH and SMO genes have been detected in
this cancer type but they do not seem to affect the activity of the
proteins.22,23 The expression of a limited number of Hh pathway
members, as well as the response of colon cancer cells to treat-
ment with the Smo inhibitor cyclopamine, did not allow to lead to
a conclusion concerning the activation of the pathway in this tu-
mor type.17,24

Our first goal was thus to find out whether a thorough analysis
of the expression of the members of the Hh pathway in colon can-
cer cells could help in coming to a conclusion on the ligand de-
pendent activation of the pathway in colorectal cancer cell lines.
So, we estimated the expression of Shh, Ihh, Ptch, Smo, Gli1, Gli2
and Gli3, which transmit the signal. We also analysed the expres-
sion of the negative regulators Sufu and Hhip.

Seven colon cancer cell lines were included in our study. None
of our cell lines expressed all the key members of the Hh pathway.
We then verified whether cyclopamine modulated the expression
of PTCH and GLI1 genes. Ptch and Gli1 transcripts levels were
not significantly altered in cyclopamine treated colon cancer cells,
in contrast with the cyclopamine responsive PANC cells. Our
results thus suggest that Hh pathway activation is not a common
event in colon cancer cell lines.

Material and methods

Cell culture

Colo205, Colo320, HT29 cell lines were purchased from Amer-
ican Type Culture Collection (Manassas, VA). WiDr, Caco-2,
SW480, HCT116, and 293T cells were provided by Dr V. Bours
(University of Liege, Belgium). PANC-1 cells were a gift from
Dr. Kiss (University of Brussels, Belgium). Colo205, Colo320
cells were grown in RPMI1640, HT29 and HCT116 in
McCoy’5A, WiDr in EMEM, SW480 in Leibovitz L-15, PANC1,
and 293T in DMEM media. Culture media were supplemented
with 10% FBS, 2 mM glutamine, 1 lg/ml penicillin/streptomycin.
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Caco-2 cells were grown in EMEM supplemented with 20% FBS,
2 mM glutamine, 1 lg/ml penicillin/streptomycin, 1 mM sodium
pyruvate, 1.5 g/l sodium bicarbonate and 0.1 mM nonessential
amino acids (Cambrex, Verviers, Belgium).

RNA extraction and semi-quantitative RT-PCR

Total RNA was extracted using the Tripure reagent (Roche)
according to the manufacturer’s instructions. To avoid genomic
DNA contamination, RNA (20 lg) was treated with 20 U RNase-
free DNaseI (Roche) at 37�C for 30 min, phenol–chloroform
extracted and ethanol precipitated.

Semi-quantitative RT-PCR was performed in 2 steps. First, 2
lg of total RNA were reverse transcribed (RT) with 10 U of
reverse transcriptase (AMV-RT, Promega, Madison WI), 0.8 lM
specific primer, 0.4 mM dNTPs (Roche), 2 U RNase inhibitor
(Promega) for 1 hr at 48�C. Next, PCR amplification was per-
formed on 1/25th of the RT reaction with 2.5 U of AmpliTaq
DNA polymerase (Applied Biosystems, Foster City, Ca), 0.2 lM
of each primer, and 0.4 mM of dNTPs in a thermocycler (Perkin
Elmer). Sequences of the primers used in this study are presented
in Table I. Each RT-PCR product (10 ll) was analyzed by electro-
phoresis through a 1% agarose gel. PCR amplification signals
were quantified by densitometric scanning using Quantity One
(Bio-Rad).

Western blot analysis and antibodies

Cells cultured in 58 cm2 Petri dishes were washed twice, col-
lected in 1 ml of PBS and centrifuged. The cellular pellet was sus-
pended in 400 ll of Buffer A (10 mM HEPES pH 7.9, 10 mM
KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT and 0.5 mM
PMSF) and incubated 15 min on ice. Cytoplasmic and nuclear pro-
teins were extracted from cells lysed with NP40 (1% final concen-
tration). After centrifugation, the supernatant containing mainly
cytoplasmic proteins was collected. Nuclei from the pellet were
lysed with Buffer C (20 mM HEPES pH7.9, 0.5 M NaCl, 1 mM
EDTA, 1 mM EGTA, 1 mM DTT and 1 mM PMSF). Total pro-
teins were extracted from cells lysed with 0.5% SDS. Protein con-
centrations were measured using the BCA protein assay method
(Pierce, Rockford, IL). Either thirty micrograms of cytoplasmic
and nuclear proteins or 50 lg of total cellular proteins were ana-
lysed by SDS-PAGE.

Secreted proteins were precipitated from conditioned media of
80% confluent cells grown in serum-free medium for 5 days. Pro-
teins from 7 ml of conditioned media were acetone precipitated
(final concentration 75%) and collected by centrifugation at 9000g
for 15 min. The pellet was dissolved in 100 ll of SB buffer (SDS
0.33% (w/v), b-mercaptoethanol 0.83% (v/v), Tris 11.25 mM
pH6.8, glycerol 1.66% (w/v) and bromophenol blue). Forty micro-
liters were analysed by SDS-PAGE.

Proteins extracted from cells and conditioned media were sep-
arated on a 6% (Gli3) or 12% (Hh and Sufu) SDS-PAGE and
transferred to PVDF membrane (Millipore, Billerica, MA).
Membranes were blocked overnight in TBST buffer (Tris 50 mM
pH 8.0, NaCl 150 mM, Tween20 0.1%) containing 5% low fat
milk. They were then incubated for 2 hr with the following pri-

mary antibodies diluted in TBST buffer/5% low fat milk: 1/500
rabbit anti-Hh antibody (H-160, Santa Cruz Biotechnology,
Santa Cruz, Ca), 1/500 rabbit anti-Gli3 (H-280, Santa Cruz), 1/
500 goat anti-Sufu (C-15, Santa Cruz) 1/10,000 mouse anti-actin
(MP biomedicals, Irvine, CA), 1/1,000 goat anti-Ku70 (Santa
Cruz). Membranes were washed and incubated for 1 hr with the
following secondary antibodies diluted in TBST buffer contain-
ing 5% milk: 1/2,000 goat anti-rabbit (Shh, Gli3), 1/2,000 goat
anti-mouse and 1/1,000 (Sufu) or 1/4,000 (Ku70) rabbit anti-goat
(DAKO, Carpinteria, CA). Signals were revealed with enhance
chemiluminescence reagent (Amersham Biosciences, Little
Chalfont, UK).

Transfection experiments

Gli3 cDNA was a kind gift from Dr B. Vogelstein. The Gli3
cDNA extracted with XbaI/SalI restriction enzymes was inserted
in the XhoI/NheI sites of the pREP4 expression vector (Invitrogen,
Paisley UK). Approximately 2 3 106 cells were seeded in 58 cm2

Petri dishes 24 hr before transfection. PREP4-Gli3 expression vec-
tor (3 lg) was transfected with Fugene6 reagent (Roche) accord-
ing to the manufacturer’s recommendation. Nuclear proteins were
extracted 24 hr later and analyzed as described above.

Cyclopamine and tomatidine treatment

Cyclopamine and tomatidine (Toronto Research Chemicals,
North York, Ontario, CA) were dissolved in DMSO. About 1 to 2
3 106 cells were seeded in 21 cm2 Petri dishes in medium supple-
mented with 10% FBS. Twenty four hours later the medium was
replaced by media containing 10 lM of cyclopamine, tomatidine
or DMSO in 0.5% serum. After 24 hr the culture media were
changed and the cells were harvested a further 24 hr later. Total
RNA was extracted as described above. RT-PCR was performed
as described above except that RT priming was performed with
random hexamers (3 lg).

Results

The Hh pathway is not activated ligand dependently in colon
cancer cells

Firstly, we analyzed the levels of the cellular and the secreted
Hh protein by western blotting. Hh proteins are synthesized as 45
kDa precursors that are cleaved to give rise to the secreted 20 kDa
factor. High levels of the 20 kDa processed Hh protein were
detected in the cytoplasm (Fig. 1a) and the conditioned media
(Fig. 1b) of HT29, WiDr and Caco-2 cells. Low levels of the
ligand were detected in the cytoplasm and the conditioned media
of Colo205 and SW480 cells (Figs. 1a and 1b). No Hh proteins
were detected in Colo320 and HCT116 cells (Figs. 1a and 1b).
The antibody does not discriminate between the different Hh
ligands. To know which factor is expressed in the colon cancer
cells we identified the Hh transcripts by specific RT-PCR. We
focused our interest on Ihh and Shh, which seem to be the only Hh
ligands expressed in the colon. Shh mRNA was present in all the
cell lines, while Ihh transcripts were only detected in HT-29,
WiDr and Caco-2 cells (Fig. 1c). Interestingly, the Ihh mRNA was
present in cells expressing high protein levels.

TABLE I – SEQUENCES OF THE PRIMERS USED IN THIS STUDY. THE PRIMERS WITHOUT A REFERENCE WERE DESIGNED IN THE LABORATORY

5 Gene name Forward primer Reverse primer Reference

Ihh CGGCTGACAATCACACGGAGC GAAGCTGCCCTCTTCTAGCAG
Shh GACGACGGCGCCAAGAAGGT ATGAGAATGGTGCCCTGGGC
Ptch CATCAACTGGAACGAGGACA AGGGGCTTGTAAAACAGCAG
Smo CTGGTGTGGTTTGGTTTGTG TGGTCTCGTTGATCTTGCTG
Gli1 CGGGGTCTCAAACTGCCCAGCTT GGCTGGGTCACTGGCCCTC 25

Gli2 CTAGCATCAGCGAGAACGTG AAAGCCTAACTGGCATCCTC
Gli3 CAGATGTGACGGAGAAAGCC GATGATAGTATTCTGCTGGG
Sufu CCAATCAACCCTCAGCGGCAGAATG GTAGGTGAGAAAGAGGGCTGTC 26

Hhip AAAACAGATCATCAGCCAGAA TAAATGCCCATTGGAATAGAAT
Cph TCTCCTTTGAGCTGTTTGCAGAC AAACTTAACTCTGCAATCCAGC
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According to these results the Hh pathway could be activated
through an autocrine mechanism in HT29, WiDr, Caco-2,
Colo205 and SW480 cells.

To find out whether the colon carcinoma cells are able to
respond to the Hh factors they produce, we evaluated the expres-
sion levels of Ptch and Smo receptors, and the 3 Gli transcription
factors. Ptch transcripts were detected in every cell line, while
Smo mRNA was present in Colo320, HCT116, SW480 and Caco-
2 cells. The pattern of the expression of the 3 Gli transcription fac-
tors varied according to the cell line. Colo320 was the only cell
line expressing all 3 Gli transcription factors. A strong signal cor-
responding to Gli1 mRNA and a weak Gli2 signal was detected in
HCT116, HT29 and WiDr cells. Both Gli2 and Gli3 were present
in SW480 cells, which in contrast did not express Gli1. Finally
Caco2 and Colo205 cells expressed only very low levels of Gli1
(Fig. 2).

The Hh pathway regulates differentially the activity of the 3 Gli
transcription factors. Hh stimulates GLI1 gene transcription, while
it inhibits the cleavage of Gli2 and Gli3 proteins. We analysed by
western blotting the Gli3 protein present in our colorectal cancer
cells. 293T cells transfected with a Gli3 expression vector served
as positive control for this experiment. Nuclear proteins extracted
from these cells were loaded on the same gel as the proteins
extracted from the colon cancer cells, in order to distinguish the
full length (Gli3FL) and the processed (Gli3R) Gli3. The Gli3 spe-

cific antibody revealed 3 bands of 190, 95 and 83 kDa in nuclear
proteins from the parental 293T cells (Fig. 3). Only the intensity
of the 190-kDa and the 83-kDa bands was greatly increased in
Gli3 overexpressing 293T cells, indicating that these bands corre-
spond respectively to Gli3FL and Gli3R. Both Gli3FL and Gli3R
were detected in SW480 and Colo320 nuclear proteins, while Gli3
was not detected in the other cell lines, in agreement with the RT-
PCR results.

Finally, we detected Hhip mRNA in Colo320 and SW480 cells,
the only cells that also express the GLI3 gene (Fig. 2).

These results thus suggest that no ligand dependent activation
of the Hh pathway occurred in the colon cancer cells we study.
Indeed, in the absence of ligands, the pathway cannot be acti-
vated in HCT116 and Colo320 cells. The absence of Smo does
not allow the activation of the pathway in Colo205, HT29 and
WiDr cells. The low level of Gli1 added to the absence of Gli2
and Gli3 in Caco2 cells and the absence of Gli1 from SW480
cells is a further indication that, in these cells, the pathway is
probably also inactive. However, the Hh pathway could be acti-
vated downstream of the ligand, by mutations of Ptch, Smo or
Sufu or by Smo activation through endogenous molecules. We
tested the possibility of ligand independent activation of the Hh
pathway in our colon cancer cell lines by Sufu mutation and by
Smo activation.

The Hh pathway is not activated by ligand independent
mechanisms in colon cancer cells

We first identified Sufu transcripts and protein in our colon
cancer cells. Indeed, the absence of the protein or the production
of truncated proteins due to SUFU gene mutations has been
shown to be responsible for the pathway activation in some can-
cers.22,23,27,28 We detected Sufu transcripts in the 7 colon cancer
cell lines we analysed (Fig. 4). Moreover, the 54 kDa Sufu protein
was present in 6 out of 7 cell lines. In Colo205 a shorter 50 kDa
protein was detected. Next, we measured the modulation of the
expression of Hh target genes in cyclopamine treated cells.
Cyclopamine, an alkaloid from Veratrum californicum, binds and
inactivates Smo and inhibits the pathway.29 As positive control,
we used PANC1 cyclopamine responsive pancreas cancer cells.30

These cells express Shh, Ptch, Smo, Gli1, Gli2, Hhip and Sufu
transcripts (Fig. 5a). As a negative control the cells were treated
either with tomatidine, an alkaloid structurally close to cyclo-

FIGURE 2 – Ptch, Smo, Gli1, Gli2, Gli3 and Hhip mRNA levels in
the colorectal cancer cell lines. Two micrograms of total RNA were
analysed by RT-PCR.

FIGURE 3 – Gli3 protein levels and cleavage status in colorectal
cancer cells. Nuclear proteins (40 lg) extracted from the colorectal
cancer cells, and from parental 293T cells and 293T cells transfected
with a Gli3 expression vector (293T-Gli3) were analyzed by western
blotting with an antibody recognizing the N-terminal part of the pro-
tein. The antibody reveals both the 190 kDa full-lengh protein
(Gli3FL) and the 83 kDa cleaved repressor protein (Gli3R). Arrows
indicate positions of Gli3FL and Gli3R proteins. Ku70 was used as a
loading control.

FIGURE 1 – Hh protein and mRNA levels in colorectal cancer cell
lines. (a) Detection by western bloting of the 20 kDa mature Hh form
in 30 lg of cytoplasmic protein extracts. Actin was used as loading
control. (b) Detection of the mature Hh proteins in conditioned media
with an antibody recognizing the 3 Hh forms. (c) Detection of Ihh and
Shh transcripts by RT-PCR in the colon cancer cells using primer
pairs that discriminate between these Hh transcripts. Cyclophilin
(Cph) mRNA was amplified as control.
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pamine but inactive on the Hh pathway, or with the solvent
(DMSO).

Cyclopamine downregulated Ptch transcript levels in PANC
cells, in comparison with the expression in tomatidine treated cells
(Fig. 5b). In contrast, no significant modifications of the Ptch
mRNA level were observed in the 7 colorectal cancer cells after
cyclopamine treatement. Cyclopamine induced a sharp decrease in
the Gli1 mRNA level in PANC cells (Fig. 5c). However, Gli1
mRNA levels were not significantly modified in cyclopamine
treated colon cancer cells in comparison with control cells. Sur-
prisingly, tomatidine upregulated Gli1 expression in Colo320 cells
(Fig. 5c). Cyclopamine did not affect Hhip mRNA levels in any of
the cells we tested, including the PANC cell line (data not shown).

Our results thus suggest that in the colon cancer cells we exam-
ined the Hh pathway is not activated by Sufu mutation or by aber-
rant activation of Smo.

Taken together, our results suggest that the constitutive activa-
tion of the Hh signalling pathway is not common in colon cancer
cell lines.

Discussion

The published results on Hh pathway activation in colon cancer,
based on the expression of some Hh target genes and on the
response to cyclopamine treatment or the activity of a Gli respon-
sive reporter vector, are conflicting. We wanted to discover
whether a thorough analysis of the expression of the main key
members of the Hh signaling pathway could help in understanding
the activation status in colon cancer cell lines. Indeed, we think
that it is important to define a reliable marker or combination of
markers for Hh signal activity. This could then be applied in the
identification of the human cancers that would benefit from a ther-
apy targeting this pathway. To this end, we estimated the levels of
Shh, Ihh, Ptch, Smo, Gli1, Gli2, Gli3, Sufu and Hhip transcripts
and Hh, Gli3 and Sufu proteins in 7 cell lines derived from differ-
ent grade colon cancers. None of the cell lines expressed all the
key members required for the pathway’s activation. Moreover,
cyclopamine did not modulate the expression levels of PTCH and
GLI1 genes, further suggesting that the Hh pathway is not acti-
vated in the colon cancer cell lines we analyzed.

The cell lines we used have been tested in other studies for the
expression of some Hh pathway members.23,30,31 Concordant
results were obtained for the expression of some pathway mem-
bers and differences were noticed for others. In our opinion these
discrepancies might be the consequences of epigenetic modifica-
tions to gene expression. Indeed, Ihh expression has been shown
to be induced in HT29 cells by sodium butyrate, a HDAC inhibi-
tor.19 Moreover, Smo has been shown to be re-expressed upon
treatment of colon cancer cells with a DNA methylation and a
HDAC inhibitor.23 Discrepancies were observed between our
results and some published data for PTCH and GLI1 genes expres-

sion in colon cancer cell lines. They are important since the
expression of these genes is used as marker of Hh pathway activa-
tion. However, PTCH expression is not controlled only by the Hh
signal. PTCH gene contains at least 3 alternative 50 exons,32 each
with its own promoter, but only 1 contains a Gli binding site and
responds to Hh pathway activation.33 Moreover, Berman et al.30

detected the Gli1 transcript in some colon cancer cells, although
the transcription factor did not activate a Gli dependent reporter
vector.

HHIP gene expression is increased in Hh stimulated cells.
HHIP was expressed in 2 of our cell lines, Colo205 and SW480.
However, the case of Hhip is complex, because besides being a
target gene it is a powerful inhibitor of the pathway as shown in
transgenic mice34 and in cell lines.12 Hhip downregulation has
been shown to increase the Hh signal in some pancreatic cancer
cell lines.35 HHIP expression has been shown to be reduced in 8/
10 primary human colon cancers, when compared with the normal
tissue from the same patient.12 The contribution of Hhip to the in-
hibition of the Hh pathway in colon cancer cells will have to be
assessed experimentally.

The presence of the full-length Gli2 and Gli3 proteins, but not
the transcript or total protein levels indicates the activation of the
pathway. The absence of Gli2 probably impairs the transmission
of the signal in Caco2 and Colo205 cells. We cannot propose a
role for Gli2 in cells where the transcript was present since we
could not examine the cleavage status of the protein. In contrast,
we were able to show the presence of the repressive Gli3R in 2
cell lines. To our knowledge this is the first report of the presence
of this repressor in colon cancer cells. Interestingly, mice engi-
neered to express a C-terminally truncated Gli3 protein have been
shown to present gastro-intestinal abnormalities similar to those of
Shh–/– or Ihh–/– animals.36 The role of these transcription factors
in colon cancer should be studied further.

Our expression results do not rule out the possibility of ligand
independent activation of the Hh pathway in some cell lines. We
examined the possibility of ligand independent aberrant activa-
tion of the Hh pathway due to the absence of SUFU or the
expression of truncated SUFU protein as well as by constitutive
Smo activation.

Sufu transcripts were present in every colon cancer cell line we
tested. More importantly, the full-length protein was present in 6

FIGURE 4 – Sufu mRNA and protein expression in colorectal cancer
cell lines. Sufu transcripts were amplified by RT-PCR performed on 2
lg of total RNA. Sufu protein was detected in 50 lg of total protein
extracts with an antibody recognizing the 54 kDa Sufu variant. Ku70
was used as a control.

FIGURE 5 – Effect of cyclopamine on the expression of PTCH and
GLI1 genes in colorectal cancer cell lines. (a) Expression of Hedgehog
pathway members in PANC cell line. (b and c) Ptch (b) and Gli1 (c)
transcripts levels in response to DMSO, tomatidine (10 lM) or
cyclopamine (10 lM) treatments. Expression of Ptch and Gli1 was
analyzed by semi-quantitative RT-PCR. PCR signals were quantified
by densitometry. Values were normalized to those of the Cph signal.
Values represent mean6 S.D. of 3 independent experiments.

2625HEDGEHOG SIGNALING PATHWAY



of the 7 cell lines. The mechanism responsible for the shorter pro-
tein production in Colo205 cells will have to be determined. Sufu
has been shown to inhibit the activity of all 3 Gli transcription fac-
tors. Sufu mutations lead to increased Gli activity and target genes
expression in different cancer types.28,37 Although most mutations
observed in cancer cells give rise to shorter proteins, we cannot
rule out the presence mutations which would modify the activity
of the protein. Further work is thus needed to ascertain the role of
Sufu in colon cancer cell lines.

Smo can be activated independently of Hh by mutation and by
endogenous metabolites.38 Cyclopamine inhibits Smo activated by
these mechanisms. We did not detect significant differences in the
expression of the PTCH and GLI1 genes between cyclopamine
and tomatidine treated colon cancer cells. In contrast, both Ptch
and Gli1 transcript levels were downregulated in cyclopamine but
not in tomatidine treated PANC cells used as positive control. Our
results agree with those of Berman et al. who did not observe a
modulation of PTCH expression in cyclopamine treated HCT116
cells, and the drug did not increase the apoptosis of these cells in
comparison with tomatidine.30 In contrast, cyclopamine increases
apoptosis rate of colon cancer cells according to Qualtrough
et al.31 However, these authors did not use tomatidine to control
for possible non specific effects of cyclopamine.

Cell lines might not be good models for the assessment of Hh
pathway activity.21 However, the published results on primary
human colon cancers are also confusing. Some authors,39,40 but
not others22 detected increased levels of Hh pathway members

during colon cancer progression. Moreover, the expression of Ihh
and Gli1 were shown to be decreased during colon cancer progres-
sion in recent publications.19,41

Hh pathway activity might be involved in the progression of co-
lon cancer in vivo by mediating the cross-talk between the cancer-
ous epithelial cells and the cells from the tumor environment.
Also, we cannot exclude that the Hh pathway is activated in a cel-
lular subpopulation, for instance in cancer stem cells. It would be
interesting to re-examine this in the recently identified colon can-
cer stem cells.42,43

Our results and the data from the literature rise the question of
what is a reliable marker of Hh pathway status in cells were the
pathway is not manipulated. Identification of post-transcriptional
modifications, such as processing, sub-cellular localization or
phosphorylation of some Hh pathway members might predict
more accurately the Hh pathway activity than expression levels.
Clearly more work is needed to understand the possible involve-
ment of this pathway in colon cancer before it can be considered
as a suitable therapeutic target.
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