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Decalcifying odontocete ears following a routine protocol with RDO®
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The study of the organ of Corti is essential to assess the impact of underwater noise on cetaceans. While
classical histology techniques (including EDTA decalcification) have been previously considered, the process
is time consuming. Independently from the histological technique, one of the challenging steps after
extraction and fixation of the samples is to decalcify the bone envelope to access the cochlea without
damaging the soft tissues. Here, we propose to use a fast commercial decalcifier (RDO®). 93 ears from 11
different odontocetes species stranded in the Mediterranean, Spanish North Atlantic and North Sea were
used to precisely determine the decalcification time. Depending on the tympanic–periotic volume of the
species, the decalcification time ranged from several hours to a few days, allowing a subsequently faster
observation of the cochlear structures through routine microscope techniques.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

While there is an increasing pressure of human impacts on the
oceans, very little is known about the effect of underwater noise on
marine organisms. Because of their vital dependence on acoustic
information and their role in the food chain as top predators, the study
of the effects of noise on cetaceans (Mammalia, Cetacea) has recently
become ecologically essential (Richardson et al., 1995). Although
some of these effects can be found in organs not directly related to the
acoustic pathways (Jepson et al., 2003), other lesions are expected to
affect the acoustic pathways, particularly the organ of Corti and its
associated hair cells (Lurie et al., 1944). The examination of these
structures implies accessing fresh samples and determining possible
correlations between a pathological change of cochlea morphology
and a sound exposure. Moreover, basic morphological and compara-
tive descriptions of the cetacean ears are still lacking, probably
because of the difficulty in obtaining a suitable material, and a reliable
protocol for analysis.

A detailed description of the cochlea morphology was presented
for Tursiops truncatus (Wever et al., 1971a,b,c) and studies of the
basilar membrane and osseus spiral laminae in different odontocete
species have been conducted to compare their hearing capabilities
(Ketten and Wartzok, 1990; Ketten, 1992, 1994). Nevertheless, much
work is still needed to describe the morphology of other species
hearing structures.
+34 93 896 72 01.
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The middle and inner ear are enclosed by the tympanic and
periotic bones, respectively, forming the tympanic–periotic (T-P)
complex. The T-P complex, which is suspended through ligaments
outside the skull in a peribullar cavity, is surrounded by air filled
sinuses, allowing the acoustic isolation from the skull (Reysenbach de
Haan, 1957; Fleischer, 1976; Ketten and Wartzok, 1990; Nummela
et al., 1999b). While some authors expressed doubts about the
functionality of the middle ear (Fraser and Purves, 1954; Reysenbach
de Haan, 1957; McCormick et al., 1970; Fleisher, 1978; Ridgway et al.,
1997) others presented morphological evidences supporting the
active role of the middle ear in sound transmission (Nummela et al.,
1999a,b; Hemila et al., 1999, 2001; Ketten, 2000; Morell et al., 2007).

Despite of these previous findings in a limited number of cetacean
species, little data are available to comparatively describe inner ear
structures. Stranding events may represent a unique opportunity to
help building knowledge on the morphology of cetacean hearing
organs and their potential sensitivity when exposed to noise.

One of the challenging steps after extraction and fixation of the ear
samples is to decalcify the very dense bone envelope (T-P complex) to
access the cochlea without damaging the soft tissues. While classical
histology techniques (including EDTA decalcification) have been
previously considered, the process is time consuming (Ketten,
1984). However, a rapid assessment of possible lesions in the Organ
of Corti after sound exposure, in addition to allow basic morphological
and comparative studies at larger scales, is crucial for decision making
when facing a conservation problem.

We chose to use a fast commercial decalcifier (RDO®), based on
hydrochloric acid, to shorten the decalcification times observed with
othermethods. Previous studies compared the effects of HCl and EDTA
on the mouse mandible tissue and concluded that, morphologically,
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Table 1
Total number of ears used for the study to establish the decalcification protocol and to determine the decalcification times for each species.

Species Number of ears Number of animals Conservat1on state Protocol

Phocoena phocoena 48 27 37 ears of state 2 Freezing+defreezing+
fixation with 10% formalin7 ears of state 3

4 ears unknown state
Tursiopstruncatus 8 8 1 ear of state 1 Fixation with 10% formalin

3 ears of state 2
2 ears of state 3
1 ear of state 5
1 ear unknown state

Stenella frontalis 13 7 4 ears of state 2 Fixation with 10% formalin
4 ears of state 3
4 ears of state 4
1 ear unknown state

Stenella coeruleoalba 13 8 5 ears of state 1 Fixation with 10% formalin
5 ears of state 2
3 ears of state 5

Delphinus delphis 2 2 1 ear of state 2 Fixation with 10% formalin
1 ear of state 5

Kogia simus 2 2 1 ear of state 2 Fixation with 10% formalin
1 ear of state 5

Kogia breviceps 2 2 1 ear of state 3 Fixation with 10% formalin
1 ear of state 5

Steno bredanensis 2 2 1 ear of state 2 Fixation with 10% formalin
1 ear of state 3

Lagenodelphis hosei 1 1 1 ear of state 2 Fixation with 10% formalin
Globicephala macrorhynchus 1 1 1 ear of state 4 Fixation with 10% formalin
Globicephala melas 1 1 1 ear of unknown state Fixation with 10% formalin

The preservation state is expressed as a scale from 1 (very fresh) to 5 (autolytic).

Table 2
Decalcification times of the periotic bones analyzed during the study.

Species Mean Min–max n N

Phocoena phocoena 26h 39′ 26h–28h 47′ 11 48
Tursiops truncatus 66h 48′ 65h 51′–67h 44′ 2 8
Stenella frontalis 45h 54′ 41h 40′–49h 27′ 5 13
Stenella coeruleoalba 45h 39′ 40h 07′–49h 23′ 8 13
Delphinus delphis 52h 02′ 1 2
Kogia simus 32h 16′ 1 2
Kogià breviceps 32h 03′ 31h 27′–32h 39′ 2 2
Steno bredanensis 65h 50′ 59h 13′–72h 27′ 2 2
Lagenodelphis hosei 30h 10′ 1 1
Globicephala macrorhynchus 87h 15′ 1 1
Globicephala melas 88h 58′ 1 1

Mean; Min–max, minimum and maximum decalcification time of periotic bones for
each species; n, number of samples used to determine the final decalcification time,
with a 50% RDO® and 25% RDO® after 24 h routine protocol; N, total number of samples
used to establish the decalcification protocol.
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both decalcifiers preserved well the cellular structures (Shibata et al.,
2000). However, for DNA or RNA studies the use of HCl for
decalcification was not suited, while EDTA gave better results (Alers
et al., 1999; Shibata et al., 2000; Moore et al., 2002). Callis and Sterchi
(1998), when comparing 25%, 50% RDO® and EDTA pH 3.2, 7.0, 10.3
amongst other decalcifier agents, concluded that “all types of
decalcification solutions and methods will produce excellent results
if carefully watched”.

Here, we propose to test the inclusion of RDO® in a standard
protocol that will allow the rapid and direct observation of inner ear
structures with microscopy techniques and determine the correlation
between the periotic decalcification time and the tympanic–periotic
volume.

2. Materials and methods

Ninety three (93) ears from 11 different odontocetes species
stranded in the Mediterranean Sea, Spanish North Atlantic and North
Sea have been extracted. Specifically, the species processed were:
Phocoena phocoena (n=48), Stenella coeruleoalba (n=13), Stenella
frontalis (n=13), T. truncatus (n=8), Delphinus delphis (n=2), Kogia
simus (n=2), Kogia breviceps (n=2), Globicephala macrorhynchus
(n=1), Globicephala melas (n=1), Steno bredanensis (n=2) and La-
genodelphis hosei (n=1, Table 2).

After extraction, the samples were fixed with 10% buffered
formaline and used subsequently to precisely determine the decalci-
fication time with different concentrations of RDO®.

All the ears were fixed using this protocol except in three cases:

– 48 P. phocoena ears were frozen and defrosted before being fixed in
10% buffered formalin

– One S. coeruleoalba ear was fixed in 2.5% glutaraldehyde with a
phosphate buffer 0.1 M

– One S. coeruleoalba ear was fixed in 2.5% glutaraldehyde with 0.5%
paraformaldehyde and a phosphate buffer 0.1 M (Table 1).

RDO® is a rapid decalcifier based on hydrochloric acid (Apex
Engineering Products Corporation, Aurora, Illinois, USA). Specifically
we tried with 100% RDO®, 80% RDO® (diluted with 80% ethanol), 75%
RDO® (diluted with distilled water) and 50% RDO® (diluted with
distilled water and changing the media after 24 h by or 50% RDO® or
25% RDO®, also diluted with distilled water).

Because the protocol assumes that there is no need to decalcify
completely the periotic bone to access the Organ of Corti cells through
scanning electron microscopy (SEM), the analysis was based on the
time range necessary to uncover the vestibular scalae and the stria
vascularis of the cochlea. This is what we have called the endpoint,
which represents, in the frame of this study, the minimum necessary
time of decalcification. Therefore, techniques like X-ray observation or
chemical tests (e.g. using ammonium oxalate/ammonium hydroxide
to precipitate calcium as calcium oxalate) were not used, and a
mechanical dissection was necessary to establish the decalcification
endpoint.

3. Results

Preliminary decalcification experiments were conducted with
100% RDO® on samples from P. phocoena (29% of N=total number



Fig. 1. Decalcification process of a harbor porpoise periotic bone using 50% RDO® and 25% RDO® after 24 h. The decalcification time is shown below each picture. In this example, the
vestibular scalae and the stria vascularis of the cochlea were uncovered after 26 h.
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of samples per species, see Table 2), T. truncatus (62% of N) and S.
coeruleoalba (8% ofN). Despite the fact that decalcification timewith this
RDO® concentration was considerably reduced (from 68% to 84%
depending on the species) compared to the results shown below with
50%, 75%, and 80% RDO® concentration, the determination of the
endpoint times resulted less accurate thus leading to the possibility of
tissue overdecalcification and the introduction of consecutive artefacts.

More accurate decalcifying endpoint times were obtained using
50% RDO® (diluted with distilled water) and by changing the medium
and the concentration (25% RDO® diluted with distilled water) after
24 h than with the other dilutions:

– 100% RDO®
– 80% RDO® diluted with 80% ethanol
– 75% RDO® diluted with distilled water
Fig. 2. Correlation between the periotic decalcification time with: A) the tympanic–periotic
2007; r=0.891, n=34) when data were not available. □ Phocoena phocoena, Δ Tursiops trun
+ Steno bredanensis, × Lagenodelphis hosei, ● Globicephala melas, ♦ Globicephala macrorhyn
– 50% RDO® diluted with distilled water and changing the media
after 24 h by 50% RDO®.

The dilution of 50% RDO® and 25% RDO® after 24 h, allowed
slowing down the decalcification at the end of the process and
stopping it accordingly. The decalcification times are shown in Fig. 1.

From the total samples that were analyzed, the mean and the
minimum and maximum values of the decalcification time of all
species studied following the best decalcification protocol (that was
50% RDO® for the first 24 h and 25% RDO® for the rest of the time) is
shown in Table 2.

A highly linear correlation is observed comparing the periotic
decalcification times with:

– the tympanic–periotic complex volumes extracted from previous
CT scans (Morell et al., 2007) (r=0.935, n=12, Fig. 2A) or,
volume (r=0.935, n=12) and B) the mean of T-P volume for the species (Morell et al.,
catus, Ж Stenella frontalis, ○ Stenella coeruleoalba, – Delphinus delphis, ◊ Kogia breviceps,
chus.
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– the average of the tympanic–periotic complex volumes for each
species (Morell et al., 2007) when data were not available
(r=0.891, n=34, Fig. 2B).

The remaining specimens (“N–n” samples in Table 2) were used to
adjust the protocol (tests with different volumes, changes of media
following different periods of time or overdecalcification, all conduct-
ing to unusable results) with different RDO® dilutions (100% RDO®,
50% RDO® diluted with distilled water and changing the media after
24 h by 50% RDO®, 75% RDO® diluted with distilled water and 80%
RDO® diluted with 80% ethanol).

4. Discussion and conclusion

Following a routine protocol with a specific dilution of RDO®, the
odontocete ear decalcification time ranged from several hours to a few
days (Table 2), depending on the volume of the periotic bone, that, in
turn, is highly correlated with the T-P complex volume (Morell et al.,
2007). This reduced the decalcification time from a few months using
EDTA (Ketten, 1984) to a maximum of a week for the largest T-P
complexes. The high correlation between the T-P complex bone
volume and the periotic decalcification time should allow a better
approximation to the accurate decalcification time to analyze
odontocete ears in the future (Fig. 2).

The decalcification protocol developed for this study was adjusted
to perform an examination of the Organ of Corti's cells through
scanning electron microscopy (SEM) and establish a fast diagnosis of
possible lesions in fresh material. The respective decalcification time
values may need to be increased if a complete decalcification of the
periotic bone is needed for routine histology or transmission electron
microscopy techniques.

In conclusion, the use of RDO® decreased the decalcification time
of cetacean ear bones, thus allowing comparative morphological
studies with a greater number of samples. Accordingly this method
could represent a fast diagnostic tool to analyse possible alterations of
the Organ of Corti, for example induced by sound exposure.
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