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Abstract

We study the effect of using different observed quantities (oscillation frequencies, binarity,
interferometric radius) and the impact of their accuracy on constraining the uncertainities
of global free stellar parameters (i.e. the mass, the age etc.). We use the Singular Value
Decomposition (SVD) formalism to analyse the behavior of the x? fitting function around its
minimum. This method relates the errors in observed quantities to the precision in the model
parameters. We apply this tool to the a Cen A for which, seismic, binarity and interferometric
properties are known with high accuracy. We determine how changes of the accuracy of the
observable constraints affect the precision obtained on the global stellar parameters.
Individual Objects: « Cen A

The Method

Given a set of n measurements yops i (€.8. Tefr, L, Av , etc.) with associated error bars and a
set of m free parameters x; (e.g. 7 (age), a, M, etc.), we first determine the reference model
(RM) which minimizes the x? fitting function. The linear transformation of the model (yzhe,)
around the minimum of the reference set of parameters (xjo) produces a derivative matrix
which is the so-called design matrix D. This matrix relates small changes in the parameters
to corresponding changes in the observables. This minimisation problem is most conveniently
solved by using the SVD method as D may be decomposed as Dpxm = UnxmWmxmVmxm-
U and V are orthonormal and W is a diagonal matrix. By studying the behaviour of x?2
around its minimum using the SVD method, we analyse the sensitivity of the observables to
the parameters. The behaviour of x2 around its minimum is expressed by an m dimensional
ellipsoidal equation Ax2.
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where dx = x; — Xj0. A major advantage of the SVD method is that the columns of V are
precisely the principal axes of the error ellipsoid, while the corresponding values of W1 are
the lengths of these axes. The estimation of the variances-covariances matrix Cov(dx;, dxk)
of the free parameters due to the measurement errors on the n observables is expressed above.
The solution of this minimisation problem by the SVD method was proposed in the case of
solar-like oscillation by Brown et al. (1994) and applied also by Creevey et al. (2007). To
study the relation between different observables and free stellar parameters (the mixing length
parameter «, the mass M, and the metalicity Z/X), we analyse the error ellipsoids in the
parameter space by the SVD method.
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Application to Different Astrophysical Situation Based on the a Cen A

The o Cen A is used here as a template. Its nature, its proximity, and the detection of
solar-like oscillation constraints provide a unique opportunity to test the SVD method.

The stellar models of the a Cen A are computed with the stellar evolution code CESAM
(Morel 1997) starting from the ZAMS. The adopted physical description is the standard
MLT for convection calculation (Béhm- Vitense 1958); the OPAL opacities (lglesias & Roger
1996) completed at low temperatures with the opacities of Alexander & Ferguson (1994); the
OPAL equation of state; and an Eddington atmosphere as the surface boundary condition.
The adiabatic oscillation frequencies are calculated for £ = 0-3 and n = 15-25 using the
adiabatic oscillation code Losc (Scuflaire et al. 2008). To construct the derivative matrix D,
we vary each of the parameters x;. Each derivative is computed from differences centered on
the reference parameter values given in Table 1. The interval dx has to be sufficiently small
such that the linear approximation is good, yet still large enough to avoid numerical problems.
The increments used are 20 Myr for (7) age, 0.05 for a, 0.005 for M(M®), 0.003 for initial
helium abundance Yg and 0.0005 for initial metallicity Z/Xg. The constraints of o CenA and
all characteristics of our RM are summarized in Table 1. The technique used in this study to
estimate all charracteristics of our RM follows that of Miglio & Montalban (2005).

Table 1: Observations of a Cen A and the properties of the RM

Terr (1] L/Lo[1] Z/X 2] R/Rg [3] Av 4] Sv 4] M/ Mg [5]
a CenA 5810 1.522 0.039 1.224 105.5 56 1.105
a 50K 0.030 0.06 0.003 0.1pHz 0.7pHz 0.007
RM 5782 1.516 0.039 1.229 105.5 5.7 1.099
x;j of RM 7(Gyr) a M Yo Z/Xo
5.65 1.6747 1.099 0.280 0.039

Apart from the real a Cen system, we study several different cases to cover a large range
of realistic situations. Case 1 describes v Cen itself (d = 1.3pc), while Case 2 corresponds
to a system located ten times further away (d = 13pc). For distant objects where the binary
and interferometric data are unavailable, the seismic data are the major source of information
(Case 3). We discuss also the influence of the seismic data precision.

Table 2 shows the results from these different cases. In all these cases, the mass is the best
constrained parameter with these observables. We therefore focus here on its uncertainity.
In Case 1 for a Cen itself, we see that the mean large separation Av and the radius R/Rp
both give more or less the same precision on the mass parameter (e = 2.09%, and 2.20%
,respectively). If these two constraints are considered together, the relative precision on the
mass is much higher (e = 0.75%). This comes from the fact that M oc Av?R3. Using the
mean Av or the individual Av; large separation give about the same precision on the mass, as
we are close to the asymptotic regime. Comparing Case 2 with Case 1 allows us to estimate
the effect of increasing distance on determination of the precision of mass parameter for the
same combination of observables. The observables depending on the distance (i.e, mass,
radius, luminosity) become less effective to constrain the mass parameter. For example the
uncertainity on the mass parameter increases from € = 0.75% to € = 2.13% when the radius
and the seismic data are considered together. In Case 3, the seismic information alone gives
€ = 2.19%. As the precision on the seismic data does not depend on distance, the € does
not change (e = 2.09% for d=1.3pc, € = 2.19% for d=13pc). Contrary to Case 1, in Case
3, even if the mass or radius information were available, they would not reduce this value
significantly (e = 2.13% if the radius is available, e = 2.06% if the mass). We also reduce the
precision of seismic data taking oa, = 2 pHz as the worst case scenario. For this precision,
the uncertainty on the mass parameter increases only slightly because of the flatness of the
error ellipsoid as we increase the error on the oscillation frequencies by a factor of 20.
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Table 2: The rms error on the mass (¢(M)), taking into account different sets of observables for o Cen
A and for the case if it were located at 13pc. Q; = (T, L/Le, Z/Xo) represent the set of classical
observables and are included in all cases. The symbol (/) indicates that the observable is included, and
the symbol (x) indicates that the observable is not included in the SVD analyse.

Observables d=1.3pc d=13pc
Classic Seismic (nHz)
R/Re  M/Mg | (Av,év) (Aviévi) opy | €(M) (%) e(M)(%)
X X X X - 221 2.26
X X Vv X 0.1 2.09 2.19
X X X v - 1.73 1.75
X X v X 2 2.12 2.20
v X X X - 2.20 2.24
N X N X 0.1 0.75 213
X v X X - 0.61 212
X v v X 0.1 0.61 2.06
Conclusion

We approach the problem of the accuracy on the determination of the stellar parameters
by computing the error ellipsoids in the parameter space. The impact of each constraint is
obtained by performing the SVD analysis for different cases taking into account or not each
observable. We apply this method to the real a Cen system and for different cases in changing
the distance and the precision on the constraints.

We have shown that, except for a Cen itself for which all the seismic and classical con-
straints are available to high precision, the seismic constraints play a dominant role in deter-
mining stellar free parameters for the distant objects.
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