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Slow Peaking and Low-Gain Designs for Global
Stabilization of Nonlinear Systems

Rodolphe Sepulchre, Member, IEEE

Abstract—This paper presents an analysis of theslow-peaking
phenomenon, a pitfall of low-gain designs that imposes basic limi-
tations to large regions of attraction in nonlinear control systems.
The phenomenon is best understood on a chain of integrators per-
turbed by a vector field ( ) that satisfies ( 0) = 0. Be-
cause small controls (or low-gain designs) are sufficient to stabilize
the unperturbed chain of integrators, it may seem that smaller con-
trols, which attenuate the perturbation ( ) in a larger com-
pact set, can be employed to achieve larger regions of attraction.
This intuition is false, however, and peaking may cause a loss of
global controllability unless severe growth restrictions are imposed
on ( ). These growth restrictions are expressed as a higher
order condition with respect to a particular weighted dilation re-
lated to the peaking exponents of the nominal system. When this
higher order condition is satisfied, an explicit control law is derived
that achieves global asymptotic stability of = 0. This stabiliza-
tion result is extended to more general cascade nonlinear systems
in which the perturbation ( ) , = ( ) , contains the
state and the control of a stabilizable subsystem_ = ( ).
As an illustration, a control law is derived that achieves global sta-
bilization of the frictionless ball-and-beam model.

Index Terms—High gain, low gain, Lyapunov stabilization, non-
linear control.

I. INTRODUCTION

H IGH-GAIN and low-gain designs have served as corner-
stones in the numerous developments in the semiglobal

and global stabilization of nonlinear systems. They have been
precursors to more flexible recursive Lyapunov designs [14],
[13], [7], [15]; the simplest semiglobal recursive designs for
nonlinear systems employ linear high-gain and low-gain con-
trol laws [22], [4], and the recent nonlinear generalizations of
the small gain theorem have provided global versions of these
designs [23], [3].

A proptotype of high-gain designs is for the scalar system
, in which a higher gain in the feedback

allows us to further dominate the destabilizing non-
linearity and to further increase the region of attraction of the
equilibrium . A prototype of low-gain designs is for the
scalar system , in which a lower gain in
the feedback allows us to further dominate the desta-
bilizing nonlinearity and to further increase the region of at-
traction of the equilibrium .

Early caveats in the literature—see, for instance, [9]—have
shown that the intuition carried by these simple examples may
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fail in higher dimension. In the seminal paper [17], Sussmann
and Kokotovic̀exhibited the pitfall of the high-gain design—and
in fact, a fundamental nonlinear limitation to achieving large
regions of attractions—by considering the global stabilization
of nonlinear cascades

(1.1)

where the equilibrium of is assumed to be
globally asymptotically stable (GAS) and the pair is con-
trollable. The simple high-gain intuition would suggest that the
equilibrium of (1.1) is always semiglobally sta-
bilizable: a faster stabilization of causes a faster conver-
gence to zero of the interconnection term , which per-
turbs the GAS system . This reasoning is false, how-
ever. As an illustration, an analysis in [15, p. 167] shows that
the system

(1.2)

is not semiglobally stabilizable and that, for large initial condi-
tions, no open-loop control exists that drives the solution
to . In this case, the failure of the high-gain in-
tuition is caused by the (fast) peaking phenomenon inherent to
any high-gain design:a fast stabilization of [say,

] causes a large peaking of its derivative
. In the example (1.2), the fast stabilization of is

necessary to increase the region of attraction, but the peaking of
causes the finite escape time of to infinity.

To overcome the effect of peaking in the stabilization of the
cascade (1.1), it is necessary to restrict the form of the inter-
connection either by structural requirements (only the
“nonpeaking” states of the-subsystem appear in the intercon-
nection) or by growth conditions on the-subsystem to pre-
vent the possibility of finite escape time. Structural require-
ments led to the developement of recursive design procedures
for “strict-feedback” systems [14], [10], and the absence of fi-
nite escape time for can be guaranteed by input-to-state
stability conditions [18] or growth restrictions [17], [14], [15].
Limitations to semiglobal stabilization because of (fast) peaking
are further analyzed in [2] and [15].

Low-gain designs attracted many researchers in the recent
years with the work by Lin and Saberi [11] and Teel [19], who
showed that a chain of integrators (and, more generally, linear
systems having all their eigenvalues in the closed left-half plane
[18]) can be stabilized by a control law bounded by an arbi-
trarily small constant. In this paper, we show that the low-gain
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intuition has a pitfall similar to the high-gain intuition. We will
exhibit this limitation of low-gain designs by considering the
global asymptotic stabilization of a perturbed chain of integra-
tors

...
... (1.3)

Because the (unperturbed) chain of integrators can be globally
stabilized by a low-gain design, the perturbation can
be rendered arbitrarily small in any compact set. More pre-
cisely, in any given compact set, the boundon the control that
achieves global stabilization of the chain of integrators can be
selected small enough such that within
this compact set. The scalar low-gain intuition would then sug-
gest that the size of the region of attraction for the perturbed
system (1.3) can be arbitrarily increased by diminishing the
bound on the control law.

This reasoning is also false, however. A calculation in Sec-
tion II shows that the system

(1.4)

is globally stabilizable if or . This system, however,
is not even semiglobally stabilizable if . As in the example
(1.2), for large initial conditions, no open-loop control ex-
ists that drives the solution to . We show in Section II that
this failure of the low-gain intuition in the system (1.4) is caused
by the (slow) peaking phenomenon inherent to any low-gain de-
sign: a slow stabilization of [say, ] implies
a large peaking of its integral .
In the example (1.4), the peaking of causes the perturba-
tion to dominate if . If a chain of integrators is
stabilized by using a low-gain design, all states, except for,
undergo a large transient for certain initial conditions. A smaller
bound on the control law causes larger transients that may am-
plify the effect of the perturbation and prevent large re-
gions of attractions. The peaking associated with low-gain de-
signs occurs in the slow time scale . It is a dual phenom-
enon to the peaking associated with high-gain designs, which
occurs in the fast time scale .

To achieve large regions of attraction for the system (1.3) with
a low-gain design, we must restrict the form of the perturbation

by either imposing structural requirements [an upper
triangular structure for ] or by restricting thegrowthof
the nonlinearities. Restricting the structure of , Lin and
Saberi [12] and Teel [21] obtained results in the case of pure
input nonlinearities; that is, . This process led
to subsequent recursive designs forfeedforward systems[20],
[13], [7]. In this paper, we will analyze thegrowth restrictions
that must be imposed on to guarantee large regions of
attraction in the absence ofstructuralrestrictions.

By weighting the growth of the nonlinearities with the
peaking exponent of the different states, we will show that the
growth condition that guarantees large regions of attractions
can be expressed as a higher order condition on the vector field

with respect to a particular weighted dilation. When

this higher order condition is not satisfied, the slow-peaking
phenomenon may prevent semiglobal stabilization. On the
contrary, when the higher order condition holds, we achieve
global stabilization with an explicit control law. Like several
low-gain designs previously proposed in the literature, our
control law is obtained in the form of a sum of saturations.
A distinct feature of our design is that the saturation levels
are state dependent rather than constant. They are selected in
such a way that the higher order property of the perturbation

is preserved in closed loop.
In the last section of the paper, our analysis of the system (1.3)

is extended to nonlinear cascades of the form

...
...

(1.5)

where the equilibrium of is assumed to
be GAS and LES. As an illustration, we show that the popular
model of the frictionless ball-and-beam model, which does not
meet the structural requirements of any recursive design previ-
ously proposed in the literature, satisfies the growth restrictions
of this paper and can be globally stabilized by a low-gain design.
Global stabilization of the (frictionless) ball-and-beam was first
proposed in [1], where a similar low-gain control law is em-
ployed.

The paper is organized as follows. In Section II, we describe
the slow-peaking phenomenon associated with low-gain designs
and the obstacle that it constitutes to achieve large regions of at-
tractions. In Section III, we characterize the absence of peaking
as a “higher order” property of the perturbation with respect to
a weighted dilation. Section IV is devoted to the global stabi-
lization result for the system (1.3) under the suitable growth re-
striction for . This stabilization result is extended to the
cascade (1.5) in Section V.

II. L OW-GAIN DESIGNS ANDSLOW PEAKING

Throughout this paper, we call alow-gain designa control law
that achieves global stabilization of the equilibrium

in such a way that, for any , the parameters of the
control law can be tuned to satisfy

(2.6)

for some continuous, positive functionindependent of.
For a chain of integrators, a linear low-gain design is ob-

tained by scaling the eigenvalues to be sufficiently slow [11].
Nonlinearlow-gain designs allow the bound on the control law
to be independent of the initial condition. They typically make
use of the saturation function , which is linear close to
the origin, say, , and then saturated at a constant

. Nonlinear low-gain designs for the chain of inte-
grators have been proposed in the form of a nested saturation
scheme [19]

(2.7)
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where , or in the form of a sum of saturations [18]

(2.8)

Even though low-gain designs achieve global stabilization for
any value of the small parameter , a variation of signifi-
cantly affects the transient behavior of the solutions. As ,
not only the convergence of the solutions is slowed, but also
certain states undergo large transients. The simplest illustration
of this fact is the second-order system , , for
which the low-gain design places the two poles
at . If , the solution is

The state attains its maximum value at
time . This peaking of the state is proportional to
and occurs in the slow time scale . The following propo-
sition shows that this phenomenon is inherent to any low-gain
design, that is, a consequence of the bound (2.6), and that the
peaking is worse for states located farther from the input.

Proposition 1 [15]: Define thepeaking exponentof the vari-
able as the smallest integerfor which the following bound
holds:

(2.9)

Then, every low-gain design for the chain of integrators that sat-
isfies the bound (2.6) causes the stateto peak with an expo-
nent for .

Slow peaking imposes restrictions on the nonlinearities in
system (1.3). For instance, a low-gain design is necessary to
achieve large regions of attraction for the system

(2.10)

because the control must dominate the perturbation . A
smaller bound on the control law, however, will cause a larger
peak for the state . When reaches its peak, the per-
turbation is . If , the following calculation
shows that semiglobal stabilization is impossible.

Let and so that as long as
. When , the minimum value for is obtained

with the control , which yields

By integration, this process implies [as long as ]

(2.11)

For , the last integral is bounded by a constant.
Choosing , we conclude that for all

, which shows that semiglobal stabilization is impossible.

III. GROWTH CONDITIONS AND WEIGHTED HOMOGENEITY

Because of peaking, growth restrictions must be imposed on
to achieve large regions of attractions in the system

(1.3). Because different states have different peaking expo-
nents, the growth restrictions will be different with respect
to the different states and for each component . To
express such growth restrictions in a general framework, we
will employ the notion of weighted homogeneity for (scalar)
functions and vector fields [8], [6]. These tools are convenient
to define growth conditions, not in terms of the usual norm,
but in terms of a norm that weights each state by its peaking
exponent.

The Slow-Peaking Dilation:A dilation is a map :
: with . The integers are

called the weights of the dilation. In this paper, we use both posi-
tive and negative weights, which is not standard in the literature.
Classical homogeneity notions are defined for the standard di-
lation, that is, when all . In the more general framework
of [6] and [8], different weights are used, but they satisfy the
condition . Here, we want to weight
the state of the chain of integrators by its peaking exponent

, which motivates the dilation

(3.12)

Homogeneous Functions and Order:A continuous (scalar)
function is said to be homogeneous of degreewith re-
spect to the dilation if it satisfies . For
instance, the monomial is homogeneous of degree

with respect to the standard dilation, but is homogeneous of
degree with respect to the weighted dilation (3.12).

A function : is classically said to be of orderif
as , which can be rephrased as the

condition

as and

A notion of order is similarly attached to any dilation if we re-
place by in the above condition. In
the case of the standard dilation, the order property character-
izes a property of the function in the neighborhood of
because . In the case of a general dilation, the
order property characterizes a property of the function in a re-
gion of , which depends on the sign of the different weights.
If the weight associated to is positive, the order condition is
a property of the function for small. On the contrary, if the
weight is negative, the order condition is a property of the func-
tion for large. If the weight is zero, the order condition does
not restrict the dependence ofon the variable . For the di-
lation (3.12), all weights are negative, except the zero weight
on . In this case, the order condition expresses a property for

large, but this property can be nonuniform in
: we say that a function: is of order with respect

to the dilation (3.12) if for each , and for a fixed constant
, the following holds:

where is continuous in [the choice of is
arbitrary, but in general, will depend on ].
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The positive function

(3.13)

defines a “radius” of order one with respect to the dilation (3.12),
with the property that, for , the variable

is uniformly bounded in . For notational conve-
nience, we note .

To extend the homogeneity definitions to a function that de-
pends on the control, we consider the extended dilation

(3.14)

A continuous (scalar) function is homogeneous of de-
gree if . It is of order if for each

, and for a fixed constant , it satisfies

where is continuous in . The following proposi-
tion is a consequence of the above definitions and allows us to
reformulate the order condition in terms of the weighted radius
(3.13).

Proposition 2: Consider the radius defined by (3.13).

1) If is a continuous function of order, then a positive
function exists such that

(3.15)

2) If is a differentiable function of order and
, then, for every and , we have

(3.16)

Proof:

1) Because and , we have

If is of order one, this implies that a sufficiently small
exists such that for all

: . On the other hand, for each , the
set in which is compact, so that the constant

is finite. The continuous function in (3.15) can
thus be selected to dominate .

2) Because and is differentiable, we have
, where is a continuous func-

tion of order . Applying the same argument as in
1), we conclude that for

. Multiplying both sides by and using
the fact that (with ), we obtain

which proves the claim.
In the following, the expression will denote

a continuous function of order, that is, a function that satisfies
(3.15) for some positive function .

Homogeneous Vector Field:A vector field : is
homogeneous of degreeif is homogeneous of degree

whenever is homogeneous of degree. It is of order
if is of order whenever is of order . The (controlled)
vector field is homogeneous of degreeif
is homogeneous of degree whenever is homogeneous
of degree . It is of order if is of order whenever
is of order .

To check that is a vector field of order with respect to
(3.12), we only need to verify that theth component is a
function of order . For instance, the chain of integrators

is homogeneous of degree one because
is homogeneous of degree for

and is homogeneous of degree 1. Finally, as a
consequence of Proposition 2, a controlled vector field
that satisfies is of the same order as the closed-loop
vector field provided that the control law
is a function of order one.

Growth Restrictions as a Higher Order Condition:We
have just seen that the chain of integrators is of order one
with respect to the slow-peaking dilation (3.14). In system
(2.10), is homogeneous of degree .
If , the order of the perturbation is lower
than the order of the chain of integrators, and we have seen
that semiglobal stabilization is impossible in this case. The
higher order property with respect to the slow-peaking dilation
(3.14) thus characterizes the maximal admissible growth of the
vector field to guarantee that the slow peaking of the
variables is not an obstacle to large regions of attraction.

IV. A L OW-GAIN DESIGN FORGLOBAL STABILIZATION

Motivated by our analysis of peaking, we will achieve global
stabilization of the system (1.3) under the following growth as-
sumption.

Assumption 1:The vector field is at least of order
one with respect to the dilation (3.14).

The higher order property of the perturbation guar-
anteed by Assumption 1 will be preserved in closed loop by de-
signing a low-gain control law of order one. To this end, we will
start from the low-gain control law (2.8), which achieves global
stabilization of the chain of integrators, but we will make the sat-
uration constants of the control law state dependent: precisely,
we will employ the control law

(4.17)

where the low gain is of order one with respect to the dila-
tion (3.12)

(4.18)

The control law (4.17) is of order one, and we will show that
it achieves global asymptotic stabilization of the chain of in-
tegrators. Our proof follows the same lines as Teel's proof for
the saturation design (2.7). We will show that, for each solu-
tion of the closed-loop system, a sequence of instants exists

such that
for all . After the finite time , the control law is linear
and the convergence of the solutions is exponential.
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Because the saturations in (4.18) are state dependent and tend
to zero as , the analysis faces two diffi-
culties not present in the constant saturation scheme (2.7). These
difficulties are easily illustrated by the scalar system

(4.19)

Global asymptotic stability of the equilibrium of (4.19)
requires that is not integrable; that is

(4.20)

A similar nonintegrability condition will be necessary for the
time function evaluated along the solutions of the
system (1.3).

Under the condition (4.20), a finite time exists such
that ; that is, the linear zone of the satu-
ration is attained. The slowly varying condition

(4.21)

ensures that is no longer saturated for all future
times because

The analog of the properties (4.20) and (4.21) required for
the saturation design (4.18) are given in the following lemmas,
proven in the Appendix.

Lemma 1: Consider the system (1.3) with a control law
of order for some . Assume

that is of order zero. Then, for each solution whose
last components are uniformly bounded [that is,

for all and for ], the following
holds:

(4.22)

Lemma 2: Let be a vector field of order one, and let
be a control that satisfies at each time .

Then, the time derivative of the low-gain (4.18) along the solu-
tion of satisfies

(4.23)

where the constant can be rendered arbitrary
small by a suitable choice of .

We now prove that the control law (4.17), with , and
a constant , achieves global stabilization of the chain of
integrators.

Proposition 3: The low-gain control law (4.17) with
and achieves global asymptotic stability of the
equilibrium of the (unperturbed) chain of integrators
provided that is sufficiently small.

Proof: The Jacobian linearization of the closed-loop
system is Hurwitz, and the equilibrium is therefore
locally exponentially stable. Hence, we only show that, for
an arbitrary initial condition , the solution
asymptotically converges to . The last equation of the
closed-loop system satisfies

sign

so that is bounded by , . By integration
on an interval , we obtain

(4.24)

Applying Lemma 1 with , we have that is not
integrable over . Because the right-hand side of (4.24)
cannot become negative, we conclude that a finite time
exists such that . On the other hand, the
time derivative of satisfies

where the inequalities hold provided thatis sufficiently small.
We conclude that for all , so that, for

, we have . The time derivative of
then satisfies

sign

so that and are bounded for all . Applying
Lemma 1 with , we conclude that is not in

and pursue the proof as before to conclude that a finite
time exists such that, for all , we have

. Repeating the argument for each equation
proves that, after a finite time , the control
law is no longer saturated; that is, the solution exponentially
converges to the origin.

The multiplication of the control law (4.17) by a gain
does not change its order property. This only

modification in the control law allows us to extend the result of
Proposition 3 to the system (1.3), with the help of the following
lemma.

Lemma 3: Consider the system , where is
Hurwitz and the vector is bounded by a slowly time-varying
function; that is

Then, for sufficiently small, a constant exists such
that each solution satisfies after a finite time

(4.25)

[The result is obviously unchanged ifis replaced by ,
where is a perturbation satisfying for a
sufficiently small constant .]

We are now ready to state the main result of this section.
Theorem 1: If Assumption 1 holds, then a low-gain

exists, a constant and a constant such that for all
, and (constant) , the low-gain control

law

(4.26)

achieves global asymptotic stability of the equilibrium of
system (1.3).

Proof: The last equation of the closed-loop system is
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Because , Proposition 2 implies the ex-
istence of a positive function such that

We can choose the gain in such a way that for
and the product is uniformly bounded by

a constant . With such a gain, , and
for sufficiently small, the same argument as in Proposition 3
can be used to prove that a finite time exists such that,
for all . The time derivative of
then becomes

(4.27)

By Lemma 2, , where can be ren-
dered arbitrarily small by decreasing. Lemma 3 can thus be
applied to the system (4.27) to conclude that, after a finite time

, we have

For , the time derivative of satisfies

(4.28)

and the control law becomes of order two

By Proposition 2, so that the last
term in (4.28) is . So is the term , so that we
can rewrite (4.28) as

This process implies that is bounded, and, proceeding
as in the proof of Proposition 3, that a finite time

exists such that, for all , we have
. For , we rearrange the two last equa-

tions of the closed-loop system in the form

By Lemma 3, we conclude that, after a finite time
, the solution satisfies

The above argument can be recursively repeated for each equa-
tion to prove that, after a finite time , the
control law is no longer saturated and the closed-loop system
has the form , where the matrix is a lower
triangular filled with . For , the solution converges
exponentially to the equilibrium , which ends the proof.

Example 1: The system

(4.29)

is homogeneous of degree one with respect to the dilation
, , and therefore nonpeaking. The

“radius” is in this case

and global asymptotic stability of the equilibrium is
achieved by a control law of the form

The same control law multiplied by the gain ,
can be employed to stabilize the system

V. A CASCADE RESULT

The stabilization result for the system (1.3) is now extended
to a more general class of nonlinear cascades

...
...

(5.30)

for which we make the following assumption.
Assumption 2:The equilibrium of is GAS

and LES. The Jacobian linearization of (5.30) is stabilizable.
If the matrix has afeedforwardstructure character-

ized by the condition that theth row does not depend on the
variables , for , then the cascade (5.30)
belongs to the class of(strict) feedforward systemsand As-
sumption 2 is sufficient to derive global stabilization results (see
[20], [7], and [13]). Under Assumption 2, indeed a unique linear
change of coordinates , exists with upper tri-
angular, such that, in the new coordinates and with the
linear feedback , the Jacobian linearization of
(5.30) becomes

...

(5.31)

With a proper choice of the saturation constants, global stabi-
lization of (5.30) is then achieved with the nested saturated feed-
back (2.7).

Here, we will not impose any structural condition on ,
but instead we restrict its growth like in the previous section.

Assumption 3:Each column of the matrix
is at least of order zero with respect to the dilation

, , where is the slow-peaking dilation (3.12).
Assumption 4:Two class- functions and exist such

that
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guarantees that, whenever is selected such that exists
for all , then also exists for all because

for some class- functions and .
The additional growth Assumption 4 was not present in the

previous section because the initial value ofcould be freely as-
signed. This result is in contrast to the initial value of the vector

, which now depends on the initial condition .
Assumption 4 is necessary to prevent a finite escape time of
during the convergence of to a sufficiently small neighbor-
hood of the origin. This result is so even if the convergence of

can be rendered arbitrarily fast (a consequence of the fast
peaking phenomenon; see [14]).

Theorem 2: Under Assumptions 2–4, low gains
and and a constant exist such that for all

, the low-gain control law

(5.32)

achieves global asymptotic stability of the equilibrium
of (5.30).

Proof: Because the equilibrium of is
LES, strictly positive constants exist such that

The ball is clearly invariant if
. Moreover, because the equilibrium of

is GAS, a nonlinear gain exists such that
for and such that all solutions of

are attracted in finite time to the set provided
that . For any choice of that satisfies
these constraints, exists for all . By Assumption 4, the
solutions of (5.30) then exist for all . In addition, for each
initial condition , a finite time exists such
that for all .

Let . For , we have
and we show that a finite time exists such that

(5.33)

By contradiction, suppose that

(5.34)

Then, and the convergence of
is exponential

(5.35)

From (5.34) and (5.35), also converges exponentially,
which implies that at least one state ,
diverges exponentially to infinity; that is, strictly positive
constants and exist such that

(5.36)

Denoting by the vector and by the
matrix filled with zeros except for the superdiagonal elements

, we have

The matrix has all its eigenvalues on the imaginary axis, so
that a matrix exists, which satisfies the Lyapunov in-
equality . Using Assumption 4, the norm

satisfies for some constant and for

For sufficiently large, is small enough such that

which contradicts (5.36). We conclude that (5.33) holds.
Defining , we have from

(5.33) that and we will now show that
for all by proving that

(5.37)

An explicit calculation yields

If , then and . By Lemma
2, we conclude that with a positive constant, which
can be selected arbitrarily small by a suitable choice of .
Also, can always be chosen to satisfy . We
conclude

so that (5.37) holds if is chosen sufficiently small.
Having established that for all , the

proof can be pursued exactly as in Theorem 1 to show the con-
vergence of each solution to zero, starting with

and adding a new equation at each step.
As an illustration of Theorem 2, we design a globally stabi-

lizing control law for the celebrated frictionless ball-and-beam
model [5].

Example 2: After a preliminary feedback, the ball-and-beam
model considered in [5] is

(5.38)

where and denote the position and velocity of the ball and
and denote the angular position and angular velocity of the

beam. The term is because of gravity, and the term
is the centrifugal acceleration of the ball because of the motion
of the beam. To apply Theorem 2, we rewrite (5.38) as

(5.39)
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Because of the nonlinearity , the system (5.39) is not in
the feedforward form required for a forwarding design. The
growth conditions of Theorem 2, however, are satisfied: the
slow-peaking dilation is

and the radius is . The perturbation
is of order one. Also, the linear

growth in , that is, Assumption 4, is satisfied.
Using the change of coordinates

GAS of the equilibrium is achieved with a control law of
the form

The gain used in Theorem 2 is not necessary because
the -subsystem is linear.

VI. CONCLUSION

In this paper, we have shown that semiglobal and global
stabilization of a chain of integrators perturbed by a vector
field, which is higher order in cannot be guaranteed without
extra conditions on the perturbation, despite the fact that the
unperturbed chain of integrators can be stabilized by using a
low-gain design. The obstacle to large regions of attractions
for the perturbed system is caused by the large state transients
inherent to the low-gain design, a phenomenon that we callslow
peakingin contrast to the fast-peaking phenomenon associated
with high-gain designs [17]. To overcome the destabilizing
effect of peaking, we must impose growth conditions on the
nonlinearities. We have characterized these growth conditions
as higher order conditions with respect to a weighted dilation,
in which each state is weighted by its peaking exponent. When
this higher order condition is satisfied, we have shown that
global stabilization of the perturbed system can be achieved by
a low-gain design that preserves the higher order property in
closed loop. This global stabilization result has been extended
to the case when the perturbed chain of integrators is cascaded
with a GAS/LES subsystem.

APPENDIX

A. Proof of Lemma 1

The proof goes by contradiction. Let , and let
such that for all and . Assume

that, for this initial condition, the integral (4.22) is bounded; that
is, the time function belongs to .
Because is uniformly continuous, we have
for some constant .

Because is of order and is of order
, we deduce from Proposition 2 that

so that, for , we have

(8.40)

The time function satisfies

Because and , we have that
, and therefore we conclude that

for some constant . Subsituting in (8.40), we obtain

Using the fact that is bounded for all , we obtain by
integration the estimates

(8.41)

for some constant . Substituting the estimates (8.41) in
, we conclude

for some constants and , which contradicts the
assumption that .

B. Proof of Lemma 2

Because is a function of order one and is a
vector field of order one, the time derivative is of order
two. By Proposition 2, a function exists such that

Choose a smooth and strictly decreasing function such
that for all . Because as

, a constant large enough exists such that
for all . We then choose

so that for all . With this choice, we obtain

and

which proves the lemma.

C. Proof of Lemma 3

Because is Hurwitz, constants and exist such that
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Define . If for all , then
and for

all . Then, we have

which is a contradiction forlarge enough if . Hence,
a finite time exists such that . We then show
that for all by proving

(8.42)

An explicit calculation yields

so that (8.42) holds if is small enough.
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