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Slow Peaking and Low-Gain Designs for Global
Stabilization of Nonlinear Systems
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Abstract—This paper presents an analysis of theslow-peaking fail in higher dimension. In the seminal paper [17], Sussmann
phenomenon, a pitfall of low-gain designs that imposes basic limi- and Kokotovicexhibited the pitfall of the high-gain design—and
tations to large regions of attraction in nonlinear control systems. in fact, a fundamental nonlinear limitation to achieving large

The phenomenon is best understood on a chain of integrators per- . : L )
turbed by a vector field up(w, ) that satisfiesp(z, 0) = 0. Be- €9I0NS of attractions—by considering the global stabilization

cause small controls (or low-gain designs) are sufficient to stabilize Of nonlinear cascades

the unperturbed chain of integrators, it may seem that smaller con- -
trols, which attenuate the perturbation up(«, w) in a larger com- a: @)+, )¢
pact set, can be employed to achieve larger regions of attraction. E=AL+bu (1.1)

This intuition is false, however, and peaking may cause a loss of P _ . :
global controllability unless severe growth restrictions are imposed where the eqwllb_rlumc = 0of & = f(z)is as.sumed to be
on p(x, u). These growth restrictions are expressed as a higher 9lobally asymptotically stable (GAS) and the pai, b) is con-
order condition with respect to a particular weighted dilation re-  trollable. The simple high-gain intuition would suggest that the
lated to the peaking exponents of the nominal system. When this equilibrium(z, £) = (0, 0) of (1.1) is always semiglobally sta-
higher order condition is satisfied, an explicit control law is derived  pjjizable: a faster stabilization @f(t) causes a faster conver-

that achieves global asymptotic stability ofr = 0. This stabiliza- : : ; :
tion result is extended to more general cascade nonlinear systemsgence to zero of the interconnection tefrfi, £)¢, which per

in which the perturbation p(z, v)v, v = (&, u)T, contains the turbs the GA_S syste_:m = f(x). Thi_s reasoning is false, how-
state¢ and the control « of a stabilizable subsysten = a(¢, w). €Ver. As an illustration, an analysis in [15, p. 167] shows that
As an illustration, a control law is derived that achieves global sta- the system

bilization of the frictionless ball-and-beam model. . 2 /.2 2
o . e &= —w+a2? (& +6)
Index Terms—High gain, low gain, Lyapunov stabilization, non-

linear control. §1 =&
L=u (1.2)
|. INTRODUCTION is notsemiglobally stabilizable and that, for large initial condi-

) , tions, no open-loop contral(t) exists that drives the solution
IGH-GAIN and low-gain designs have served as cornefs (x, €) = (0, 0). In this case, the failure of the high-gain in-

. . Mo (a,
stones in the numerous developments in the semiglobglio, is caused by the (fast) peaking phenomenon inherent to

and global stabilization pf nonlinea_lr systems. They have begﬂy high-gain desigra fast stabilization of, (¢) [say,¢, (t) ~
precursors to more flexible recursive Lyapunov designs [1AQTM] causes a large peaking of its derivatige(t) = é’l(t)

[13], [7], [15]; the simplest semiglobal recursive designs fqr. ..+t |n the example (1.2), the fast stabilization&fis
nonlinear systems employ linear high-gain and low-gain COfgcessary to increase the region of attraction, but the peaking of

trol laws [22], [4], and the recent nonlinear generalizations %‘;(t) causes the finite escape timeut) to infinity.

the small gain theorem have provided global versions of theSery qyercome the effect of peaking in the stabilization of the
designs [23], [3].

) ) ) ) cascade (1.1), it is necessary to restrict the form of the inter-
A proptotype of high-gain designs is for the scalar systegynnection)(x, ¢)¢ either by structural requirements (only the

& = x” + u, in which a higher gairk > 1 in the feedback «,onneaking” states of the-subsystem appear in the intercon-

u = —ku allows us to further dominate the destabilizing NOMection) or by growth conditions on thesubsystem to pre-
linearity «* and to further increase the region of attraction of thgut the possibility of finite escape time. Structural require-
equilibriumz = 0. A prototype of low-gain designs is for the et jed to the developement of recursive design procedures
scalar systent = w +u”, in which a lower gair) < ¢ < 1in ¢ «strict-feedback” systems [14], [10], and the absence of fi-
the feedback, = —cu allows us to further dominate the destapjie escape time for(t) can be guaranteed by input-to-state
bilizing nonlinearityw? and to further increase the region of at'stability conditions [18] or growth restrictions [17], [14], [15].

traction of the equilibriume = 0. _ Limitations to semiglobal stabilization because of (fast) peaking
Early caveats in the literature—see, for instance, [9]—havg, frther analyzed in [2] and [15].

shown that the intuition carried by these simple examples mayLow—gain designs attracted many researchers in the recent

years with the work by Lin and Saberi [11] and Teel [19], who
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intuition has a pitfall similar to the high-gain intuition. We will this higher order condition is not satisfied, the slow-peaking
exhibit this limitation of low-gain designs by considering thgghenomenon may prevent semiglobal stabilization. On the
global asymptotic stabilization of a perturbed chain of integraontrary, when the higher order condition holds, we achieve

tors global stabilization with an explicit control law. Like several
i1 T low-gain designs previously proposed in the literature, our
: control law is obtained in the form of a sum of saturations.
. = - | +up(z,v), p(z,0)=0. (1.3) A distinct feature of our design is that the saturation levels
Tn—1 Tn

are state dependent rather than constant. They are selected in
such a way that the higher order property of the perturbation
Because the (unperturbed) chain of integrators can be globally(z, «) is preserved in closed loop.

stabilized by a low-gain design, the perturbatigi(z, «) can Inthe last section of the paper, our analysis of the system (1.3)
be rendered arbitrarily small in any compact set. More prg extended to nonlinear cascades of the form

cisely, in any given compact set, the bounoh the control that

Ty U

achieves global stabilization of the chain of integrators can b o 36.2

selected small enough such thalp(z, v)|| = O(c?) within E = 5 + Pz, v)v, P(z,0)=0

this compact set. The scalar low-gain intuition would then sug-{ ¥n—1 @n

gest that the size of the region of attraction for the perturbed™ *» 7/ v

system (1.3) can be arbitrarily increased by diminishing the &=a(, u) EcRP, ueR, v=(&,u)! (1.5)

bounde on the control law.
This reasoning is also false, however. A calculation in S
tion Il shows that the system

evv_here the equilibriunt = 0 of £ = a(¢,0) is assumed to

e GAS and LES. As an illustration, we show that the popular

model of the frictionless ball-and-beam model, which does not
T1 =9 meet the structural requirements of any recursive design previ-
2 (1.4) ously proposed in the literature, satisfies the growth restrictions

of this paper and can be globally stabilized by a low-gain design.

is globally stabilizable if- = 0 or = 1. This system, however, G|opal stabilization of the (frictionless) ball-and-beam was first
is not even semiglobally stabilizableif> 1. As in the example proposed in [1], where a similar low-gain control law is em-
(1.2), for large initial conditions, no open-loop contrdk) ex-  ployed.
ists that drives the solution to= 0. We show in Section Il that = The paper is organized as follows. In Section II, we describe
this failure of the low-gain intuition in the system (1.4) is causeghe slow-peaking phenomenon associated with low-gain designs
by the (slow) peaking phenomenon inherent to any low-gain dgnd the obstacle that it constitutes to achieve large regions of at-
sign: a slow stabilization ofe»(?) [say,z2(t) ~ ¢~ ‘] implies  {ractions. In Section IIl, we characterize the absence of peaking
a large peaking of its integrat1 (t) = [2(t) (=(1/¢)e™"). as a “higher order” property of the perturbation with respect to
In the example (1.4), the peaking ©f(t) causes the perturba-5 weighted dilation. Section 1V is devoted to the global stabi-
tion x{u” to dominateu if » > 1. If a chain of integrators is |ization result for the system (1.3) under the suitable growth re-

stabilized by using a low-gain design, all states, excepifor striction forp(z, u)u. This stabilization result is extended to the
undergo a large transient for certain initial conditions. A smalleiascade (1.5) in Section V.

bound on the control law causes larger transients that may am-
plify the effect of the perturbatiop(x, «) and prevent large re- 1. Low-GAIN DESIGNS AND SLOW PEAKING

gions of attractions. The peaking associated with low-gain de- ) . .
signs occurs in the slow time scale= «t. It is a dual phenom-  Throughoutthis paper, we callav-gain desigra control law

enon to the peaking associated with high-gain designs, whith= k(x) that achieves global stabilization of the equilibrium

occurs in the fast time scale= (t/e). 2 = 0in such a way that, for any > 0, the parameters of the
To achieve large regions of attraction for the system (1.3) wiftpntrol law can be tuned to satisfy

a low-gain design, we must restrict the form of the perturbation sup |u(z(t))| < v(||z(0)])e (2.6)

p(z, w)u by either imposing structural requirements [an upper t>0

triangular structure fop(x, )] or by restricting thegrowthof  for some continuous, positive functianindependent of.

the nonlinearities. Restricting the structurepof, ), Linand  For a chain of integrators, a linear low-gain design is ob-

Saberi [12] and Teel [21] obtained results in the case of pugined by scaling the eigenvalues to be sufficiently slow [11].

input nonlinearities; that igy(z, ) = p(u). This process led Nonlinearlow-gain designs allow the bound on the control law

to subsequent recursive designs fleedforward systemi€0], 1o be independent of the initial condition. They typically make

[13], [7]. In this paper, we will analyze thgrowthrestrictions yse of the saturation functiaat ;(s), which is linear close to

that must be imposed gr{x, u)u to guarantee large regions ofthe origin, saysaty,(s) = s, and then saturated at a constant

attraction in the absence sfructuralrestrictions. M = 0(c). Nonlinear low-gain designs for the chain of inte-

By weighting the growth of the nonlinearities with thegrators have been proposed in the form of a nested saturation
peaking exponent of the different states, we will show that th@heme [19]

growth condition that guarantees large regions of attractions
can be expressed as a higher order condition on the vector field= — Satw, (Yn +satar,  (Yn—1 +--- +sata, (y1)) )
p(z, ) with respect to a particular weighted dilation. When 2.7)

To=u+x]u
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wherey; = >"7'_. zx, orin the form of a sum of saturations [18](1.3). Because different states have different peaking expo-
nents, the growth restrictions will be different with respect
to the different states and for each compongyit, u). To
Even though low-gain designs achieve global stabilization fexpress such growth restrictions in a general framework, we
any value of the small parameter- 0, a variation ofe signifi-  will employ the notion of weighted homogeneity for (scalar)
cantly affects the transient behavior of the solutionse As 0, functions and vector fields [8], [6]. These tools are convenient
not only the convergence of the solutions is slowed, but als@define growth conditions, not in terms of the usual ndjrri,
certain states undergo large transients. The simplest illustratiut in terms of a norm that weights each state by its peaking
of this fact is the second-order system = z», 2 = u, for exponent.
which the low-gain desigr-2ez, — ¢?z; places the two poles  The Slow-Peaking Dilation:A dilation 67 is a maps”: R™ —
atx = —e. If 1(0) = 0, the solution is R™: 67 (z) = (™, -+, €™ xy,) With € > 0. The integers; are
—et —et. called the weights of the dilation. In this paper, we use both posi-
z1(t) = 22(0)te™, v2(t) = 22(0)(1 —et)e tive and negatgilve weights, which is not sriar?dard inthe Iiteralzure.
The stater; attains its maximum valug; = (¢~'x2(0))/e at Classical homogeneity notions are defined for the standard di-
timet = 1/¢. This peaking of the state is proportional tal /¢ |ation, that is, when ali; = 1. In the more general framework
and occurs in the slow time scate= ¢t. The following propo- of [6] and [8], different weights are used, but they satisfy the
sition shows that this phenomenon is inherent to any low-gaienditionr,, > r,,_; > --- > r; > 1. Here, we want to weight
design, that is, a consequence of the bound (2.6), and that g€ stater; of the chain of integrators by its peaking exponent
peaking is worse for states located farther from the input. 5 — 4, which motivates the dilation
Proposition 1 [15]: Define thepeaking exponermf the vari-
ablez; as the smallest integerfor which the following bound Se(z) = (61—%1 N T 60%)_ (3.12)
holds:

u = —satn, (Yn) —satns, _, (Yn—1) — - —satag (y1). (2.8)

()] < OV e~ 59 Homogeneous Functions and Ordef continuous (scalar)
i‘;{; (0] < (= (0)De (2.9) function h(x) is said to be homogeneous of degrewith re-
o . o spect to the dilatiord. if it satisfies h(é.(x)) = "h(z). For
Then, every low-gain design for the chain of integrators that s@fstance, the monomiai(z) = #? is homogeneous of degree
isfies the bound (2.6) causes the s@téo peak with an expo- , with respect to the standard dilation, but is homogeneous of
nentr =n —ifori € {1,---,n}. degree(i — n)p with respect to the weighted dilation (3.12).
Slow peaking imposes restrictions on the nonlinearities in pA function i: R — R is classically said to be of orderif
system (1.3). For instance, a low-gain design is necessary|A@;)| < C||z||” as||z|| — 0, which can be rephrased as the

achieve large regions of attraction for the system condition
h =2 ey, -, )]
drs =u+ a¥u? (2.10) — <C  ase— Oand|z| =1.

. L
because the conirel must dominate the pertu_rbatlm‘lfu A A notion of order is similarly attached to any dilation if we re-
smaller bound on the control law, however, will cause a large

. [)Iace|h(ca:1, -, exy)| by h(6.(2)) in the above condition. In
peaki(l/e) f%r_the SPE%- Whenz, reaches its peak, the per-y, o oo of the standard dilation, the order property character-
turbationzy+* is 0(¢*~¥). If v > 1, the following calculation

h that ialobal stabilization is i iol izes a property of the function in the neighborhoodrof= 0
shows that semigiobal Stabilization IS 1MmpossIbie. becauséim._.o 6.(z) = 0. In the case of a general dilation, the
Letz(0) = 1 andz,(0) > 1 sothatr;(¢) > 1+t aslong as

o o . order property characterizes a property of the function in a re-
xQ‘t(rt])th> L. Wthelmi> 01’ tgelfn'mrr?.u? V.alllée fok is obtained gion of R, which depends on the sign of the different weights.
Wi e controk: = —(1/227), which yields If the weight associated tg; is positive, the order condition is

da(t) > — 1 ) a property of the function fo;| small. On the contrary, if the
= day () weight is negative, the order condition is a property of the func-
By integration, this process implies [as longza$t) > 1] tion for |z, | large. If the weight is zero, the order condition does
Eoy not restrict the dependence fofon the variabler;. For the di-
2a(t) > 22(0) — / —SV lation (3.12), all weights are negative, except the zero weight
o 41+s) onz,. In this case, the order condition expresses a property for
> 22(0) — / ds 211) [I(@1,+++,2n_1)] large, but this property can be nonuniform in
o 4(1+s) . We say that a functioh: R* — R is of orderr with respect

For» > 1, the last integral is bounded by a constdnt to the dilation (3.12) if for each,, € R, and for a fixed constant
Choosingz,(0) > K + 1, we conclude that,(t) > 1forall A > 0, the following holds:
t > 0, which shows that semiglobal stabilization is impossible.

N N < y(n)

[(6e(2)|
Ill. GROWTH CONDITIONS AND WEIGHTED HOMOGENEITY e

Because of peaking, growth restrictions must be imposed where~(z,) > 0 is continuous irR [the choice ofA > 0 is
p(z, ) to achieve large regions of attractions in the systearbitrary, but in generaly(-) will depend onAl].
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The positive function Homogeneous Vector FieldA vector field f: R* — R™ is
el —(1/(2(n—1))) homogeneous of degresif L ;1(x) is homogeneous of degree
pla) = <1 + Z aﬂ@(n—l))/(n—i)) r+T wheneveh(x) is homogenepus of degreditis of orderr
= ’ if L zh is of orderr+r whenevet: is of orderr. The (controlled)
;>0 (3.13) Vector field f(z, v) is homogeneous of degresef L ;h(z, u)

] ) ) o is homogeneous of degree-~ whenever: () is homogeneous
dgfmes a“radius” of order one with respect to the Q|Iat|on (3-12¢ degreer. Itis of orderr if L is of orderr -+ r whenever
with the property that, fol < i < n — 1, the variablez; = g of orders.
p"~*(2)x; is uniformly bounded irR™. For notational conve- 1 check thaif(«) is a vector field of order with respect to
nience, we note;,, = x,. o _ (3.12), we only need to verify that thith componenff;(z) is a

To extend the homogeneity definitions to a function that degnction of orderi — n -+ 1. For instance, the chain of integrators
pends on the control, we consider the extended dilation i1 = x2,---, 4, = u is homogeneous of degree one because
bc(@y u) = (€ ay, e Yy, @y, eu). (3.14) fi(x) = ®iy1 is homogeneous of degrée-1 —n for 1 <4 <
n — 1 andf,(z) = vis homogeneous of degree 1. Finally, as a

consequence of Proposition 2, a controlled vector fj&ld, u)
that satisfieg’(z, 0) = 0is of the same order as the closed-loop
vector field f(x, k(x)) provided that the control law = k(x)
Iy, el 2 A e W)l is a function of order one.
N > ’V(xn) .. . .

lul <A ¢=0 ¢’ Growth Restrictions as a Higher Order ConditioWe
where~(z,,) > 0 is continuous irR. The following proposi- have just seen that the chain of integrators is of order one
tion is a consequence of the above definitions and allows usviih respect to the slow-peaking dilation (3.14). In system
reformulate the order condition in terms of the weighted radi@.10),up(z, u) = (0, #7u?) is homogeneous of degree- v.

A continuous (scalar) functioh(x, ) is homogeneous of de-
greer if h(é.(x, w)) = €"h(z, u). It is of orderr if for each
z,, and for a fixed constarh > 0, it satisfies

(3.13). If » > 1, the order of the perturbationp(z, «) is lower
Proposition 2: Consider the radius defined by (3.13). than the order of the chain of integrators, and we have seen
1) If h(x) is a continuous function of orde then a positive that semiglobal stabiliz.ation is impossible in this.case'. The

functionC(z,,) > 0 exists such that higher order property_ with respect_ to the slc_)W-_peaklng dilation
(3.14) thus characterizes the maximal admissible growth of the
|h(x)] < Clzn)p” (z). (3:15) vector fieldup(x, u) to guarantee that the slow peaking of the

2) If h(z,u) is a differentiable function of order and variables is not an obstacle to large regions of attraction.
h(x,0) = 0, then, for every- > 1 andM > 0, we have

lul < Mp"(x) = |h(z, u)

S MC(wn)p" " Ha).

IV. A Low-GAIN DESIGN FORGLOBAL STABILIZATION

(3.16) Motivated by our analysis of peaking, we will achieve global

stabilization of the system (1.3) under the following growth as-

Proof: sumption.
1) Because; = p"‘z; and(é,(z)); = p~"z;, we have Assumption 1:The vector fieldp(x, «)u is at least of order
" one with respect to the dilation (3.14).
Vo R h(z) = h(8pw)(2))- The higher order property of the perturbatiop(z, «) guar-

If his of order one, this implies that a sufficiently smalanteed by Assumption 1 will be preserved in closed loop by de-
€ > 0 exists such thath(z)] < C(z,)p"(x) for all signing a low-gain control law of order one. To this end, we will
z € {z: p(x) < €}. On the other hand, for eaah,, the start from the low-gain control law (2.8), which achieves global
set in whichp(z) > €is compact, so that the constant stabilization of the chain of integrators, but we will make the sat-

h(z)| uration constants of the control law state dependent: precisely,
K(z,) = max we will employ the control law
is finite. The continuous functio®(x,,) in (3.15) can u = = sabare(e) (Yn) = sabares @) (Yn-1)
thus be selected to dominaiewx(K (z,,), Y(x,)). — o —sabyen (),  0<M <1 (4.17)

2) Becausei(z, 0) = 0 and/ is differentiable, we have \ynere the low gain(z) is of order one with respect to the dila-
h(z, uw) = uh(x, w), whereh(z, ) is a continuous func- tjon (3.12)
tion of orderr — 1. Applying the same argument as in

1), we conclude thathi(z, u)| < C(z,)p” Yz) for c(z) = min(e(zn), p(x)),  0<ezn) <1.  (4.18)
lup~t(z)| < M. Multiplying both sides by: and using The control law (4.17) is of order one, and we will show that
the fact thaju| < Mp"(z) (with » > 1), we obtain it achieves global asymptotic stabilization of the chain of in-

5 - el tegrators. Our proof follows the same lines as Teel's proof for
M, ) = uh(z, u) < Mp™(z)C(zn) " () the saturation design (2.7). We will show that, for each solu-
which proves the claim. tion of the closed-loop system, a sequence of instants exists
In the following, the expressiol(x) = 0(p”(z)) willdenote 7,, > 1,,_; > --- > 1j such thatsatysen—it1(2y (¥i) = %
a continuous function of order, that is, a function that satisfiesfor all ¢ > T;. After the finite timeT}, the control law is linear
(3.15) for some positive functio@'(xz,,) > 0. and the convergence of the solutions is exponential.
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Because the saturations in (4.18) are state dependent and smthat|«,,(¢)| is bounded bymax(|z,(0)], €). By integration
to zero ag|(x1, - -+, zn—1)|| — oo, the analysis faces two diffi- on an interval0, 7], we obtain
cglpes _notpresent.mt.he constant saturation scheme (2.7). These (1)) 2 e((t)) Ve [0, T] = |za(T)|
difficulties are easily illustrated by the scalar system

1 T
% = —satpr)(2), z € R. (4.19) < |zn(0)] - 5/0 e(x(t)) dt. (4.24)
Global asymptotic stability of the equilibrium = 0 of (4.19)  Applying Lemma 1 withi = n, we have that(z(t)) is not
requires that\/(t) is not integrable; that is integrable over0, o). Because the right-hand side of (4.24)
] T cannot become negative, we conclude that a finite fiine- 0
vt=0:  lim ; M(s) ds = +co. (4-20)  exists such thalr,,(7;,)| < «(x(7},)). On the other hand, the

A similar nonintegrability condition will be necessary for thdime derivative oflz, (#)] — «(x(t)) satisfies

time function M ¢'(=(¢)) evaluated along the solutions of the d

system (1.3). az onl = (@)
Under the condition (4.20), a finite timE > ¢, exists such

thatsat ;7 (2(T)) < 2(T); thatis, the linear zone of the satu-

|l’n |=€(J")

= —e(x) +0(*) = ¢ < —(1 = p)e(w) +0(*) <0

ration is attained. The slowly varying condition where the inequalities hold provided thais sufficiently small.
. We conclude thafz,, ()| < e(z(t)) for all t > T;,, so that, for
M(t) < pM(t), ne€(0.1) (4.21) t > T,, we havei,, = —x, + 0(¢?). The time derivative of

ensures thatat ;) (2(t)) is no longer saturated for all futurey, _; = z,,_; + z,, then satisfies

times because . .
d ltn—1| > €(x) = 1 = —SIgNyn_1)*(x) + 0(e(x)*)

= (lz(®)] = M(t))
dt ()| =M (1) . ) ;
. Lemma 1 withi = n — 1, we conclude that?(z(t)) is not in
=-M(t) - M) < (1 - M) <0 L]0, oo) and pursue the proof as before to conclude that a finite
The analog of the properties (4.20) and (4.21) required fome 7,, ; > T, exists such that, for al > 7,, 1, we have
the saturation design (4.18) are given in the following lemmalg;,_1(¢)| < ¢*(t). Repeating the argument for each equation

so thaty,,—1 (¢) andx,,(¢) are bounded for ali > 0. Applying

proven in the Appendix. proves that, after a finite tim#&, > 75 > .- - > 1;,, the control
Lemma 1: Consider the system (1.3) with a control law= law is no longer saturated; that is, the solution exponentially
k(x) of order(n — ¢ + 1) for somei € {1,---,n}. Assume converges to the origin.

thatp(z, «) is of order zero. Then, for each solutieft) whose ~ The multiplication of the control law (4.17) by a gain
last (n — ¢ + 1) components are uniformly bounded [that isy(z,) > 0 does not change its order property. This only
|zx(t)] < Ty forall ¢ > 0 and fori < k& < n], the following maodification in the control law allows us to extend the result of

holds: Proposition 3 to the system (1.3), with the help of the following
t ‘ lemma.
flim / p(z(s))" ™" ds = +o0. (4.22) Lemma 3: Consider the system = Ay + e(t), whereA is

Hurwitz and the vectoe(t) is bounded by a slowly time-varying
Lemma 2: Let f(x, «) be a vector field of order one, and letfunction; that is

o . <K ‘
u(t) be acc_)ntrol th.at s_atlsﬂes at each t.|met)| < K e(x(t)). ()] < Ke(t), ()] < pe(t).
Then, the time derivative of the low-gain (4.18) along the solu- - _
tion of & = f(z, v) satisfies Then, fory > 0 sufficiently small, a constardf > 0 exists such
. that each solution satisfies after a finite tifie> 0
] < pete) (423) Vi>T: |ly(t)| < Celt 4.25
where the constant = p(€) > 0 can be rendered arbitrary 2T ly®)ll < Ce(®)- (4.25)
small by a suitable choice @fz,,). [The result is obviously unchangedAfis replaced byl + E (),

We now prove that the control law (4.17), wild = 1, and WhereE(?) is a perturbation satisfying(t)|| = 0(M) for a
a constang(z,,), achieves global stabilization of the chain ofufficiently small constand/.]
integrators. We are now ready to state the main result of this section.

Proposition 3: The low-gain control law (4.17) with/ =1  Theorem 1:1f Assumption 1 holds, then a low-gaif(x,,)
ande(z,,) = € > 0 achieves global asymptotic stability of theexists, a constant/ > 0 and a constant > 0 such that for all
equilibriumz = 0 of the (unperturbed) chain of integratorsM € (0, M], and (constantj € (0, ¢], the low-gain control
provided that is sufficiently small. law

Progf: The _ Jacobian Iinea.ri_zafcion of thg closed-loop u = k(z) = = () (56 pse() (Un)

system is Hurwitz, and the equilibrium = 0 is therefore
locally exponentially stable. Hence, we only show that, for +satazez(z) - -+ Sabaren (2)(¥1)) (4.26)
an arbitrary initial conditionz(0) € R™, the solutionz(¢) achieves global asymptotic stability of the equilibriuma= 0 of
asymptotically converges to = 0. The last equation of the system (1.3).
closed-loop system satisfies Proof: The last equation of the closed-loop system is

2] > e(z) = &, = —sign(z, )e(z) 4 0(e(z)?) i = =Yn(@n) (58t are(z) (Un) + O(M ) (1 + po(a, k().
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Becausek(z)| < M~(x,)p(x), Proposition 2 implies the ex- and global asymptotic stability of the equilibrium = 0 is
istence of a positive functio@(x,,) > 0 such that achieved by a control law of the form

P (@, B(2))] < My () C(2n).
We can choose the gaif{z,,) in such a way thay(z,,) = 1 for o )
|z,,| < 1 and the product(z,,)C(x,,) is uniformly bounded by The same control law multiplied by the_ ganxQ) = min(1,
aconstan€ > 0. With such a gainlp,,(z, k(z))| = 0(M),and 1/(1+ |z2|?)) can be employed to stabilize the system
for M sufficiently small, the same argument as in Proposition 3
can be used to prove that a finite tirig > 0 exists such that,

U = —Sat]we(w) (.1‘2) — Sat]we(m)z (.Z‘l + .1‘2).

T1 =To + x%uQ

forallt > T, |z, ()| < Me(x(t)). The time derivative of), @y =u+ajeied.
then becomes
Ep = — (2 +0(Me?))(1+ 0(M)). (4.27) V. A CASCADE RESULT

2 2
By Lemma 2,|(d/dt)e(x)”| < 2uc(x)”, wherep can be ren-  1he geapilization result for the system (1.3) is now extended
dered arbitrarily small by decreasisgLemma 3 can thus be 1, 4 more general class of nonlinear cascades

applied to the system (4.27) to conclude that, after a finite time

T! > T, we have Z1 T2
Vt > Ty |en(t)] = 0(Me(x)?). ) : = : + P(z, v)v, P(xz,0)=0
Fort > 1", the time derivative of,,_; = z,_, + z,, satisfies In—1 In
. o 3 Tn ' ctv
Yn—1= (Sat]\le(az)z (yn—l) + 0 (MG(JJ) )) (1 + O(M)) 5 ICL(S, U,) 5 c RP, uE R, v = (57 U,)T
+ 2, 0(M) + k(2)pp—_1(z, k(x)) (4.28)

(5.30)
and the control law becomes of order two

) 2 3 for which we make the following assumption.
K@) < [l +2 st Me(z)*(un—1) + 0 (Me(x)’)| Assumption 2:The equilibrium¢ = 0 of € = a(¢, 0) is GAS
< CMp™(x). and LES. The Jacobian linearization of (5.30) is stabilizable.
By Proposition 2,/|p,_1(x, k(z))|| = 0(M) so that the last  If the matrix P(z,v) has afeedforwardstructure character-
term in (4.28) isO(M2¢2). So is the termr,,0(M), so that we ized by the condition that th&h row does not depend on the
can rewrite (4.28) as variables(zy,---,x;), for1 < ¢ < n, then the cascade (5.30)
- _ 2 2 belongs to the class dktrict) feedforward systemand As-

) Yt o _.SatMe(x)Q (y"_l_) 0 (MPe(2)%). _sumption 2 is sufficient to derive global stabilization results (see
This process implies tha,,—1 (¢)| is bounded, and, proceedlng[ZO], [7], and [13]). Under Assumption 2, indeed a unique linear
as in _the proof of Proposition 3, that a finite tinig,_; > change of coordinates = Tz + S¢, exists withT upper tri-

T;, exists such that, for al > T;,_;, we havelly,—1 (1)l < angular, such that, in the new coordinates¢) and with the

|Me((t))?]. Fort = T, 1, we rearrange the two last equatinear feedbacks = — Y7, y:, the Jacobian linearization of
tions of the closed-loop system in the form (5.30) becomes
G\ _ [ —1H0(M)  O(M) Yot ,
9 ) \—1+0(M) —1+0(M) Yn 1= -y
+0(Me(x)?). Y2 = —Y1 — Y2

By Lemma 3, we conclude that, after a finite tiffé_, >
T,—1, the solution satisfies

VE2 Ty [yl = 0 (Me(@)®) ==
The above argument can be recursively repeated for each equa-
tion to prove that, after a finite tim&, > 735 > --- > 77, the
control law is no longer saturated and the closed-loop system
has the formy = (A + 0(A]))y, where the matrid is a lower With a proper choice of the saturation constants, global stabi-

triangular filled with—1. For 7" > 77, the solution converges lization of (5.30) is then achieved with the nested saturated feed-
exponentially to the equilibriung = 0, which ends the proof. back (2.7).

ey,
Il

AL — bzn:y (5.31)
=1

Example 1: The system Here, we will notimpose any structural condition B, ),
i1 = a0 + 2202 but instead we restrict its growth like in the previous section.
. Assumption 3:Each columrmp;(z, v) of the matrixP(z,
Gy =ty (4.29) ssumption 3:Each columm;(z, v) of the matrixP(z, v)

. . ’ is at least of order zero with respect to the dilatiotw, v) =
is homogeneous of degree one with respect to the dilatipf (), cv), wheres,(z) is the slow-peaking dilation (3.12).

8(x,u) = (¢ ‘w1, x2, cu) and therefore nonpeaking. The Assumption 4:Two classk functionsy; andy, exist such
“radius” is in this case that
1

pla) = Vit [1PCz, )|l < xa (Dl + x2(llvl)
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guarantees that, wheneve(t) is selected such thdf¢) exists The matrix? has all its eigenvalues on the imaginary axis, so

for all ¢ > 0, thenz(t) also exists for alt > 0 because that a matrixS > 0 exists, which satisfies the Lyapunov in-
d equality SQ + QTS < ¢»S. Using Assumption 4, the norm
7 @D < xs(lv@DIz@I +xa(llo@I) |lzlls = VaT Sz satisfies for some constan§ > 0 and for

for some clasge functionsys andyy. lzlls = 1
The additional growth Assumption 4 was not present in thed C2
. . - — <= .
previous section because the initial value.@buld be freely as-  dt l=lls = 2 lzlls + esCaalvll) +xadllol) + vl ll=]s
signed. This result is in contrast to the initial value of the vect@tor ¢ sufficiently large ||v(¢)|| is small enough such that
v = (&)Y, which now depends on the initial conditig0). d
Assumption 4 is necessary to prevent a finite escape tinn&pf p lzlls < e
gurlgg :ﬁ[ﬁ conyqrg?rnhqe qlt) Itto'a sufﬂuen?lfytﬁmall heighbor- Wthich contradicts (5.36). We conclude that (5.33) holds.
ood of the origin. This result is so even if the convergence o Defining =(t) = ||€(t)]| — (4MB/a)(t), we have from
&(t) can be rendered arbitrarily fast (a consequence of the f:(‘ost%) thatz(T,) < 0 and we will now show that(t) < 0

peaking phenomenon; see [14]). S :
Theorem 2: Under Assumptions 2—4, low gaing(y») > 0 forall¢ = T, by proving that

3c
2|zl s

andé(y,) > 0 and a constand/ > 0 exist such that for all 2(t)=0=2(t) <0. (5.37)
M ¢ [0, M], the low-gain control law An explicit calculation yields
= - n)(Sab are(z) (Un . 4Mp .
w = —Y1(|[€I)v2(yn)(sab pre(a) () PSP el = B
+ Sat]wez (z) """ + Sat]wen(w) (yl)) (532) dt @ 4
achieves global asymptotic stability of the equilibrigm ¢) = < MB(—vya(yn)e(z)) — a(lfyé(yn)g)ne(xﬂ + |ye)).

0 of (5.30). )
Proof: Because the equilibriurei = 0 of £ = a(&,0) is
LES, strictly positive constants, 3, 6 exist such that

If 2 <0, then||{|| = 0(v2Me) andy,, = 0(v.M¢). By Lemma
2, we conclude thdg| < pe with 1 a positive constant, which
4 can be selected arbitrarily small by a suitable choicg(gf,).
€] < 6 = —|€]| < —aé + Blul. Also, v2 can always be chosen to satigfy,(y,)| < u. We
dt conclude

The ball B(0, ) = {¢ | |¢|] < 6} is clearly invariant ifju| < ‘ 8

w := flab. Moreover, because the equilibriugn= 0 of z=0= 2 < —Mpy(yn)e(z) <1 - ;)
& = a(£,0) is GAS, a nonlinear gainy; (||¢]|) exists such that . -

v(s) = 1for s € [0,6] and such that all solutions &f = so that (5.37) holds if. is chosen sufficiently small.

a(€,v(]|€]])w) are attracted in finite time to the sBf provided Having established thaw|| = (.)(Me) forallt > T, the
that|w| < (/2). For any choice of: = ~, (||¢||)w that satisfies proof can be pursued e_xactly asin Theprem.l to show the con-
these constraints(¢) exists for allt > 0. By Assumption 4, the VErgence of each solution to zero, starting with
solutions of (5.30) then exist for all> 0. In addition, for each 4, = —v2(yn )(sabare(a)(¥n)) + 0 (M (2)) + Po(z, v)v
initial condition (z(0),£(0)), a finite timeZ; > 0 exists such
that((t) € Bs forall t > .

Let(t) 1= ya(yn(t))e(x(t)). Fort > T, we haveu(t)| <
2M+(t) and we show that a finite ting, > T; exists such that

and adding a new equation at each step.
As an illustration of Theorem 2, we design a globally stabi-
lizing control law for the celebrated frictionless ball-and-beam

model [5].
e < 4Mp (T, (5.33)  Example 2: After a preliminary feedback, the ball-and-beam
T« model considered in [5] is
By contradiction, suppose that P
a <1 — <2
Ve Te: (Blu()] <)2MpByY(t) < S llE@ll. (5.34) 2y = —sinzs + 212
Then, (d/dt)||€]] < —(«/2)¢ and the convergence oft) = %3 = 24
(&£(¢),u(t)) is exponential 4= w (5.38)
()] = [(€(t), u(t)|| < Ce= /D1, (5.35) wherez; andz, denote the position and velocity of the ball and
From (5.34) and (5.35)/(t) also converges exponentially,z3 @ndz, denote the angular position and _angular velocity of the
which implies that at least one statg(¢),i € {1,---,n}, Deam.Theterm sinz;isbecause of gravity, and the terAe]
diverges exponentially to infinity; that is, strictly positivels the centrifugal acceleration of the ball because of the motion
constants; ande, exist such that of the beam. To apply Theorem 2, we rewrite (5.38) as
lz:(t)] > cpe®t. (5.36) T =2

. . 2

Denoting bye, the vectore,, = (0,---,0,1)T and byQ the T2 = i+ (sindn — &) + 18

matrix filled with zeros except for the superdiagonal elements &1 = &

gii+1 = 1, we have b = —wi= —ki1& — koo +u, ki1 >0, k2 > 0.
&= Qx4 P(x,v)v+ lve,. (5.39)
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Because of the nonlinearity; £2, the system (5.39) is not in The time function (x(¢)) satisfies
the feedforward form required for a forwarding design. The C

o > k—i k—i
growth conditions of Theorem 2, however, are satisfied: the  |fu(z(t))] < 7/ (1)p(x())"™" < v — p(a ()"

slow-peaking dilation is ) 4
Becausek — i < 0 andp(z(t)) < 1, we have thap*~* <

—1 . .
bc(z, & u) = (6 *1, %2, €61, €62, C“) (pn~i+1)*—i and therefore we conclude that

and the radius ip(xz) = (1/4/1+%). The perturbation
(0,(sin&; — &) + =165)T is of order one. Also, the linear

growth inz, that is, Assumption 4, is satisfied. for some constan®’ > 0. Subsituting in (8.40), we obtain
Using the change of coordinates

y1 = kizyr + (k1 +ko)zo + (1+ k) + &
Y2 = krxg + k261 + &2

hala(O)] <75 (FE) < Ot

lEg] < |z | +CH R 1<k <i— 1.

Using the fact thak;(¢) is bounded for alt > 0, we obtain by

o _ _ _ integration the estimates
GAS of the equilibriumz = 0 is achieved with a control law of

the form o ()] S Kt7F, 1<k<i-1 (8.41)
u = —v2(y2) (sabpre() (Y2) — Sabpre(ay2 (Y1) for some constank” > 0. Substituting the estimates (8.41) in
. . . péx), we conclude
The gainy;(||£||) used in Theorem 2 is not necessary becaus ‘
the ¢-subsystem is linear. n—1 ~ (=it 1)/@n=1)))
f =1+ Z gy ()R (=)
VI. CONCLUSION k=1
In_this.paper, we have ghown that semiglobal and global > {1 +Z akd?(nfl))/(nfk)
stabilization of a chain of integrators perturbed by a vector o
field, which is higher order in. cannot be guaranteed without i1 —((n—i+1)/(2(n—1)))
extra conditions on the perturbation, despite the fact that the + Z ak(Kt)(2(n—1)(7‘,—k))/(n—k)
unperturbed chain of integrators can be stabilized by using a il
low-gain design. The obstacle to large regions of attractions 1

for the perturbed system is caused by the large state transients = C1 + Oyt

mher_en'g to the low-gain design, aphenomenon thatwestmzu_ for some constant§; > 0 andC, > 0, which contradicts the
peakingin contrast to the fast-peaking phenomenon assomataesdsum tion thaf € L1(0, o)

with high-gain designs [17]. To overcome the destabilizing P ")
effe(?t of pfeakmg, we must impose growth conditions on tk@ Proof of Lemma 2

nonlinearities. We have characterized these growth conditions ) ) _

as higher order conditions with respect to a weighted dilation, BECaus€p(x) is a function of order one and(x, v) is a
in which each state is weighted by its peaking exponent. Wh¥gctor field of order one, the time derivatiye= L p is of order
this higher order condition is satisfied, we have shown thi¥©- By Proposition 2, a functiof'(z,,) > 0 exists such that
global stabilization of the perturbed system can be achieved by lu| < p(x) = |pla)] < Clan)p?(z).

a low-gain design that preserves the higher order property in _ _ _

closed loop. This global stabilization result has been extendefoose a smooth and strictly decreasing functier) > 0 such
to the case when the perturbed chain of integrators is cascat®@ C(zx»)r(|zn|) < pforall 2, € R. Because'(s) — 0 as

with a GAS/LES subsystem. s — o0, a constans large enough exists such that (s)| <
w/ K, for all s > 5. We then choose
APPENDIX e(xn) = k(3), |zn| <3
A. Proof of Lemma 1 =h(lznl),  |on| 23

The proof goes by contradiction. Le€ {1,---,n}, and let so that|e'(z,,)| < u for all z,,. With this choice, we obtain
x(0) such thate;(¢t) < 7 forallt > 0andi < k < n. Assume
that, for this initial condition, the integral (4.22) is bounded; that
is, the time functiory'(¢) = p(z(¢))" ! belongstd.!(0,o). and
Becausef () is uniformly continuous, we havg(t) < (C/t .. _
e o OO (o) = pla) > = p < Cle)o? < Clan)elmn)e < pela)
Becausey (x, ) is of orderk — n andu = k(x) is of order which proves the lemma.
n — i+ 1, we deduce from Proposition 2 that

k(l’)pk(;p’ k(.’l’)) =0 (p(x)n_2i+k+l)
so that, forl < %k < ¢ — 1, we have d
B = ot h(a), (@) =0 () (@40 Lol < oo + et

e(x) = e(xy) = ¢ < (xp)dn < pe(z)

C. Proof of Lemma 3
Becaused is Hurwitz, constanta and3 > 0 exist such that



SEPULCHRE: SLOW PEAKING AND LOW-GAIN FOR NONLINEAR SYSTEMS

Definez(t) = «||=(¢)|| — 28¢(¢). If 2(t) > 0forall ¢ > 0, then
@Il = (28/a)e(t) and(d/dt)|[x(t)]| < —(a/2)[lx()]| for
all £ > 0. Then, we have

VE2 0o (0)e < e(t) < Kla(t)]| < Kle(0)]je /"

which is a contradiction foflarge enough if: < («/2). Hence,
a finite timeT" > 0 exists such that(Z7’) < 0. We then show
thatz(¢) < 0 forall t > T by proving

A(t) = 0= (t) < 0. (8.42)

(-2)

An explicit calculation yields

2(t) =0= % < —0e(t) —2/—jé§ —p
[a%
so that (8.42) holds if: is small enough.
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