Boundedness properties for time-varying nonlinear systems

Joan Peuteman'
Dirk Aeyels'
Rodolphe Sepulchre?

ISYSTeMS, Universiteit Gent
Technologiepark-Zwijnaarde, 9
9052 Gent (Zwijnaarde), BELGIUM
e-mail: {Joan.Peuteman, Dirk.Aeyels }@rug.ac.be

Institut Montefiore, B28
Université de Liege
4000 Liege Sart-Tilman, BELGIUM
e-mail: r.sepulchre@Qulg.ac.be

Abstract

A Liapunov theorem guaranteeing uniform boundedness and uniform ultimate boundedness for
a time-varying nonlinear system #(t) = f(x(t),¢) has been established. The study of uniform
boundedness and uniform ultimate boundedness of particular classes of time-varying nonlinear
systems @(t) = f(z(t),t) is reduced to the study of the corresponding time-invariant frozen sys-
tems &(t) = f(x(t),o) for all o € R. This approach is illustrated for time-varying homogeneous
systems with a positive order, for particular classes of time-varying nonhomogeneous systems
and for time-varying Lotka-Volterra equations .

AMS classification: Ordinary differential equations (34), stability theory (34D), Lyapunov sta-
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1 Introduction

The stability analysis of time-varying systems 4(t) = f(z(¢),t) is in general more difficult than the
stability analysis of time-invariant systems. For this reason, several approaches have been proposed
in the literature to reduce the stability analysis of time-varying systems to the stability analysis of
related time-invariant systems.

Averaging is the most popular of these techniques. Exponential stability of the (time-invariant)
averaged system #(t) = f(z(t)) implies exponential stability of the original (time-varying) system
provided that the time-variation of the original system is sufficiently fast [1, 2, 9]. In contrast,
when the time-variation is sufficiently slow, other results have been proposed based on the stability
analysis of the familiy of the frozen systems #(t) = f(x(t),0) (where o is treated as a constant
parameter) [4, 9, 12, 13, 14, 15].

In the recent paper [11], it has been observed that the fast time-variation hypothesis necessary for
averaging results can be replaced by a homogeneity assumption on the vector field f(z,t). Because
the homogeneity property affects state but not time, the time-variation of a homogeneous vector
field f(z,t) of positive order 7 > 0 is inherently fast for ||z|| small and slow for ||z|| large. This fast
and slow variation of the vectorfield is of course to be understood relatively to the time-variation
of the solutions.

Based on this observation, the main result in [11] concludes local uniform asymptotic stability of
the equilibrium point z = 0 of the time-varying homogeneous system from asymptotic stability of
the averaged system. This result exploits the inherently fast character of homogeneous systems
with a positive order near the origin.

In the present paper, we exploit the inherently slow character of such systems far from the origin.
We develop a freezing result for homogeneous systems with a positive order: we show that asymp-
totic stability of each frozen system implies uniform boundedness and uniform ultimate boundedness
of the original time-varying system. Boundedness properties rather than asymptotic stability of
the equilibrium point follows from the fact that the time-variation is not slow near the origin.
Our result is further extended to systems that are not necessarily homogeneous but that possess
a homogeneous approximation for ||z|| sufficiently large. This robustness result is dual to the ro-
bustness of local asymptotic stability with respect to higher order perturbations [7, 10].

The paper is organized as follows. In Section 2, we formulate a Liapunov result guaranteeing uni-
form boundedness and uniform ultimate boundedness of a time-varying system %(t) = f(z(t),t).
We also explain how a Liapunov function can be constructed satisfying the conditions of this Li-
apunov result. This approach is used in Section 3 to prove uniform boundedness and uniform
ultimate boundedness of a time-varying homogeneous system with a positive order 7 > 0. In Sec-
tion 4, we show that the approach presented in Section 2 and Section 3 is not restricted to the
class of homogeneous systems. In Section 5, we illustrate the results by means of a time-varying
Lotka-Volterra system defined in the first closed orthant of R™.

2 Boundedness properties and the freezing technique

We first specify the class of systems under study in the present paper.

Consider



with f : R" x R — R”. We assume that conditions are imposed on (1) such that existence and
uniqueness of its solutions is secured for all initial conditions zy € R” and for all initial times ¢;.
The solution of (1) at ¢ with initial condition ¢ at ty is denoted as x(¢,tp,zo). These existence
and uniqueness conditions are imposed on all the differential equations mentioned in the present

paper.

We now introduce the notions of uniform boundedness and uniform ultimate boundedness (see [16],
pp. 36-37).

Definition 1. The system (1) is uniformly bounded when !

e for all Ry > 0, there exists a Ro(Ry1) > 0 such that for all 2y € R, for all ¢y and for all ¢ > ¢y

[zoll < Ry = |2(t, to, m0)|| < Ra(Ry). (2)

Definition 2. The system (1) is uniformly ultimately bounded when

e there exists a R > 0 such that for all R; > 0, there exists a T(R;) > 0 such that for all
zo € R, for all ¢y and for all ¢t > ¢ty + T'(R;)

[zoll < Ry = [|l2(t, to, z0)[| < R. (3)

The classical theorem of Liapunov proves uniform asymptotic stability of the equilibrium point
xz = 0 of a dynamical system #(¢) = f(z(¢),?) when there exists a positive definite and decrescent
Liapunov function V (z,t) whose derivative V(z,t) along the solutions of the system is negative
definite. When there exists a Ry > 0 such that the derivative V(:I:,t) along the solutions of the
system is negative for x with ||z|| > Ry > 0, the following proposition proves uniform boundedness
and uniform ultimate boundedness.

Consider the system (1). Consider a continuously differentiable function V : R* x R — R.

Proposition 1. Assume that for all t € R and for oll z € R"
a(llzl)) < V(z,t) < B(||z]]). (4)
The functions a(-) : RY — R and B(-) : Rt — R are class-Ko, functions 2.

If there exist a class-K function y(-) : Rt — R and a Ry > 0 such that for all t € R and for all
x € R" with ||z|| > Ry

ov ov

5 @0+ (@ 0)f(2,8) < —y(lzl). (5)

then (1) is uniformly bounded and uniformly ultimately bounded.

Proof. The result of the present proposition has been formulated in ([16], pp. 39-42). For com-
pleteness, the proof has been included in the appendix. ]

n the present paper , we always use — without loss of generality — the Euclidean norm.
2A continuous function 7 : [0,a) — [0, 00) is said to be a class-K function if it is stricly increasing and n(0) = 0.
It is said to be a class-Koo function if a = co and 7(r) — co as r — co.



The study uniform boundedness and uniform ultimate boundedness of a time-varying nonlinear
system, by means of Proposition 1, is in general highly nontrivial. Reducing the problem to the
study of time-invariant systems may be an important simplification.

Consider the time-varying system (1). For each o € R, define the time-invariant system

#(t) = f(x(t),0). (6)

We call the system (6) the frozen system of (1) at o. Consider for each o € R a continuously
differentiable function V, : R* — R. Define V : R* x R — R as V(z,0) := V,(z) for each 0 € R
and each z € R".

Theorem 1. Assume that for all o € R and for oll z € R”
°
Wi(z) < V(z,0) < Wa(z). (7)
The functions Wi : R* — R and Wy : R* — R are positive definite and radially unbounded 3.

If there ezists a Ry > 0 and positive definite functions W3 : R* - R, Wy : R* = R and W5 : R* —
R such that for all o € R and for all z € R” with ||z|| > Ry

G 0l < Wato) ®)
O 5.0/ (a,0) < ~Wi(z). )
W3 (z) — Wa(z) < —Ws(x). (10)

then (1) is uniformly bounded and uniformly ultimately bounded.

Proof. The proof of the present theorem is based on Proposition 1. For each ¢ € R and for each
z € R", define

V(z,t) :=V(x,0) _ (11)
By (7) and ([9], pp. 138-139), (4) is satisfied. By (8) and (9), it is clear that for all ¢ € R and for
all x € R" with ||z]| > Ry

ov ov

E(x,t) + %(x,t)f(x,t) < Ws(z) — Wy(z) < —Ws(z) < 0. (12)
By ([9], pp- 138-139), (5) is satisfied and by Proposition 1 this implies uniform boundedness and
uniform ultimate boundedness for the original time-varying system (1). O

Remark 1. It is obvious that the statement of Theorem 1 can be relaxed by replacing (8) and (9)
by %—‘;(m, o)+ %—Z(x, o)f(z,0) < —W;s(x). However, for the purpose we have in mind (see Section 3)
the present formulation of Theorem 1 will be applied.

A function W : R™ — R is positive definite when W is continuous, W (0) = 0, W(z) > 0 for all z € R™ \ {0}. In
case W(x) — +oo as ||z|| = +oo then the positive definite function W is radially unbounded.



3 Homogeneous systems

In the present section, we specialise the result of the previous sections to the class of homogeneous
systems.

Given an n-tuple r = (ry,...,r,) (Vi € {1,...,n} : r; > 0). We define the dilation § to be the map
§:RT xR" 5 R : (5,2) — 0(s,2) = (s w1,..., s xp) (13)
where z = (21, ..., 22).
A continuous function h : R — R is r-homogeneous of degree m > 0 if and only if
Vz € R", Vs € R" : h(d(s, 7)) = s"h(z). (14)
A continuous function fr : R" — R" is r-homogeneous of order 7 > 0 if and only if
Vo € RVt € R Vs € R : fi(8(s,2),t) = s"6(s, fu(z,t)). (15)

When fp is r-homogeneous of order 7 > 0, then for all p > 0, fg is r’~-homogeneous of order 7/ > 0
with 7’ = (%, ey %") and 7 = 5- When h is r-homogeneous of degree m > 0, then for all p > 0,
h is r’-homogeneous of degree m’ > 0 with ' = (%5 ) and m' = 2. For this reason, taking
0<r; <1forallie{1,..,n} is not a restriction in the definition of homogeneity. In the sequel,

we always take 0 < r; < 1 for alli € {1,...,n}.

A r-homogeneous norm p is a continuous function p : R* — R which is positive definite and r-
homogeneous of degree 1. (0 <r; < 1: Vi € {1,...,n})

In the present paper, we will use the r-homogeneous norm
n 1
ple) = 3 Jail (16)
i=1
This homogeneous norm is continuously differentiable in R” and for all i € {1,...,n},

dp 11, Op

—(0 =s ""—(x). 17

2 (3(sv)) =5 75 (0) a7)
Lemma 1. The time-invariant r-homogeneous system i(t) = fu(x(t)) of order T > 0 is uniformly
asymptotically stable if and only if there exists a k > 1 such that for all xo € R, for all ty and for
all t Z t()

kp(x
plalt, to,20) < — LI (18)
(1+ (t —to)p(z0)7)"
Proof. The proof is omitted. The reader is referred to ([5], pp. 278-284). O



3.1 Main result

Consider the r-homogeneous system

@(t) = fu(z(t),t) (19)
with order 7 > 0. Consider for each o € R the frozen system
z(t) = fa(z(t),0). (20)

The solution of (19) at ¢ with initial condition 2y € R at ¢y is denoted as x g (¢, to, zo), the solution
of (20) is denoted as x4 (t, to, zo).

Theorem 2. Assume that

e the equilibrium point © = 0 of each frozen system (20) is asymptotically stable and that the
estimate (18) is uniform i.e. there exists a k > 1 independent of o such that for all o € R,
for all xg € R™, for all ty and for all t >t

kp(wo)
(1+ (t = to)p(z0)7)

p(ers(t o, 20)) < (21)

1
=

o fu(x,0) is continuously differentiable with respect to x and o.

o There exists a cy > 0 such that for all o € R, for all y € R* with p(y) = 1 and for all
ik e{l,..,n}

Ofmi

axk

Ofmi
Jdo

(y,0)

|fri(y,0)| <cp and ‘ <cs and ‘ (y,o)‘ < cy. (22)

then the time-varying system (19) is uniformly bounded and uniformly ultimately bounded.

Proof. The proof is based on Theorem 1. Define for all z € R" and for all o € R,

Viw.o)i= [ plonst.0,2)™di (23)
0
where m will be chosen later on in the proof.

By (15), (22) and ([5], pp. 278-284), there exists a k' > 0 such that for all o € R, for all z € R,
for all ¢ty and for all ¢ > ¢,

K'p(z)
(1+ (t —to)p(z)7)

p(erq(t,to, 2)) = (24)

il

We now prove (7), (8) and (9).
I. By (21) and (24), there exist a ¢; > 0 and a ¢y > 0 such that for all z € R and for all o € R
c1p(z) "I < V(z,0) < cap(z) ™7 (25)

This implies that (7) is satisfied when m > 1.



ITI. In order to verify (8), we calculate ‘g—g(x, o). Notice that

o) = [ ol (0.0 (ol (1,0.0))de (26)
30 0 30
> mr—1 - 0 Ox LHoi
=mT p(xms(t,0,z)) . (xrs(t,0,2)) 90 (¢,0,) | dt. (27)
0 =1 i
Here, we assume that m > % For all i € {1,...,n},
0 ) _
P (@10 (t,0,2)) = =2 (5(p(w 110 (1,0, 7)) 2110 (£,0,2))) plaso (8,0, 7)) 7 (28)

or; oz;

The continuity of % on the compact set {y : y € R*,p(y) = 1} implies the existence of a ¢, > 0
such that ‘g—;’i(y)‘ <c, for all i € {1,...,n} and for all y € R* with p(y) = 1. It is clear that *

a'L'Hcfi

(z, )

‘a—a <mr [ pans 0.0 e, (pra(t,o,z))l“

=1

(t,0,z) D dt.  (29)

In order to obtain an upper bound for the right hand side of (29), we first calculate an appropriate
upper bound for

n
0 oi
N pleno(t,0,2)' 77 | ZH (1 0,2)] (30)
o
i=1
By integrating (20), one obtains that for all z € R” and for all ¢ > 0,
t
1o (£,0,2) = 2 + / Fir(10(5,0,2), 0)ds (31)
0
and
0T o 8 0Ty Ofmi
Ly / 0 10 (5,0,2),0) P21 50,0 4 0 (5,0,), 005, (32
0 axk 0o 0o

By multiplying (32) with p(zx,(t,0,2))' " and invoking the triangle inequality, one obtains that
the expression (30) is less than or equal to

asz
a’L‘k

Ofmi

Penet (s,00)| +|%
g

prHUtOxI“ (zms(s,0,2),0)

(xro(s,0,2),0)|ds.

0
(33)

Notice that

Ofmi

L 110 (5,0,0),0) = plarros:0,0))7 77 L (S(png(5,0.0) oo (5,0.00),0) (30

(9£Ek

4Since fu(z,0) is continuous differentiable with respect to x and o, the solution zm.(t,%o, o) is continuously
differentiable with respect to o. ([6], Theorem 3.3, p. 21)



and

Ofmi
oo

T4+7; ale
do

(xHs(8,0,2),0) = p(zHs(8,0,z)) (5(,0(:1:1{(,(5,0,:1:))71,:1:1{0(5,0,:1:)),a) . (35)

By (22) and (33), the expression (30) is less than or equal to

OTHok (

%0 s,0,)

+p(z14(s,0,2)) " ds.

n . n
er > plwo(t,0,2) " / S pl10(5,0,2)) 7+
=1

0 k=1
(36)

By (21), p(x s (t,0,2)) < kp(zms(s,0,2)) for all s € [0,¢]. This implies by (36) that the expression
(30) is less than or equal to

n t n )
CkaI”'/ p(zrq(s,0,2)) " (Z p(x 5o (s,0,2))7 i %(s,o,m) —i—p(mHU(s,O,x))””) ds.
i=1 0 k=1
(37)
By (21), there exists a c¢3 > 0 such that for all z € R” and for all ¢ > 0,
t
/ p(THe(s,0,2)) T Tds < e3p(x). (38)
0
This implies the existence of a ¢4 > 0 and a ¢5 > 0 such that the expression (30) is less than or
equal to
t = 0T sk
cape) +es [ oo (0,07 3 pomo(5,0.0) 7 | s, 0,0) s (39
0 k=1
By the Gronwall-Bellman lemma, it is clear that
= oz i t
D plwre(£,0,2))' 7 TSI (1,0,2)| < capla)er® Jo Pl 0)Tds, (40)
o

=1

By (21), there exists a ¢g > 0 such that for all z € R” and for all ¢ > 0,

05/ p(2Hs(8,0,2))7ds < cgln (1 + tp(x)") (41)
0

and therefore

n

Z p(xHa(t’ 0, x))lin

=1

OrHgi (t,0,z)

do < cap(z) (1 +tp(z)7)* . (42)

This implies by (29) and (21) the existence of a ¢; > 0 such that
ov
‘%(% o)

< crp(z)™" /000 (1+tp(w)T)e =™ dt. (43)



Take m > cg + % + 1. There exists a ¢g > 0 such that for all ¢ € R and for all z € R",

A

5 < cxp(x) T (44)
o

ITI. From the definition (23), one obtains that the derivative of V(z, o) along the solutions of (20)
equals V(z,0) = —p(z)™". This implies that

ov .

O (5,0) fr(w ) = V() = —pla)"™". (45)
IV. By (44) and (45), (8) and (9) are satisfied with W3(z) = cgp(x)™ D7 and Wy(x) = p(z)™".
Since W3(x) — Wy(z) is a continuous function of x that goes to —oo as ||z|| goes to +oo, there exist
a Ry > 0 and a positive definite Wy : R” — R such that for all z with ||z|| > Ry, Ws(z) — Wy(z) <
—Ws(z). Theorem 1 implies uniform boundedness and uniform ultimate boundedness of the system
(19). O

Remark 2. By taking V(z,0) as defined by (23) and by setting V(z,t) = V(z,0)|s,— as in the
proof of Theorem 1, we not only prove uniform boundedness and uniform ultimate boundedness of
(19). We also obtain the estimate

kp(zo)
(1+ (t — to)plwo)7)~

when ||z (7,0, z0)| is sufficiently large for all 7 € [to,%]. Indeed, by (44) and (45), the derivative
of V(x,t) along the trajectories of (19) satisfies the inequality

p(zm (t,to, zo)) < (46)

V((L‘H(t, th (I;O)’ t) < CSp(xH(t’ th xo))(m_l)T - ,O(fIfH (ta tO’ xO))mT‘ (47)

There exists a Ry > 0 sufficiently large such that for all x4 (2, %0, z0) with |[zx(t,t0,z0)|| > Ry2

V(zg(t, to,zo),t) < —0.50(xp(t,to,20))™ . By (25), there exist positive constants c¢1p and ¢1; such
that

V(mH(t,t(),fIf()),t) S —Cl(]vv(‘fl"f'f(t’thfL‘O)’t)m (48)
and by integration
V(@u(t, to, z0),£) T > V(o to) = + c11(t — to). (49)

By (25), there exists a k > 1 such that for all ¢y and for all ¢ > ¢y (46) is satisfied when
|z (T, to, xo)|| > Ry for all T € [to, t].

3.2 Time-periodicity

In the present section, we consider the time-periodic case. This allows us to simplify the conditions
mentioned in Theorem 2. In case the r-homogeneous system (t) = fg(x(t),t) with order 7 > 0
is time-periodic, it is possible to reformulate the first condition of Theorem 2 by only requiring
asymptotic stability for each frozen system %(t) = fg(z(t), o).



Theorem 3. Consider the system 4:(t) = fry(x(t),t) where fy(x,t) is assumed to be time-periodic
with period T¢. When fr(x,0) is continuously differentiable with respect to x and o and each frozen
system &:(t) = fu(x(t),o) is assumed to be asymptotically stable i.e., for each o € R there exists a
k(o) > 1 such that for all xy € R™, for all ty and for all t > ty

k(o)p(zo) :
(1+ (¢ —to)p(x0)7)~

then the time-varying system (t) = fg(x(t),t) is uniformly bounded and uniformly ultimately
bounded.

p(zrs(t,to, 7o) < , (50)

Proof. The proof of the present theorem is based on Theorem 2.
I. First we show that (21) is satisfied.

Since fy(z,0) is continuously differentiable with respect to = and o, zy,(T,0,x) is continuously
differentiable with respect to o for all 7' > 0, all x € R* and all ¢ € [0, TY] ([6], Theorem 3.3, p. 21).
This implies that for all T > 0, all z € R" and all o € [0, T}]

im 2y (T,0,2) = 25o(T,0,2) and lim p(zpy(T,0,2)) = p(zae(T,0,)). (51)
o —0 g —0

Take an arbitrary o € [0,Ty]. k(o) in (50) is not unique but for each fixed o, the set of the possible

k(o) has an infimum ki,¢(0). We will now prove that kine(o) is a continuous function of o. The

continuity of king(o) as a function of o on a compact interval implies the existence of a bounded

maximum k¢ on [0,Tf]. By taking an arbitrary e > 0 and setting k = Eint + €, (50) implies that

(21) is satisfied.

Suppose kiy¢(0) as a function of o has a discontinuity at ¢’ i.e., there exists an € > 0 such that
for each ¢ > 0 there is a 0" €]o’ — &', 0" + §'[ for which |kine(0”) — kins(0”)] > €. This means that
king(0") < king(0”) — € or that kine(0”) > kine(o”) + €.

First, suppose that king(c”) < king(0') — €’. For this fixed o', kin¢(o’) is the infimum of all possible
k(c"). By (50), there exists a T > 0 and a 2’ € R such that

!

(ki (') = D)ol')

(20 (T",0,2")) > 1 (52)
. (L+T'p(z")7)"
But by (50)
it (0") + &) p(z’ kint (') — 22 p(a'
p($H0'”(TI,0,.'L',)) < (kmf(d )+ 4)’0(1 ) < ( f( ) 4 )pl( ) (53)
(1+T'p(')7)? (1 + T'p(@))7
such that
o (T',0,2) — g (17,0,07)) > & —PEL_ (54
(1+T'p(a'))"

for all &' > 0 with ¢” €]o’ — ¢§',0' 4+ §'[. Since (54) contradicts with (51), the assumption that
king(0") < king(o’) — € is false.

10



Suppose that king(o”) > kine(o') + €. For this fixed o”, kine(o”) is the infimum of all possible k(c”).
There exists a 7" > 0 and a 2" € R” such that

!

(ki (0”) — )o(

8

II)'

P(iHa” (TI,707:E,,)) > ( ( ) )1 (55)
1L+ T"p(z")7)7
But by (50),
’ i m _ 3€ "
oo (T",0, 5 < SO + )ele) (kmf(a ) )p(x ) (56)
T - (l—i-T",O((L‘”)T)% - (l—i-T"p((L‘”)T)%
such that
¢ p 2"
s (T7,0.5")) — plagy (T7,0,2)) > & —LE)_ (57)
(L+T"o(a")")*

for all &' > 0 with 0" €]o’ — ¢',0' + §'[. Since (57) contradicts with (51), the assumption that
king(0") > kine(o’) + € is false.

Since the discontinuity assumptions lead to contradictions, ki,¢(o) is a continuous function of o.
Therefore, kint(0) has a bounded maximum ki, on [0,7y]. By taking an arbitrary e > 0 and setting
k = Eint + €, (50) implies that (21) is satisfied.

I1. Since fg(z,0) is periodic in the second variable and since fr(z, o) is continuously differentiable
with respect to z and o, (22) is satisfied.

III. Theorem 2 implies uniform boundedness and uniform ultimate boundedness of the homoge-
neous system &(t) = fy(z(t),t) with order 7 > 0. O

4 Homogeneous approximations far from the origin

In the present section, we generalize the results of Section 3. We consider systems that have a
dominant homogeneous approximation at infinity i.e. systems represented as &(t) = fy(z(t),t) +
g(z(t),t). Here fir: R" x R — R™ is homogeneous with a positive order 7 and g : R* x R — R" is
a perturbation of fy when ||z is sufficiently large.

Consider g : R* x R — R". There exist a B, > 0 and a continuous nonincreasing function
F :R" — R with lims_,o F(s) = 0 such that for all 2 € R” with p(z) > R, and for all t € R

16(p(x)~", g(z, )]l < plz)"F(p(x)). (58)

A typical example is the case where g(z,t) is the sum of a finite number of homogeneous terms
with the same dilation as fy(z,t) and with orders smaller than 7. For z with ||z|| sufficiently
large, g(z,t) can be seen as a perturbation which does not affect the uniform boundedness and the
uniform ultimately boundedness property.

Consider the system

i(t) = fu(x(t),t) + g(z(t), 1) (59)

11



and the frozen systems

#(t) = fu(x(t), o) +g(z(t), 0). (60)

The solution of #(t) = fg(z(t),t) at ¢t with initial condition zy € R at ty is denoted as g (¢, to, zo),
the solution of #(¢t) = fr(x(t),0) is denoted as xp,(t,t0, o), the solution of (59) is denoted as
x(t, to, xo),the solution of (60) is denoted as x, (¢, to, Zo)-

Theorem 4. Assume that all the conditions of Theorem 2 are satisfied, then the time-varying
system ©(t) = fu(z(t),t) + g(z(t),t) is uniformly bounded and uniformly ultimately bounded.

Proof. In order to prove the boundedness properties, consider the Liapunov function V' (z, o) defined
by (23) which satisfies (25), (44) and (45).

I By making calculations similar to the calculations in part II in the proof of Theorem 2 leading
o (44), one obtains g—v(x o) for all j € {1,...,n} and for all z € R". There exists a ¢g > 0 such

that for all j € {1, ... n} and for all z € R?

ov

87j(337 0)| < eop(a)m VT (61)

whenm>06+%+1.

IT By (58), for all z € R with p(z) > Ry, for allt € R and for all j € {1,...,n}

195 (. )] < p(x)"7 T F (p(x)). (62)
From (45), (61) and (62)
8V mT
s =—(2,0)(fuj(2,0) + gj(2,0)) < —p(x)™" (1 = neo F(p(x))) (63)

when p(z) > Rg. Since lims_moF( ) = 0, there exists a pr > Ry such that for all z € R” with
p(z) > pr, Fp(zr)) < an . This implies that for all z € R” with p( ) > pr

& (r,0) (e 0) +9(,0) < o)™ (69
T 2

ITI By (44) and (64), (8) and (9) are satisfied with W3(z) = cgp(z)™ 7 and Wy(z) = To(z)™
Since W3(z) — Wy(z) is a continuous function of z that goes to —oo as ||z|| goes to +oo, there
exist a Ry > 0 and a positive definite W5 : R" — R such that for all z € R® with ||z] >
Ry, Ws(z) — Wy(x) < —W;s(x). Theorem 1 implies uniform boundedness and uniform ultimate
boundedness of the system (59). O

The boundedness results of Theorem 4 do not require time-periodicity of the system () =
fu(z(t),t). In Theorem 5, we consider the time-periodic case which allows a simplification of
the conditions.

Theorem 5. Consider the system ©(t) = fu(z(t),t) with order T > 0. Here, fr(z,t) is assumed
to be time-periodic with period Ty. When fg(z,0) is continuously differentiable with respect to x
and o and each frozen system %(t) = fu(x(t),o) is assumed to be asymptotically stable then the
time-varying system &(t) = fr(z(t),t) + g(x(t),t) is uniformly bounded and uniformly ultimately
bounded.
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Proof. All the conditions imposed by Theorem 3 are satisfied. The proof of Theorem 3 implies
that the conditions imposed by Theorem 4 (and equivalently by Theorem 2) are satisfied. This
implies uniform boundedness and uniform ultimate boundedness of the time-varying system i (t) =

fu(z(t),t) + g(2(t),1). =

If we specialise the result of Theorem 5 to the case where fy(z,t) = fg(x) is time-invariant,
Theorem 5 shows that asymptotic stability of #(¢t) = fy(x(t)) implies uniform boundedness and
uniform ultimate boundedness of

() = fu(z(t) + g(z(t),1). (65)

The boundedness properties are determined by fg(z) and not by g(z,t). By (58), for z with ||z]|
sufficiently large, g(x,t) can be seen as a perturbation which does not affect the uniform bounded-
ness and the uniform ultimate boundedness property.

There is a duality between these boundedness results and the results proved by Hermes ([7], The-
orem 3.3), the results proved by Morin and Samson ([10], Proposition 2) and the linearization
technique [9] (pp. 127-132 and pp. 147-148). Hermes [7] proves that asymptotic stability of
%(t) = fu(x(t)) implies local asymptotic stability of () = fy(z(t)) + g(x(t)) in case g(z) is the
sum of a finite number of homogeneous terms with the same dilation as fz(z) and with orders
larger than 7. This result is valid since for z with ||z|| sufficiently small g(z) can be seen as a
perturbation which does not affect the local asymptotic stability property.

5 Example: Lotka-Volterra equations

Theorem 5 proves uniform boundedness and uniform ultimate boundedness for systems arising as
z(t) = fu(x(t),t)+g(x(t),t,) when all the frozen systems i(t) = fi(z(t), o) of order 7 > 0 have an
asymptotically stable equilibrium point z = 0. The verification of this asymptotic stability property
is crucial in the application of Theorem 5. It is obvious that the verification of this asymptotic
stability property becomes much easier when the frozen systems #(t) = fy(z(t),o) belong to a
class of systems whose stability properties have been studied in the literature. We illustrate this
by means of an example.

Consider the time-varying Lotka-Volterra system
i(t) = zi(t) (AQ@)z); + ri(t)) (66)

where z = (z1,...,2,)7. Here, A : R — R™ " is periodic with period T4 and Vi € {1,...,n},
r; R — R

The time-varying Lotka-Volterra equation (66) is a positive system. A system is positive if its state-
components are non-negative i.e., the first closed orthant of R" is positively invariant. Examples
of these systems are found in a variety of applied areas such as biology, chemistry, sociology [3, 8].

Although the results in the previous sections are formulated for systems defined in R", they also
allow the study of positive systems defined in the first orthant of R™.

Indeed, in case ©(t) = fg(z(t),t) is defined in the first orthant of R" with the additional condition
that this first closed orthant is positively invariant for the original time-varying system and for
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all the time-invariant frozen systems i(t) = fy(z(t), o), the results of Theorem 2 and Theorem 3
remain valid.

Suppose that (t) = fg(z(t),t) + g(x(t),t) is defined in the first orthant of R® with the additional
condition that this first closed orthant is positively invariant for the time-varying systems &(t) =
fu(z(t),t) + g(x(t),t) and ©(t) = fu(x(t),t). Suppose also that the first closed orthant of R" is
positively invariant for all the time-invariant frozen systems z(t) = fg(z(t),o) + g(z(t),o), and
%(t) = fu(x(t), o), then the results of Theorem 4 and Theorem 5 remain valid.

Example 1. Assume that
e whenever
z; (A(o)x), = Mo)x; i=1,..,n (67)
holds for some o and for some x # 0 with z; > 0 for all i € {1,...,n}, then A(o) < 0.
o A(0) is continuously differentiable. There exists a c4 > 0 such that for all 0 € R

IA()| S ca and [A(0)]| < ca. (68)

o there exists a ¢, > 0 such that for all o € R and for all i € {1,...,n}

Iri(o)] < ¢p. (69)

then the time-varying system (66) is uniformly bounded and uniformly ultimately bounded.

Proof. By ([8], pp. 185-187), all the systems
zi(t) = zi(t) (A(o)z (1)) (70)

are asymptotically stable. Take an arbitrary r €]0,1[. All the systems (70) are homogeneous with
respect to the dilation (r,...,r) with order 7 = r > 0. Take fy(z,t) = (fg1(z,t), ..., frn(z,t))T
with fr;(x,t) = x;(A(t)z); and take g;(x,t) = r;(t)z; for all x and for all t. By setting F'(s) = @,
(58) is satisfied. By the asymptotic stability property of (70), by setting Ty = T4 and by (68), the
conditions required by Theorem 3 and Theorem 5 are satisfied. By Theorem 5, we obtain uniform
boundedness and uniform ultimate boundedness for the time-varying positive system (66). O

6 Conclusions

In the present paper, we have reduced the study of uniform boundedness and uniform ultimate
boundedness of a time-varying system to the study of the time-invariant frozen systems.
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A Appendix

The present appendix contains the proof of Proposition 1.

Proof. Take an arbitray R; > 0. Define Ry(R;) := max{a~'(B(Ryv)),a ' (B(R1))}. Take an
arbitrary o € R" with ||zo|| < R;. In order to prove (2), suppose that for some t; > to,
lz(t1,t0,z0)|| > R2(R1). Because of continuity of solutions and since Ry(R;) > max{R;, Ry},
there exists a t| € [to, t1[ such that ||z (¢, to, z0)|| = max{Ri, Ry} and ||z(¢, to, zo)|| > max{Ry, Ry}
for all ¢ €]t},%1]. Since

t1

V(x(ty,to, o)) :V(x(t'l,to,mo))+/ V(x(t, to, zo), t)dt (71)

t

and by (5) V(z(t,to, z0)) < —y(||lz(t, to, zo)||) for all ¢ €]t],t1], it is clear that
V(z(t1,to,0)) < V(z(t],t0,0)) < B(max{Ry, Ry }). (72)

By (72) and (4), ||z(t1,to, 7o) || < max{a '(B(Ry)),a *(B(R1))} = Ra(Ry). This contradicts with
the assumption that ||z(¢1,%0,x0)| > R2(R1). Therefore ||z (t,to, z0)|| < R2(Ry) for all ¢ > ¢y and
(2) follows.

In order to prove (3), take R = a~'(8(Ry)). Take an arbitrary R; > 0. Take an arbitrary ¢, and
xo € R" with ||x¢]| < Ry. The solution x(t, t, o) exists for all ¢ > t; since by the first part of the
proof z(t, fo, z0)|| < max{a~' (8(Ry)), o~ ((R1)). Define

B(Ry) — 04(5_1(04(3)))}
v(Rv) '

Assume that for all t; € [to, to+T(R1)], [|(t1, 0, z0)|| > 67" (a(R)) = Ry such that ||z(t, o, zo)|| >
B~ (a(R)) = Ry and by (5), V(z(t,to,70),t) < —y(Ry) for all t € [tg,#1]. Since for all #; €
[to, to + T'(R1)],

T(R;) = max {0, (73)

V(I(tl,t[),]?()),tl) = V(ZEU,to) + /t1 V(I(t,to,ﬂ?g),t)dt S V(:Eg,tg) - (tl - tg)’)’(Rv) (74)

to

also
V(z(to + T(Ry),t0,20), to + T(Ry)) < B(R1) — T(R1)v(Rv) < (B~ (a(R))). (75)

This implies by (4) that ||z(tg + T(R1),t0,z0)|| < B '(a(R)) which contradicts the assumption
that ||z(t1,t0, o)l > B~ (a(R)) for all t; € [ty,to + T(R;1)]. Consequently, there exists a t; €
[to,to + T(R1)] such that ||z(t1)]] < B8 '(a(R)). By the first part of the proof, ||z(¢)|| < R when
t > t; and (3) follows. O
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