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At the crossing between motor control neuroscience and robotics system theory, the paper presents
a rhythmic experiment that is amenable both to handy laboratory implementation and simple
mathematical modeling. The experiment is based on an impact juggling task, requiring the coordination
of two upper-limb effectors and some phase-locking with the trajectories of one or several juggled
objects. We describe the experiment, its implementation and the mathematical model used for the
analysis. Our underlying research focuses on the role of sensory feedback in rhythmic tasks. In a robotic

Iéﬁ};‘gﬁﬁi control implementation of our experiment, we study the minimum feedback that is required to achieve robust
Impact juggling control. Alimited source of feedback, measuring only the impact times, is shown to give promising results.
Sensory feedback A second field of investigation concerns the human behavior in the same impact juggling task. We study
Robustness how a variation of the tempo induces a transition between two distinct control strategies with different
Performance sensory feedback requirements. Analogies and differences between the robotic and human behaviors are

Movement primitives obviously of high relevance in such a flexible setup.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

System-theoretic concepts and related engineering computa-
tional tools are increasingly used in the emerging discipline of com-
putational motor control (Jordan & Wolpert, 1999; Scott & Norman,
2003; Shadmehr & Wise, 2005; Wolpert & Ghahramani, 2000). The
most celebrated concepts include the so-called internal model prin-
ciple (see e.g. Haruno, Wolpert, and Kawato (2001), Kawato (1999),
Mehta and Schaal (2002), Miall, Weir, Wolpert, and Stein (1993),
Wolpert and Miall (1996) and Wolpert, Miall, and Kawato (1998))
and the theory of optimal control (see e.g. Scott (2004), Todorov
(2004) and Todorov and Jordan (2002)). The existence of these un-
derlying principles in the brain has been demonstrated at least (a)
to precompute trajectories, (b) to compute the motor command
(muscles actuation through inverse dynamics) given the expected
trajectory, and (c¢) to make on-line feedback corrections (closed-
loop control).

Computational questions in human motor control often par-
allels questions in robotics (Schaal & Schweighofer, 2005). The
implementation of complex control architectures in the human
brain indeed provides a source of inspiration in robotics designs.
Conversely, the computational and system-theoretic models in
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robotics provide useful insights into the interpretation of the high-
dimensional behavioral and neurophysiological data sets.

In this paper, we describe a rhythmic experiment developed by
the authors at the intersection between behavioral neuroscience
and robotics studies. We use this experiment to study the role
of sensory feedback in rhythmic tasks, from a system-theoretic
and experimental perspective, both in robotics and in human
behavior. By definition, rhythmic movements are not sequential
and are continuous in time. However, rhythmic tasks often
require the recruitment of simultaneous degrees of freedom,
hence requiring movement coordination (Bernstein, 1967; Kelso,
1995; Kelso, Southard, & Goodman, 1979; Turvey, 1990) between
several limbs. Inter-limb coordination rules underlie the possible
movement patterns, and those principles cannot be inferred from
the laws of single-joint or single-limb movements (Swinnen, 2002;
Swinnen & Wenderoth, 2004). At the frequency level, the default
mode of coordination is synchronization, ubiquitous in biological
systems (the recent book by Strogatz (2003), abounds with
such examples). The phase relationships between the oscillating
limbs are also governed by coordination rules. As an example,
the finger tapping task introduced by Kelso (1984) is stabilized
mainly through two phase-locking modes: in-phase (homologous
activations) and anti-phase (180 deg of lag in activations).
Moreover, beyond a certain movement frequency threshold, the
anti-phase stability vanishes, revealing that the in-phase mode is
in fact more stable and less attention demanding (Kelso, 1995).
This coordination task is recognized as a benchmark example
in the motor control literature with bifurcations in the stability
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(a) The shower. (b) Period-two.

(c) Period-one.

Fig. 1. The shower pattern (Fig. 1(a)) is one of the simplest juggling pattern. It corresponds to a limit cycle of the wedge-billiard called the period-two (Fig. 1(b)), since the
balls cycle between the edges along two parabolas. A degenerate (and simpler) case of the period-two, where both parabolas are similar, is called the period-one (Fig. 1(c)).

diagram of cyclical patterns. Switching between different gaits in
animal behavior, as the movement frequency changes, is another
example (see e.g. Collins and Richmond (1994)). In the task
described in the present paper, we will see that several modes of
coordination exist as well, and that their recruitment depends on
the task context.

Rhythmicity potentially simplifies the execution of a given task.
It corresponds to a steady-state actuation, depending on few pa-
rameters such as frequency and amplitude, in contrast with tran-
sient trajectories that typically require sustained planning and
feedback. As a consequence, rhythmic movements do not neces-
sarily recruit the same neural circuitries than discrete movements.
This has been suggested by recent behavioral (Buchanan, Park, &
Shea, 2006; Sternad, Dean, & Schaal, 2000; van Mourik & Beek,
2004) and imaging (Schaal, Sternad, Osu, & Kawato, 2004) stud-
ies. While rhythmic movements can be programmed by low level
Central Pattern Generators (CPGs) (see e.g. Cohen, Rossignol, and
Grillner (1988), Duysens and Van de Crommert (1998) and Swin-
nen (2002)), discrete movements also recruit higher cortical areas,
that have been shown to play a role in the processing of sensory
feedback (Desmurget et al., 2001). The level of feedback processing
thus appears to be different in both kinds of movements. Learn-
ing obviously plays an important role in that distinction. Recently,
Puttemans, Wenderoth, and Swinnen (2005) studied a complex
bimanual coordination task through the course of the different
learning phases. Their study evidenced that the neural network in-
volved in the rhythmic task progressively switches from a highly
“attention demanding sensory processing” (activating more corti-
cal areas) to an “automatized” control as the learning progresses.
This underlies the relevance of control strategies resting mainly on
open-loop control.

Previous studies in the literature underlined the importance
of open-loop strategies in rhythmic tasks. Sternad, Schaal and
coworkers studied the 1D bounce juggling task and showed
that the steady-state racket trajectory is similar to an open-loop
harmonic movement (see e.g. Schaal, Atkeson, and Sternad (1996),
Sternad, Duarte, Katsumata, and Schaal (2001a, 2001b)). In the
context of rhythmic locomotion, passive strategies have inspired
passive-based designs with small active power sources to walk
on level ground, revealing the prominence of passive stability in
the architecture of the human locomotor system (see e.g. Collins,
Ruina, Tedrake, and Wisse (2005), Collins, Wisse, and Ruina (2001)
and Kuo (1999)).

The paper is organized as follows. The experimental setup, its
robotic implementation and mathematical model are presented in
Section 2. In Section 3, we discuss the role of feedback to stabilize
some rhythmic periodic orbits. We show how limited feedback can
be added to the open-loop control to make a robust closed-loop
design based on limited sensing. In Section 4, we illustrate typical
behavior of human subjects in our impact juggling experiment at
different tempi, showing a transition from “intermittent planning”
strategies to rhythmic strategies, with a decrease in the required
feedback demand.

Fig. 2. Picture of Wiper.

2. Wiper: An experimental setup amenable to mathematical
modeling

Juggling has long been recognized in the literature as a typical
coordinated rhythmic task (Beek & Lewbel, 1995) to study the
learning stages of skills’ acquisition (Beek & van Santvoord, 1992)
or the use of visual feedback (Huys & Beek, 2002). The task
requires phase-locking relationships between the upper-limbs and
the juggled objects trajectories: the total duration of the hands’
cycle must equal to the total duration of the balls’ cycle (Shannon,
1993). One of the most popular juggling patterns is called the
shower, and is depicted in Fig. 1(a): the balls follow a cyclic
trajectory along two distinct parabolas produced by a low and a
high toss.

We study this steady-state pattern in an experiment that
drastically simplifies the hardware: a planar motion of the puck
between two impacting edges that idealize the juggler’s arms.
Fig. 1(b) depicts the so-called period-two orbit of this impact
juggler, and the particular period-one orbit (both tosses are equal)
is depicted in Fig. 1(c).

Laboratory implementation of this impact juggling experiment
has been realized on the Wiper robot, pictured in Fig. 2.

The motion plane is a tilted air-hockey table. Air-hockey is a
popular game which is based on tight goal-shots of plastic pucks
on an horizontal table. The puck trajectories are almost frictionless
since the table is pierced with a lattice of little holes blowing
air constantly. This frictionless table has been tilted with respect
to the ground, such that gravity influences the puck motion,
like in regular juggling. The two metallic “arms” have a single
(rotational) degree of freedom. The pucks have been manufactured
from hertalon, a nylon derivative that is both light and elastic.

Wiper is tunable to different configurations (angle of inclina-
tion, sensors design, actuation level) and easy to instrument. The
edges can indeed be directly actuated by two DC motors, as de-
picted in Fig. 2. The setup has been used to study the stabilization
of simple periodic orbits in impact juggling, such as the period-one
and the period-two depicted in Fig. 1.
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Fig. 3. Wiper can be actuated by human subjects.

Wiper can also be rapidly adapted to study human juggling.
Replacing the motors by free rotational joints, human subjects can
indeed actuate the edges through direct catching (see Fig. 3).

The stabilization of the period-one juggling task (Fig. 1(c)) is
easy and fast to learn. Wiper allows one to test this stabilization
task at different tempi, since the flight time between two impacts
depends on the steady-state angle between the two edges at
impact. If the angle is large, the tempo will be slow, and vice versa.
In principle, this setup is also suitable to study more complex
patterns, e.g. the period-two (Fig. 1(b)). This would permit one to
focus on learning issues and/or feedback selection issues, since the
subjects would not be able to keep several pucks in visual tracking
at the same time.

Wiper is also amenable to simple mathematical modeling. The
dynamical model consists of planar flight phases separated by
impacts:

(a) during flight phases, the juggled puck trajectories are ballistic
flights along a parabola, solution of Newton’s equation
d’*p/de? = —g:
pL(t) =polk]l +vi[k]t (M)
py () =pyyLkl + v, k]t — O.5gt2
with (p.[k], p/,/[k]) and (v_[k], v,,[k]) denoting the position and
velocity at impact k, orthogonal and parallel to the gravity field,
respectively;

at impact, there is a sharp discontinuity in the velocity profile.
We model the impact with the simplest Newton’s law:

vi—$, = —e(v, —5) (2)

vi—$§=v, —§

G

where (v,,v;) and (v, v}') are the normal and tangential
components of the velocity, with respect to the impacting
surface, before and after the impact, respectively; and (s;, $;)
are the impactor velocity at impact, in the normal and

tangential directions w.r.t. the impacting surface.

The coefficient of restitution 0 < e < 1 models the dissipated
energy at impact. The impact model is only a crude approximate
of real impact dynamics, since for example it does not capture spin
effects of the puck at impact (Spong, 2001). The complete dynamics
of Wiper under these simplifying assumptions has been derived
in previous papers (Gerard & Sepulchre, 2005; Ronsse, Lefevre, &
Sepulchre, 2006, 2007; Sepulchre & Gerard, 2003).

A further simplification of Wiper's dynamics is of interest
to connect the model with the popular 1D bouncing ball
model (Bapat, Sankar, & Popplewell, 1986; Guckenheimer &
Holmes, 1986; Holmes, 1982). Assuming an orthogonal wedge
angle and parallel actuations of the edges (that is, the two edges are
assumed to remain aligned with the two orthogonal axes of Fig. 4),

Fig. 4. A special configuration of the wedge planar juggler that decouples the 2D
ball motion (left) into two independent 1D bouncing ball motions (right). The right
frame represents the ball trajectories over time along the x and y axes.

the 2D motion of the juggled objects projects on each axis to a 1D
motion that is unaffected by the bounces on the other axis (Ronsse
et al., 2007; Sepulchre & Gerard, 2003), see Fig. 4.

In this special configuration, a period-two pattern in Wiper
corresponds to two frequency-locked period-one bouncing ball
patterns (i.e. constant bounce height) along the axes. The phase
relationship between those two patterns determines the shape of
the periodic orbit. The period-one orbit corresponds to two balls
bouncing exactly in anti-phase (i.e. one is at the apex when the
other bounces). The period-two patterns correspond to any other
phase relationship.

The simplified model (orthogonal wedge with parallel actua-
tion) has thus periodic orbits similar to Wiper. It will be used to
capture in a simple way the main properties of these periodic or-
bits. Further details on the extension to an elaborate model can be
found in Ronsse et al. (2006). The present simplified version has
been instrumental in developing the feedback control design dis-
cussed in the next section.

3. Rhythmic feedback of Wiper

3.1. Sensorless control

In an unactuated (fixed) and elastic (e = 1) Wiper, the periodic
orbits previously described do exist but are not stable (Lehtihet
& Miller, 1986). Real Wiper is obviously not elastic, and requires
therefore an actuation to maintain a steady-state pattern. We
focused first on open-loop control, i.e. actuation control that is not
using any feedback information from the puck state.

Holmes (1982) studied the bouncing ball steady-state periodic
orbits under sinusoidal actuation s(t) = Asin(wt). This open-
loop control provides exponential stability of several periodic
obits (including the period-one), depending on the amplitude
A and frequency w tuning of the sinusoidal actuation profile.
We generalized these results to the two-coupled-bouncing-balls
Wiper’s dynamics - the rotational model developed in Ronsse
et al. (2006) - and showed that open-loop sinusoidal actuation
of Wiper's edges indeed achieves exponential stability of periodic
orbits that are unstable if the wedge is unactuated and elastic. As
an illustration, the parametric stability region of the period-one is
depicted in Fig. 5.

The period-one stability depends on the amplitude A, the
coefficient of restitution e and - perhaps less intuitively - on the
steady-state impact position 6. The model also predicts the stability
of other periodic orbits, under proper tuning of these parameters.
Further details can be found in Ronsse et al. (2006).

Direct experimental validations of these theoretical predictions
were conducted by actuating Wiper's edges with sinusoidal
references. The period-one was successfully stabilized, but steady-
state period-two were only observed for a dozen of impacts, in the
best cases. Two movies illustrating the successful stabilization of
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Fig. 5. These curves surround the parametric stability region of Wiper’s period-
one orbit under open-loop actuation. The parameter space varies with the vibration
amplitude A [deg], the coefficient of restitution e and the impact position 6 [deg].

a period-one orbit and the (eventual) failure to stabilize a period-
two orbit with open-loop actuation are provided as supplementary
multimedia materials to Ronsse et al. (2006), as well as on the first
author’s webpage.

The model derived from parabolic flights and Newton’s impact
law is only a crude approximation of Wiper’s real dynamics. For
example, this model does not take into account the variability of
the coefficient of restitution along the edges. We also mentioned
the puck spin effect that is not accounted for in the model
while prominent in period-two trajectories. The basins of attraction
predicted by the model therefore ought to be wide enough to
compensate for the perturbations induced by these unmodeled
dynamics. This was the case for the period-one orbit, but not for
the period-two. Stated differently, open-loop stabilization of the
period-two orbit is not robust enough in face of the perturbations
induced by the variability of the real setup. To enlarge the basins of
attraction and make the system more robust, closed-loop control
is required.

3.2. Feedback control

Buehler, Koditschek, and Kindlmann (1988, 1990, 1994) were
the first to address the question of feedback in rhythmic robotic
designs, and focused their pioneering investigations on the
bouncing ball vertical dynamics. They developed the so-called
mirror law algorithms that are based on permanent tracking of the
juggled balls and an actuation profile that “mirrors” their motion.
A 1D version of the mirror law is given by:

s(t) = —

1—e v*?
l+eﬁ(t) — K1 ( 5 —E(t)> B(0) (3)

where B(t) and E(t) denote the ball position and energy at
time t. The first term of (3) mirrors the ball trajectory; the
second one is a proportional feedback (gain = 1) that is used
to isolate a particular period-one pattern, characterized by its
energy level: 0.5(v*)?, and then that vanishes in steady-state. This
feedback control law then requires a continuous tracking of the
ball (continuous sensing feedback) that ensures to impact the ball
at a constant position (s* = 0) and with a constant velocity in
steady-state. The mirror law and several extensions proved to be
very robust, and led to successful experimental validations with
bouncing robots in 1D, 2D and 3D environments (Buehler et al.,
1988, 1990, 1994).

The mirror law is based on continuous tracking of the juggled
objects which requires permanent sensory processing. Given the
encouraging results of the open-loop control in our juggling

experiment, we investigated the possibility of designing feedback
control laws with reduced sensing capabilities. Stated differently,
we focused on the minimal feedback that is required to achieve
robust closed-loop control, given the fact that sensorless open-
loop control was already partly satisfactory. Rhythmic impact
systems have an exclusive source of feedback that is based
on reduced sensing: the measurement of impact times, hence
the name of rhythmic feedback control. In impacts systems, the
impact times are measured by cheap sensors (e.g. microphones or
accelerometers) that record the vibrations induced by the impacts.
The measurement of impact times allows one to reconstruct the
state of the puck at impact times and, consequently, the entire
continuous-time trajectory between impacts, using the solution of
(1) (the derivation of this observer is made in Ronsse et al. (2007)).

Our first attempt of feedback control of Wiper was to use the
observer to implement a mirror law algorithm of type (3), in which
the states B(t) and E(t) were replaced by the estimates provided
by the observer. This attempt was successful in simulations but
miserably failed in the lab, due to the large discrepancy between
the reality and the Wiper model.

This prompted us to study the robustness of the closed-loop
control with respect to an essential source of uncertainty of the
model, i.e. the coefficient of restitution e in the crude impact law
(2). The robustness analysis was carried out in Ronsse et al. (2007)
on the bouncing ball model for a family of control laws of the form:

s() = sulk -+ 1] + §ulk + 11t — tu[k + 1]) + g(t— tulk + 11)2

where the control parameters s, [k+ 1], $,[k+ 1], and t,[k+ 1] are the
controller outputs, which are computed on the basis of the input -
i.e. the impact time t[k] - and the estimated post-impact velocity
V[k]. The free parameter y is the acceleration 5(t) at the impact
time. Based on the linearized closed-loop dynamics, the transfer
function from the coefficient of restitution e + Se[k] to the post-
impact velocity v[k] is shown to be

v 2 z+(+E0+e?)
%:]—}—e z

where V(z) and E(z) are the z-transforms of v[k] and de[k],
respectively. To minimize the dynamical transfer from e to v, we
selected the acceleration parameter

—e?

~(+e2®

which results in a static transfer function. Note that (4) depends
on the average coefficient of restitution e, which is much easier to
estimate than the instantaneous coefficient of restitution e + de[k].

This guiding principle based on elementary system analysis
turned out to be the key of success of a laboratory implementation
of a rhythmic feedback law. Choice (4) imposes a negative impact
acceleration, in contrast to the positive acceleration implied by
mirror law algorithms. It is easily shown (Ronsse et al., 2006) that
a negative acceleration is also a necessary feature of sensorless
control strategies. Our robustness analysis supports previous
observations by Schaal et al. (1996) and Sternad et al. (2001a,
2001b). Studying human behavior in a bouncing ball experiment,
their results show that subjects consistently hit the ball with
negative acceleration on impact. The authors concluded a tendency
to rely on open-loop control in such a rhythmic task. Our
analysis further confirms that negative acceleration is essential to
robustness in limited sensing control strategies.

Since the sinusoidal actuation provides negative acceleration
at impact (Schaal et al., 1996; Sternad et al., 20013, 2001b) and
is smooth in steady-state, it was adapted with feedback (Ronsse
et al.,, 2007). Feedback was used to modulate the amplitude and
phase from impact-to-impact, such that in steady-state, i.e. when

Y (4)
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Fig.6. The flight times between two successive impacts (t[k] —t[k— 1]) are depicted
with the black crosses. The gray circles denote the reference flight times. The first
part of the trajectory (about 0 < k < 50) displays the closed-loop stabilization
of a period-one motion: At* = 2v;,/g ~ 0.91s. The second part of the trajectory
(about 50 < k < 90) displays the closed-loop stabilization of a “small” period-two
motion, i.e. when the reference flight time alternates between 0.9At* and 1.1At*.
The last part of the trajectory (about k > 90) displays the closed-loop stabilization
of a larger period-two motion: the flight time reference alternates between 0.8 At*
and 1.2At*.

the corrective feedback signals equal to zero, the actuation is
exactly similar to the smooth open-loop profile. This hybrid control
scheme provided successful experimental validation for robust
stabilization of both period-one and period-two orbits.

Fig. 6 illustrates this experimental validation. It depicts the
flight time between two successive impacts, reflecting a transition
from period-one to period-two orbit according to the reference.
A movie illustrating this successful stabilization of period-one
and period-two orbits with closed-loop control based on impact
times detection is provided as supplementary multimedia material
to Ronsse et al. (2007), as well as on the first author’s webpage.

4. The transition from a discrete to a rhythmic task in human
experiments

We have also used Wiper in behavioral experiments to study
the strategies adopted by human subjects in the period-one
juggling pattern at different tempi (see Section 2).

We asked nine subjects to juggle the period-one pattern
(Fig. 1(c)) at four different tempi, ranging from At* = 1000 ms
(the slowest) to At* = 400 ms (the fastest). All the subjects but
one were naive with respect to the goals of the experiment. None
of them had prior experience with this task. Depending on the
tempo, two different typical actuation profiles were observed, the
difference of which is illustrated in Fig. 7. At slow tempo, the arms’
actuation was intermittent, and strongly decoupled. Observing
Fig. 7-top, one can see that both arms were rarely actuated at the
same time. In contrast, at fast tempo, the actuation was sustained
and strongly synchronized between both arms: their velocity
profiles were almost completely in anti-phase (in the egocentric
frame of reference), a pattern of actuation that is proved to be
reasonably stable (Swinnen, 2002), Fig. 7-bottom. The intermittent
behavior can then be viewed as a train of “discrete” strokes, with
marked pose intervals in between; and the sustained behavior as a
“rhythmic” actuation (Hogan & Sternad, 2007).

Fig. 8 reveals how the transition took place depending on
the tempo. This figure depicts the histograms of the so-called
synchronization index of both arms during flight times. This index
is equal to the averaged phase relationship between the edges that
was computed through the non-normalized correlation coefficient
of the right arm velocity 6, and the left arm velocity 6;:

.6 L6060
Joriar il Bode [, #od

cos ¢ =

angular
velocity [deg/s]

angular
velocity [deg/s]

Fig. 7. Typical angular velocity profiles of Wiper’s edges at the slowest (top,
At* = 1000 ms) and the fastest (bottom, At* = 400 ms) tempi. The right and
left arm velocity profiles are represented in red and blue, respectively. The thicker
portions emphasize the periods where the arms were at rest. The vertical lines
denote the impact times. The black dots denote the point of maximum velocity
around impacts. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 8. Histograms of the synchronization index, depending on the tempo At*.

At the fastest tempo (At* = 400 ms), the arms were almost
all the time synchronized (cos qAb ~ 1) for the nine tested subjects.
As the tempo decreased, the second strategy (decoupled actuation,
cosgAb ~ 0) emerged, since more and more subjects passed their
transition level.

We also investigated how these two modes of control relied
on feedback processing. During separate recording blocks, our
subjects were asked to perform the task by closing their eyes
once in steady-state. The influence of visual feedback availability is
illustrated in Fig. 9. The black line reproduces the average values of
the histograms depicted in Fig. 8, i.e. the transition from a strongly
synchronized actuation mode to a decoupled mode as the tempo
decreased. The gray line refers to the synchronization index for
the data without visual feedback. The upward shift from the black
curve to the gray curve reveals a tendency of the subjects to favor
the synchronized behavior when deprived of their visual feedback.
Both the absence of visual feedback and the fast tempo reduce the
role of the sensorimotor loop and favor the rhythmic behavior.

5. Conclusion

This paper puts in a unique perspective recent theoretical and
experimental work done by the authors on a simple rhythmic task.
Understanding the role of feedback in this setting is of interest both
in robotics and in neuroscience. Juggling has long been recognized
as a benchmark for rhythmic tasks, requiring the coordination
between the upper-limbs to stabilize a broad set of periodic
patterns. The proposed impact juggler, called Wiper, shares these
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Fig. 9. Synchronization index depending on the tempo At*. The black lines depict
the impacts with visual feedback while the gray lines those without visual feedback.
Mean + 0.95 Conf. Interval. A factorial ANOVA (4 x 2) revealed this parameter
dependence on the tempo, on the visual feedback condition and on their interaction
(allp < 0.05).

features but is amenable to simpler mathematical modeling, based
on a 2D generalization of the popular 1D bouncing ball.

In Section 3, we detailed the theoretical and experimental
results obtained in robotics control of Wiper’'s periodic orbits
(Gerard & Sepulchre, 2005; Ronsse et al., 2006, 2007; Sepulchre
& Gerard, 2003). Sensorless open-loop control is efficient for
the simplest juggling pattern, revealing a 2D analogy with the
stable bouncing ball under sinusoidal actuation (Bapat et al., 1986;
Guckenheimer & Holmes, 1986; Holmes, 1982). However, when
considering more complex periodic patterns, the predicted basin
of attraction of the stabilized orbit is small and the experimental
implementation is not robust, due to large uncertainties of the
real setup not accounted for in the model. Stated differently, the
open-loop actuation was not robust enough with respect to the
unmodeled dynamics. The basins of attraction have been enlarged
by modulating the open-loop trajectory through limited feedback
provided by measuring only the times of impact.

Interestingly, a robustness analysis revealed that a closed-loop
actuation resting on this limited source of feedback is robust if
its acceleration has a particular negative value at impact. This
nicely connects with the open-loop actuation since the open-
loop profile has a negative acceleration at impact in steady-
state. Schaal et al. (1996) and Sternad et al. (2001a,2001b) reported
furthermore that humans produce a similar actuation trajectory
(with negative acceleration at impact) in a 1D bouncing task. These
authors hypothesized that this negative acceleration in human
data is a signature of the exploitation of the open-loop dynamical
properties, despite recent evidences of active closed-loop control
in a similar protocol (de Rugy, Wei, Muller, & Sternad, 2003;
Wei, Dijkstra, & Sternad, 2007). Our analysis further suggests that
negative acceleration at impact is not restricted to open-loop
strategies but a crucial feature of robust closed-loop control based
on limited feedback.

We also analyzed the behavior of human subjects when
juggling with Wiper (see Section 4). Human subjects switched
their actuation strategy from a train of discrete actuations
to a rhythmic actuation depending on the task tempo. Our
observations supported the existence of two fundamental modes
of control (or “primitives”), with clearly distinct sensory feedback
requirements (Ronsse, Thonnard, Lefevre, & Sepulchre, in press).
Interestingly, the intermittent type of control recruited in our
task is very similar to the type of control for postural sway
(see e.g. Bottaro, Casadio, Morasso, and Sanguineti (2005), Loram,
Gawthrop, and Lakie (2006) and Loram and Lakie (2002) and
stick balancing at the fingertip Cabrera and Milton (2002, 2004).

Computational
motor control
problem

; modeling
reduction

. robust design
validation &

Robotics

Fig. 10. Experimental results in computational motor control neuroscience and
robotics cross-fertilize.

These two intrinsically unstable tasks are indeed controlled by a
blend of passive control (under the unstable dynamics) and active
compensation at periodic time intervals. The “Act-and-Wait”
control framework proposed by Insperger (2006) emphasizes
why such strategies permit the tuning of low-gain controllers
for unstable systems in the presence of significant delays in the
loop (see also Mehta and Schaal (2002), for the pole balancing
control). Wiper can be used as a modeling and experimental
benchmark in this framework, and the results described in the
present paper naturally invite one to investigate the relevance of
rhythmic feedback - i.e. based on timed events in cycle - designs
for such skilled performances.

As illustrated in Fig. 10, this study took advantage of the
interaction between computational motor control neuroscience
and robotics. The mathematical modeling of the task aimed
at reducing the problem complexity by emphasizing a limited
number of relevant parameters, being useful to analyze the
behavior and discriminate between different control strategies.
It provides a direct comparison with the theoretical predictions
and robotics implementations. Finally, the data suggested that
humans use mainly two distinct primitives to control rhythmic
tasks (Schaal & Schweighofer, 2005), i.e. an intermittent train
of discrete strokes or a sustained rhythmic movement. This
might inspire a flexible computational model to generate complex
movements, based on simple interactions between fundamental
primitives.
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