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ABSTRACT

Motivated by the detection of stochastically excited modes in the massive star V1449 Aql, which is already known to be a β Cephei
star, we theoretically investigate the driving by turbulent convection. By using a full non-adiabatic computation of the damping rates,
together with a computation of the energy injection rates, we provide an estimate of the amplitudes of modes excited by both the
convective region induced by the iron opacity bump and the convective core. Despite the uncertainties in the dynamical properties
of these convective regions, we demonstrate that both regions are able to efficiently excite p modes above the CoRoT observational
threshold and the solar amplitudes. In addition, we emphasise the potential asteroseismic diagnostics provided by each convective
region, which we hope will help us to identify the region responsible for solar-like oscillations, and to place constraints on this
convective zone. A forthcoming work will be dedicated to an extended investigation of the likelihood of solar-like oscillations across
the Hertzsprung-Russell diagram.
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1. Introduction

β Cephei-type stars are known to pulsate with large amplitude
oscillations (Gautschy & Saio 1995, 1996). The κ-mechanism is
at the origin of those large amplitude oscillations and is related
to the iron opacity bump at log T ≈ 5.3 (e.g; Pamyatnykh 1999).
Those modes are linearly unstable. In contrast, low-amplitude
modes have been observed in the Sun for years and are thought
to be intrinsically stable but stochastically excited by turbulent
convection. Their excitation is attributed to turbulent convection
and takes place in the uppermost part of the Sun, which is a place
of vigourous and turbulent motion. Since the pioneering work
of Lighthill (1952), we know that a turbulent medium generates
incoherent acoustic pressure fluctuations (also called acoustic
“noise”). In the past decade, solar-like oscillations have been de-
tected in numerous F-G type main sequence and red giant stars,
in different evolutionary stages and with different metallicities
(see the recent review by Bedding & Kjeldsen 2007).

As in the Sun, massive stars have convective regions, namely
the convective core, and two regions associated with the helium
and iron opacity bumps. The inner convective region (i.e., the
convective core) has an important impact on both the internal
structure and the subsequent evolution of the star by means of,
for instance, the extent of the region where the chemical ele-
ments are mixed (e.g; Kippenhahn & Weigert 1990). In contrast,
the external convective zones associated with opacity bumps are
generally thought to be unimportant since they transport only a
very small fraction of the energy flux, which is dominated by
radiation. It is only since the revision of the opacities (Iglesias
et al. 1992), which led to an enhancement of the iron opacity
bump and could thus account for the instability in β Cephei stars,
that a convective zone related to the iron opacity bump has been
understood to be present in massive stars. Much attention is now
drawn to this convective region associated with the iron opacity

bump1, because it is of interest for the understanding of surface
effects such as microturbulence or wind clumping (e.g; Cantiello
et al. 2009). However, both the convective core and the iron
convection zone are poorly understood. In particular, the typi-
cal length scale and time scale of turbulent motions associated
with these regions can only be inferred from mixing-length ar-
guments, as well as dynamical properties such as the convective
velocities.

Solar-like oscillations (linearly damped and stochastically
excited modes) are closely related to those dynamical prop-
erties, so their detection in these massive stars is a promis-
ing way to infer them. Stochastically excited modes have only
been predicted and detected in solar-like and red giant stars (see
Bedding & Kjeldsen 2007; Michel et al. 2008; de Ridder et al.
2009, for details). The data gathered by the CoRoT mission
has allowed us to report the first detection of solar-like oscil-
lations in a massive star, V1449 Aql (Belkacem et al. 2009b).
Those oscillations exhibit mode amplitudes greater than solar,
hence the issue of their excitation is of interest. Investigation
of unstable modes can place constraints on the internal struc-
ture of massive stars (e.g. Aerts et al. 2003; Thoul et al. 2003;
Dupret et al. 2004; Pamyatnykh et al. 2004) as well as the un-
derlying excitation mechanisms (e.g; Moskalik & Dziembowski
1992; Dziembowski & Pamiatnykh 1993; Dziembowski et al.
1993; Dziembowski & Pamyatnykh 2008). The discovery of
solar-like oscillations is thus an opportunity to go a step fur-
ther in the understanding of those stars that still challenge theory
(Dziembowski 2007).

Our objective in this work is to assess the excitation of
solar-like oscillations in massive main-sequence stars, such as β
Cephei type stars, by turbulent convection. We aim to determine

1 In the following, this convective region will be referred to as the iron
convective region.
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which convective region is able to excite modes above the ob-
servational threshold, as well as emphasising the possible as-
teroseismic diagnostic that would permit us to identify the ex-
citation region and place constraints on this region. Since the
amplitude of stochastically excited modes is a balance between
driving and damping, both must be modelled. In this work, we
use the formalism proposed by Samadi & Goupil (2001) and
extended by Belkacem et al. (2006a,b, 2008). Damping rates
are computed using the MAD code (Dupret 2002; Grigahcène
et al. 2005), which is based on a full non-radial non-adiabatic
treatment. This first paper of the series focuses on a bench-
mark model. An extended investigation of the mode amplitude
through the Hertzsprung-Russell diagram will be the subject of
the second paper in this series.

The paper is organised as follows. Section 2 introduces the
general formalism used to compute mode amplitudes. In Sect. 3,
we focus on mode damping rates and emphasise their frequency
dependence. Excitation by the convective region associated with
the iron convective region is also studied and a possible diagnos-
tic is inferred. Section 4 presents the computation of the mode
amplitude excited by the convective core. Our conclusions are
formulated in Sect. 5.

2. Modelling mode amplitudes

2.1. Equilibrium stellar structure: a 10 M� model
as a benchmark

Our objective is to explore the potential of convective regions
to drive oscillations. As a benchmark, we investigate the driv-
ing of radial acoustic modes by turbulent convection zones in
a 10 M� main-sequence star, which is typical of β Cephei stars
(Pamyatnykh 1999). A more systematic exploration of the HR
diagram is dedicated to the second paper of this series.

2.1.1. Physical input

The stellar structure models used in this work were obtained us-
ing the stellar evolution code CLÉS (Scuflaire et al. 2008). In the
interior model, we used the OPAL opacities (Iglesias & Rogers
1996) that were extended to low temperatures with the opaci-
ties of Alexander & Ferguson (1994) and the CEFF equation
of state (Christensen-Dalsgaard & Däppen 1992). The metallic-
ity was assumed to be Z = 0.02 for the metal mixture derived
by Grevesse & Noels (1993). Convection was included accord-
ing to a Böhm-Vitense mixing-length (MLT) formalism and no
overshoot was allowed. The effect of the mixing-length parame-
ter is discussed in Sects. 3.3 and 4.3. We note, however, that the
default value of the mixing-length is 1.8 (the Solar value) and in
the convective region associated with the iron opacity bump, the
mixing-length is of the same order as the extent of the convective
region, i.e., 1.5% of the star radius.

The location of the benchmark model on the Hertzsprung-
Russell diagram is plotted in Fig. 1. The model has an effective
temperature of log Teff = 4.35, and a surface gravity of log g =
3.80.

2.1.2. Convective zones

In these massive stars, one can distinguish three convective re-
gions, namely:

– the convective zone associated with the helium II opacity
bump. This region is located at T ≈ 40 000 K (Fig. 2), and is

Fig. 1. Hertzsprung-Russell diagram for a ten solar mass model com-
puted with the CLÉS code (see Sect. 2.1). The diamond corresponds
to the benchmark model described in Sect. 2.1.1, and the triangle sym-
bols corresponds to another model used for comparison in Sect. 3.2.2.
Star symbols correspond to the different evolutionary stages displayed
in Fig. 6 (bottom). Eventually, the square and triangle symbols are used
to identify the models presented in Fig. 6 (top).

Fig. 2. The difference between the temperature gradient and the adia-
batic one (∇ − ∇ad) versus the temperature. In the convective core, the
difference ∇ − ∇ad vanishes since convection is efficient and transport
almost all the energy flux. In contrast, in the outer convective regions,
we see significant gradients which means that convective transport is
not efficient there.

very weak in the sense that it is inefficient in transporting en-
ergy with a negligible ratio of the convective heat flux to the
radiative one. In addition, this region is located close to the
stellar surface, where the density is low, and velocities are in
the 10 to 20 m s−1 range (low heat capacity is the cause of ef-
fective smoothing of the temperature contrast and reduction
of the buoyant acceleration). Hence, the kinetic energy that
could feed modes is small.

– the convective zone associated with the iron opacity bump,
located at T ≈ 200 000 K (Fig. 2). It has been shown
(Cantiello et al. 2009) that the occurrence of convection in
the iron opacity peak is strongly dependent on the lumi-
nosity and metallicity of the star. At a given luminosity, a
lower metallicity implies a lower opacity, which means that
a larger fraction of the total flux can be transported by radia-
tion. On the other hand, increasing the luminosity at a given
Z leads to a more important contribution of convection in the
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energy transport. For a given metallicity, there is a luminos-
ity threshold (of the order of 103.2 L� for Z = 0.02) above
which a convective zone is associated with the iron peak.
As for the helium convective region, the transport of energy
by convection is very low. However, this region is located
deeper than the helium one, where density is higher, with
convective velocities of up to 5.5 km s−1. The kinetic energy
flux is still negligible compared to the total flux but the ratio
of the kinetic energy flux of the iron convective zone to the
helium one is ≈8 × 107.

– the convective core. Convection is fully adiabatic (Fig. 2) and
a significant part of the total flux is transported by convec-
tion. The kinetic energy is four order of magnitudes higher
than for the iron convective region, because of the high den-
sities, with velocities around 300 m s−1.

We conclude that the convective zone associated with the he-
lium opacity bump is unlikely to be able to efficiently excite
solar-like oscillations. Indeed, it has been verified numerically
that the resulting theoretical mode amplitudes are found to be
well below the observational detection threshold of CoRoT (of
around one ppm). In contrast, the convective zones associated
with the iron opacity bump as well as with the convective core
are more promising as sources of solar-like oscillations. The
available kinetic energy flux is important. However, to be effi-
cient, mode excitation must fulfil other criteria, which are dis-
cussed in Sects. 3.2 and 4.

2.2. Computation of mode amplitudes

We compute the mean-squared surface velocity for each radial
mode as described in Belkacem et al. (2006b, 2009a), i.e.,

v2s(h) =
P

2 ηM , (1)

where M = I/|ξr(h)|2 denotes the mode mass, I the mode in-
ertia, η the damping rate, P the energy injection rate, and h is
the height in the stellar atmosphere. In this section, we consider
the level of the photosphere h = R, where R is the radius at the
photosphere.

The mode amplitude in terms of intensity is then deduced at
the photosphere to be, as proposed by Dziemblowski (1977) and
Pesnell (1990), i.e.,

δL
L
= 4
δTeff

Teff
+ 2
ξr
r

(2)

where δL is the bolometric mode intensity fluctuation and δTeff is
the mode effective temperature fluctuation. The relation between
the variation in effective temperature and the mode displacement
is obtained from MAD (see Dupret 2002; Dupret et al. 2002,
for details). Eventually, since the mode amplitude is a balance
between driving (P) and damping (η), both should be determined
and computed.

2.2.1. Computation of the damping rates

As shown by Eq. (1), the computation of mode amplitudes
requires the knowledge of both energy injection (P) and damp-
ing (η) rates. The latter has been computed using the full non-
adiabatic pulsation code MAD (Dupret 2002). This code in-
cludes a time-dependent convection (TDC) treatment described
by Grigahcène et al. (2005) that allows us to take into account the
role played by the variations in the convective flux, the turbulent
pressure, and the dissipation rate of turbulent kinetic energy.

The damping of acoustic modes is found to be dominated
by the perturbation of the radiative flux. We note that, although
crucial for the excitation, the upper convective regions do not
affect the damping rates of the stars that we are considering.
Convection is indeed very inefficient at transporting energy
(compared to radiative transport) and the feedback of the con-
vective background on the pulsation remains small. We numeri-
cally verified that the interaction between convection and pulsa-
tion does not affect damping rates as well as the effect of both
the turbulent pressure and the dissipation rate of the turbulent
kinetic energy.

Hence, the dominant contribution to the damping rate can be
written as

η =
1

2ω0I

∫ M

0
Im

[(
δρ

ρ0

∗
T0δS

)
(Γ3 − 1)

]
dm , (3)

where δS is the perturbation of entropy, δρ the perturbation of
density, T0 the mean temperature,ω0 the mode frequency, ρ0 the
mean density, m the local mass, M the total mass, and the star
represents the complex conjugate.

Keeping only the radial contribution of the radiative flux in
the energy equation because of its dominant contribution, and
neglecting the production of nuclear energy (δε = 0), one obtains

iσT0δS = −dδLr

dm
, (4)

where σ = ω0 + iη and Lr is the radiative flux. In addition, in the
diffusion approximation, one can write

δL
L
=

(
−δκ
κ
+

1
(dT/dr)

∂δT
∂r
+ 2
ξr
r
+ 3
δT
T
− δρ
ρ
− ∂ξr
∂r

)
· (5)

Finally, in the quasi-adiabatic approximation (which is valid in-
side the deep layers) one has

δκ

κ
≈ κps

δp
p

with κps =
(
κρ + (Γ3 − 1) κT

)
/Γ1 (6)

and

κps =

(
∂ ln κ
∂ ln p

)
s

, κρ =

(
∂ ln κ
∂ ln ρ

)
T

, κT =

(
∂ ln κ
∂ ln T

)
ρ

(7)

2.2.2. Energy injection rates (P)

The formalism that we use to compute energy injection rates of
radial modes was developed by Samadi & Goupil (2001) and ex-
tended by Belkacem et al. (2006a,b). It takes two sources into ac-
count, the Reynolds stress tensor and the advection of the turbu-
lent fluctuations of entropy by the turbulent motions (the entropy
source term). The entropy contribution is found to be around ten
percent of the Reynolds one.

The energy injection rate, P, then mainly arises from the
Reynolds stresses and can be written as (see Eq. (21) of
Belkacem et al. 2008)

P = 16
15
π3

2I

∫ M

0
dm ρ0

∣∣∣∣dξrdr

∣∣∣∣2 SR, (8)

where

SR =
∫ +∞

0
dk
k2 E2(k)

∫ +∞
−∞ dω χk(ω + ω0) χk(ω) (9)

where is the source function, E(k) is the spatial kinetic energy
spectrum, χk is the eddy-time correlation function, and k is the
wave-number.
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Fig. 3. Damping rates (η) of radial modes as a function of frequency,
computed as described in Sect. 2.2.1 using the stellar model intro-
duced in Sect. 2.1. The fundamental radial mode is found to be unstable
(η < 0), while the overtones are to be found stable (η > 0).

The rate (P) at which energy is injected into a mode is then
computed according to Eq. (8). Eigenfrequencies and eigen-
functions are computed using the non-adiabatic pulsation code
MAD. In addition to the eigenfunctions and the density strat-
ification, Eq. (8) involves both the convective velocity and
the turbulent kinetic energy spectrum. The typical convective
lengthscales are poorly known for main-sequence massive stars.
Hence, the classical mixing-length theory is used to find the in-
jection lengthscale (i.e., the scale on which the turbulent kinetic
energy spectrum reaches a maximum) and a parameter β is in-
troduced (see Samadi & Goupil 2001, for details) such that the
associated wave-number is k0 = 2π/βΛ, where Λ is the mixing-
length. One also has to specify the way in which turbulent ed-
dies are temporally-correlated by defining an eddy-time corre-
lation function. A Lorentzian function had been successfully
used: in the solar case (Samadi et al. 2003b; Belkacem et al.
2006b), as well as for α Cen A, and HD49933 (Samadi et al.
2008; Samadi 2009), it indeed reproduces the observational data.
Consequently, if not explicitly mentioned, this modelling will be
used in the following.

3. Driving by the iron convective region

3.1. Damping rates

3.1.1. Efficiency of the damping

In Fig. 3, the fundamental mode is found to be linearly unstable
with respect to the κ-mechanism associated with the iron opacity
bump (Pamyatnykh 1999). Higher radial-order modes are found
to be linearly stable. The damping rates range between one and
three μHz for ν > 150 μHz, while they nearly vanish around the
unstable mode. They are found to be dominated by the first two
terms of Eq. (5).

Concerning the first contribution (δκ/κ), as described for in-
stance by Pamyatnykh (1999), the region where κρ + (Γ3 − 1) κT
increases outwards tends to drive the mode while the region
where κρ + (Γ3 − 1) κT decreases outwards damps the mode.
This contribution then mainly determines the damping rates of
low-order modes, while the second term of Eq. (5) begins to be
important for higher order modes.

Fig. 4. Top: Cumulative work integral integrals (W) versus the logarithm
of the temperature for the n = 7, n = 9 and n = 12, � = 0 modes.
An increases outward of W corresponds to a driving while a decrease
inward, to a damping. The surface values give the final values of the
work integral. By convention, the mode is found stable if the surface
value of W is negative and unstable if positive. Bottom: Real part of the
perturbation of pressure (δP/P) related to the n = 7, n = 9 and n = 12,
� = 0 modes versus the logarithm of the temperature. The horizontal
dots lines permits to visualise the nodes of the eigen modes, and the
vertical lines delimit the damping region.

3.1.2. Periodic variations

For high frequency modes, the damping in the range log T ∈
[5.2; 4.9] dominates over the driving region (log T ∈ [5.5; 5.3]).
This can be seen in Fig. 4, in which the work integral is plot-
ted, for three modes, which correspond to the first and the sec-
ond maxima and the minimum inbetween the damping rate (see
Fig. 3).

The oscillation of the damping rates for high-frequency
modes (ν > 175 μHz) is related to the location of the node of
δP/P with respect to the damping region. By considering the
pressure fluctuations (δP/P) of three modes, namely n = 7,
n = 9, and n = 12, Fig. 4 shows that the damping reaches a min-
imum when there is a node in the damping region and a max-
imum when the nodes are located at the edges of those layers.
The second maximum arises when two nodes of δP/P straddle
the damping region.

This is easily explained by the set of equations Eqs. (3)–(6),
since a node in pressure fluctuations lowers the opacity fluc-
tuations, which appear to be given by the main damping term
in Eq. (5). We note also that the second derivative of δT/T is
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negative when δT/T is positive, which strengthens the radiative
losses.

It then creates the periodic variations observed in Fig. 3 for
ν > 175 μHz. Hence, the detection of this oscillation of mode
line-width (damping) would be a signature of the iron opacity
bump and also an opportunity to place constraints on the mode
pressure perturbation in this region.

3.2. Energy injection rates

The poor knowledge of the dynamical properties of convective
regions associated with the iron opacity bump leads us to use a
simple description based on the MLT as explained in Sect. 2.2.2.
In terms of energy injection rates, two major features are to
be determined: the convective velocity and the injection length-
scale. As for the superficial convective layers of the Sun, the
iron convection region is inefficient since it transports a negligi-
ble part of the energy flux by means of convection. The Mach
number (M ≈ 0.1) is similar to that found in the upper convec-
tive layers of the Sun in which M ≈ 0.3. The extent to which
one can use the values of the parameters obtained for the Sun is
however difficult to assess and only numerical simulations will
provide a firm answer. By default, for the iron convective region,
we use the values of the convective velocity provided by MLT
using the assumed solar value (α = 1.8). In addition, the injec-
tion length scale is deduced from the numerical simulations of
the upper part of the solar convection zone as derived by Samadi
et al. (2003b), i.e., using β = 5 (see Sect. 2.2.2).

3.2.1. Efficiency of the excitation

A common feature of every modelling of stochastic excitation
by turbulent convection is that the energy injection rate is lo-
cally proportional to the kinetic energy flux (e.g., Goldreich
et al. 1994; Samadi & Goupil 2001). The contribution due to
the Reynolds stresses can be approximated by (Samadi 2009)

P ∝
(
ω0

cs

)2

FkinΛ
4, (10)

whereΛ is a characteristic length, cs is the sound speed, and Fkin
is the specific kinetic energy flux defined as

Fkin = ρ u3
rms, (11)

where ρ is the density, and is urms the root mean square velocity
given by the MLT.

The helium convective region is very inefficient in exciting
modes because the kinetic energy flux is low (see Sect. 2.1.2).
The more favourable convective regions for exciting modes, in
this star, are the convective core and the one induced by the iron
opacity bump. Excitation of radial acoustic modes by the iron
convective region is found to be efficient for two reasons. First,
the iron opacity bump is located deeper inside the star compared
to the helium bump, where both density and turbulent veloci-
ties are higher. Thus, the energy available for p modes is then
higher. Second, the efficiency of the excitation depends on the
timescales involved, i.e., the convective time-scale and the modal
period. The latter is several hours and, using mixing-length ar-
guments (i.e., τ ≈ Λ/umlt), we find that the convective timescale
is also several hours. Hence, excitation is nearly resonant.

Fig. 5. Top: Rates (P) at which energy is supplied to the modes, com-
puted as detailed in Sect. 2.2.2, for a 10 M� main-sequence model (see
Sect. 2.1). Note that only the contribution of the iron convective region
is included in P. Bottom: Square of the radial derivative of the radial
component of the eigenfunction for radial orders n = 4, n = 6 and n = 8
that correspond in the top panel of the first maximum, minimum and the
second maximum of the energy injection rates. The vertical lines delimit
the location of the convective region induced by the iron opacity bump.

3.2.2. Periodic variation and seismic diagnostic

The power supplied to the mode by the iron convection zone ex-
hibits periodic variations with frequency (Fig. 5, top). This be-
haviour is explained by the location of the iron convection zone
relative to the radial component of the displacement. As shown
by Eq. (8), the energy injection rate depends on the radial deriva-
tive of the radial component of the displacement in the driving
regions. Hence, the location of the displacement nodes relative
to the iron convective zone determines its derivative, and sub-
sequently the efficiency of the excitation. This is oscillation is
therefore a signature of the excitation by the iron convective re-
gion. Observational evidence would lead us to associate the driv-
ing with this region since, as will be shown in Sect. 4, no similar
results are obtained if we assume that the convective core drives
the modes.

The location of the iron convective zone can be inferred from
the energy injection rates by identifying the radial order of the
first maximum, which corresponds to the mode whose last node
is located at the bottom of the convective region (see Fig. 5, bot-
tom). A second way to proceed is to use the frequencies of two

Page 5 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200913221&pdf_id=5


A&A 510, A6 (2010)

of the maxima. The successive maxima of the energy injection
rates satisfy the relation

∫ R

rb

krdr′ + φ = m π, (12)

where m is an integer, kr is the radial wave-number, φ is the
phase, R is the star radius, and rb is the location of the node,
which we identify with the upper limit of the depth of the iron
convective region. Hence, by considering the frequencies of two
maxima of the energy injection rates (denoted by the subscripts
1 and 2), the location of the bottom of the iron convective region
can be deduced from the integral expression

∫ R

rb

kr2dr′ −
∫ R

rb

kr1dr′ = π. (13)

From Eq. (13), one immediately sees that only the frequencies
of the two consecutive maxima are needed to determine the
depth of the bottom of the iron convective region. To illustrate
this, we consider the limit of pure radial acoustic waves, such
that Eq. (13) becomes

(ω2 − ω1)
∫ R

rb

dr′

cs
= π. (14)

Furthermore, by assuming that the sound speed is constant, one
obtains the very simple analytic relation

R − rb =
πcs

(ω1 − ω2)
· (15)

Using the benchmark model described in Sect. 2.1, one then ob-
tains cs ≈ 40 km s−1 and from Fig. 5 we have ω1 ≈ 150 μHz and
ω2 ≈ 250 μHz. From Eq. (15), we obtain (R − rb)/R ≈ 0.044,
while from Fig. 5 one has (R − rb)/R = 0.04. This order of mag-
nitude estimate then illustrates that the detection of solar-like
oscillations excited by the iron convective region could provide
information about the structure of the iron convective region.

To illustrate this point, Fig. 6 (top) displays the energy injec-
tion rates as function of the radial order for two models at dif-
ferent evolution stages. The more evolved the star is, the deeper
the location of the iron convective zone since the effective tem-
perature decreases as the star evolves. The modes for which the
energy injection rate reaches a maximum are found to shift to-
ward lower radial-order. As a result, it is possible to follow and
localise the depth of the convective region (see Fig. 6, bottom).
We note that the energy injection rates are sensitive to the loca-
tion of the bottom of the convective zone to less than one percent
of the star radius, as shown in Fig. 6.

3.3. Mode amplitude

Figure 7 displays the mode amplitudes excited by the iron con-
vective region. By using the same parameters values as for the
Sun, the amplitudes are found to be above both the solar maxi-
mum and the CoRoT detection threshold. In addition, Fig. 7 also
shows that those results are very sensitive to the convective ve-
locities. It shows that a factor of two change in the velocities
leads to important discrepancies for mode amplitudes, so does
the mixing length, since the convective velocities depend on the
mixing-length to the third power for inefficient convection.

The development of numerical simulations is then the only
way to obtain more reliable values of the mode amplitudes.

Fig. 6. Top: Normalised energy injection rates for the two evolutionary
stages (the two first successive models in Fig. 1) as a function of the
mode radial order. Bottom: Location of the bottom of the iron convec-
tion zone, with respect to the surface, versus the radial-order of the first
maximum of the energy injection rates. Each point corresponds to the
10 M� modes described in Sect. 2.1 at different evolutionary stages dis-
played in Fig. 1.

4. Driving by core convection

In contrast to the uppermost convective layers of the star, the in-
ner convective core transports a non-negligible part of the total
energy flux, convection is highly efficient at transporting energy.
Hence, one cannot infer the properties of those regions by sim-
ply comparing them with those of the solar convective region.
The physics in each case is different and the dynamical proper-
ties, which are of interest for computing the mode amplitude, are
very uncertain. For instance, in the adiabatic regime the mixing-
length has no significant impact on the determination of the star
convective flux. The typical lengthscale and the convective ve-
locities are, however, of crucial importance to determining the
driving efficiency.

Recent 3D numerical simulations provide insight into those
properties for massive stars. A study of convection in the ef-
ficient regime was proposed by Meakin & Arnett (2007) us-
ing compressible 3D numerical simulations. They investigated
the convective regions during oxygen shell burning and during
both hydrogen core burning for a 23 M� star and proposed an
extended description of the convective properties and compar-
ison with mixing-length theory as well as other 3D numerical
simulations of convective outer layers. They found that both the
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Fig. 7. Mode amplitude as a function of mode frequency, computed as
described in Sects. 2.2.2 and 2.2. Diamonds correspond to the compu-
tation of the energy injection rates using β = 5 and the velocities given
by the MLT, while for stars the velocities have been multiplied by a
factor two and divided by two for squares (note that a factor two corre-
sponds to a variation of 30% of the mixing-length). The solid horizontal
line corresponds to the maximum mode amplitude for the Sun derived
by Michel et al. (2009), and the dashed horizontal line to the CoRoT
detection threshold.

Fig. 8. Rates (P) at which energy is supplied to the modes, computed
as detailed in Sect. 2.2.2, for our benchmark model, by the convective
core.

velocities and the typical length scale are in good agreement with
mixing-length theory with a parameter (α) of around 1.7.

4.1. Energy injection rates

As already pointed out in Sect. 2.1.2, the kinetic energy flux in
the convective core is an order of magnitude higher than in the
iron convective region. This high flux is due to the high den-
sities and ensures that the convective core is a good candidate
for exciting modes. However, the excitation efficiency also de-
pends on the matching between both the convective timescales
and mode periods and on the shape of the eigenfunctions (see
Eqs. (8) and (9)).

Figure 8 displays the normalised energy injection rates as
a function of frequency for radial p modes. One can identify
between two regions, namely at low ν (∈ [70; 200] μHz) and high
ν (∈ [200; 300] μHz) frequencies. In the low frequency range,
the decrease in the energy injection rates is dominated by the

decrease in the ratio of the convective turnover timescale to the
modal period, and also the shape of the eigenfunctions since P
depends on its radial derivative. In contrast, modes with higher
frequencies exhibit nodes close to the interface between the con-
vective and radiative zones explaining the modulation of energy
injection rates. In terms of absolute values of the energy injec-
tion rates, as for the iron convection zone, they depend mainly on
the injection lengthscale but are not very sensitive to the mixing-
length since convection is efficient (see Sect. 4.3).

4.2. Diagnostic on the eddy-time correlation function

Convective turnover timescales, evaluated within the MLT
framework, are found to be of the order of a month, while the
modal periods of acoustic standing waves are several hours.
Hence, the excitation will be in an off-resonance regime and will
therefore crucially depend on the way eddies are time-correlated.
In this particular regime, the way that the eddies are temporally-
correlated can lead to order of magnitude differences in terms
of mode amplitudes, as shown by Samadi et al. (2003a) for the
solar p modes and by Belkacem et al. (2009a) for solar gmodes,
where the effect is far stronger.

Therefore, we consider different types of modelling of this
time-correlation function (see χk in Eq. (8)). Exponential and
Lorentzian modelling are given by

χk(ω) =
1
ωk

e−|ω/ωk | (16)

χk(ω) =
1
πωk

1

1 + (ω/ωk)2
(17)

with the normalisation condition∫ +∞

−∞
χk(ω)dω = 1 (18)

where ωk is the linewidth, defined to be

ωk ≡ k uk

λ
, (19)

where λ is a parameter that to accounts for the uncertainties in
defining ωk (Balmforth 1992; Samadi & Goupil 2001; Chaplin
et al. 2005), and the velocity uk of the eddy with wavenumber k
is related to the kinetic energy spectrum E(k) by (Stein 1967)

u2
k =

∫ 2k

k
dk E(k) . (20)

The choice of an exponential function is motivated by exper-
imental studies of homogeneous and isotropic turbulence. For
instance, Mordant et al. (2004) demonstrated that the time-
correlation of Lagrangian velocities follows an exponential de-
crease in agreement with the Kolmogorov (1941) phenomenol-
ogy. However, the solar turbulent convection exhibits different
physical conditions compared to experimental studies. The very
large Reynolds numbers as well as the presence of coherent
large-scale structures (plumes) make it likely that a specific de-
scription of χk is needed. Indeed, a Lorentzian description can
be adopted and has proven to reproduce more closely both the
observations (Belkacem et al. 2006b) and the 3D numerical sim-
ulations for both p and g modes (Samadi et al. 2003a; Belkacem
et al. 2009a).

Figure 9 (top) displays analytical χk versus the ratio ω/ωk,
where ωk is the eddy characteristic frequency at the wave-
number k. By considering the most energetic eddies, the exci-
tation of p modes is found to occur in the off-resonance regime
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Fig. 9. Top: analytical eddy-time correlation function (χk) as a function
of the ratio ω/ωk, where ωk is the convective frequency at the wave-
number k. The vertical line corresponds to the ratio ω/ωk for the most
energetic eddies and the mode n = 2. Hence for higher frequencies, the
ratio ω/ωk will increase, and the driving will be in the off-resonance
regime. Bottom: normalized mode amplitude computed using the eddy-
time correlation functions as described in the upper panel.

with a ratio ω/ωk higher than around 20. In this regime, it ap-
pears that the choice of χk is essential as well as the width ωk.
We also note that a Gaussian modelling leads to a vanishing driv-
ing since for these ratios ω/ωk, the correlation is almost zero.
Figure 9 (bottom) also shows the influence of the frequency be-
haviour of the mode amplitudes with frequency. The shape of the
eddy-time correlation function has a significant impact on the
shape of mode amplitudes. A Lorentzian function, which slowly
decreases with frequency, results in a relatively small decrease
in mode amplitude with increasing frequency. In contrast, an ex-
ponential χk leads to a steeper slope in the mode amplitude that
makes the detection less likely.

In conclusion, we have shown that the efficiency of the driv-
ing by core convection depends crucially on the way that the
eddies are temporally-correlated. We note that only a Lorentzian
χk leads to efficient driving and that the resulting mode ampli-
tudes decrease with frequency in contrast to driving by the iron
convection zone. Hence, it constitutes a seismic diagnostic for
identifying the driving by the convective core and also deter-
mining the way in which the eddies are temporally-correlated,
an essential constraint on the dynamical properties of turbulent
convection in the cores of massive stars.

Fig. 10. Mode amplitude versus frequency, computed using the bench-
mark model (see Sect. 2.1) and a Lorentzian function to describe the
eddy-time correlation function (see Eq. (17)). The upper line (with dia-
mond dots) corresponds to the upper limit to the injection lengthscale.
The lower line (with stars) corresponds to an injection lengthscale that
corresponds to the minimum of the pressure scale height in the convec-
tive core.

4.3. Mode amplitudes

Mode amplitudes are presented in Fig. 10. To investigate the
sensitivity to the injection lengthscale, we compute the ampli-
tude with an upper limit given by the convective core size and
a lower limit, and the minimum of the pressure length-scale
in the convective core. In the more optimistic estimate, relative
magnitudes are found to reach up to 90 ppm for the lowest fre-
quency mode and tens of ppm for higher frequency modes. This
result demonstrates that excitation by the convective core can
lead to amplitudes well above the CoRoT detection threshold
(≈1 ppm) as well as the solar maximum (≈3 ppm). In the pes-
simistic case, the amplitude is near the CoRoT threshold, which
makes the detection more difficult. We note also, that these re-
sults assume a Lorentzian description of the eddy-time correla-
tion function (χk), and that using another prescription such as an
exponential decrease or a Gaussian one lead to very small am-
plitudes well below one ppm.

Nevertheless, it is worthwhile to note that the frequency be-
haviour associated with the excitation by the convective core is
very different from that obtained by excitation caused by the iron
convection zone. Hence, it constitutes a seismic signature that
would be a powerful tool for identifying the driving region.

5. Conclusions

We have performed an exploratory study of the driving (and
damping) of acoustic modes by turbulent convection in a 10 M�
star. We have found that both the convective region associated
with the iron opacity bump and the convective core are able to ef-
ficiently drive acoustic modes so that mode amplitudes are found
above the CoRoT detection threshold (≈1 ppm) as well as the so-
lar maximum (≈3 ppm).

However, uncertainties associated with the computation of
mode amplitudes are important and related to the poor knowl-
edge of the dynamical properties of those convective regions. For
the iron convective region, the main uncertainties originate in the
convective velocities as well as the injection-length scale. For the
convective core, the way that eddies are temporally-correlated is
crucial since excitation occurs in the off-resonance regime.
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Computation of mode amplitudes also permitted us to em-
phasise potential seismic diagnostics. First, driving by the iron
convective region results in an oscillation of the energy injec-
tion rates (and mode amplitudes) versus mode frequencies.We
have shown that this behaviour is potentially useful for deter-
mining the extent and the depth of this convective region, as
well as the dynamical properties of the driving (e.g., turbulent
velocities, injection lengthscales). Second, the way that the ed-
dies are temporally-correlated determines the efficiency of the
driving by the convective core and the frequency behaviour.
Hence, it provides an opportunity to strongly constrain χk.

The detection of solar-like oscillations in a massive star such
as V1449 Aql (Belkacem et al. 2009b) and the determination of
the mode parameter in this star are a promising way to identify
the driving region, since both have very different signatures, and
provides physical constraints on the still poorly known treatment
of convective regions. The presence of high frequency power in
SPB stars (Degroote et al. 2009) would also help us to constrain
the nature of the driving zone since these stars have luminosities
that are definitively below the threshold value for the presence of
a convective zone associated with the iron peak (Cantiello et al.
2009). It should however be kept in mind that microscopic diffu-
sion coupled with radiation acceleration could induce an accu-
mulation of iron in the iron peak. A convective iron zone could
thus also be present in stars whose luminosity are slightly below
the threshold.
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