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ABSTRACT

The derivation of pulsation models taking the non-
adiabatic interaction with convection into account is very
important in helio- and asteroseismology. The mode
excitation and damping as well as the amplitudes and
phases can be computed by these models and then con-
fronted to observations. We have implemented in our
non-radial non-adiabatic pulsation code the perturbation
of the convective flux, the turbulent pressure and the tur-
bulent kinetic energy dissipation, according to the theory
of Gabriel (1974, 1996, 1998). In the case of solar-like
oscillations, a major problem is to avoid the occurrence
of unphysical spatial oscillations of the eigenfunctions in
the efficient part of the convective envelope. We present
here a new local solution to this problem. Finally, appli-
cation to the Sun, § Sct and -y Dor stars are presented.

Key words: Stars: oscillations; Convection; Stars: interi-
ors.

1. INTRODUCTION

In this paper, we consider the problem of the interaction
between convection and pulsation, following a linear per-
turbative approach. Such approach requires an a-priori
distinction between the convective motions supposed to
have short wavelengths and the acoustic motions sup-
posed to have longer wavelengths. On the one hand, we
consider the convective fluctuations corresponding to the
difference between the physical conditions in a convec-
tive cell and in the average medium, and on the other
hand we consider the perturbation of the mean structure
corresponding to the oscillations.

The problem of the interaction between convection and
pulsation has been studied by many authors, following
different approaches. In particular, two different ap-
proaches of the mixing-length theory (MLT) have been
proposed, which lead to the same equations at equilib-
rium but differ when we consider their perturbations: the

theory of Gough (1965, 1977) and the theory of Unno
(1967). Gabriel et al. (1974, 1975) generalized the the-
ory of Unno (1967) to the case of non-radial modes. Also,
some terms neglected by Unno are not neglected in the
theory of Gabriel (1987, 1996, 1998). We first recall
in this paper the basic equations and approximations and
the last improvements of the Gabriel’s theory. Then, we
present the applications to solar-type, § Sct and vy Dor
stars.

2. EQUATIONS FOR THE CONVECTIVE FLUC-
TUATIONS

As usually in the study of turbulence, we split the vari-
ables in two parts, describing respectively the average
model and the convection. Therefore, we write y =
¥+ Ayand ¥ = @+ V, where y is any of the variables
p, p, T, etc. ¥'is the velocity vector. 7 and @ are the aver-
age values, while Ay and V describe the convection. We
do not recall here the general hydrodynamic equation and
the equations for the average medium and begin directly
with the equations for convection obtained by taking the
difference between the two. In our treatment, we use the
Boussinesq approximation, which gives for the continu-
ity equation:

V-V=0 or V-(pV)=0. (1

Concerning the equation of motion for convection, some
simplifications are necessary in order to recover the MLT.
Hence, our treatment neglects a large number of charac-
teristics of the convection, including the cascade of the
energy bound to the coupling of the convective motions
at different scales. Following Unno (1967), we assume:

Ap_ — = — ﬁf/1
?V'(:Bg-l'ﬂn-h@t)_V'(Aﬂg-l'A:BR‘l'Aﬁt) =A—,
c

(@3
where B; are the differences between the gas (g), radi-

ation (R) and Reynolds (t) stress tensors and the corre-
sponding gas, radiation and turbulent pressure. The equa-
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tion of motion for convection is then given by:

P =
V—Apr VAp— oV -vi— APV

dt T 3)

where p = pg+pr +pt. Aisa dimensionless constant. In
our case we take A = 8/3 in order to have the compatibil-
ity with our equilibrium MLT models. 7 is the lifetime of
the convective elements. It is related to the mixing-length
! = —o(dInp/dr)~! and the mean turbulent velocity by:

=1V, )

We neglect the pressure fluctuation everywhere but in the
equation of motion (Boussinesq). Also, we keep only the
first order terms in the fluctuations. For similar reasons
as for the derivation of Eq. (2), we assume for the closure
of the energy equation (Unno 1967):

_A
pT—>

Te

—pTV-V5 — pe; + pez

+ (pTVs)-V=(pTVs)-V. (5

The energy equation for convection is then given by:

A(pT)ds | dAs __ waTc+1
V.Vs —— As. (6
T a @ T Y
=3
1 4ac T
.th = =Y 5 - 7
w1 Wg Ta 3 cpm_pz[,z ( )

Tg 1s the cooling characteristic time of turbulent eddies
due to radiative losses. L is the characteristic length
of the eddies. It is related to the mixing-length [ by
£2 = (2/9)I% in order to recover the MLT used in our
equilibrium stellar models. Finally, the total flux of en-
ergy transported by convection is:

—

F.=pT As

<11

®

3. PERTURBATION OF THE MEAN STRUC-
TURE

In this section, we perturb the equations of the mean
structure, which gives the linear non-radial non-adiabatic
pulsation equations. The Lagrangian variation of any
quantity y is denoted, for a given spheroidal mode by
dy (7yt) = by (r)exp (iot) Y;™ (6, ¢). In order to be
able to distinguish global perturbations from convective
motions, we must consider £ values small enough so that
r/£ > 1. In what follow, we omit the overlining of the
mean quantities when no risk of confusion is present.

The perturbed equation of mass conservation is:

5P 19 2 &n
+733_( f,):l(l+1)7, &)
where we used the notation of Unno et al. (1989) for the
displacement vector £.
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For the perturbation of the divergence of the Reynolds
tensor, we use the following notation:

§(V-B) = —E (Y6 ¢)e
—En () (rVaY™ (6,9)),

where V', is the transversal component of the gradient.
We define A = 0.5 V;2/V2 (for an isotropic turbulence,
A = 1/2). The radial component of the perturbed equa-
tion of motion takes then the following form:

dé® 1d
szr = ar + -0 (5Pg+n + dpy)
Jp 2A 1Pt dfr Er
— —, (10
A rp dr + o’ 10)

+g

where p,yr = pg +pr. The transversal component of the
perturbed equation of motion is:

0‘27‘&. _ 5¢+r:'h+5pg+R+5pt
p p
2A-1
+—& (6_'_‘5_"’) (11)
A p\r T

For the perturbed energy equation, we find:

ioTés = —d‘s(il‘;: Lo) [ L+ 1) ]
£(e+1) ST &\ b
+ 4nr3p [LR (r(dT/dr) a 7) a LC?]

+Z(Z—+1)5Fc’h + )
pr

e + V.Y Pt Pal] p“]l , (12)
P

where we used the following notation for the perturbation
of the convective flux:

—

§F, = 6F.,(r) Y™ (6,4) &,
+8Fch(r) (rVaY™(6,9)) . (13)

The last term of Eq. (12) is the perturbed rate of dissipa-
tion of turbulent kinetic energy into heat. It is also present
in the perturbed equation of turbulent kinetic energy con-
servation:

B 772 Y
iopd l‘;—p] =4 [pez +V- Vpg+RJ —iopVV QVE.
(14

4. PERTURBATION OF THE CONVECTION

Stationary solutions of the equations for the convective
fluctuations (Egs. (1), (3) and (6)) lead to the classi-
cal MLT treatment adopted in our equilibrium models
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(Gabriel et al. 1974). In order to determine the pertur-
bation of the terms linked to convection we proceed as
follow. We perturb Egs. (1), (3) and (6). Then we search
for solutions of the form § (AX) = § (AX); e'*7eivt,
assuming constant coefficients. Then we integrate these
particular solutions over all values of kg and kg such that
k% 4+ k2 = A k2, assuming A constant and that every di-

rection of the horizontal component of % have the same
probability. We have to introduce this distribution of k
values in order to obtain an expression for the perturba-
tion of the Reynolds tensor which allows the proper sepa-
ration of the variables in the equation of motion (Gabriel
1987). Finally, horizontal averages are computed on a
scale larger than the eddies size but smaller than the hor-
izontal wave-length of the non-radial oscillations. The
perturbation of Eq. (1) gives: k -6V =0. The perturba-
tion of Eq. (6) gives:

Bp AT 55 d(3As)
P T ) dt dt
+6V-Vs+V-5§(Vs)

= —wp 6As — SwrAs —§ <£> . (15)

Te

We recall that the term As /7. corresponds to the closure
approximation adopted in our MLT treatment for the en-
ergy equation (Eq. (5)). When o7, « 1, convection
instantaneously adapts to the changes due to oscillations
and we can assume:

5 <£) _ Qs <5A8 _ 5L) e
Te Te As Te
This is the treatment adopted in Gabriel (1996). In

Sect. 5, we will propose another way to perturb As/7c.
The perturbation of Eq. (3) gives:

G0V = § (%) VP + %a(vm —§(VaAp)

—pV -6V —

ApV <JT;—>_ 52) B AﬁJV. (17

Tc P Tc Tc

In what follows, we use the notations: D = (iO'TC +
waTc+1)"1, B = (io7c+A) /A, C = D(wpTe+1). Tak-
ing the divergence of Eq. (17) enables to determine § Ap.
We define @ = 81nT'/d1n p|, and neglect Ap in the re-
lation between Ap and As. §7. and dwy, are related to 81
by perturbing Eqs. (4) and (7). From Egs. (15) and (17)
and following the procedure described at the beginning of
this section, we can then compute the different perturbed
correlation terms: 6V, /V,., §As/As, VeéV, [V2, 6V, [V,
and Vj 6Vy/V,2. We give here only 8V, /V, and refer to
Gabriel (1996) for the other correlation terms:

oV, 1
V, ~ B+ (ioc+1)D

dep 0Q bp dép d&,
'{_3_6_7 dp  dr
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— 107D

(@+1)ds , [dss _dg
Q cp+0 ds dr

A doT. (dE, 16 L(£+1)é&
A+1 A \dr  Ar 24 1

— wRTcD(J?T—J&_J_m_zai))

cp K p

+ (to7c + 3warc +2)D %} . (18)

From the perturbation of Eq. (8), we obtain then the per-
turbed convective flux. The radial component is given by:
§F., dp

Fe,r p T QR o
dés  dé, 8l

C I:E - dr ] + (2CURTC + l)D T
0T  dcp bk 25_;))

oD (377 - 2 - -2

. 3V,
+(ioTe + 2waTc + l)D—V' , (19
T

and the transversal component is given by:

JFc,h_ C(B+1) ds
Fe, " 24(B-C)ds/dInr
1 [C(B+1)
2AB[ B-C +A+2]
+[C’(B+1)(2BA+B+1)
2BA(A+1)(B-0C)
B-1 A42] (& &
2B(A+1)+ 2AB] (T‘?)
B-1 [C(B+1)
_2B(A+1)[ B-C

_%
dp/dIn~r

_|_

ym 2] 4 (29
dr

The perturbed turbulent pressure is simply given by:

in_ o %

Dt P |2

@D

Since a term proportional to dds/ds is present in Eq. (18),
the differential system is one order larger when the per-
turbation of the turbulent pressure is taken into account
in the equation of motion (Eq. (10)).

We consider now the perturbation of the rate of dissi-
pation of turbulent kinetic energy into heat (last term of
Eq. (12)). From Eq. (14), we find after some algebra:

= . A+1 (épy dp
V- Vpgn) = — PP
’ (p€2+ Pesr o [ 24 (Pt p

& L <2f_' _e(e+) 57")] . 22)

+ dr 24 r
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A source of uncertainty in any mixing-length perturbative
theory of convection comes from the expression which is
adopted for the perturbation of the mixing-length!. In our
non-adiabatic pulsation code, we can adopt optionally:

81l = §Hp/Hp or 81/l = (14 (07c)?) 26 Hp/ Hp.

5. A NEW PERTURBATION OF THE CLOSURE
EQUATIONS

A well known problem of this treatment is the occurrence
of spatial oscillations of the thermal eigenfunctions with
a wave-length much shorter than the mixing-length in the
part of the convective envelope where o 7. >> 1, which is
in contradiction with the basic assumptions of the MLT
(Goncezi & Osaki 1980). The same problem also arises
in the local mixing-length perturbative theory of Gough
(Baker & Gough 1979). The explanation of this phe-
nomenon is the following. Let us consider the conser-
vation of energy equation for a radial mode when most of
the energy is transported by convection:

10T §s = — 9L . (23)
dm

Isolating dds/ds in Eq. (19) and considering the case
oTe > 1> wyTe, We can write:

6L, 6L, 1 dés/dr
L. — < L. >1 ior, ds/dr’ 24

Combining Eqgs. (23), (24) and the equilibrium relations
of the MLT, we find after some algebra:

7o [d(6Le), | 2im d(pr?TV?) dis
T dm o dm dr
1 12 d%s .
=3 o + to7céds = 0. (25)

This is the equation of an oscillator whose solutions have
a wavelength of: v/21/(o7.). In order to avoid these non-
physical oscillations, non-local treatments have been pro-
posed (Gonczi 1986; Balmforth 1992; Xiong et al. 1997).

In the method presented above, we have adopted Eq. (16)
for the perturbation of the energy closure equation. A
lot of complex physical process, including all the cas-
cade of energy are extremely simplified in this approach.
Therefore, it is clear that a lot of uncertainty is associated
to the perturbation of this term. A point to emphasize
is that the occurrence of the non-physical spatial oscil-
lations is directly linked to the perturbation of this clo-
sure term. When these oscillations occur (o7 > 1),
the radial derivatives of §3 and §As are of the order of
(07 /1)é5 and (o7 /1)é As respectively. Therefore, if we
take Eq. (16), we see that the order of magnitude of the
perturbation of the right hand side member of Eq. (5) is
o T times larger than the left hand side member. To have
the same order of magnitude, the perturbation of the left
hand side member should rather now be given by:

) <£) =BodAs— As%, (26)

Tc T
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where S is a coefficient of the order of unity. In order to
get a formula which switch continuously from Eq. (16) to
Eq. (26), we propose to adopt the following expression:

5 <£) _ A ((1 + Bor) 28 _ Ji) . Q@D

Te Te As Te

With this expression for the perturbation of the closure
term, the coefficient D = (io7e + wate + 1)1 is re-
placed by D = ((i + 8)orc + waTe + 1)~1. Therefore,
in the case o 7. >> 1, the coefficient of d2§5/dr? in Eq.
(25) is approximately —1/2 12/((i + B)orc) instead of
—1/212/(io7;) and thanks to the real part of the com-
plex parameter 3, the non-physical spatial oscillations of
the eigenfunctions are no longer present in the solution,
as we will show in Sect. 9.

6. INTEGRAL EXPRESSIONS

A useful quantity in the analysis of the driving and damp-
ing mechanisms in pulsating stars is the work integral:

- foM ${8p*8p/p*}dm . We can isolate the contribution
of the different physical terms in this integral.

W, = _/m(r3 -1) se{l‘sid‘”“}dm (28)

0 o p dm

is the work due to the radiative and convective flux radial
component perturbation (z = ¢ for convection and z = R
for radiation);

Wi, , = £(£+1)/TF3—1)R{ Sp" By [‘SF"”‘ - f_"] }dm
0

rp*o | F; r

is the work due to the flux transversal components pertur-

bation.
Wp‘:_f %{Ji‘sﬁ}dm (30)
0 p P

is the work due to the perturbation of the turbulent pres-
sure; and finally for a radial mode and isotropic turbu-
lence (A = 1/2):

0 g p P
/ §(r3—1)${—5" Jﬁ}dm (31)
o 2 PP

is the work due to turbulent kinetic energy dissipa-
tion variations. In agreement with Ledoux & Walraven
(1958), we see from this equation that the perturbation of
turbulent pressure and the perturbation of dissipation rate
of turbulent kinetic energy have an opposite effect on the
work integral and thus on the excitation and damping of
the modes. Therefore, it is important to take both into
account.

We,
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Figure 1. Different physical components of the work in-
tegral obtained with our TDC treatment for the radial ps
mode of a model with M = 1.8 Mg, Teg = 6681 K and
o= 1.8. (1)is Wy, (2) is Wy, (3) is Wi, + Wi, (4) is
Wi + Wi, + W, (5) is Wiy + Wi, + W, and (6) is
W = W, + Wi, + Wy, + W,

7. APPLICATION TO § SCT STARS

§ Sct are a well known class of A-F type near main se-
quence variable stars whose periods (0.5 to 6 hours) cor-
respond to low order p and g-modes. As shown in Dupret
et al. (2004a, 2004b) and Grigahceéne et al. (2004), our
time-dependent convection treatment (TDC) succeeds in
explainining the stabilization of the § Sct radial and non-
radial modes at the red edge of the instability strip. In
Dupret et al. (these proceedings), we present theoreti-
cal instability strips, amplitude ratios and phase-lags ob-
tained with our TDC treatment for these stars.

In Fig. 1, we give the work integral obtained with our

TDC treatment including é F_';, dp¢ and dey. We give also
the contribution of each of these 3 terms on the total work,
according to Eqgs. (28), (30) and (31). We see that W,
(curve 1) has a driving effect at the CE base. It is due
to a flux blocking mechanism. However, for § Sct stars,
Wi, (curve 2 of Fig. 1) is significant in all CE and com-
pensates the driving effect of Wy, (as shown in curve 3
= Wi, + Ws,), so that the stabilization of the modes at
the red edge of the instability strip is obtained with TDC
models. Wy, (difference between curve 4 and curve 3)
has a driving effect in this model. But it is nearly compen-
sated by W,, (difference between curve 5 and curve 3)
which has a damping effect on the oscillations. There-
fore Wg, + Wi, (3) and W (6) are not very different.

8. APPLICATION TO v DOR STARS

~ Dor stars are a recently discovered class of F-type main
sequence variable stars whose long periods (between 0.4
and 3 days) correspond to pulsations in non-radial high
order gravity modes. As shown in Dupret et al. (2004a,
2004b) and Grigahcene et al. (2004), our TDC treatment
succeeds in explainining the driving of the v Dor high
order gravity modes. In Dupret et al. (these proceedings),
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Figure 2. Different physical components of the work in-
tegral obtained with our TDC treatment for the mode
£ =1, gso. (1)is Wiy, (2) is Wiy, (3) is Wy, (4) is
Wt and (5) is Wy, + Wi, + Wy, + We,,.. Model with
M =1.6Mg, Teg = 6935 Kand a = 2.

we present theoretical instability strips, amplitude ratios
and phase-lags obtained with our TDC treatment for these
stars.

Flux blocking mechanism has been proposed by Guzik
et al. (2000) as the driving mechanism of the y Dor g-
modes. However, they assumed frozen convection in their
non-adiabatic models. In Fig. 2, we give the work inte-

gral obtained with our TDC treatment including é F..In
order to test the validity of the flux blocking mechanism,
we give also the contribution of the radial and transversal
components of the radiative and convective flux pertur-
bations on the work integral. Fig. 2 shows that a signif-
icant driving occurs at the CE base for the mode £ = 1,
gso (curve 5). The decomposition in radiative and con-
vective flux contributions shows that the convective flux
variations do not play a significant role at the CE base
(curve 3). The main driving comes from the radiative
flux variations (curve 1). This supports the flux block-
ing mechanism proposed by Guzik et al. (2000). We see
also in this figure that the transversal components of ra-
diative and convective flux variations (curves 2 and 4) do
not play a significant role in the work integral.

9. APPLICATION TO THE SUN

It is now admitted that the p-modes of the Sun and solar-
like stars are stochastically excited. For these stars, strong
constraints on the TDC models are given by two types of
observables. First, the linewidths in the power spectrum
give a direct measurement of the damping rates of the
modes, which can be confronted to the theoretical ones
computed by a non-adiabatic pulsation code. Secondly,
the observed amplitudes can be confronted to the theoret-

ical ones: V = |£(r,)|+/P/(2nI) (Samadi et al. 2001).

V is the velocity, €(r,) is the displacement at the layer
seen by the instrument, P is the power injected in the
acoustic modes and can be computed by stochastic mod-
els (Samadi & Goupil 2001), n = (o) is the angular
damping rate and I is the inertia of the mode.
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Figure 3. R(6L/L) obtained for the radial p22 mode of
a solar model with our TDC treatment. In the top panel
B = 0 and in the bottom panel B = 1.

Solar-type stars have a large convective envelope, in
which o 7. > 1 for their typical p-modes frequencies.
As we have shown in Sect. 5, this leads to spatial oscil-
lations of the thermal eigenfunctions with a wave-length
much shorter than the mixing-length. A striking illustra-
tion of these oscillations is given in the top panel of Fig. 3,
where R(8 L/ L) is given for the radial pa2 mode of a typ-
ical solar model. We proposed in Sect. 5 to introduce a
free complex parameter 3 in the energy closure equation
in order to avoid these oscillations. In the bottom panel of
Fig. 3, R(6 L/ L) obtained with 8 = 11is given. As can be
seen, the short wave-length spatial oscillations disappear
completely in this case.

In Fig. 4, the theoretical damping (¥(c)/(27)) (radial
modes) obtained with our TDC treatment including § I?'C,
dpy and de, and assuming 8 = —2.5+4-0.57 are confronted
to the observations by BiSON (Chaplin et al. 2002, radial
modes) and by GOLF (Baudin et al. 2004, £ = 1 modes).
We see that our TDC models succeed to reproduce the
plateau around 3000 pHz.

ACKNOWLEDGMENTS

MAD acknowledges support through a European Com-
munity Marie Curie Fellowship. AG and RG acknowl-
edge financial support from the program ESP2001-4528-
PE.

REFERENCES

Baker, N. H., & Gough, D. O. 1979, ApJ, 234, 232

212

X
10 F IEEa
+><Jr>< XA
| e
T QR
Z i
g r 3
£ +><+X+X x X &
ED x XX Rt
£ " X
s 0.1¢F X ) -0 i
/a Iy BiSON 1=0 ——
X GOLF 1=1 x
e Theory 1=0 B=-2.5+0.5 i --x-
0.01 . . . . .

1500 2000 2500 3000 3500 4000 4500 5000
Frequency (WHz)

Figure 4. Half linewidths (uHz) observed by BiSON (+)
and GOLF (x) and damping rates (¥(o)/(27)) obtained
with our TDC models, assuming 8 = —2.5+ 0.5 1.

Balmforth, N.J. 1992, MNRAS, 255, 603

Baudin, F., Samadi, R., Goupil, M.-J, et al. 2004, sub-
mitted to A&A

Chaplin W. J., Elsworth Y., Isaak G. R., et al. 2002, MN-
RAS, 330, 731

Dupret, M.-A., Grigahcene, A., Garrido, R., et al. 2004a,
A&A, 414,117

Dupret, M.-A., Montalban, J., Grigahcéne, A., et al.
2004b, In: Variable Stars in the Local Group, eds. D.W.
Kurtz & K. Pollard, PASP Conference Series, 310, 470

Gabriel, M., Scuflaire, R., Noels, A., & Boury, A. 1974,
Bul. Ac. Roy. Belgique, Classe des Sciences 60, 866

Gabriel, M., Scuflaire, R., Noels, A., & Boury, A. 1975,
A&A, 208, 122

Gabriel, M. 1987, A&A, 175, 125
Gabriel, M. 1996, Bull. Astron. Soc. of India, 24, 233

Gabriel, M. 1998, In: SOHO 6/GONG 98 Workshop,
Boston, Massachusetts, p. 863

Gonezi, G., & Osaki, Y. 1980, A&A, 84, 304
Gonczi, G. 1986, A&A, 157, 133

Gough, D. O. 1965, Geophys. Fluid Dyn. II (Woods Hole
Oceanographic Institution), p. 49

Gough, D. 0. 1977, ApJ, 214, 196

Grigahcene, A., Dupret, M.-A., Garrido, R., et al. 2004,
In: JENAM Minisymposium in asteroseismology, eds. Z.
Kollath & G. Handler, CoAst, 145, 9

Guzik, J. A., Kaye, A. B., Bradley, P. A, et al. 2000, ApJ,
542, L57

Ledoux, P.,, & Walraven, T. 1958, Handbuch der Physik,
ed. S. Fliigge, 51, 353

Samadi, R., & Goupil, M.-J. 2001, A&A, 370, 136

Samadi, R., Goupil, M.-J., & Lebreton, Y., 2001, A&A,
370, 147

Unno, W. 1967, PASJ, 19, 140
Unno, W., Osaki, Y., Ando, H., et al. 1989, Nonradial os-
cillations of stars, 274 edition, Univ. Tokyo Press, Tokyo

Xiong, D. R., Cheng, Q. L., & Deng, L. 1997, ApJs, 108,
529

© European Space Agency ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2004ESASP.559..207D

