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Abstract. We present an improved version of the method of photometric mode identification of Heynderickx et al. (1994). Our
new version is based on the inclusion of precise non-adiabatic eigenfunctions determined in the outer stellar atmosphere ac-
cording to the formalism recently proposed by Dupret et al. (2002a). Our improved photometric mode identification technique
is therefore no longer dependent on ad hoc parameters for the non-adiabatic effects. It contains the complete physical conditions
of the outer atmosphere of the star, provided that rotation does not play a key role. We apply our method to the two slowly pul-
sating B stars HD 74560 and HD 138764 and to the β Cephei star EN (16) Lac. Besides identifying the degree ` of the pulsating
stars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on
parameters such as the metallicity and the mixing-length parameter α (a procedure we label non-adiabatic asteroseismology).
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1. Introduction

A crucial problem in asteroseismology is mode identification.
Firstly because, from a theoretical point of view, despite the
linear non-adiabatic predictions, the mode selection mecha-
nisms are not well understood for many kinds of pulsating stars
(δ Scuti, β Cephei, slowly pulsating B stars, γ Doradus, roAp
stars, . . . ). Secondly because, from an observational point of
view, we do not resolve the disks of stars other than the Sun so
that we can only observe disk-integrated quantities. Thirdly, the
rotational splittings and the “avoided crossing” effect produce
such a complicated power spectrum that a mode identification
based on the frequencies alone is generally impossible.

Currently, both spectroscopic and photometric mode identi-
fication techniques are being used. The latter methods are based
on multi-colour photometry, and are the subject of this paper.
The principle of these methods is to observe the photometric
variations due to stellar oscillations in different colours and
compare them to the theoretical predictions at the appropriate
wavelengths (Dziembowski 1977b; Stamford & Watson 1981;
Watson 1988; Garrido et al. 1990; Heynderickx et al. 1994;
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Garrido 2000). However, all these methods have an impor-
tant drawback: their theoretical predictions are very sensitive
to the non-adiabatic temperature variations at the photosphere
(Cugier et al. 1994; Balona & Evers 1999).

Dupret et al. (2002a) developed a non-adiabatic code in-
cluding a detailed treatment of the pulsation in the outer atmo-
sphere. In this paper, we show how this non-adiabatic treatment
opens the way to a significant improvement of the discriminant
power of mode identification methods based on multi-colour
photometry. Indeed, by using Dupret et al.’s calculations, we
are able to eliminate the weakest point of the mode iden-
tification method, namely the ad hoc parameters to express
the non-adiabaticity. We present the results obtained for two
slowly pulsating B stars (SPBs) observed by De Cat & Aerts
(2002) and for the β Cephei star EN (16) Lac.

2. Monochromatic magnitude variations
of a non-radially pulsating star

Theoretical expressions for the monochromatic magnitude
variations of a non-radially pulsating star have been derived by
different authors. Dziembowski (1977b) was the first to derive
an expression for the bolometric magnitude variation of a non-
radially pulsating star. He suggested also that a Wesselink tech-
nique could be formulated from these expressions. Balona &
Stobie (1979) recast the suggestion of Dziembowski in an ob-
servationally feasible way. Stamford & Watson (1981) derived
an expression for the monochromatic magnitude variations
of a non-radially pulsating star. They proposed to compute
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the local emergent monochromatic flux variation on the base
of equilibrium atmosphere models (see Eq. (2) below) and
they simplified the way to compute the influence of the stel-
lar surface distortion. Watson (1988) improved the method by
taking the variation of the limb darkening into account (see
Eq. (3) below), and discussed the importance of the differ-
ent terms in the equation giving the monochromatic magni-
tude variations of a non-radially pulsating star. Garrido et al.
(1990) and Garrido (2000) derived a method of mode identifi-
cation using Strömgren photometry, based on the formalism of
Watson (1988), and applied it to δ Scuti and γ Doradus stars.
Heynderickx et al. (1994) derived an expression for the surface
distortion of a non-radially pulsating star in a Lagrangian for-
malism. He developed a method of mode identification based
on photometric amplitude ratios and applied it to β Cephei
stars.

In all the previously cited papers, the non-adiabatic charac-
ter of the pulsation was neglected or treated with an ad hoc pa-
rameter. Cugier et al. (1994) were the first to use non-adiabatic
computations for photometric mode identification, using the
non-adiabatic pulsation code of Dziembowski (1977a). The
same code was also used by Balona & Evers (1999) for mode
identifications of δ Scuti stars. Townsend (2002) used a non-
adiabatic code for the photometric modelling of SPBs.

It is useful to detail the assumptions made, sometimes im-
plicitly, by the previous authors and in our method, in order to
derive an expression for the monochromatic magnitude varia-
tions of a non-radially pulsating star. In Sects. 3 and 4, we will
put forward the improvement and specificities of our method,
compared to the one of the previous authors.

a1) We work in the linear approximation.
a2) We neglect the coupling of modes due to the interaction

between rotation and pulsation. The angular dependence
of a non-radial mode is thus described by a single spherical
harmonic.

a3) We assume that the gas column of the atmosphere at a
given angular position (θ, φ) is well described by a plane
parallel atmosphere, which we call the local atmosphere.

a4) For the geometrical distortion of the stellar surface, we
work in the one-layer approximation. It is assumed that
the visible part of the star, i.e. the photosphere, can be de-
scribed by a single surface which is spherical at equilib-
rium. The radius R0 of this sphere is the radius of the star,
and in our method, we assume that it corresponds to the
layer where the local temperature is equal to the effective
temperature of the star. During the pulsation, it is assumed
that this surface follows the movement of the matter. The
surface distortion can therefore be deduced from the dis-
placement field: ξ(R0, θ, φ, t).

a5) We assume that, during the pulsation cycle, the monochro-
matic outwards flux Fλ+ of the local atmosphere is, for
each given time, the same as the monochromatic outwards
flux of an equilibrium plane parallel atmosphere model.

a6) We assume that, during the pulsation cycle, Fλ+ remains
perpendicular to the photosphere.

a7) We assume that Fλ+ does not depend on the optical depth
in the local atmosphere.

a8) We assume that the local atmosphere depends only on two
varying parameters: the local effective temperature and the
local effective gravity. The chemical composition of the
local atmosphere is assumed to remain constant.

a9) We assume that during the pulsation cycle, the limb dark-
ening law hλ of the local atmosphere is, for each given
time, the same as the limb darkening law of an equilibrium
plane parallel atmosphere model with the orientation given
by assumptions (a4) and (a6).

Assumption (a4) needs some precision. We have shown in
Dupret et al. (2002a) that the relative Lagrangian variation
of the optical depth (δτ/τ) is not negligible in stellar at-
mospheres. However, on the basis of non-adiabatic computa-
tions, we have checked that the relative difference between the
displacement of constant optical depth layers and the “real”
displacement of the matter (δτ/(κ ρR0)) is very small. For ex-
ample, |δτ|/(κ ρR0) ' 0.005 at the photosphere of a typical
β Cephei model and for the fundamental radial mode, with a
relative radial displacement normalized to 1 at the photosphere.
Therefore assumption (a4) is appropriate for the determination
of the geometrical distorsion of the stellar surface (at least for
g-modes and moderate order p-modes). However, we showed
in Dupret et al. (2002a) that it is not appropriate to assume
that the Lagrangian variation of the temperature is equal to the
variation of the temperature at constant optical depth, because
∂ ln T/∂τ |δτ| is not negligible compared to |δT/T | at the pho-
tosphere.

We note that assumption (a7) concerns only the flux. We
do not make this hypothesis for the temperature which depends
strongly on the optical depth in stellar atmospheres (see Dupret
et al. 2002a, Fig. 1).

Assumptions (a5) and (a9) have the same physical justifi-
cation as explained in Dupret et al. (2002a). Because of the
very small thermal relaxation time of the atmosphere, we as-
sume that, at each time of the pulsation cycle, the local atmo-
sphere remains in radiative equilibrium. Using this assumption,
Dupret et al. (2002a) assumed that, during the pulsation cycle,
the temperature distribution (T (τ) law) in the local atmosphere
was, for each given time, the same as the temperature distribu-
tion of an equilibrium atmosphere model. For the same phys-
ical reasons, we make now the same assumption for the local
monochromatic outwards flux Fλ+ and for the limb darkening
law hλ.

From assumptions (a5), (a7) and (a8), the monochromatic
outward flux in the local atmosphere is given by:(
F+λ

)
0 + δF+λ (θ, φ, t) =

F+λ
[

(Teff)0 + δTeff(θ, φ, t), g0 + δge(θ, φ, t)
]
, (1)

where F+λ = |Fλ+|. In the linear approximation, we have thus
by perturbing Eq. (1):

δF+λ
F+λ

=

(
∂ ln F+λ
∂ ln Teff

)
δTeff

Teff
+

(
∂ ln F+λ
∂ ln g

)
δge

ge

≡ αTλ
δTeff

Teff
+ αgλ

δge

ge
· (2)

Equation (1) was first proposed by Stamford & Watson (1981).
We proceed similarly for the variation of the monochromatic
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limb darkening. From assumptions (a4), (a6), (a8) and (a9), we
obtain in the linear approximation:

δhλ
hλ
=

(
∂ ln hλ
∂ ln Teff

)
δTeff

Teff
+

(
∂ ln hλ
∂ ln g

)
δge

ge

+

(
∂ ln hλ
∂µ

)
δ (µ) , (3)

where hλ is the normalized limb darkening law
(
∫ 1

0
hλ(µ) µ d µ = 1), µ = n · ez′ , n is the normal to

the photosphere and ez′ is the unit vector pointing towards the
observer. A similar equation was first proposed by Watson
(1988).

We denote by ε the amplitude of relative radial displace-
ment in the photosphere:

ξr(θ, φ, t) = R0 ε Pm
` (cos θ) cos(σ t + m φ) , (4)

where θ and φ are the usual spherical coordinates with respect
to the polar (rotation) axis of the star, Pm

` (x) is the associated
Legendre function of degree ` and azimuthal number m and σ
is the angular oscillation frequency.

The quantities δTeff/Teff and δge/ge can be computed by
the non-adiabatic code of Dupret et al. (2002a). Because the
Eulerian variation of the gravitational potential at the surface
is always very small (|ψ′| � |g ξr |), it appears that in very
good approximation, δge/ge is in opposite phase with the radial
displacement. These two quantities can be expressed in term of
the associated Legendre functions:

δTeff

Teff
(θ, φ, t) = fT ε Pm

` (cos θ) cos(σ t + m φ + ψT) , (5)

δge

ge
(θ, φ, t) = − fg ε Pm

` (cos θ) cos(σ t + m φ) , (6)

where fT and fg are the amplitudes of δTeff/Teff and δge/ge cor-
responding to a normalized radial displacement at the photo-
sphere. On the basis of the previous assumptions and equations,
an expression can be derived for the monochromatic magnitude
variation of a non-radially pulsating star:

δmλ = − 2.5
ln 10

ε Pm
` (cos i) b`λ

×
(
− (` − 1)(` + 2) cos(σ t)

+ fT cos(σ t + ψT) (αTλ + βTλ )

− fg cos(σ t)
(
αgλ + βgλ

) )
, (7)

where δmλ is the variation of the monochromatic magnitude
as seen by the observer, i is the inclination angle between the
stellar axis and the direction towards the observer and

b`λ ≡
∫ 1

0
hλ µ P` d µ , (8)

βTλ ≡ ∂ ln b`λ
∂ ln Teff

, (9)

βgλ ≡ ∂ ln b`λ
∂ ln g

· (10)

For the derivations leading to Eq. (7), we refer to Dziembowski
(1977b), Stamford & Watson (1981), Watson (1988) and
Heynderickx et al. (1994).

In Eq. (7), the term proportional to (` − 1)(` + 2) corre-
sponds to the influence of the stellar surface distortion, the term
proportional to fT corresponds to the influence of the local ef-
fective temperature variation and the term proportional to fg
corresponds to the influence of the local effective gravity vari-
ation. In our applications, we computed the coefficients αTλ

and αgλ (derivatives of the monochromatic flux) from the mod-
els of Kurucz (1993). An analytical law for the limb darkening
is needed for the computation of b`λ and its derivatives. For
the present paper, we used a quadratic law (Wade & Rucinski
1985). We note that an improved non-linear limb darkening law
has been proposed by Claret (2000), but his computations were
only done for Strömgren filters, while our applications concern
Geneva and Johnson filters.

In multi-colour photometry, one observes the integral of the
monochromatic magnitude variation over the response of the
filter:

δmi =

∫ λmax

λmin
δmλ wi(λ) dλ∫ λmax

λmin
wi(λ) dλ

, (11)

where wi(λ) is the response curve of the filter i. Therefore, the
different terms of Eq. (7) depending on λ have to be integrated,
following Eq. (11).

3. Our version of the mode identification method

The linear theory does not permit us to predict the amplitudes
of the eigenfunctions. Therefore, it is appropriate to use ampli-
tude ratios and phase differences between different filters when
comparing the theoretical predictions to the observations. On
one hand, for δ Scuti stars, the observations and the theoretical
predictions give significant phase-lags between the different fil-
ters. Mode identification methods using these phase-lags have
been proposed by Garrido et al. (1990) and Balona & Evers
(1999). On the other hand, for β Cephei stars, SPBs and γ
Doradus stars, no phase-lags are observed (in agreement with
the small phase-lags predicted by the theory). For the latter
stars, mode identification methods based on amplitude ratios
are thus appropriate (Heynderickx et al. 1994). We adopt here
such a method. The theoretical procedure of our mode identifi-
cation method is the following:

1. We compute a stellar model with the appropriate effective
temperature, luminosity and mass. In our applications, we
used the new Code Liégeois d’Évolution Stellaire written
by one of us (R. Scuflaire).

2. We perform non-adiabatic computations for different de-
grees ` and for pulsation frequencies close to the observed
ones. In our applications, we used the non-adiabatic code
by Dupret et al. (2002a). These computations give the co-
efficients fT, ψT and fg for different degrees `.

3. For each filter j and for each `, we compute

A j,th = |b` j|
∣∣∣∣ (1 − `)(` + 2)

+ fT eiψT
(
αT j + βT j

)
− fg

(
αg j + βg j

) ∣∣∣∣ , (12)
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using the atmosphere models of Kurucz (1993) to com-
pute αT and αg.

4. We choose a reference filter (indicated with subindex 1).
For B stars, this reference filter is the U filter giving the
highest amplitudes and thus the highest S/N ratio. We com-
pare the theoretical amplitude ratios (A j,th/A1,th) to the ob-
served amplitude ratios (A j,obs/A1,obs). The identified de-
gree ` is the value which minimizes the χ2:

k∑
j=2

[
A j,th

A1,th
− A j,obs

A1,obs

]2

, (13)

where k is the number of filters.

We note that the non-adiabatic predictions depend on some
dominant parameters of the theoretical models (e.g. the
metallicity for β Cephei stars and SPBs, the mixing length
parameter α for δ Scuti and γ Doradus stars). Therefore, these
parameters can be constrained by a feed-back process after a
unique mode identification is achieved. We call this feed-back
process non-adiabatic asteroseismology, in which we iterate
the procedure described above by adjusting the stellar parame-
ters for the identified mode, until we find the best fit between
theory and observations. We will illustrate this feed-back pro-
cess below for the estimation of the metallicity of the β Cephei
star EN Lac.

4. Comparison with other methods

The difference between our method and the one proposed by
other authors is in the way of estimating the influence of the ef-
fective temperature variation and the effective gravity variation
in Eqs. (7) and (12).

4.1. Mechanical boundary condition

As a preliminary for the estimation of the relative effective tem-
perature variation δTeff/Teff and the relative effective gravity
variation δge/ge, the first step of the procedure followed by
Watson (1988), Heynderickx et al. (1994), Cugier et al. (1994)
and Balona & Evers (1999) was to compute δP/P at the pho-
tosphere. As initially proposed by Buta & Smith (1979), they
used the following formula:

δP
P
=

(
`(` + 1) K − 4 − K−1

)
ξr

R0
, (14)

where K (sometimes denoted by αh) is given by

K = αh =
G M

σ2 R3
0

· (15)

Equation (14) is deduced from the “classical” mechanical
boundary condition (Cox 1980, Eq. (17.69’)), by neglecting the
Eulerian variation of the gravitational potential at the photo-
sphere (Cowling approximation). The advantage of Eq. (14) is
that it gives δP/P, without having to compute numerically the
adiabatic or non-adiabatic eigenfunctions throughout the entire
star. Assuming that:

δP
P

(θ, φ, t) = −C ε Pm
` (cos θ) cos(σ t + m φ) , (16)

we have therefore:

C = 4 + K−1 − `(` + 1) K . (17)

4.2. Influence of the effective temperature variation

Watson (1988), Garrido et al. (1990) and Heynderickx et al.
(1994) related the Lagrangian temperature variation to the
Lagrangian pressure variation at the photosphere by intro-
ducing a free ad-hoc parameter R describing the departure
from adiabatic conditions. Moreover, they assumed that the
Lagrangian temperature variation is equal to the local effective
temperature variation at the photosphere:

δTeff

Teff
=

δT
T
· (18)

The coefficient fT is then given by:

fT = R
Γ2 − 1
Γ2

|C|

= R
Γ2 − 1
Γ2

∣∣∣ 4 + K−1 − `(` + 1) K
∣∣∣ . (19)

In the adiabatic case, R = 1. Concerning the phase-lag ψT,
Heynderickx et al. (1994) take the adiabatic value of 180◦ for
the applications to β Cephei stars and Garrido et al. (1990)
let ψT be a free parameter between 90◦ and 135◦ for the ap-
plications to δ Scuti stars.

Our approach does not make any of these assumptions. We
rigorously compute both the amplitude and the phase of the
local effective temperature variation by non-adiabatic compu-
tations throughout the entire star and, in particular, throughout
the entire non-grey atmosphere.

Cugier et al. (1994) and Balona & Evers (1999) performed
non-adiabatic computations in order to determine fT and ψT

in a more rigorous way. In their method, they assume also that
the Lagrangian temperature variation is equal to the local effec-
tive temperature variation at the photosphere (Eq. (18)). We do
not make this assumption in our method, since we have shown
in Dupret et al. (2002a) that the Lagrangian variation of the
temperature at the photosphere is different from the variation
of the local effective temperature, because of the significant
Lagrangian variation of the optical depth.

4.3. Influence of the effective gravity variation

Stamford & Watson (1981), Watson (1988), Garrido et al.
(1990) and Heynderickx et al. (1994) related the coefficient fg
corresponding to the effective gravity variation (i.e. the grav-
ity variation corrected for the pulsational acceleration) to the
Lagrangian pressure variation by the following equation:

fg = p∗ C =

(
∂ ln g
∂ ln Pg

)
τ=1

C , (20)

where p∗ is computed from equilibrium atmosphere models
such as the models of Kurucz (1993). Some authors (Cugier
et al. 1994; Balona & Evers 1999) proposed to take p∗ = 1.
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Table 1. Effective temperature and gravity of the stars HD 74560
and HD 138764 as deduced from Geneva calibrations of Künzli et al.
(1997).

HD 74560 Teff = 16210 ± 150 K log g = 4.15 ± 0.14

HD 138764 Teff = 14050 ± 80 K log g = 4.20 ± 0.12

Dupret et al. (2002a, Eq. (24)) proposed a more accurate
way to determine δge/ge. In our method, fg is given by:

fg =

∣∣∣∣∣∣
R0 ∂ψ

′/∂r
g ξr

+
4πρR3

0

Mr
−

(
2 + K−1

)∣∣∣∣∣∣ . (21)

Under the Cowling approximation and neglecting the density
at the photosphere compared to the mean density of the star,
Eq. (21) gives:

fg = 2 + K−1 . (22)

The correction leading to Eq. (22) was also proposed by
Cugier & Daszynska (2001). The difference between Eqs. (22)
and (20) with p∗ = 1 is due to the fact that the Lagrangian vari-
ation of surface elements of the photosphere (2 − `(` + 1)K)
affects the Lagrangian variation of the pressure described in
Eq. (17), but does not affect the Lagrangian variation of the
effective gravity. A simple comparison shows that:

For p-modes: K is small so that the difference between
Eqs. (17) and (22) is approximately 2.

For high-order g-modes: K is large, so that the difference be-
tween Eqs. (17) and (22) becomes very important!

Therefore, our improvement in the determination of the ef-
fective gravity variation has the largest impact on the photo-
metric mode identification of g-mode pulsators such as SPBs
and γ Doradus stars.

5. Applications

In this section, we present the application of our mode identifi-
cation method to two SPBs and one β Cephei star. The theoret-
ical stellar models we used have been computed by the Code
Liégeois d’Évolution Stellaire (CLÉS).

5.1. Slowly pulsating B stars

The two SPBs for which we performed non-adiabatic computa-
tions and a photometric mode identification are HD 74560 and
HD 138764. Data obtained with Geneva photometry were taken
from De Cat & Aerts (2002). We give in Table 1 the effective
temperature and the gravity of these two stars, as derived from
the most recent calibration of Künzli et al. (1997). We selected
then theoretical models closest to these observations and their
global characteristics are given in Tables 2 and 3. Numerous ad-
ditional applications to other SPBs will be presented in De Cat
et al. (in preparation).

In Figs. 1 and 3, we give the values of fT (local effective
temperature variation for a normalized radial displacement at

Table 2. Global characteristics of the theoretical model of HD 74560.

M/M� = 4.9 Teff = 16 205 K log(L/L�) = 2.7521

log g = 4.1677 R/R� = 3.0208 age (My) = 24.5

X = 0.7 Z = 0.02 no overshooting

Table 3. Global characteristics of the theoretical model of HD 138764.

M/M� = 3.9 Teff = 14047 K log(L/L�) = 2.3760

log g = 4.1964 R/R� = 2.6073 age (My) = 38

X = 0.7 Z = 0.02 no overshooting

Table 4. Non-adiabatic results and mode identification for the star
HD 74560. Degree `, radial order, amplitude of local effective temper-
ature variation fT and phase-lag ψT for the modes with theoretical fre-
quency closest to the observed dominant frequency f = 0.64472 c d−1.
The identified mode is given in bold.

` gn fT ψT (◦)

1 g17 10.08 −23.0

2 g29 22.38 −8.2

3 g41 36.01 1.3

Table 5. Non-adiabatic results and mode identification for the star
HD 138764. Degree `, radial order, fT and ψT for the modes with
theoretical frequency closest to the observed dominant frequency f =
0.7944 c d−1. The identified mode is given in bold.

` gn fT ψT (◦)

1 g16 5.59 −23.2

2 g28 17.23 −9.3

3 g40 31.57 1.4

the photosphere) and in Figs. 2 and 4 those of ψT (phase differ-
ence between the local effective temperature variation and the
radial displacement at the photosphere, in degrees) for different
modes of the two SPBs, as a function of the pulsation frequency
in c d−1, as computed by our non-adiabatic code. In these fig-
ures, the vertical line corresponds to the observed frequency
of the dominant mode. We see that, for a given frequency, the
amplitude and phase-lag depend strongly on the degree `. The
physical explanation is the following. The term corresponding
to the transversal compression in the equation of mass conser-
vation is proportional to `(` + 1). For high-order g-modes, this
term dominates, which implies a strong dependence on ` of the
eigenfunctions. The phase-lags (ψT) are relatively close to zero,
which is in agreement with the observations.

In Tables 4 and 5, we give for the two stars, the degree `, the
radial order, fT and ψT for the modes with theoretical frequency
closest to the observed frequency. The identified mode is given
in bold.
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Fig. 1. fT (local effective temperature variation for a normalized ra-
dial displacement at the photosphere) as function of the pulsation fre-
quency (in c d−1), for different modes of the SPB star HD 74560. The
“+” correspond to modes of degree ` = 1, the “×” correspond to
modes of degree ` = 2 and the asterisks correspond to modes of de-
gree ` = 3. The vertical line corresponds to the observed frequency of
the dominant mode.
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Fig. 2. ψT (phase difference between the local effective temperature
variation and the radial displacement at the photosphere in degrees)
as function of the pulsation frequency in c d−1, for different modes
of the SPB star HD 74560. The “+” correspond to modes of degree
` = 1, the “×” correspond to modes of degree ` = 2 and the asterisks
correspond to modes of degree ` = 3. The vertical line corresponds to
the observed frequency of the dominant mode.

In Figs. 5 and 6, we give the amplitude ratios obtained from
Geneva photometry for the dominant modes of the two stars.
The bullets with error bars correspond to the observations. The
full lines correspond to the theoretical predictions for different
degrees `: solid line for ` = 1, dashed line for ` = 2 and dot-
dashed line for ` = 3. For both stars, a solution inside the error
bars is found, and the identified degree is ` = 1. These pho-
tometric mode identifications are in very good agreement with
the spectroscopic mode identifications performed by De Cat
et al. (in preparation) using the moment method.
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5.2. The β Cephei star EN (16) Lac

We present now the application of our method to the β Cephei
star EN Lac. This star has been studied by many authors. We
refer to Chapellier et al. (1995) and Lehmann et al. (2001) for
a summary of the observational studies and to Dziembowski
& Jerzykiewicz (1996) for the first seismic study of this
β Cephei star. In this section, we illustrate the process we term
non-adiabatic asteroseismology, by deriving constraints on the
metallicity of the star. The three observed frequencies used in
our study were taken from Lehmann et al. (2001) and the pho-
tometric amplitudes obtained with Johnson filters were derived
by Jerzykiewicz (1993).
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Fig. 5. Amplitude ratios obtained with Geneva photometry for the
dominant mode of the SPB star HD 74560. The bullets with error bars
correspond to the observations. The lines correspond to the theoretical
predictions for different degrees `: solid line for ` = 1, dashed line for
` = 2 and dot-dashed line for ` = 3.

Fig. 6. Amplitude ratios obtained with Geneva photometry for the
dominant mode of the SPB star HD 138764, same caption as in Fig. 5.

Aerts et al. (2002) showed convincingly that the spectro-
scopic mode identification is fully compatible with the pho-
tometric one for this star, and points towards a radial mode
for the first frequency ( f1 = 5.9112 c d−1), an ` = 2 mode
for the second frequency ( f2 = 5.8551 c d−1) and an ` = 1
mode for the third frequency ( f3 = 5.5033 c d−1). We there-
fore adopt this result here. We present the results of the am-
plitude ratios obtained for models with different metallicities.
The choice of the models has been made with the follow-
ing procedure. We computed models with 3 different metal-
licities: Z = 0.015, Z = 0.02 and Z = 0.025. Because of
the uncertainties in the calibration of the effective tempera-
ture of EN Lac (see Jerzykiewicz & Sterken 1980; Shobbrook
1985 and Dziembowski & Jerzykiewicz 1996), we computed
for each metallicity two evolutionary tracks with two different
masses. For each evolutionary track, we subsequently selected

Table 6. Global characteristics of the theoretical models of EN Lac.

Model 1a

M/M� = 9.4 Teff = 22 105 K log(L/L�) = 3.8992

log g = 3.8429 age (My) = 16.2 Z = 0.015

Model 1b

M/M� = 9.7 Teff = 22 545 K log(L/L�) = 3.9405

log g = 3.8494 age (My) = 15.15 Z = 0.015

Model 2a

M/M� = 9.5 Teff = 21 756 K log(L/L�) = 3.8769

log g = 3.8421 age (My) = 15.9 Z = 0.02

Model 2b

M/M� = 10 Teff = 22 491 K log(L/L�) = 3.9442

log g = 3.8548 age (My) = 13.95 Z = 0.02

Model 3a

M/M� = 9.7 Teff = 21 646 K log(L/L�) = 3.8739

log g = 3.8454 age (My) = 14.85 Z = 0.025

Model 3b

M/M� = 10.3 Teff = 22 481 K log(L/L�) = 3.9532

log g = 3.8579 age (My) = 12.9 Z = 0.025

the model giving the best agreement between the theoretical
and observed frequencies, relying on the unambiguous mode
identification. In all these models, X = 0.7 and there is no over-
shooting. Their global characteristics are given in Table 6.

In Fig. 7, we present the values of fT as a function of the
pulsation frequency in c d−1, for different modes and for the six
models of EN Lac given in Table 6. The three vertical lines
correspond to the three observed frequencies. We see that, the
higher the metallicity, the lower the amplitude of the local ef-
fective temperature variation for a normalized radial displace-
ment ( fT). The physical origin of this phenomenon is explained
in Fig. 8, where we show the amplitudes of the luminosity vari-
ation |δL/L| as a function of the logarithm of temperature, from
the center to the surface of the star, for the radial fundamental
mode and for the models 1a, 2a and 3a of Table 6. The higher
the metallicity, the more efficient the κ mechanism, which im-
plies a more important decrease of the luminosity variation in
the driving region. Therefore, the amplitude of the luminos-
ity variation and of the local effective temperature variation at
the photosphere are smaller for a normalized displacement. The
phase differences between the local effective temperature varia-
tion and the radial displacement at the photosphere we obtained
for the different models are very close to 180◦ (in agreement
with the observations) and we do not give them here. By com-
paring in Fig. 7 the results obtained for the cold models (mod-
els 1a, 2a and 3a) and the hot models (models 1b, 2b and 3b),
we see that changing the values of Teff within its observational
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tively. The three vertical lines correspond to the three observed fre-
quencies: ν1 = 5.9112 c d−1, ν2 = 5.8551 c d−1 and ν3 = 5.5033 c d−1.

error bars (keeping the metallicity constant) has only a very
small effect on the non-adiabatic results.

We present in Fig. 9 the theoretical amplitude ratios
(Johnson photometry) obtained for three models of EN Lac
with different metallicities (Table 6, models 1a, 2a and 3a),
and for the fundamental radial mode. We see that the model
with Z = 0.015 gives the best agreement between the theoreti-
cal and observed amplitude ratios. We have checked explicitly
that all the modes in the observed range of frequencies remain
unstable for this low metallicity; lower values are not compati-
ble with mode excitation.

The confrontation between the theoretical and observed
amplitude ratios can thus be used as a constraint on the metal-
licity of stars driven by the metal opacity bump (β Cephei and
Slowly Pulsating B stars), once we know the identification of
the mode. We have seen in Fig. 7 that the non-adiabatic predic-
tions and thus the theoretical amplitude ratios are little affected
by the uncertainties on Teff for a given metallicity, so that the
constraints we derived on the metallicity are reliable. This way
of determining the metallicity may even turn out to be more
precise than the classical method based on the analysis of the
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The solid line corresponds to the model with Z = 0.015, the dashed
line to the model with Z = 0.02 and the dotted line to the model with
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spectrum. We plan to validate our method to derive the metal-
licity by this feed-back process by confronting our predictions
to those of β Cephei stars for which the metallicity is known
with high accuracy.

We note that, for rapidly rotating β Cephei stars, the inter-
action between pulsation and rotation can affect significantly
the photometric amplitudes and phase-lags as shown recently
by Daszynska et al. (2002). This interaction was not yet taken
into account in our current non-adiabatic treatment.
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6. Conclusions

We have presented an improvement of the often-used photo-
metric mode identification method. Our version of this method
is based on precise non-adiabatic computations in which spe-
cial attention is paid to the treatment of the pulsation in the stel-
lar atmosphere (Dupret et al. 2002a). We have applied our new
version of the method to identify the main mode of two SPBs
(HD 74560 and HD 138764) and one β Cephei star (EN Lac,
see also Aerts et al. 2002). In both cases, our photometric mode
identifications were in very good agreement with the spectro-
scopic mode identifications, which are far less sensitive to tem-
perature variations (De Ridder et al. 2002). We have shown
also that the confrontation between the non-adiabatic theoret-
ical predictions and the observations can give interesting con-
straints on the models. We have used the term non-adiabatic
asteroseismology for this feed-back process. More precisely,
for β Cephei stars and SPBs, the non-adiabatic predictions are
very sensitive to the metallicity, so that this parameter can be
constrained for these stars once definite mode identification is
achieved. For δ Scuti and γ Doradus stars, the non-adiabatic
predictions are very sensitive to the characteristics of the thin
superficial convection layer (Balona & Evers 1999; Moya et al.
2002; Dupret et al. 2002b). Therefore, it is to be expected that
a feed-back process similar to the one we presented will lead
to a significant improvement of our understanding of this con-
vection layer.
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(Fonds pour la formation à la Recherche dans l’Industrie et
dans l’Agriculture). The authors are members of the Belgian
Asteroseismology Group (BAG,
http://www.ster.kuleuven.ac.be/∼conny/bag.html).

References

Aerts, C., Lehmann, H., Scuflaire, R., et al. 2002, in Asteroseismology
Across the HR Diagram, Ap&SS, in press

Balona, L. A., & Evers, E. A. 1999, MNRAS, 302, 349
Balona, L. A., & Stobie, R. S. 1979, MNRAS, 187, 217

Buta, R., & Smith, M. A. 1979, ApJ, 232, 213
Chapellier, E., Le Contel, J. M., Le Contel, D., Sareyan, J. P., &

Valtier, J. C. 1995, A&A, 304, 406
Claret, A. 2000, A&A, 363, 1081
Cox, J. P. 1980, Theory of Stellar Pulsation (Princeton Univ. Press,

Princeton)
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