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Abstract. A new general method for the computation of nonradial nonadiabatic oscillations of a given stellar
model is presented for a linear approximation. A simple and useful modelling of the atmosphere is included,
allowing to obtain credible values for the eigenfunctions in the atmosphere. Some of the results obtained for a
10 M� model are shown as an illustration. Our study opens the way to different applications. Better theoretical
line-profile variations could be obtained from our method, allowing a more detailed comparison with observations.
More generally, our study is relevant for asteroseismology, giving a way for a better knowledge of stellar interiors.
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1. Introduction

The problem of finding precise theoretical values for the
nonradial nonadiabatic eigenfunctions of a given stellar
model has become very interesting and useful for as-
tronomers. Great progress in the study of pulsating stars
has been made from an observational point of view. On
the one hand, precise periods for multiperiodically pul-
sating stars have been recently detected from photomet-
ric data (e.g. Breger et al. 1999). On the other hand,
the observation and analysis of line-profile variations for
variable stars is in great development. In those observa-
tions, a trace of nonradial oscillations is now clearly ad-
mitted, and methods of mode identification have been de-
veloped (Aerts 1996; Telting & Schrijvers 1997). So, a
confrontation with theory, followed by the improvement
of stellar interiors’ knowledge (asteroseismology) becomes
possible. First steps in this way have already been made
(Dziembowsky & Jerzykiewicz 1996; Shibahashi & Aerts
2000).

Concerning the study of line profiles, methods have
been developed in order to obtain theoretical line-profile
variations comparable with observations. As data for these
methods, theoretical values of the nonradial eigenfunc-
tions in the atmosphere are necessary. Until now, only
adiabatic eigenfunctions have been used. It is well known,
however, that in the atmosphere of a star, the adiabatic
approximation gives inaccurate results for some eigenfunc-
tions (δT/T , δρ/ρ, δF . . . ). The development of a code
computing the nonradial eigenfunctions of a stellar model
in the linear nonadiabatic case and giving credible values
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in the atmosphere implies an important step forward. This
is the goal of our study.

Dziembowski (1977) was one of the first to study the
computation of nonradial nonadiabatic modes. Since then,
other authors have worked on the problem (Saio & Cox
1980; Pesnell 1990). In comparison with those previous
works, the particularity of our study is, on the one hand,
that it puts the emphasis on a new, clear and complete
presentation of the problem (Sects. 2 and 4) and of the
method of solution (Sect. 5), using a pure Lagrangian for-
malism; and on the other hand, that it includes a useful
treatment of the perturbed equations in the atmosphere
(Sect. 3). The results in Sect. 6 are given as an illustration
of the quality and the possibilities of our method. We have
chosen a 10 M� model near the turn-off for this applica-
tion, which is a good candidate for the modelling of a β
Cephei variable star. We do not propose a modelling of
the perturbed convection in this study, so it is not appli-
cable for stars having an important superficial convection
zone as the Sun. The presence of a central convection zone
(as for β Cephei stars) does not pose a problem, for it is
located in the quasi-adiabatic region.

2. Basic equations

We examine the equations governing the behaviour of a
given nonradial mode for which the angular dependence
can be expressed by the spherical harmonic Ylm(θ, φ) and
the time dependence by the factor eiωt. We use the nota-
tion δX for the Lagrangian variation of X . First we have
the conservation of momentum equations:

ω2δr =
∂δψ

∂r
+
∂(δP/P )

∂r

P

ρ
+
(
δρ

ρ
− δP

P

)
Gm

r2
, (1)



M. A. Dupret: Nonradial nonadiabatic stellar pulsations: A numerical method 167

ω2δθ =
1
r2

∂

∂θ

(
δψ +

δP

ρ

)
, (2)

ω2δφ =
1

r2 sin2 θ

∂

∂φ

(
δψ +

δP

ρ

)
(3)

(ψ, P , ρ andm are respectively the gravitational potential,
the pressure, the density and the mass of the sphere of
radius r). Next we have the conservation of mass equation:

δρ+ ρ

[
1
r2

∂

∂r

(
r2δr

)
+

1
sin θ

∂

∂θ
(sin θ δθ) +

∂δφ

∂φ

]
= 0, (4)

which gives, using the values of δθ and δφ given by Eqs. (2)
and (3):

δρ

ρ
+

1
r2

∂

∂r

(
r2δr

)
− l(l+ 1)

ω2r2

(
δψ +

δP

ρ

)
= 0. (5)

Then we have the perturbed Poisson equation:

4πG δρ =
1
r2

∂

∂r

(
r2 ∂δψ

∂r

)
− l(l+ 1)

r2
δψ

+
Gm

r2

[
2
∂

∂r

(
δr

r

)
− ∂2δr

∂r2 +
l(l+ 1)
r2

δr

]
− 8πGρ

∂δr

∂r
· (6)

And finally, perturbing the conservation of energy equa-
tion T dS/dt = ε−∇ · F /ρ with F = −ν∇T , we find:

iω Tcv

(
δS

cv

)
= ε

(
δε

ε
+
δρ

ρ
+ 2

∂δr

∂r

)
+

1
ρr2

∂
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[
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(
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)]
+

L

4πρr3

[
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2

∂r2

(
δr

r

)
− l(l + 1)

δr

r

]
−l(l + 1)

ν

ρr2
δT (7)

(ε is the rate of gain of heat per unit mass due to the
thermonuclear reactions, T is the temperature, L the lu-
minosity at radius r and, in the diffusion approximation,
ν = 4acT 3/(3κρ)).

Equations (6) and (7) could seem complicated in com-
parison with their Eulerian formulation. But we think,
our goal being a precise numerical solution of the prob-
lem, that a Lagrangian formulation of the equations is
better. The reasons are that the surface boundary condi-
tions and the perturbed equations of state appear natu-
rally in a Lagrangian description. Let us consider for ex-
ample the relation δP = P ′+(d lnP/d ln r) δr. The factor
d lnP/d ln r is very large in some parts of a star, going up
to values of the order of 103. So a small value of δP could
lead to a large value of P ′ and a first order approximation
would no longer be good in an Eulerian description.

In what follows, the star will be subdivided in two
parts: the interior from the center to a chosen optical
depth τ ≈ 1, and the atmosphere from this optical depth
to τ ≈ 0.01. The frontier between interior and atmosphere
will be named the connecting layer and the last layer of
the model (at τ ≈ 0.01) the surface.

3. Treatment of the atmosphere

In the interior of a massive near main sequence star, except
for the central convection zone, we can use the diffusion
approximation

F = −4acT 3

3κρ
∇T, (8)

which gives ν and δν used in Eq. (7). The problem is
that this approximation is not valid in the atmosphere.
So we have to adopt another approximation there. A very
complex way would be to perturb the radiative transfer
equations for each light frequency, and by a judicious inte-
gration with respect to the light frequency to find integro-
differential equations governing the behaviour of δT and
δF . The a posteriori determination of the perturbed flux
at a given light frequency, knowing the other perturbed
variables (δr, δT , . . . ) is already a complex problem (see
for example Toutain et al. 1999). So it is easy to see that
the general problem of determining simultaneously the dif-
ferent perturbed variables and the perturbed flux is very
complicated and goes beyond current studies.

3.1. Our approximation

We propose to treat the atmosphere in the following way.
The starting approximation is to suppose that the atmo-
sphere is always in thermal equilibrium during the pul-
sation. This approximation can be justified by compar-
ing the fundamental pulsation period of a star, τp, to the
thermal relaxation time of its atmosphere,

τtha =
∫ M

ma

T cv dm / L , (9)

where ma is the mass between the center and the basis of
the atmosphere and M is the total mass of the star. We
find that for a typical massive star near the main sequence,

τtha ' 10−4 τp .

In an equilibrium model we can write

T 4(τ) = T 4
eff f(τ) (10)

(this is not an approximation but a definition of f(τ)).
Now, the approximation we take is to suppose that
Eq. (10) is also valid in the perturbed model, with the
same f(τ) as for the equilibrium model. As we have said
this corresponds in a way to the assumption that the at-
mosphere is always in thermal equilibrium during the pul-
sation. In this approximation, we can perturb Eq. (10) and
find:

4
δT

T
= 4

δTeff

Teff
+

d ln f
dτ

δτ. (11)

In Eq. (11), δTeff/Teff is proportional to Ylm(θ, φ). Making
a sufficiently precise atmosphere model at equilibrium, we
find sufficiently precise values for the T (τ) law and its first
and second derivatives, as they will be required in the next
equations.
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Next, we examine the definition of τ in the perturbed
model. More precisely, we have dτ = −κρ ds, but what
is the direction of ds we take? We could choose that ds
has the same direction as the flux vector or that it is per-
pendicular to the constant T surface or that it is purely
radial, etc. But in all these definitions, the angle between
ds and dr is of the first order and so (using the “ ′ ” for
Eulerian variations)

dτ ′

ds
− ∂τ ′

∂r
and

dδτ
ds
− ∂δτ

∂r

are of the second order and can be neglected in our first
order approximation. We obtain then after some algebra,

∂δτ

∂r
= −κρ

(
δκ

κ
+
δρ

ρ
+
∂δr

∂r

)
. (12)

Next, we isolate δτ in Eq. (11), take the derivative with
respect to r, and eliminate ∂δτ/∂r using Eq. (12). We find
then

∂(δT/T )
∂r

=
d lnT

dr

[(
δTeff

Teff
− δT

T

)
d
dτ

(
1

d lnT/dτ

)
+
δκ

κ
+
δρ

ρ
+
∂δr

∂r

]
. (13)

This is the equation we will use instead of Eq. (7) in the
atmosphere.

3.2. Surface boundary conditions

Let us consider first the thermal surface boundary con-
dition. An accurate and rigorous formulation of it in the
general case of nonradial oscillations has been proposed by
Gabriel (1989). The principle he adopted is to impose that
in the very outer layers of a star, the progressive waves
of the radiation field are outgoing ones, with no incoming
component. A problem is, that the very outer layer, where
the condition has to be imposed, is far away from the pho-
tosphere. Thus, in order to use Gabriel’s formulation, we
have to know precisely the perturbed radiation field be-
tween the photosphere and this outer layer. As we have
said, to derive equations independent of light frequency
governing the field is very difficult and goes beyond the
approach we have adopted here.

In our approximation, the flux can be obtained by the
diffusion approximation in the interior of the star, but not
in the atmosphere. So the only place where a boundary
condition can be imposed on the flux is at the connecting
layer between atmosphere and interior. From the diffusion
approximation, we have on the one hand:

|F |2 = ν2|∇T |2, (14)

and from Stephan’s law on the other hand:

|F | = σT 4
eff . (15)

Perturbing these two equations, we find:

δ|F |
|F | =

δν

ν
+
∂δT/∂r

dT/dr
− ∂δr

∂r

= 4
δTeff

Teff
· (16)

At the surface, we have also the very natural condition
δτ = 0, which gives, using Eq. (11):

δT

T
=
δTeff

Teff
· (17)

Equations (16) and (17) are the thermal boundary con-
ditions we adopt. The first is imposed at the connecting
layer, the second at the surface.

Let us consider now the dynamic boundary conditions.
We define R andM as the values of r andm at the surface.
For the Eqs. (1) and (5), we proceed as suggested by Cox
(1980, Sect. 17.6b). We obtain the boundary conditions
assuming that

P

ρ

R

GM
→ 0

and that δP/P has a finite value at the surface, which
gives for the conservation of radial momentum:

ω2δr =
∂δψ

∂r
+
(
δρ

ρ
− δP

P

)
GM

R2
(18)

and for the conservation of mass:

δρ

ρ
+

1
r2

∂

∂r

(
r2δr

)
− l(l + 1)

ω2r2
δψ = 0. (19)

Finally, for the Poisson equation, we use the classical
condition (in Eulerian description):

∂ψ′

∂r
+
l+ 1
R

ψ′ = −4πGρ δr. (20)

It is obtained by imposing a first order continuous match
(continuity of ψ and its first derivatives) between the in-
terior solution of the Poisson equation and the decreas-
ing solution of the Laplace equation (Ledoux & Walraven
1958, Sect. 75). Equation (20) in a Lagrangian description
becomes:
∂δψ

∂r
+
l + 1
R

δψ = (l − 1)
GM

R3
δr +

GM

R2

∂δr

∂r
· (21)

4. Dimensionless formulation and central
boundary conditions

The central boundary conditions are obtained by imposing
the solutions to be regular at the center (finite values for
the perturbed variables and their derivatives). After some
algebra, it can be shown that the different variables can
be rewritten in the following form:

δr = R xl−1 ζ,
δρ

ρ
= xl γ,

δT

T
= xl ϑ,

δS

cv
= xl η, δψ =

GM

R
xl ϕ and

δP

P
= xl β (22)
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where ζ, γ, ϑ, η, ϕ and β are finite at the centre. A jus-
tification of those results can be found, for example, in
Unno et al. (1989). Defining the following dimensionless
symbols:

λp =
R

GM

P

ρ
, Ω2 =

R3

GM
ω2, q =

m

M
,

x =
r

R
and ρm =

4πR3

M
ρ,

the Eqs. (1), (5), (6), (7) and (13) can be rewritten
in a dimensionless form. We keep only the r dependent
part of the variables, so the partial derivatives are trans-
formed into simple derivatives. In what follows, a prime
will denote the derivative with respect to x (for exam-
ple: ζ′ ≡ dζ/dx). We assume that all the variables have
a derivative equal to zero at the centre, which gives (here
for ζ): limx→0 ζ

′/x = ζ′′.
Equation (1) gives then:

Ω2ζ = l(ϕ+ λpβ) + x(ϕ′ + λpβ
′) + (γ − β)q/x, (23)

which gives the central boundary condition:

Ω2ζ = l(ϕ+ λpβ). (24)

Equation (5) gives:

Ω2
(
x2γ + xζ′ + (l + 1)ζ

)
= l(l+ 1)(ϕ+ λpβ). (25)

Substituting the value of Ω2ζ − l(ϕ + λpβ) given by
Eq. (23) in Eq. (25) and dividing by x2, we find the central
boundary condition:

Ω2 (γ + ζ′′) + (l+1) (ϕ′′+λpβ
′′ + (γ−β)ρm/3) = 0. (26)

Equation (6) gives:

ϕ′′ + 2(l+ 1)
ϕ′

x
= ρmγ +

q

x3
ζ′′

+ 2
(
ρm + (l − 2)

q

x3

) ζ′
x

+ 2(l − 1)
ρm − 3q/x3

x2
ζ. (27)

It can be shown that

lim
x→0

ρm − 3q/x3

x2
=
ρ′′m(0)

5
· (28)

So we find at the centre:

(2l + 3)ϕ′′ = ρmγ +
2l + 3

3
ρmζ

′′ +
2(l − 1)

5
ρ′′mζ. (29)

For the conservation of energy (Eq. (7)), we introduce the
following dimensionless symbols and variables:

k =

√
R3

GM

L(r)
MTcvρmx3

, ε0 =
Mx3

L(r)
ε,

ε1 =
ε0ρm − 3

x2
, T1 =

x

d lnT/dx
, T2 =

1
x

dT1

dx
,

δεx =
1
xl
δε

ε
and δνx =

1
xl
δν

ν
·

Equation (7) gives then:

iΩ η

k
= ε0 ρm (δεx + γ) + 2(l− 1)ε1 ζ

+ 2(ε0 ρm + l − 2) ζ′/x+ ζ′′

− l (ε1T1 + T2)ϑ− (ε0 ρm + l)(δνx + ϑ)
− (ε0ρm + 2l− 1)T1 ϑ

′/x− x(δν′x + ϑ′)
−xT2 ϑ

′ − T1 ϑ
′′. (30)

Noting that k, ε1, T1 and T2 have finite values when x→ 0,
we find at the center:

iΩ η

k
= 3(δεx + γ) + 2(l − 1)ε1 ζ + (2l + 3) ζ′′

− l (ε1T1 + T2)ϑ− (l + 3)(δνx + ϑ)
− (2l+ 3)T1 ϑ

′′. (31)

The appearance of first and second derivatives with re-
spect to x in the coefficient T1 and T2 needs to be very
careful in order to avoid numerical noise in their estima-
tion. A good way to proceed is to use the analytical values
given either by the diffusion approximation in radiative
zones or by the adiabatic gradient in convective zones.
More precisely, we have in a radiative zone:

T1 = −16πx3ac T 4R

3κρL(r)
, (32)

and in a convective zone:

T1 = − Γ1

Γ3 − 1
x3

q
λp. (33)

For our approximation in the atmosphere, defining δκx =
(δκ/κ)/xl and using Eq. (17), Eq. (13) gives:

ϑ′ +
l

x
ϑ− d lnT

dx

((
ϑs/x

l − ϑ
) d

dτ

(
1

d lnT/dτ

)
+ δκx + γ +

ζ′

x
+
l − 1
x2

ζ

)
= 0. (34)

We use the notation ϑs for the value of ϑ at the surface
and ϑp for the value of ϑ at the connecting layer. Finally,
Eq. (16) gives:

4ϑs/x
l
p = (δνx)p +

(
1 +

l

xp (d lnT/dx)p

)
ϑp

+
ϑ′p

(d ln T/dx)p
−
ζ′p
xp
− l − 1

x2
p

ζp. (35)

To all these differential equations we have to add some
algebraic equations. They consist of the perturbed state
equations:

β = PT η + Γ1 γ, ϑ = η + (Γ3 − 1) γ, (36)
δκx = κT η + κρS γ, δνx = 3ϑ− δκx − γ and (37)
δεx = εT η + ερS γ. (38)
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The way to obtain εT and ερS is explained in Ledoux &
Walraven (1958, Sect. 66). As we can see, δνx was ob-
tained from the perturbation of the diffusion approxima-
tion (Eq. (8)). When a convection zone is present, we use
the same equation. Such a simplification does not pose
a problem in central convection zones, for they are lo-
cated in a quasi-adiabatic region where the conservation of
energy equation plays a very small role.

5. Method of solution

Equations (23), (25), (27) and (30) (or (34) in the at-
mosphere) form a system of 4 linear ordinary differen-
tial equations of first and second order with 4 boundary
conditions at the centre (Eqs. (24), (26), (29) and (31)),
3 boundary conditions at the surface (dimensionless form
of Eqs. (18), (19) and (21)) and 1 condition at the con-
necting layer (Eq. (35)). Using Eqs. (36), (37) and (38),
we can express these 4 differential equations in terms of
the 4 unknown functions ζ, ϕ, γ and η. Because of the
presence of the factor Ω, this system of equations can be
seen as an eigenvalue problem. It can be shown that the
number of boundary conditions is in agreement with the
number of differential equations and their order (some of
the central conditions, Eqs. (26), (29) and (31), are not
really boundary conditions in the usual sense, their order
being the same or larger than the one of the differential
equations).

Let us examine now how we solve numerically this
problem. We use a finite differences method in order to ex-
press our problem as a finite dimensional eigenvalue prob-
lem. So first we have to choose a good grid x1 = 0, . . .,
xi = ri/R, . . ., xN = 1 where the discrete variables will
be defined. Then we have to approximate at each point
of the grid the derivatives appearing in the differential
equations by finite differences between these variables,
and our problem will be rewritten as a difference scheme.
Finally, introducing 2 additional variables, it will take the
canonical form

Ax = Ω Bx (39)

where A and B are complex square matrices. Equation (39)
is a generalization of the classical eigenvalue problem
Ax = λx. In order to calculate the eigenvectors (x) and
the eigenvalues (Ω) which interest us, we will use then a
generalization of the classical inverse iteration algorithm
adapted to the more general problem Eq. (39).

5.1. The discretization

Let us examine first the choice of the number of layers (N)
and of the distribution of the different points x1, . . ., xN .
In order to have sufficiently precise results, the number
of layers has to be larger than the one usually used in
evolution codes. A number N ' 2000 turns out to be ap-
propriate and leads to calculation times quite reasonable
('10 s for one mode).

Let us examine now the discretization of the differen-
tial equations. The most important quality criterion of a
difference scheme is its stability, which is even more impor-
tant than its precision. We insist on this point because in
our case the difference scheme obtained is easily subject to
instabilities, which can lead to completely wrong results.
This is the case, for example, if we use the estimation

df
dx

(xi) '
f(xi+1)− f(xi−1)

xi+1 − xi−1
(40)

or its generalization for the case of non-equidistant points.
On the other hand, the estimations

df
dx

(xi) '
f(xi+1)− f(xi)

xi+1 − xi
(41)

or

df
dx

(xi) '
f(xi)− f(xi−1)

xi − xi−1
, (42)

are proved to be more stable and thus much better despite
their lower precision order. Note that for the case of radial
oscillations, it is possible to combine precision and stabil-
ity using an interlaced difference scheme (Castor 1971)
but it is not so easy for the nonradial case. Using Eq. (41)
for all the equations gives a bad linking with the central
boundary conditions, and using Eq. (42) for all the equa-
tions gives a bad linking with the surface boundary con-
ditions. The intermediate solution we have adopted is to
use Eq. (41) for the discretization of Energy and Poisson
equations (Eqs. (30), (34) and (27)) because they have
to be well connected to the surface boundary conditions
Eqs. (21) and (35), and to use Eq. (42) for the others.
For the boundary condition on the flux (Eq. (16)), we
use Eq. (42), in order to have a good linking between the
interior and the atmosphere.

Finally, our problem can be rewritten as a difference
scheme consisting of a system of 4N + 2 linear equations
with 4N + 2 unknowns. More precisely, let Nc be the in-
dex of the connecting layer, we have the following vari-
ables: ζi (1≤i≤N), ϕi (1≤i≤N), γi (1≤i≤N), ηi (1≤i≤Nc+1)

and ϑi (Nc≤i≤N), and concerning the equations, we have:
N equations for the discretization of the Poisson equation
and its boundary conditions (Eqs. (27), (29) and (21)),
N equations for the discretization of the radial compo-
nent of the equation of motion and its boundary con-
ditions (Eqs. (23), (24) and (18)), N equations for the
discretization of the continuity equation and its boundary
conditions (Eqs. (25), (26) and (19)), Nc equations for the
discretization of the conservation of Energy equation in
the interior and its central boundary condition (Eqs. (30)
and (31)), N −Nc − 1 equations for the discretization of
the thermal equation we use in the atmosphere (Eq. (34)),
1 equation for the discretization of the flux boundary con-
dition (Eq. (35)) and 2 equations for the linking between η
and ϑ at the connecting point between interior and atmo-
sphere. An inaccurate way to proceed is to eliminate the
N equations corresponding to the Poisson equation and
the N variables γi, substituting in the other equations the
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value of γi given by the discretization of Eq. (27). The
principal reason is that this substitution corresponds to
a very bad pivot choice in the superficial layers of a star
(ρm ' 10−8 in these layers).

As we have said, we want to express our problem in the
canonical form Ax = Ω Bx. In order to do this, we have
to introduce two additional variables at each layer. More
precisely, an Ω2 dependence appears in the discretization
of the radial component of the equation of motion and
of the continuity equation. For the former equation, we
eliminate it introducing the new variables ξi = Ωζi, and
for the latter equation, we eliminate it by splitting at each
layer i the equation

aT
i x = Ω2 bT

i x (43)

in the 2 equations

aT
i x = Ωµi and µi = Ω bT

i x. (44)

In this way, our problem finally takes the required form
Ax = Ω Bx, where A and B are square complex matrices
of order 6N + 2 with a bandwidth of 18 (some lines of B
are equal to zero).

5.2. The numerical algorithm

In order to solve Eq. (39) we use a generalization of the
inverse iteration algorithm. Departing from the estimation
xk of the eigenvector at the step k and the initial estima-
tion Ω0 of the eigenvalue, the next estimation is obtained
by the formula

xk+1 = (A− Ω0B)−1Bxk. (45)

Under the hypothesis that A−1B is diagonalizable, it is
easy to prove that this algorithm has the same rate of
convergence as the classical inverse iteration algorithm.
We do not calculate explicitly the inverse matrix but
resolve the linear system

(A− Ω0B)xk+1 = Bxk. (46)

Because A − Ω0B is very badly conditioned, we begin by
doing a suitable preconditioning of it. Then we do a LU
factorization of it with partial pivoting. And finally we it-
erate, solving the 2 triangular systems at each step (see for
example Wilkinson (1965) for an explanation of this nu-
merical algorithm). The eigenvector and eigenvalue initial
estimations can be obtained by solving first the problem in
the adiabatic approximation. Note that if the eigenvalue
initial estimation is good, the algorithm converges quickly
even with a very bad eigenvector initial estimation. As we
have said, the calculation time for the computation of one
mode is very short (t ≈ 10 s). So it is easy to examine the
results obtained for a lot of models.

6. Results

We now describe some of the results obtained for a 10 M�
model with Z = 0.02. We have chosen a model at the
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Fig. 1. Real parts of the nonadiabatic eigenfunctions
δS/cv (dS), δT/T (dT ) and δT/T |ad (dT0) corresponding to
the mode p1 with l = 1

end of the central hydrogen burning, for it corresponds
to a region of the HR diagram where β Cephei variable
stars are found. More precisely, it represents a star with
L = 4.35 1037 erg s−1, Teff = 22 640 K and for which
the age after the beginning of the hydrogen burning is
1.845 107 years. As it is well known, many β Cephei stars
have simultaneous radial and nonradial pulsations.

In Figs. 1 and 2, we give the graphs of the real
parts of the nonadiabatic eigenfunctions δS/cv (dS) and
δT/T (dT ). We give also for a comparison the graphs of
δT/T obtained in the adiabatic approximation (refered to
by dT0). Figure 1 corresponds to the nonradial mode p1

with l = 1 and Fig. 2 to the fundamental radial mode.
The labels at the bottom correspond to the logarithm of
the equilibrium temperature. The labels at the top cor-
respond to the logarithm of the thermal relaxation time
of the upper layers (τth =

∫M
m T cv dm/L) divided by the

dynamical time of the star (τdyn =
√
R3/(GM)). Those

functions are normalized in such a way that δr/r = 1 at
the surface. In Fig. 2, we have also given |δL/L| (divided
by 5). The graphs of δS/cv show that from the center
to logT ' 5.5, the adiabatic approximation is valid. The
comparison between the adiabatic and nonadiabatic val-
ues of δT/T shows that the adiabatic approximation gives
wrong results from logT ' 5.5 to the surface. From a
qualitative point of view, the shapes of the eigenfunctions
δS/cv and δT/T (positions of the zeros and sign of the
derivatives) are approximately the same for the different
modes we have examined (compare for example Figs. 1
and 2).

If the discretization is done carefully, the derivatives of
the eigenfunctions are continuous at the connecting layer
between interior and atmosphere and the solutions are not
dependent on the choice of this layer. In our application,
we took it at τ = 3 but the results are virtually the same
(indistinguishable on a graph) if we take it for example at
τ = 5 or τ = 1. In Fig. 3, we give the graphs of |δT/T |
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Fig. 2. Real parts of the nonadiabatic eigenfunc-
tions δS/cv (dS), δT/T (dT ) and δT/T |ad (dT0), and
0.2 |δL/L| (0.2dL) corresponding to the fundamental radial
mode
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Fig. 3. Values of |δT/T | in the atmosphere for the fundamental
radial mode (F ) and for the 3 first nonradial p modes of order
l = 1 (p1, p2 and p3)

in the atmosphere for the first 3 nonradial p modes of
order l = 1 (p1, p2 and p3). The abscissa corresponds to
the logarithm of the equilibrium optical depth (Rossland
mean). In Figs. 1, 2 and 3, the vertical line corresponds
to the connecting layer between interior and atmosphere.

In Table 1, the results obtained for different modes of
the same model are examined. In the second column, we
give the value of |δS/cv| at the photosphere (τ = 2/3).
In the third column, we give the value of |δTeff/Teff|. For
the comparison, we give in the fourth column the value
of |δT/T | obtained in the adiabatic approximation at the
photosphere. In the fifth column, we give the phase of
δTeff/Teff in Radians (φTeff ). In the last column, we give
the frequency of the mode (real part) in µHz. We see that,
systematically, the value of |δTeff/Teff| is smaller than the
value of |δT/T | obtained in the adiabatic approximation.
These differences are significant and could have a great

Table 1. Comparison between nonadiabatic and adiabatic
amplitudes at the surfaces for different modes

mode
∣∣ δS
cv

∣∣ ∣∣∣ δTeff
Teff

∣∣∣ ∣∣ δT
T

∣∣
0

φT f (µHz)

l= 0 F 2.62 2.39 3.78 2.818 55.89
l= 0 H1 4.66 2.92 5.40 3.092 74.27
l= 0 H2 7.75 3.52 6.85 −2.909 91.66
l= 1 p1 4.56 2.79 5.97 3.131 78.02
l= 1 p2 6.39 3.09 7.09 −3.015 90.35
l= 1 p3 8.62 3.30 8.21 −2.876 102.70
l= 2 f 6.35 3.10 6.97 −3.016 90.36
l= 2 p1 7.50 3.23 7.69 −2.942 96.93
l= 2 p2 9.52 3.35 9.12 −2.825 107.27
l= 2 p3 14.86 3.29 7.90 −2.558 130.22
l= 3 f 7.26 3.23 7.52 −2.956 95.88
l= 3 p1 10.87 3.40 9.24 −2.754 113.69
l= 3 p2 13.25 3.37 9.04 −2.636 123.84

effect on the obtaining of accurate theoretical line-profile
variations. We see also that the phase of δT/T is not ex-
actly equal to π as it was the case in the adiabatic approx-
imation.

Another interesting function is the work integral.
Demonstrating the Hermiticity of the linear adiabatic
wave equation (see Cox 1980 or Unno et al. 1989), it is
shown that the imaginary part of the eigenvalue Ω =
Ωr + iΩi can be obtained by an integral expression sim-
ilar to the well known one of the radial case. Using our
dimensionless formulation, we have

W (x) =
−1
2 Ωr

∫ x
0 λp ρm PT x

2l+2 ={η γ∗} dx∫ 1

0
ρm x2l

(
|ζ|2 + l(l+1)

|Ω|4 |ϕ+ λpβ|2
)

dx
, (47)

with W (1) = −Ωi.
Multiplied by an appropriate constant, the function W (x)
corresponds to the work done by the sphere of radius
r = xR during one pulsation. We give in Fig. 4 the graph
of W obtained for the mode p1 with l = 1 and compare
it with the one of the fundamental radial mode. The sim-
ilarity between the two functions shows that the driving
mechanisms are essentially the same for radial and non-
radial oscillations. We see that the destabilizing region
(where W increases) is located between logT = 5 and
logT = 5.5. A first bump of the opacity explained by the
tremendous number of transition iron lines is present in
this region (see the graph of κ in Fig. 4). In this exam-
ple, the radial mode is unstable and the nonradial one
is stable. All this is in agreement with the now admitted
fact that the unstability of β Cephei stars is due to the
κ-mechanism located there. Such an explanation was first
proposed by Cox et al. (1992).

The results shown in this section permit to see clearly
that a pulsating star can be subdivided in three different
parts. From the center to the surface, we have first the
adiabatic region where the thermal capacity is so large
that luminosity imbalances have not the time to change
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Fig. 4. Work integrals of the fundamental radial mode (Wr)
and the nonradial mode p1 with l = 1 (Wnr) compared with
the opacity (κ)

significantly the entropy of the matter (see the thermal
relaxation times and the graphs of δS/cv given in Figs. 1
and 2). Then we have the transition region (between
logT = 5.5 and logT = 5 in this example), in which the
thermal relaxation time is of the same order as the dy-
namical time. In this region, the pulsation becomes clearly
nonadiabatic and the heat capacity remains sufficiently
important, so that driving and damping mechanisms can
influence the all pulsation, making the star stable or un-
stable (see Fig. 4). And finally we have a region of small
heat capacity, where very small luminosity imbalances are
sufficient to change significantly the entropy of the matter.
In this region, δL/L becomes quasi-constant (as function
of r) and the hypothesis of thermal equilibrium becomes
thus perfectly acceptable (see the thermal relaxation times
and the graph of δL/L in Fig. 2).

7. Conclusions

In conclusion, the method we have developed opens the
way to interesting bridges between theory and observa-
tions. Our new treatment of the outer atmosphere to cal-
culate the eigenfunctions of a nonradially pulsating stars
is a fruitful starting point to improve the current meth-
ods of analysis of pulsating stars. Up to now, e.g., the
nonadiabatic character of the pulsation was treated with
an ad hoc parameter in all mode-identification methods
based on multicolour photometry (see e.g. Watson 1988;
Heynderickx et al. 1994; Garrido 2000).

Also, the available codes for the calculation of theo-
retical line-profile variations (e.g. Townsend 1997) rely on
adiabatic eigenfunctions. It has been claimed in the lit-
erature (Balona 1987; Lee et al. 1992) that nonadiabatic

effects in the calculation of a line profile are much more
important than the pulsational velocity effects in rapid ro-
tators. However, these results are based on an (each time
different) arbitrary parametrization of the eigenfunction of
the temperature. Moreover, the discrepancies between ob-
served and theoretical line-profile variations is sometimes
ascribed to the neglect of temperature effects (e.g. Aerts
et al. 1992). Our method allows us to justify or contradict
all these suggestions on a much firmer base than was pos-
sible before. To find an answer to the question whether or
not it is necessary to use nonadiabatic eigenfunctions in
the calculation of line-profile variations would be an im-
portant step forward in the interpretation of such kind of
data and thus also in the application of asteroseismology.
We will elaborate on this problem in a forthcoming paper.
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