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Zusammenfassung

Wir présentieren eine detaillierte Analyse der klassischen und quantenmechanischen Dy-
namik der Frozen-Planet-Konfiguration von Helium im externen elektromagnetischen Feld.
Es wird gezeigt, daf der klassische Phasenraum der kollinearen, getriebenen Frozen-Planet-
Konfiguration gemischt reguldr-chaotische Struktur aufweist. Insbesondere enthilt er regulére
Inseln, die nichtlinearen Resonanzen zwischen dem externen Antrieb und der korrelierten
Dynamik der ungestdrten Konfiguration entsprechen. Die diesen nichtlinearen Resonanzen
entsprechende Konfiguration zeichnet sich im allgemeinen durch transversale Instabilitét
aus, 1a8t sich jedoch mit Hilfe eines zusidtzlichen, statischen elektrischen Feldes beziiglich
Abweichungen von der Kollinearitdt stabilisieren. Die auf diese Weise stabilisierten Reso-
nanzen entsprechen im quantenmechanischen System nichtdispergierenden Zwei-Elektronen-
Wellenpaketen, die fiir experimentell zugdngliche Quantenzahlen im Spektrum des getriebe-
nen Helium-Atoms erwartet werden. Diese Hypothese wird durch quantenmechanische Rech-
nungen zum kollinearen, getriebenen Helium-Atom untermauert. In der Tat finden wir bei
Quantenzahlen N < 10 des inneren Elektrons auf der feldinduzierten Resonanzinsel loka-
lisierte, nichtdispergierende Zwei-Elektronen-Wellenpakete. Deren Lebensdauern liegen im
Bereich von 10*...107 Feldzyklen und weisen starke Fluktuationen auf, die auf die gemischt

reguldr-chaotische Struktur des klassischen Phasenraums zuriickzufiihren sind.

Abstract

We present a detailed analysis of the classical and quantum dynamics of the frozen-planet
configuration of helium in an external electromagnetic field. We show that the classical phase
space of the collinear, driven configuration exhibits a mixed regular-chaotic structure. In
particular, it contains regular islands which correspond to nonlinear resonances between the
external driving and the correlated dynamics of the unperturbed configuration. Along these
resonances, the configuration is generally characterized by transverse instability. However,
the application of an additional, static electric field allows to stabilize the configuration
with respect to deviations from collinearity. The thereby stabilized resonances correspond
to nondispersive two-electron wave packets in the quantum mechanical system, which are
expected at experimentally accessible quantum numbers. This hypothesis is supported by
quantum calculations on the collinear, driven helium atom. Indeed, we find nondispersive two-
electron wave packets which are localized on the field-induced resonance island for quantum
numbers N < 10 of the inner electron. They are characterized by life times of the order of
10*...107 field cycles, which exhibit strong fluctuations due to the mixed regular-chaotic

structure of the classical phase space.
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Kapitel 1

Einleitung

1.1 Hintergrund und Themenstellung

Im vergangenen Jahrzehnt sind erhebliche Anstrengungen unternommen worden, ein umfas-
sendes Verstdndnis der Dynamik von Zwei-Elektronen-Atomen im starken elektromagneti-
schen Feld zu gewinnen (siehe etwa [1] fiir einen Uberblick). Verschiedene numerische Verfah-
ren wurden entwickelt bzw. ausgebaut (etwa [2, 3, 4, 5]), um eine quantitative Beschreibung
von Anregungs- und lonisationsprozessen zu ermdéglichen, die in Experimenten zur Wech-
selwirkung von Zwei-Elektronen-Atomen mit starken Laserfeldern typischerweise auftreten.
Einer der zentralen Aspekte ist dabei die Fragestellung, inwieweit Zwei-Elektronen-Effekte
bzw. ,Korrelationseffekte* (d.h. Effekte, die nicht im Rahmen eines effektiven Einteilchen-
bildes, etwa der Hartree-Fock-Methode, beschrieben werden kénnen [1]) in solchen Prozessen
eine Rolle spielen bzw. wie derartige Korrelationseffekte zu interpretieren sind. Insbesondere
Experimente zur Doppelionisation von Helium (etwa [6]), die deutliche Anzeichen fiir eine
Signatur derartiger Korrelationseffekte gezeigt haben, stimulierten intensive, auf unterschied-
lichsten Naherungsverfahren basierende Untersuchungen zu diesem Thema (etwa [7, 8, 9]).
In der vorliegenden Arbeit wird die Dynamik korrelierter Zwei-Elektronen-Atome im ex-
ternen elektromagnetischen Feld unter dem in diesem Zusammenhang bislang unbeachteten
klassischen Aspekt untersucht. Wir betrachten, gewissermafien komplementir zum Studium
von Korrelationseffekten in vom Grundzustand (bzw. von niedrig angeregten Zustidnden)
ausgehenden lonisationsprozessen, Zustinde bzw. Konfigurationen im doppelt angeregten Be-
reich, die sich aufgrund der zugrunde liegenden klassischen Dynamik a priori durch ein hohes
MafB an Elektron-Elektron-Korrelation auszeichnen, und untersuchen, wie sich derartige Kon-
figurationen unter der Einwirkung eines externen elektromagnetischen Feldes verhalten. Dabei
interessieren wir uns insbesondere fiir den Aspekt der Koexistenz reguldrer und chaotischer
Dynamik im klassischen Phasenraum. Speziell untersuchen wir, inwieweit durch die Kom-

bination der externen Stérung und der intrinsischen, der Elektron-Elektron-Wechselwirkung
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entsprechenden Nichtlinearitit des atomaren Systems Gebiete regulirer Bewegung im klassi-
schen Phasenraum induziert werden, sowie welche Konsequenzen sich aus der Existenz dieser
regulidren Gebiete fiir das quantenmechanische, getriebene Helium-Atom ergeben. Wir steu-
ern damit nicht unmittelbar auf den Parameter- bzw. Anregungsbereich zu, der in oben ge-
nannten Arbeiten im Zusammenhang mit der Wechselwirkung von Zwei-Elektronen-Atomen
mit, starken elektromagnetischen Feldern typischerweise betrachtet wird. Unser Zugang zur
hochkorrelierten Zwei-Elektronen-Dynamik ist jedoch frei von willkiirlichen Annahmen und
N&dherungen und erlaubt somit allgemeine Aussagen, die prinzipiell auch fiir die Beschreibung
von Laserionisationsprozessen aus niedrig angeregten Zustidnden relevant sind.

In der Tat ist die klassische Mechanik des durch ein externes elektromagnetisches Feld
getriebenen Helium-Atoms bislang so gut wie unerforscht geblieben. Es wurden zwar Ansitze
zu einer Beschreibung von lonisationsprozessen in Zwei-Elektronen-Atomen anhand , klassi-
scher® bzw. quasiklassischer Modelle unternommen [9, 10, 11, 12, 13]. Diese Modelle verwen-
den jedoch entweder eine geglittete, nichtsingulare Coulomb-Wechselwirkung [9, 10, 11] oder
zusiatzliche Terme in der Wechselwirkung zwischen den geladenen Teilchen [12, 13]. Sie er-
scheinen somit als letztlich ungeeignet, um mehr als nur grobe qualitative Eigenschaften des
betrachteten Systems zu reproduzieren. Des weiteren enthalten diese Modelle freie Parameter,
was im Hinblick auf den Vergleich der erzielten Ergebnisse mit experimentellen Resultaten
nicht unproblematisch ist.

Im Gegensatz zu solchen Modellsystemen ist der Zusammenhang der ungeschonten klassi-
schen Mechanik mit dem realen, quantenmechanischen System in wohldefinierter Weise durch
den semiklassischen Grenzfall der Quantenmechanik gegeben. Die Kenntnis der klassischen
Mechanik eines atomaren Systems erlaubt somit iiber die entsprechende semiklassische Theo-
rie weitreichende Vorhersagen und Interpretationen zur Quantendynamik dieses Systems, ins-
besondere auch im Bereich niedriger atomarer Anregungen. Dies haben unter anderem die von
Richter und Wintgen initiierten Arbeiten zum klassischen und semiklassischen Helium-Atom
gezeigt [14, 15].

Ein herausragendes Beispiel stellt die erst vor kurzem entdeckte [16], hochkorrelierte
, Frozen-Planet-Konfiguration® des Helium-Atoms dar, in der sich beide Elektronen in einer
quasi-kollinearen Anordnung auf der gleichen Seite des Kerns befinden. Entgegen der Intuition
zeichnet sich diese Konfiguration durch klassische Stabilitdt gegen Autoionisation aus, die in
wesentlichem MaBe auf die nichtlineare, im Vergleich zur Kernanziehung nichtvernachlissig-
bare Elektron-Elektron-Wechselwirkung zuriickzufiihren ist. Diese Stabilitdt bewirkt, dafl im
quantenmechanischen Helium-Atom bereits fiir relativ niedrige Doppelanregungen langlebige
und hochkorrelierte autoionisierende Zustinde auftreten, die entlang des klassischen Orbits
der Frozen-Planet-Konfiguration lokalisiert sind [17].

Gestiitzt auf diese Erfahrung mit dem ungestérten Drei-Kérper-Coulombproblem wollen
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wir hier die Dynamik der Frozen-Planet-Konfiguration unter dem Einflu8 einer periodischen
Kraft untersuchen. Von besonderem Interesse wird dabei die Situation sein, in der Feldstirke
und Frequenz des externen Antriebs in der Ndhe der die Dynamik der ungestérten Kon-
figuration charakterisierenden intrinsischen Feldstirke- und Frequenzskalen liegen, das ato-
mare System also einem starken, nahresonanten Antrieb unterworfen wird. Wie Arbeiten
zum Wasserstoffatom im externen Mikrowellenfeld gezeigt haben [18, 19, 20, 21], treten bei
einem derartigen resonanten Antrieb des Ein-Elektron-Atoms Quantenzustinde im Floquet-
Spektrum auf, die im Konfigurationsraum nichtdispergierenden Wellenpaketen entsprechen,
die der resonant, getriebenen Kepler-Trajektorie iiber einen Zeitraum von iiber 10° Keplerzy-
klen folgen. Die hohe Stabilitdt dieser nichtdispergierenden Wellenpakete ist im wesentlichen
ein klassisches Phdnomen: ITm Phasenraum sind diese Wellenpaketzustinde auf reguldren,
nichtstationdren Inseln lokalisiert, die durch die nichtlineare Resonanz zwischen dem exter-
nen Antrieb und der ungestérten Kepler-Bewegung erzeugt werden.

Wie die vorliegende Arbeit zeigt, 148t sich das Konzept nichtdispergierender Wellenpakete,
die mit feldinduzierten reguldren Inseln des klassischen Phasenraums assoziiert sind, auch auf
7Zwei-Elektronen-Atome iibertragen. Unsere Analyse des klassischen Phasenraums der extern
getriebenen Frozen-Planet-Konfiguration von Helium belegt dessen reguldr-chaotische Struk-
tur und insbesondere die Existenz regulidrer Inseln, die nichtlinearen Resonanzen zwischen
dem externen Antrieb und der ungestérten, korrelierten Zwei-Elektronen-Dynamik entspre-
chen. Im Quantenspektrum induzieren derartige nichtlineare Resonanzen auf den zugehori-
gen reguliren Inseln lokalisierte Figenzustinde, die wegen der zeitlich periodischen Phasen-
raumstruktur dieser Inseln (induziert durch die Periodizitit der die Dynamik erzeugenden
Hamiltonfunktion) tatsichlich nichtdispergierende Zwei-Flektronen- Wellenpakete darstellen.
Wir weisen die Existenz dieser Wellenpakete durch Lésung des quantenmechanischen Figen-
wertproblems fiir die kollineare, getriebene Konfiguration explizit nach.

Unser eingehendes Studium der klassischen und quantenmechanischen Dynamik der hoch-
korrelierten Zwei-Elektronen-Konfiguration weist schliefilich auf wesentliche qualitative Un-
terschiede zwischen der dimensionsreduzierten und der uneingeschrinkt hochdimensionalen
Dynamik des betrachteten Systems hin, die insbesondere die Stabilitdt der Konfiguration
in klassischer wie in quantenmechanischer Hinsicht betreffen. Diese Beobachtung impliziert
auch eine deutliche Warnung hinsichtlich der Reduktion der Dreikérperdynamik auf quasi

eindimensionale Modellsysteme mit geglatteter Coulomb-Singularitat [10, 11].

1.2 Gliederung

Die vorliegende Arbeit gliedert sich in zwei Teile. In Teil T wird die klassische Mechanik der
Frozen-Planet-Konfiguration im externen elektromagnetischen Feld analysiert.

Wir liefern zunichst in Kapitel 2 einen Uberblick iiber bereits bestehende Erkennt-
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nisse zum klassischen Helium-Atom im allgemeinen sowie zur Frozen-Planet-Konfiguration
des klassischen Helium-Atoms im besonderen. Wir gehen dabei vor allem auf die kollineare
Frozen-Planet-Konfiguration sowie auf deren approximative Beschreibung anhand der Theo-
rie der adiabatischen Invarianten ein.

In Kapitel 3 werden formale Figenschaften des klassischen Atomsim externen elektroma-
gnetischen Feld dargelegt. Es wird dariiber hinaus die Variablentransformation beschrieben,
die fiir die numerische Behandlung des Systems erforderlich ist.

Kapitel 4 wendet sich der klassischen Dynamik der extern getriebenen Frozen-Planet-
Konfiguration zu. Wir betrachten zunéchst den Unterraum des klassischen Phasenraums, der
der kollinearen Frozen-Planet-Konfiguration entspricht. Es zeigt sich, dafi der Phasenraum
durch die Anwesenheit der externen Stérung gemischt reguldr-chaotisch wird und reguldre
Inseln enthilt, die nichtlinearen Resonanzen zwischen dem externen Feld und der Dynamik
der ungestdrten Konfiguration entsprechen.

In Kapitel 5 wird die Dynamik in der unmittelbaren Umgebung des kollinearen Phasen-
raums untersucht. Es wird ermittelt, inwieweit, die reguldren Gebiete des kollinearen Phasen-
raums durch Stabilitdt beziiglich Abweichungen von der Kollinearitit gekennzeichnet sind
und somit reguldren Inseln im Phasenraum der dreidimensionalen Bewegung entsprechen.
Aspekte der reguldren bzw. irreguldren Dynamik in der Umgebung der Inseln des kollinearen
Phasenraums werden erortert.

Der Bezug zur Quantenmechanik wird in Kapitel 6 hergestellt. Es wird erlautert, welche
Figenschaften Quantenzustinde aufweisen, die auf reguldren Inseln des klassischen Phasen-
raums lokalisiert sind. Des weiteren wird anhand des semiklassischen Einstein-Brillouin-Keller
(EBK)-Quantisierungskriteriums abgeschitzt, ab welchen Anregungen derartige Zustinde im
Quantenspektrum zu erwarten sind.

Im Hinblick auf die Erzeugung nichtdispergierender Zwei-Elektronen-Wellenpakete wird
in Kapitel 7 die Dynamik der getriebenen Konfiguration in einem zusitzlichen, statischen
elektrischen Feld untersucht. s wird gezeigt, dal ein derartiges statisches elektrisches Feld
bei geeigneten Feldparametern die Dynamik in der transversalen Umgebung von reguldren
Inseln des kollinearen Phasenraums stabilisiert. Anhand des EBK-Kriteriums ergibt sich,
dafl Quantenzustinde entlang der so stabilisierten Resonanzen fiir experimentell zugingliche
Quantenzahlen erwartet werden.

Im Teil TT der Arbeit wird die Quantenmechanik der kollinearen, getriebenen Frozen-
Planet-Konfiguration behandelt.

In Kapitel 8 wird zunichst die Formulierung und numerische Behandlung des eindimen-
sionalen Quantensystems beschrieben. Inshesondere werden dabei die Floquet-Theorie, die
komplexe Skalierung und die wesentlichen Eigenschaften der Sturmschen Basis beschrieben.

In Kapitel 9 wird das quantenmechanische Spektrum des ungestérten kollinearen Helium-
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Atoms untersucht. Es wird gerzeigt, dafl die autoionisierenden Zustidnde dieses Systems durch
Figenschaften gekennzeichnet sind, die sich unmittelbar aus den reguldren Strukturen des
zugrunde liegenden klassischen Phasenraums ergeben.

Kapitel 10 behandelt die Quantenmechanik des extern getriebenen kollinearen Systems.
Floquet-Zustande, die mit den reguldren Inseln des klassischen Phasenraums assoziiert sind,
werden identifiziert. Es wird gezeigt, wie diese Floquet-Zustinde aus den Eigenzustinden des
ungestdrten Systems hervorgehen. Die Lebensdauern dieser Zustinde sowie deren Verhalten
im zusdtzlichen statischen Feld werden diskutiert.

Die Arbeit schliefit mit einer Zusammenfassung der wesentlichen Ergebnisse der Arbeit
sowie einem Ausblick auf weiterfiihrende Fragestellingen. Im Anhang der Arbeit werden
die Konvergenz der klassischen und der quantenmechanischen Rechnungen diskutiert sowie

die Berechnung der Hamilton-Matrixelemente in der Sturmschen Basis aufgezeigt.
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Kapitel 2

Die Frozen-Planet-Konfiguration

des klassischen Helium-Atoms

2.1 Allgemeines zum klassischen Helium-Atom

Jahrzehnte kontinuierlich vorangetrieben wurde und heute ein beachtliches Niveau erreicht
hat [22, 23, 24], ist die klassische Dynamik von Helium zum groien Teil noch unerforscht.
Die ersten Arbeiten zum klassischen Helium-Atom stammen aus der Anfangszeit der Quan-
tentheorie [25, 26, 27, 28]. Spezielle periodische Orbits wurden untersucht, anhand derer man
iiber eine geeignete, dem Wasserstoff-Atom analoge Vorschrift das Helium-Atom zu quan-
tisieren (bzw. dessen lonisationspotential korrekt zu reproduzieren) suchte. Bedingt durch
das Scheitern dieser Quantisierungsversuche (das unter anderem auf die Nichtintegrabilitit
der klassischen Dynamik von Helium zuriickzufiihren ist [29]) sowie durch den Erfolg der
quantenmechanischen Theorie erlosch das Interesse am klassischen Helium-Atom. Abgese-
hen von vereinzelten Ausnahmen (wie [30]) erschienen erst in den achtziger Jahren, vor dem
Hintergrund der Fortentwicklung der semiklassischen Theorie [31, 32, 33, 34, 35], neue Arbei-
ten zum klassischen Helium-Atom, die zum Teil auf die historischen Quantisierungsversuche
[25, 26, 27, 28] bezug nahmen [36, 37, 38], zum Teil aber auch das klassische Helium-Atom
unter neuen Gesichtspunkten wie etwa der Veranschaulichung quantenmechanischer Prozes-
se [39] oder der Untersuchung dynamischer Gleichgewichtskonfigurationen [40, 41, 42, 43]
betrachteten.

Die Erfolge der semiklassischen Theorie bei der Beschreibung von nichtintegrablen Syste-
men (etwa Wasserstoff im Magnetfeld [44]) stimulierten weitergehende Untersuchungen zum
klassischen Helium-Atom. Die ersten (und in ihrer Ausfiihrlichkeit bisher einzigen) systema-
tischen Phasenraumanalysen wurden von Richter und Wintgen unternommen [14, 15]. Tm

Hinblick auf eine semiklassische Quantisierung anhand stabiler und instabiler periodischer
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Orbits untersuchten sie die unter dem Einflufi der klassischen Dynamik invarianten Sym-
metrierdume innerhalb des zweidimensionalen Konfigurationsraums wie etwa den , Wannier-
Sattel“ [45] sowie die ,, Frozen-Planet-Konfiguration® [16, 17, 46]. Weitere, zum Teil auf die-
sen Untersuchungen aufbauende Arbeiten, die ebenfalls im Hinblick auf eine semiklassische
Quantisierung unternommen wurden, erschienen zur kollinearen Konfiguration mit beiden
Elektronen auf entgegengesetzten Seiten des Kerns [47, 48, 49] (die spiter auch unter dem
Aspekt von klassischem chaotischen Streuen studiert wurde [50, 51, 52]), zum , Langmuir-
Orbit“ [53], sowie zur ,asynchronen“ Konfiguration [54, 55]. Die von Richter und Wintgen
entdeckte Frozen-Planet-Konfiguration wurde in einer globalen Suche nach regulidren Ge-
bieten innerhalb des zweidimensionalen Konfigurationsraums [56] als stabile Konfiguration
bestitigt, sowie von mehreren Gruppen [57, 58, 59, 60, 61] im Hinblick auf die Anwendung
geeigneter Niherungsverfahren untersucht.

Die bisherigen Untersuchungen haben gezeigt, dafl die klassische Dynamik von Helium
iiberwiegend chaotisch ist, was zur Folge hat, dafl die allermeisten Anfangsbedingungen im
klassischen Helium-Atom zur Autoionisation fithren. Am eingehendsten untersucht sind dabei
die von Richter und Wintgen betrachteten Symmetrieebenen. Innerhalb bzw. in der Umge-
bung dieser Symmetrieebenen hat sich gezeigt, dal vor allem diejenigen Konfigurationen, bei
denen sich die Elektronen im wesentlichen auf entgegengesetzten Seiten des Kerns befinden,
durch Tnstabilitit gekennzeichnet sind; Abweichungen von dem einer solchen Konfiguration
entsprechenden periodischen Orbit  insbesondere solche, die einer Variation des Verhilt-
nisses rq/ro der Kernabstiande entsprechen  verstirken sich im Tauf der Zeitentwicklung
exponentiell und fiithren zur Autoionisation.

Ein typisches Beispiel stellt der ,Wannier-Orbit“ [30] dar, der den durch vy = —ry, py =
—p2 definierten Wannier-Sattel konstituiert [40, 45, 62] (rq, r2 und py, p2 bezeichnen die
Orte bzw. Impulse der Elektronen 1 und 2): Variiert man das Verhiltnis der Kernabstinde,
d.h. fithrt man ein Elektron dem Kern naher zu und entfernt das andere etwas vom Kern,
so bewirkt die verinderte effektive Kernladungsabschirmung, daf§ das innere Elektron vom
Kernpotential eingefangen wird, wihrend das duflere Elektron ins Unendliche abgestofien
wird (Abb. 2.1a). Diese Instabilitit  quantifiziert durch den Lyapunov-Exponenten, der die
Zeitskala angibt, auf der infinitesimal benachbarte Trajektorien auseinanderlaufen nimmt zu
mit zunehmender Exzentrizitdt des Orbits und wird im Grenzfall einer kollinearen Anordnung
aufgrund der involvierten Dreifachkollision unendlich grof [45].

Ein Beispiel fiir einen stabilen periodischen Orbit im klassischen Helium-Atom stellt der
Langmuir-Orbit dar, der erstmals von Langmuir fiir die Quantisierung von Helium vorge-
schlagen wurde [26] und dem fundamentalen periodischen Orbit innerhalb des durch zy = x5,
Y1 = —Yo, 21 = 22 = 0, Pot = Pr2y Py1 = —Py2, P21 = Pa2 = 0 definierten Symmetrieraums

entspricht (mit r; = (2, y;, 2;) und p; = (pai, Pyi, P»i)). Kleine Abweichungen von diesem Or-
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Abb. 2.1: Einige periodische Orbits des klassischen Helium-Atoms. (a) Tnstabiler Wannier-Orbit.
(b) Stabiler Langmuir-Orbit. (¢) Tnstabiler Asymmetric-Stretch-Orbit. (d) Stabiler Frozen-Planet-
Orbit. (a) und (b): Trajektorien innerhalb des zweidimensionalen Konfigurationsraums; (¢) und (d):
Zeitentwicklung innerhalb des kollinearen Konfigurationsraums (der Kern befindet sich jeweils bei
r =y = z = 0). Die gestrichelten Linien in (a) und (c) zeigen Trajektorien, die sich ergeben, wenn

eines der Elektronen vom Kern etwas entfernt, das andere dem Kern etwas zugefithrt wird. =z, y, 2

und ¢ sind in atomaren Einheiten gegeben.



12 Kapitel 2. Die Frozen-Planet-Konfiguration des klassischen Helium-Atoms

bit fithren zu reguldren, quasiperiodischen Oszillationen, die auf die unmittelbare Umgebung
des Langmuir-Orbits beschridnkt bleiben; der Langmuir-Orbit bildet damit eines der weni-
gen reguldren Gebiete innerhalb des iiberwiegend chaotischen Phasenraums des klassischen
Helium-Atoms (das andere bekannte regulire Gebiet ist die Frozen-Planet-Konfiguration)
[45]. Der Parameterbereich, innerhalb dessen ry/ry variiert werden kann, ohne die Konfigu-
ration zu destabilisieren, ist jedoch so klein, dafi eine semiklassische Quantisierung langlebige
quantenmechanische Zustinde, die vollstindig auf dem Langmuir-Orbit lokalisiert sind, erst
fiir sehr hohe Hauptquantenzahlen N ~ 500 erwarten 138t [53] (N entspricht der Hauptquan-
tenzahl der Tonisationsschwelle von Helium, unterhalb der diese Zustinde liegen). Tatsdchlich
wurden quantenmechanische Zustinde mit erhéhter Wahrscheinlichkeitsdichte entlang des
Langmuir-Orbits jedoch bereits bei der Hauptquantenzahl N = 10 entdeckt [63].

Innerhalb des kollinearen Phasenraums mufl aufgrund der Coulomb-Singularitit des Kerns,
die die Elektronen in einer kollinearen Anordnung nicht iiberschreiten konnen (siehe etwa
[60]), prinzipiell unterschieden werden zwischen der ,,Zee“-Konfiguration, bei der sich beide
Elektronen auf der gleichen Seite des Kerns befinden, und der ,eZe“-Konfiguration, bei der
beide Elektronen auf entgegengesetzten Seiten des Kerns angeordnet sind. Entgegen der Intui-
tion ist es die Zee-Konfiguration, welche sich durch einen (nahezu vollstindig) reguldren Pha-
senraum auszeichnet, wihrend der Phasenraum der eZe-Konfiguration vollstindig chaotisch
ist: Sdmtliche periodischen Orbits der eZe-Konfiguration sind instabil beziiglich Variationen
innerhalb des kollinearen Phasenraums. Durch eine ,,Cycle Expansion“ der Produktdarstel-
lung der Gutzwillerschen Spurformel [64, 65] konnte gezeigt werden, dafl im wesentlichen nur
ein einziger periodischer Orbit dieser Konfiguration, ndmlich der in Abb. 2.1c gezeigte, einer
gegenphasigen Streckschwingung der Elektronen entsprechende ,,Asymmetric Stretch“-Orbit
(also nicht der Wannier-Orbit), zur semiklassischen Zustandsdichte beitrigt [48]. Tatsdchlich
konnte in quantenmechanischen Rechnungen gezeigt werden, dafl doppelt angeregte Zustinde
von Helium mit (cosf3) = —1 (wobei A2 den Zwischenwinkel zwischen den Elektronen be-
zeichnet), bei denen beide Elektronen also auf entgegengesetzten Seiten des Kerns angeordnet
sind, entlang des Asymmetric-Stretch-Orbits lokalisiert sind [48, 66, 67].

Auflerhalb der von Richter und Wintgen betrachteten Symmetrierdume wurde in [54, 55]
die von den Autoren sogenannte ,asynchrone® Konfiguration untersucht, die im wesentlichen
die Verallgemeinerung des Asymmetric-Stretch-Orbits auf den zweidimensionalen Konfigu-
rationsraum darstellt. So gut wie unerforscht sind periodische Orbits innerhalb des zwei-
dimensionalen Konfigurationsraums mit nichtverschwindendem Drehimpuls, die nicht dem
Wannier-Sattel angeh6ren (abgesehen von der rotierenden Frozen-Planet-Konfiguration [61]),
sowie periodische Orbits auflerhalb des zweidimensionalen Konfigurationsraums  abgesehen
von quasistarr rotierenden Gleichgewichtskonfigurationen, bei denen sich die Abstidnde der

Elektronen voneinander und vom Kern im Lauf der Zeit nicht dndern [40, 41, 42, 43] (diese
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Konfigurationen haben sich ebenfalls als instabil erwiesen). Die Schwierigkeit bei der FErfor-
schung des Phasenraums der dreidimensionalen Dynamik liegt in der Anzahl der Freiheits-
grade f = 6, die fiir eine Visualisierung etwa anhand von Poincaré-Schnitten zu hoch ist.
Methoden wie die Stabilitdtsanalyse einzelner periodischer Orbits sowie die globale Suche
nach reguliren Gebieten [56, 68] sind wahrscheinlich nur bedingt in der Tage, Einblick in die

Phasenraumstruktur des dreidimensionalen Konfigurationsraums zu vermitteln.

2.2 Die Frozen-Planet-Konfiguration

Die Frozen-Planet-Konfiguration wurde erst vor knapp einem Jahrzehnt von Richter und
Wintgen entdeckt [16] und im Anschlufi daran von denselben Autoren im Hinblick auf ihre
klassischen und semiklassischen Figenschaften sowie auf ihre quantenmechanische Entspre-
chung eingehend analysiert [14, 15, 17, 46, 69]. Tn dieser Konfiguration befinden sich beide
Elektronen auf der gleichen Seite des Atomkerns, wobei sie sich durch unterschiedlich hohe
Anregungen auszeichnen, wir also ein ,inneres“ und ein ,dufleres“ Elektron unterscheiden.
Das innere Elektron oszilliert auf extrem exzentrischen Kepler-Bahnen um den Kern. Das
duflere Elektron wird durch die Bewegung des inneren Elektrons dynamisch stabilisiert und
oszilliert um einen Gleichgewichtsabstand, der dadurch gekennzeichnet ist, dafl sich dort die
anziehende Kraft die iiberwiegt, wenn das innere Elektron in der Nihe des Kerns ist und
die abstoBlende Kraft die iiberwiegt, wenn das innere Elektron den dufleren Umkehrpunkt
seines Umlaufs erreicht.  im Zeitmittel einer Kepler-Periode aufheben.

Der Name ,,Frozen-Planet-Konfiguration® leitet sich von dem auf Percival zuriickgehen-
den Begriff der ,,planetaren Zustande“ her [70], die doppelt hochangeregte Zustinde des Zwei-
Elektronen-Atoms mit unterschiedlich hoher Anregung beider Elektronen bezeichnen. Bei der
Frozen-Planet-Konfiguration handelt es sich also um eine einem planetaren Zustand dhnli-
che Konfiguration, bei der das duflere Elektron quasi ,eingefroren® ist. Der Begriff ,,frozen
planet“ wurde von Eichmann und Mitarbeitern eingefiihrt [71], die hochaufgeléste Spektren
doppelt hochangeregter Barium-Atome mit Hilfe einer in der betreffenden Arbeit sogenannten
,» Frozen-Planet-Approximation® reproduzieren konnten: Bei dieser Naherung wird das duflere
Elektron fixiert und die Wellenfunktion des inneren Elektrons im resultierenden statischen
Zweikorperpotential berechnet [72].

Das besonders Antiintuitive dieser Konfiguration ist ihre Stabilitdt. Neben dem Langmuir-
Orbit stellt die Frozen-Planet-Konfiguration die einzige bekannte Konfiguration des klassi-
schen Helium-Atoms dar, die klassisch stabil gegen Autoionisation ist, d.h. bei der Abwei-
chungen vom fundamentalen Orbit zu stabilen, quasiperiodischen Oszillationen fiithren. Das
Phasenraumvolumen, innerhalb dessen die Frozen-Planet-Konfiguration stabil ist, ist iiber-
raschend grofi, was in Abb. 2.2b angedeutet wird, die eine stabile, vom kollinearen funda-

mentalen Orbit der Konfiguration relativ stark abweichende Trajektorie zeigt. Die Frozen-
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Abb. 2.2: Finige regulare Trajektorien vom Typ der Frozen-Planet-Konfiguration von Helium im zwei-
dimensionalen Konfigurationsraum (y und z sind in atomaren Einheiten gegeben). Wahrend bei (a)

und (b) der Gesamtdrehimpuls I = 0 ist, besitzt die Konfiguration in (¢) einen nichtverschwindenden

Gesamtdrehimpuls 7. = 0.1625 a.u.
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Planet-Konfiguration ist auch stabil beziiglich Abweichungen, die einen nichtverschwindenden
Gesamtdrehimpuls implizieren, und existiert somit auch, wie in Abb. 2.2¢ gezeigt wird, als
rotierende Konfiguration (siehe auch [61]).

Eine Konsequenz des groflen Phasenraumvolumens der stabilen Frozen-Planet-Konfigu-
ration ist die Tatsache, dafl sich diese im quantenmechanischen Spektrum bereits fiir relativ
niedrige Doppelanregungen manifestiert: In ab initio Rechnungen zum doppelt angeregten
Helium-Atom konnte gezeigt. werden [17], daf§ fiir Hauptquantenzahlen N > 3 des inneren
Elektrons autoionisierende Zustidnde existieren, die entlang des klassischen Frozen-Planet-
Orbits lokalisiert sind. Diese Frozen-Planet-Zustinde zeichnen sich durch sehr kleine Tonisa-
tionsbreiten aus (verglichen mit Zustinden gleicher Quantenzahl N, also mit Zustdnden, die
der gleichen Tonisationsschwelle von Helium angehdren), die als Funktion von N im Mittel
exponentiell abnehmen. Neben dem Asymmetric-Stretch-Orbit ist damit der Frozen-Planet-
Orbit der einzige periodische Orbit des klassischen Helium-Atoms, der im Spektrum moderat
doppelt angeregter Zustiande (N < 10) mit niedrigem Drehimpuls nachgewiesen werden konn-
te [67].

Im Gegensatz zur theoretischen Berechnung ist ein experimenteller Zugang 7u Frozen-
Planet-Zustidnden bislang noch nicht erfolgt [73]. Die Schwierigkeit, die mit der experimen-
tellen Anregung von mit der Frozen-Planet-Konfiguration assoziierten Zustdnden verbunden
ist, besteht darin, dafl diese Zustidnde aufgrund der speziellen Symmetrie der Frozen-Planet-
Konfiguration einen verschwindend geringen Uberlapp mit dem Grundzustand bzw. mit den
vom Grundzustand aus leicht zuginglichen angeregten Zustinden aufweisen. Die Fortschritte,
die im vergangenen Jahrzehnt im Hinblick auf die experimentelle Anregung hochangeregter
planetarer Zustande in Zwei-Elektronen-Atomen erzielt wurden [71, 72, 74, 75], geben jedoch
Anlafl zur Hoffnung, dal derartige Schwierigkeiten bald iiberwunden werden kénnen.

Wir werden uns im folgenden insbesondere fiir die kollineare Frozen-Planet-Konfiguration
interessieren, die der kollinearen Zee-Anordnung der Elektronen entspricht. Wie Richter,
Wintgen und Mitarbeiter [14] gezeigt haben, ist der Phasenraum der kollinearen Zee-Kon-
figuration nahezu vollstindig reguldr und enthilt ein grofies Gebiet gebundener Bewegung,
zentriert, um den fundamentalen periodischen Orbit der Frozen-Planet-Konfiguration. Diese
Regularitdt manifestiert sich darin, dafl die Bewegungen beider Elektronen trotz ihrer starken
Wechselwirkung nahezu unabhdngig voneinander ablaufen: Das innere Elektron oszilliert auf
exzentrischen, Kepler-artigen Trajektorien, die durch die langsame Oszillation des dufieren
Elektrons nur sehr schwach moduliert werden; das duflere Elektron vollfiihrt Oszillationen
um den Gleichgewichtsabstand, denen die schnellen Oszillationen des inneren Elektrons nur
sehr schwach iiberlagert sind (Abb. 2.3). Die kollineare Dynamik wird also durch zwei Moden
konstituiert, die in sehr guter Niherung separieren: namlich die Kepler-Mode und die lang-

same QOszillation um die Gleichgewichtslage (deren jede in der Bewegung beider Elektronen
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Abb. 2.3: Trajektorien der kollinearen Frozen-Planet-Konfiguration, aufgetragen als Funktion der Zeit
(z und ¢ sind in atomaren Einheiten gegeben). Wie man sieht, ist die regulare Dynamik innerhalb
des kollinearen Konfigurationsraums durch zwei Bewegungsmoden charakterisiert, die approximativ
separieren: die der schnellen Kepler-Oszillation des inneren Elektrons entsprechende Mode, die sich in
der Bewegung des dufleren Elektrons in Form von Oszillationen mit kleiner Amplitude abzeichnet (b),
sowie die der langsamen Oszillation des dufleren Elektrons um die Gleichgewichtslage entsprechende
Mode, die in der Bewegung des inneren Elektrons zu kleinen Modulationen der Amplitude des Kepler-

Orbits fiihrt (c).
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aufscheint und sich daher, streng genommen, nicht mit einem einzelnen Elektron identifizieren
148t).

Esist bemerkenswert, dafl die approximative Separation der Moden innerhalb des kollinea-
ren Konfigurationsraums auf die Nichtvernachlissigbarkeit der Elektron-Elektron-Wechsel-
wirkung im Vergleich zur Kernanziehung zuriickzufiihren ist. Fiir zunehmende Kernladungs-
zahlen 7 > 2, fiir die die Stdrke der Elektron-Elektron-Wechselwirkung geringer wird und das
System sich scheinbar der reguldaren Dynamik zweier unkorrelierter Elektronen anndhert, fin-
det man einen gemischt reguldr-chaotischen Phasenraum, dessen regulirer Anteil zunehmend
kleiner wird und fiir 77 > 13 vollstindig verschwindet [17]. Umgekehrt wird fiir 7 — 1 der
Phasenraum immer reguldrer und die Separation zwischen den Elektronen immer besser (fiir
7 < 1 existiert die Frozen-Planet-Konfiguration nicht, da bei derartigen Kernladungszahlen
das duflere Elektron in dem durch den Kern und das innere Elektron gebildeten Potential
nicht gebunden wird). Dies zeigt, wie wichtig das gleichwertige Zusammenspiel aller betei-
ligten Wechselwirkungen, der Kernanziehung und der Elektron-Elektron-AbstoBung, fiir das

Zustandekommen der Frozen-Planet-Konfiguration ist.

2.3 Adiabatische Theorie der Frozen-Planet-Konfiguration

Die approximative Separation der schnellen Kepler-Mode und der langsamen Oszillation um
den fundamentalen periodischen Orbit erlaubt die Anwendung verschiedener Niaherungsver-
fahren zum Studium der Frozen-Planet-Konfiguration [57, 58, 59, 60, 61]. Fiir diese Arbeit,
von besonderem Interesse ist die von Ostrovsky und Prudov [59] durchgefiihrte Separation der
Moden unter Verwendung der Theorie der adiabatischen Invarianten, iiber die die langsame
Komponente der Oszillation des duleren Elektrons innerhalb des kollinearen Konfigurations-
raums durch die Bewegung in einem effektiven, den Abschirmungseffekt des inneren Elektrons
beriicksichtigenden Potential beschrieben werden kann.

GemifB der Theorie der adiabatischen Invarianten [76] bleibt in einem Hamiltonschen Sy-
stem mit einem Freiheitsgrad ¢ und zugehérigem kanonischen Tmpuls p das Wirkungsintegral
§ pdg invariant, wenn ein externer Parameter der Hamiltonfunktion in sehr langsamer Weise
zeitlich variiert wird (verglichen mit der Zeitskala, die die Dynamik von ¢ und p charakteri-

siert). Im Fall der kollinearen Frozen-Planet-Konfiguration, die durch die Hamiltonfunktion

2 2 7 7 1
H:pﬁ_kpﬁf_f__k

2 2 21 Z9 Z1 — Z9

(2.1)

mit den Ortskoordinaten zy, z9 und den Tmpulsen p.q, p.o des dufleren bzw. des inneren
Elektrons beschrieben wird, 14t sich der Ort z; des dufleren Elektrons in dem Wechsel-
wirkungsterm 1/(zy — z2) als zeitlich langsam verdnderlicher Parameter interpretieren, der
die schnelle Oszillation des inneren Elektrons adiabatisch beeinflufit. Unter Anwendung der

Theorie der adiabatischen Invarianten ergibt sich damit, dafi das Wirkungsintegral ¢ p.o dzs,
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integriert iiber einen Zyklus der Kepler-Oszillation des inneren Elektrons, niherungsweise
invariant bleibt als Funktion der Zeit.

Die Auswertung dieses Wirkungsintegrals 158t sich nach der Transformation der Variablen
z9, P.2 des inneren Elektrons auf die Winkel-Wirkungs-Variablen 8, I des eindimensionalen

Kepler-Problems, definiert durch

[2
n = (1 — cos(), (2.2)
7 sin(
o = 2205 2.3
P2 I'1—cos( (2.3)

wobei die exzentrische Anomalie ((f) durch 8 = {—sin  gegeben ist, vornehmen. Ausgedriickt

in diesen neuen Variablen lautet die Hamiltonfunktion (2.1)

2 7 7?2 1
H(zi,pa,0,0) = 20 - 2 2 4 _ . (2.4)
2 z 21 z — L (1 —cos()

Die adiabatische Invarianz des Wirkungsintegrals 148t sich nun gem&fB
1 2m
rd¢ = N (2.5)

21 Jo
formulieren, wobei N eine Konstante ist, die der ,Wirkung® der Kepler-artigen Oszillation
des inneren Elektrons entspricht (und bei der Quantisierung des Systems mit dessen Haupt-
quantenzahl identifiziert wird). Uber (2.4) 148t sich T als Funktion der Gesamtenergie, der
Winkelvariable 8, sowie der Variablen des dufieren Elektrons ausdriicken: I = T(H, 0, z1, p.1).
Nach Einsetzen dieses Ausdrucks in (2.5) ergibt sich eine implizite Relation zwischen H,
zy und p,q1, aus der man, nach Auflésung nach H, eine effektive Hamiltonfunktion fiir die
Beschreibung der langsamen Komponente der Bewegung des dufieren Elektrons erhilt:

2
LR VORI (2.6)

N
H(Eﬂ‘)(thZ]) = 9 e

Das effektive Potential Ve(ﬁN) 148t sich nur numerisch berechnen, da die Integration von (2.5)
analytisch nicht durchfithrbar ist.

Abb. 2.4 zeigt das effektive Potential fiir das Helium-Atom (7 = 2). Wir erkennen, daf}
es sich fiir grofle Abstinde einem attraktiven 1/z Potential anndhert, wihrend es fiir kleine
Absténde aufgrund der iiberhand nehmenden Coulomb-Abstoflung durch das innere Elektron
stark repulsiv ist. Dazwischen weist es ein lokales Minimum an dem Ort z; ~ 2.6 N? auf,
der dem Gleichgewichtsabstand des dufieren Elektrons in der Frozen-Planet-Konfiguration
entspricht.

Anhand dieses Potentials lagsen sich nun intrinsische, allein von der Wirkung N des in-
neren Elektrons abhidngende Skalen fiir Feldstirke und Frequenz bestimmen, die spiter fiir
den externen Antrieb der Frozen-Planet-Konfiguration durch ein elektromagnetisches Feld

von Bedeutung sein werden. Die Frequenzskala ist durch die Kriimmung des Potentials in
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Abb. 2.4: Fffektives adiabatisches Potential, das die langsame Komponente der Bewegung des dufieren

Flektrons in der kollinearen Frozen-Planet-Konfiguration beschreibt.

seinem Minimum gegeben. Sie entspricht der Frequenz kleiner Schwingungen um die Gleich-
gewichtslage. Wie man an der Form des effektiven Potentials in Abb. 2.4 erkennt, ist dies
zugleich die maximale Frequenz, mit der das duBlere Elektron um die Gleichgewichtslage
oszilliert. Die Feldstirkenskala ist durch die maximale positive Steigung des effektiven Po-
tentials gegeben (bei z; ~ 3.7 N?). Sie entspricht der maximalen riicktreibenden Kraft auf
das innere Elektron und gibt die maximale Stirke eines statischen Feldes an, das man an die
Frozen-Planet-Konfiguration anlegen kann, ohne diese vollkommen zu destabilisieren.
Konkret erhalten wir, sowohl aus dem effektiven Potential als auch aus numerisch berech-

neten Trajektorien der Frozen-Planet-Konfiguration, fiir die intrinsische Frequenzskala
wr ~ 030N (2.7)
und fiir die intrinsische Feldstdrkenskala
Fr ~ 0.030 N~ (2.8)
ITm Minimum des effektiven Potentials bei erhalten wir bei z; ~ 2.6 N?
v ~ 022 N2 (2.9)
woraus sich die Gesamtenergie der Konfiguration zu

F~ —22N2 (2.10)
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ergibt. Fiir die Frequenz der Kepler-artigen Osrillation des inneren Elektrons erhalten wir

aus der numerisch berechneten Trajektorie
Wi ~ 44N (2.11)

Die Giite der adiabatischen Naherung wird damit durch das Verhiltnis wr/wr ~ 0.07 cha-
rakterisiert, das wesentlich kleiner als Fins ist.

Bei Wirkungen bzw. Quantenzahlen der GréBenordnung N ~ 50, die fiir den resonanten
Antrieb der Konfiguration relevant sind (siehe die folgenden Kapitel), liegen die intrinsi-
schen Frequenz- und Feldstiarkeskalen im Bereich der Frequenzen und Feldamplituden, die

in Mikrowellen-Tonisationsexperimenten von Ein-Elektron-Atomen typischerweise verwendet

werden [77]. Konkret erhalten wir fiir N = 50

wr/(2r) ~ 16 GHz, (2.12)
wr/(27) =~ 230 GHz, (2.13)
Fr ~ 25V/cm. (2.14)

Mit der Theorie der adiabatischen Invarianten lassen sich auch Oszillationsmoden der
Frozen-Planet-Konfiguration aulerhalb des kollinearen Konfigurationsraums beschreiben. Be-
zeichnet [y9 die halbe Differenz der Drehimpulse der Elektronen in bezug auf den Kernort
und @12 den Winkel zwischen dem Ortsvektor des dufieren Elektrons und der grofien Haupt-
achse der Kepler-Ellipse des inneren Elektrons, so a6t sich fiir die Zeitentwicklung dieser
kanonisch konjugierten Variablen bei kleinen Schwingungen transversal zur Achse, entlang

der die Frozen-Planet-Konfiguration ausgerichtet ist, die effektive Hamiltonfunktion
| 2 1 2
Heﬁ = 751{‘1 112*51{72@12 (2]5)

herleiten, wobei k¢ und ky positive Konstanten darstellen [59]. Die daraus resultierenden
Bewegungsgleichungen entsprechen denen eines harmonischen Oszillators, bei dem jedoch die
Rollen der Orts- und Tmpulsvariablen vertauscht sind (der ,,Impuls® [;5 erfihrt hier also einen

positiven 7Zuwachs fiir positive Werte der ,,Ortsvariablen® ¢q3):

d

— 1 = k 2.16
a7 12 2 P12 ( )
d = kil (217)
dr Y12 = 1 b12- .

Abb. 2.5 zeigt die Trajektorie einer derartigen transversalen Schwingung, bei der sich das
innere Elektron anfanglich auf der z-Achse befindet, das duflere Elektron hingegen gegeniiber
der z-Achse etwas versetzt ist. Die aus der numerisch berechneten Trajektorie ermittelte
Frequenz der transversalen Schwingung betréigh wane ~ 0.17 N7 und stimmt gut mit dem

Wert iiberein, den die Theorie der adiabatischen Invarianten liefert [59].
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Abb. 2.5: Trajektorie einer transversalen Schwingung der Frozen-Planet-Konfiguration. Die Anfangs-
bedingung st durch zy = 258, 4y = 0.2, y» = 0, p1 = p2 = 0 gegeben; der Anfangswert von z
ist so gewahlt, dal die Wirkung des inneren Elektrons N = 1 betragt (der Tndex 1 bezeichnet das
innere, der Index 2 das dufiere Elektron; alle Orts- und Zeitvariablen sind in atomaren Einheiten ge-
geben). Dargestellt sind Ausschnitte der Trajektorie zu den Zeiten (a) 4 =0...4.6; (b) t =4.6...9.2;
()1 =9.2...138; (d) ¢+ = 13.8...18.4. Bei t = 18.4 ist ungefihr die Halfte des Oszillationszyklus

vollzogen. Die Konfiguration schwingt anschliefend zuriick in die Anfangsposition (a).



Kapitel 3

Formale Behandlung des

klassischen Systems

In den folgenden Kapiteln untersuchen wir den Einflufl eines externen elektromagnetischen
Feldes auf die Dynamik des klassischen Helium-Atoms. Zunichst werden in diesem Kapitel
formale Aspekte des klassischen Drei-Kérper-Problems unter einem externen, zeitlich peri-
odischen Antrieb behandelt. Wir definieren in Abschnitt 3.1 die klassische Hamiltonfunktion
und erértern wesentliche fundamentale Figenschaften der aus dieser Hamiltonfunktion resul-
tierenden klassischen Dynamik. In Abschnitt 3.2 beschreiben wir die Variablentransformati-
on, die auf das klassische System angewandt wird, um die klassischen Bewegungsgleichungen

numerisch zu integrieren.

3.1 Fundamentale Eigenschaften des klassischen Systems

Wir betrachten die klassische Dynamik des dreidimensionalen Helium-Atoms im externen
elektromagnetischen Feld linearer Polarisation. Das System wird beschrieben durch zwei klas-
sische, iiber die elektrostatische Coulomb-Kraft miteinander wechselwirkende Punktladungen
im attraktiven Coulomb-Potential, die einem externen oszillierenden elektrischen Feld aus-
gesetzt sind. Relativistische Korrekturen der Wechselwirkung sowie Effekte aufgrund der
endlichen Masse bzw. der nichtverschwindenden Ausdehnung des Atomkerns werden ver-
nachlissigt.

Unter Verwendung atomarer Einheiten ist die Hamiltonfunktion dieses Systems gegeben

durch

2 2

P P; A4 A4 1

- N — ST F(). (3.1
(I'], ro, P1, P2, ) 9 |I'1| |I'2| + |I'1 - I'2| + (I'] + 1'2) ( ) ( )

Dabei bezeichnen rq, ro bzw. py, p2 die Ortskoordinaten bzw. Impulse der beiden Elektronen,

22
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deren Zeitentwicklung durch die Hamiltonschen Gleichungen

dr; 8H

- = 3.2
dt (()pi7 ( )
dp; oH

- = - 3.3
dt or; ( )

fiir 2 = 1,2 gegeben ist. 7 bezeichnet die Kernladungszahl, die in den konkreten Rechnungen

Verwendung der Dipolndherung) durch
F(t) = Fecoswt (3.4)

gegeben, wobei F die (zeitlich konstante) Amplitude, w die Frequenz und e den Einheitsvektor
in Richtung der Polarisation des elektromagnetischen Feldes bezeichnen.

Als einzige Konstante der Bewegung des Systems verbleibt unter dem zeitlich periodi-
schen Antrieb bei linearer Polarisation die Komponente des (Gesamtdrehimpulses entlang der
Polarisationsrichtung des elektrischen Feldes. Die Trajektorie verliuft damit innerhalb eines
elfdimensionalen Unterraums des zwolfdimensionalen Phasenraums. Es bietet sich an, die Zeit
bzw. die Phase des treibenden Feldes wt mod 27 als zusitzliche Dimension des klassischen
Phasenraums einzufiihren, um formal zu gewihrleisten, dafi die klassischen Bewegungsglei-
chungen im erweiterten Phasenraum autonom sind [78]. Damit erhalten wir effektiv einen
zwolfdimensionalen Phasenraum, innerhalb dessen die klassische Dynamik zu analysieren ist.

Die Hamiltonfunktion (3.1) zeichnet sich durch folgende fundamentale Skalierungseigen-
schaft aus [70, 79]: Bezeichnet A > 0 einen reellen, positiven Parameter, so bleiben unter der

Transformation

r, > Ar; (i=1,2) (3.5)
pi —— A Y?p (1=1,2) (3.6)
b AM? (3.7)
F +— X°F (3.8)
w — A2y (3.9)

— AT H (3.10)

die Bewegungsgleichungen (3.2, 3.3) invariant. Es empfiehlt sich also, die Analyse der klas-
sischen Dynamik auf einen festen Wert der Skalierung A zu beschrinken, was sich durch
Festsetzung des Anfangswerts einer zeitabhdngigen Variablen, etwa der Gesamtenergie H,
oder durch Fixierung eines zeitunabhingigen Parameters, etwa der Frequenz w, erreichen
148t. Tm Bedarfsfall 158t sich der klassische Phasenraum iiber (3.5 3.10) auf die Skala des

tatsdchlich betrachteten Systems isomorph abbilden. Dabei ist zu beachten, dafl eine Gréfe,
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deren Einheit durch das Produkt mehrerer in (3.5  3.10) aufgefiihrter Variablen bzw. Pa-
rameter bestimmt, ist, entsprechend transformiert wird. Eine Wirkungsvariable N etwa, mit
der durch das Produkt von Ort und Impuls (bzw. von Energie und Zeit) gegebenen Einheit,

transformiert sich unter (3.5 3.10) gemif

N — AZN. (3.11)

3.2 Regularisierung der Bewegungsgleichungen

Fiir eine numerische Integration sind die Bewegungsgleichungen (3.2, 3.3) im allgemeinen
ungeeignet: Kommt ein Elektron dem Kernort sehr nahe, so wichst dessen Tmpuls |p;]

sehr stark, namlich proportional zu |r;|~"/?

, an und divergiert im Fall eines direkten Zu-
sammenstofies mit dem Kern. Da sich derartige Zusammenstdfie in der uns speziell inter-
essierenden Frozen-Planet-Konfiguration regelmiflig ereignen, ist es erforderlich, die Bewe-
gungsgleichungen zu regularisieren. Die geeignete Methode zur Regularisierung ist durch die
Kustaanheimo-Stiefel-Transformation [80] gegeben. Bei dieser kanonischen Transformation
werden die Koordinaten und Tmpulse der Elektronen auf neue Variablen transformiert, die
bei Elektron-Kern-Zusammenstéfien ein reguldres Verhalten aufweisen. Im Gegensatz zu in
klassischen Zwei-Elektronen-Atomen gingigen ,Regularisierungsverfahren®, bei denen das
Coulomb-Potential durch ein geglittetes, im Ursprung reguldres (“soft core”) Potential er-
setzt wird [11], sind die aus dieser Transformation resultierenden Bewegungsgleichungen
exakt dquivalent zu den Newtonschen Bewegungsgleichungen in den urspriinglichen Varia-
blen. (Ein “soft core”-Potential wiirde, nebenbei bemerkt, das Auftreten der Frozen-Planet-
Konfiguration nicht ermdéglichen, da in einem derartigen Potential der Kern keine uniiber-
windliche Barriere fiir das innere Elektron in einer kollinearen Anordnung darstellt.) Tm
folgenden wird nun im einzelnen beschrieben, wie die Transformation im Zwei-Elektronen-
System gemif der von Aarseth und Zare fiir das gravitative Dreikérperproblem beschriebenen
Methode [81] durchgefiihrt wird.

Bei der Kustaanheimo-Stiefel-Transformation werden der Ortsvektor r und der Impuls-
vektor p eines im dreidimensionalen Konfigurationsraum beschriebenen Teilchens auf vier-

komponentige, ebenfalls kanonisch konjugierte Variablen Q, P abgebildet:

r = (rnH Ty, rz)T - Q = (Qav va Qm Qr])T .

- T (3.12)
p:(pm pyvpz) P:(Pm th Pm Pr])
Die Transformation ist definiert durch die Erzeugende
W(p,Q) = p-f(Q), (3.13)

wobei

£(Q) = (f.(Q), £,(Q), £-.(Q)" (3.14)
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durch
Q) = Qi — Qf — QI + Qi (3.15)
gegeben ist. Wir erhalten
ow
— _— = f . ]
)] (318)
ow
P = —=A 3.1¢
g~ A (3.19)
mit
Qa Qb Qc
*Qc *Qr] Qa
Qr] 7@0 Qb
Wegen
AT(Q) A(Q) = 4Q7T, (3:21)
wobei I die Einheitsmatrix in R? bezeichnet, ergibt sich die Inversion von (3.19) zu
1 T
p = qQ AT(Q)P. (3.22)

Die Umkehrung von (3.18) ist nicht eindeutig vorgegeben. Sie 148t sich zum Beispiel durch

Q = G(r) = (Gu(r), Gy(r), Go(r), Ga(r)"

Golr) = 5 (141,

mit,

G - :
(r) 2G,(r)
Ty
T RO
Ga(r) = 0
fiir r,, > 0 bzw.
1
Golx) = 5 (Irl =),
T
G, (r) = y
(r) 2Gy(r)’
T
G - :
a(r) 2G,(r)’
G.(r) = 0

(3.23)

(3.24)
(3.25)

(3.26)

(3.27)

(3.28)
(3.29)

(3.30)

(3.31)
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fiir r,, < 0 definieren.
Mit (3.15  3.17) folgt schlielich
Q= Ir (3.32)
und
P? = 4Q’p® = 4r|p”. (3.33)
Dies garantiert fiir die neuen Variablen die eingangs geforderte Eigenschaft, bei Zusam-
menstdBen mit der Coulomb-Singularitit, bei denen p? ~ |r|~" divergiert, regulir zu bleiben.
In dem uns interessierenden System zweier Elektronen im attraktiven Coulomb-Potential

wird auf die Orts- und Impulsvariablen jedes der beiden Elektronen separat eine Kustaanheimo-

Stiefel-Transformation (3.12) angewandt:

(ri,p1) = (Q1,Py), (3.34)
(r2,p2) = (Q2.P2), (3.35)

mit
Q = G(r), (3.36)
P, = A(Qi)pi (3.37)

bzw.
ri = f(Qi), (3.38)
pi = 4;,% Q) P (3.39)

fiir i = 1,2, wobei R; durch

R = Q (3.40)

definiert ist. Zusdtzlich werden eine neue ,,Zeit“ 7 sowie eine neue Hamiltonfunktion H gemif
dt —=: R] RQ dr (34])

bzw.

H = Ry Ry (H — F) (3.42)

eingefiithrt, wobei H die urspriingliche Hamiltonfunktion des Systems, ausgedriickt in den
neuen Variablen Q, P, darstellt und F deren Wert zum jeweils aktuellen Zeitpunkt ¢ be-
zeichnet. Per Konstruktion verschwindet # fiir alle Zeiten 7 und reprisentiert damit (im
Gegensatz zu (3.1)) ein autonomes System.

Entsprechend werden F und t als zusdtzliche, kanonisch konjugierte Variablen des Systems

eingefiihrt, deren Zeitentwicklung durch

dt oM
= o 3.4:
dr OF’ (3.43)
dr P

_ o (3.44)

dr ot
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beschrieben wird. Unter Verwendung des Ausdrucks (3.1) fiir H erhalten wir schlieilich die

Hamiltonfunktion

H = H(Qi, Qz Py, Py, F 1)

P I B,
S gPL g E S (B R T e @)
+ Ri Ry (f(Q1) +1f(Q2)) -F(t) — Ry Ry F, (3.45)
die die Bewegungsgleichungen
dt
= BB, (3.46)
dF dF
7 = B R (F(Q) +(Q2)) - (1), (3.47)
dQ, 1
9 _ g, (3.48)
dQ, 1
QG _ L, (3.49)
P, fiQn) — fi(Q2) .\ 9
T mm Y (PR )
15 R,
+2Q; <§ P;+ 7 — Ts Ry (f(Q1) +£(Q2)) -F(t) + Ry E) , (3.50)
Py filQa) = fi(Q1) .\ 2f
oo i > (SRR ne) g
15 Ry
mit
Ry = [£(Q1) — £(Q2)] (3.52)
erzeugt.

Wie man sieht, sind die (3.46  3.51) reguldr fiir |r1| = 0 oder |ro] = 0 und lassen sich
damit numerisch stabil iiber Elektron-Kern-Zusammenstofie integrieren. Instabilititen treten
lediglich im Fall von Elektron-Elektron-Zusammenstéfien |rq| = |ry| auf, die jedoch aus Ener-
gieerhaltungsgriinden nur bei Dreifachkollisionen, bei denen beide Elektronen zugleich auf den
Kern stiirzen, stattfinden. Wie von Siegel gezeigt wurde [82], sind derartige Dreifachkollisio-
nen prinzipiell nicht regularisierbar. Numerisch lassen sich jedoch die Bewegungsgleichungen
entlang von Trajektorien, die der Dreifachkollision sehr nahe kommen, problemlos integrieren,
da mit |rq| —|re| auch |ry| und |r3] sehr klein werden und somit die Briiche in (3.50) und (3.51)
bzw. die Zeitableitungen von Py und P stets beschrinkt bleiben. Details zur numerischen

Integration der klassischen Bewegungsgleichungen werden in Anhang A.1 beschrieben.



Kapitel 4

Die kollineare, getriebene

Frozen-Planet-Konfiguration

In den nun folgenden Kapiteln wird die klassische Dynamik der Frozen-Planet-Konfiguration
im externen elektromagnetischen Feld untersucht. Dabei konzentrieren wir uns auf Feldam-
plituden F des elektrischen Feldes, die klein sind im Vergleich zur Coulomb-Anziehung des
inneren Elektrons durch den Kern (d.h. typischerweise weniger als 1% des Kernfeldes betra-
gen), sowie auf im Vergleich zur Frequenz wg der Kepler-Osrzillation des inneren Elektrons
kleine Frequenzen w. Wir untersuchen zunichst den invarianten Unterraum des klassischen
Phasenraums, der der kollinearen Anordnung der Elektronen entlang der Polarisationsachse
des elektrischen Wechselfeldes entspricht. Aufgrund der Separation der die Bewegung der
Elektronen charakterisierenden Zeitskalen (sieche Abschnitt 2.2) 148t sich die Struktur des
kollinearen Phasenraums anhand eines Poincaré-Schnitt-Verfahrens, das in Abschnitt 4.1 be-
schrieben wird, vollstindig visualisieren. Der gemischt reguldr-chaotische Phasenraum der
kollinearen, getriebenen Frozen-Planet-Konfiguration wird in Abschnitt 4.2 analysiert. Er
enthilt reguldre Inseln innerhalb der chaotischen ,See®, die nichtlinearen Resonanzen zwi-
schen dem treibenden Feld und der Dynamik des ungestérten atomaren Systems entsprechen.

I'm folgenden sind die Koordinaten und Impulse des dufleren Elektrons durch

r = (9717.1/1721)T bzw. py = (Pmnpyhpm)T (4.1)

und jene des inneren Elektrons durch

ro = (%2, Y2, ZQ)T bzw. pg = (pm%py?vaQ)T (4.2)

gegeben. Die z-Achse definiert die Polarisation des externen Wechselfeldes. Atomare Einheiten

werden im folgenden durchgehend verwendet.

28



4.1. Phasenraumvisualisierung 29

4.1 Phasenraumvisualisierung

Innerhalb des kollinearen Konfigurationsraums besitzt das klassische Helium-Atom zwei Frei-
heitsgrade. Nach Einfiihrung der Phase wt des treibenden Feldes als zusatzliche Phasenraum-
variable ist der erweiterte Phasenraum der kollinearen, getriebenen Konfiguration damit fiinf-
dimensional. Da keine Konstanten der Bewegung existieren, ist es im Prinzip nicht méglich,
die Struktur des Phasenraums mit einem einfachen Poincaré-Schnitt zu visualisieren. Fiir
Frequenzen des treibenden Feldes, die klein sind im Vergleich zur Frequenz wg der Kepler-
Oszillation des inneren Elektrons (und fiir Feldamplituden, die den Kepler-artigen Charakter
der Bewegung des inneren Elektrons nicht wesentlich verdndern) 14t sich jedoch, unter Aus-
nutzung der approximativen Separation der Zeitskalen (siehe Abschnitt 2.2), ein doppelter
Poincaré-Schnitt durchfithren, durch den der Phasenraum auf einer zweidimensionalen Fliche
bzw. Mannigfaltigkeit dargestellt werden kann.

Generell ist die Methode der Poincaré-Schnitte geeignet, die Dynamik solcher klassischer
Systeme zu visualisieren, deren Zeitentwicklung effektiv innerhalb eines dreidimensionalen
Phasenraums verlauft (dazu z&hlen autonome Systeme mit zwei Freiheitsgraden, sowie pe-
riodisch getriebene Systeme mit einem Freiheitsgrad). Man definiert eine zweidimensionale
Flache bzw. Mannigfaltigkeit innerhalb des dreidimensionalen Phasenraums und registriert
auf dieser ,,Poincaré-Schnittfliche“ simtliche Punkte, in denen die numerisch berechnete Tra-
jektorie diese Fliache mit definierter Orientierung schneidet [78]. Fiihrt man diesen Poincaré-
Schnitt fiir hinreichend viele Trajektorien durch, so erhdlt man ein genaues Abbild der Struk-
tur des Phasenraums, welches die Unterscheidung von reguldren und chaotischen Gebieten
erlaubt. Regulidre Gebiete zeichnen sich als eindimensionale Kurven ab, die die Existenz eines
zusatzlichen (lokalen) Integrals der Bewegung widerspiegeln. Chaotische Trajektorien hinge-
gen, die die Energiehyperfliche (bzw. deren Analogon in periodisch getriebenen Systemen)
vollstindig ausfiillen, werden auf zweidimensionale Teilmengen der Schnittfliche abgebildet.

Fiir hoherdimensionale Phasenrdume ist die Methode der Poincaré-Schnitte zur Visuali-
sierung im allgemeinen ungeeignet. Innerhalb eines vier- bzw. héherdimensionalen Phasen-
raums ist eine zweidimensionale Fliche durch zwei bzw. mehr als zwei Bedingungen festgelegt
und besitzt damit generisch keinen Schnittpunkt mit einer eindimensionalen Trajektorie. Im
Fall der kollinearen, getriebenen Frozen-Planet-Konfiguration 148t sich dieses Problem durch
einen doppelten Poincaré-Schnitt umgehen. Dabei verwenden wir die Tatsache, dafl eine der
Oszillationsmoden des Systems, die Kepler-Mode, durch eine wesentlich kiirzere Zeitskala
gekennzeichnet ist als alle anderen Oszillationsmoden.

Wir fiithren zunidchst einen Poincaré-Schnitt der durch zy, 29, p.1, p.2, t parametrisierten
Trajektorie mit einer vierdimensionalen Hyperfliche durch, die durch die Fixierung des Orts
des inneren Elektrons gemifl zo = 0 definiert ist und damit einem festen Wert der Winkelva-

riable 8 der Kepler-Osrzillation entspricht. Pro Kepler-Zyklus des inneren Elektrons erhalten
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wir damit genau einen Schnittpunkt. Die Phasenraumvariablen, durch die diese Schnittpunkte
beschrieben werden, variieren auf einer im Vergleich zur Kepler-Periode des inneren Elektrons
langsamen Zeitskala. Die zeitlich aufeinander folgenden Schnittpunkte lassen sich damit re-
lativ glatt zu einer effektiv dreidimenisonalen Phasenraumtrajektorie interpolieren. Letzterer
1481t sich entnehmen, welche Werte diese Phasenraumvariablen zu gegebener Zeit ¢ angenom-
men hitten, wenn die Kepler-Oszillation zu diesem Zeitpunkt (und nicht, wie tatsdchlich,
etwas frither bzw. spiter) durch z3 = 0 gegangen wire. An dieser Phasenraumtrajektorie 18t
sich nun durch Fixierung der Phase des treibenden Feldes gemif wt = o mod 27 (fiir festes
o) ein weiterer, stroboskopischer Poincaré-Schnitt vornehmen. Aufgrund der Tatsache, daf§
die Gesamtenergie des Systems fiir feste Phase des treibenden Feldes ndherungsweise konstant
bleibt (zumindest fiir regulire Bewegung, die nicht in Resonanz mit dem treibenden Feld ist),
liegen die Schnittpunkte auf der durch z; = 0 und wit = g definierten, dreidimensionalen
Poincaré-Hyperfliche in der unmittelbaren N&he der zweidimensionalen Untermannigfaltig-
keit konstanter Energie und lassen sich somit auf einer zweidimensionalen Fliche darstellen.

Man beachte, dafl das durch dieses Verfahren gewonnene Abbild der Phasenraumstruktur
nahezu exakt dem entspricht, das ein einfacher, durch die simultane Fixierung von z5 = 0 und
wt = g definierter Poincaré-Schnitt im Grenzfall unendlich langer Integrationszeiten liefert.
Da die Kepler-Mode von der langsamen Oszillation nahezu entkoppelt ist und Resonanzeffekte
zwischen der schnellen Mode und der langsamen Mode damit vernachldssigbar sind, fiillt die
Gesamtheit der Schnittpunkte innerhalb der durch z; = 0 definierten Poincaré-Hyperfliche
praktisch dieselbe reguldre bzw. chaotische Struktur aus wie die durch die oben beschrie-
bene Interpolation der Schnittpunkte gewonnene Trajektorie. Der durch wt = g definierte
Poincaré-Schnitt dieser ,interpolierenden® Trajektorie ist demnach dem durch zo = 0 und
wt = g definierten Poincaré-Schnitt der tatsichlichen Phasenraumtrajektorie des Systems
in sehr guter Ndherung dquivalent.

Die konkrete Methode, mit der der doppelte Poincaré-Schnitt durchgefiihrt wird, ist in
Abb. 4.1 dargestellt. Zundchst wird fiir gegebene Anfangswerte der Orts- und ITmpulsva-
riablen des dufleren Elektrons der Anfangsort des inneren Elektrons durch die Forderung
bestimmt, dafi der Anfangswert der feldfreien (d.h. fiir F' = 0 berechneten) Gesamtenergie
FE = —1 betrigt (der Anfangsimpuls des inneren Elektrons wird p.o = 0 gesetzt). Bei der
numerischen Integration der Trajektorie werden Ort und Tmpuls des duBleren Elektrons zu
jenen Zeitpunkten registriert, zu denen das innere Elektron mit dem Kern zusammenstofit.
Anhand dieser Poincaré-Schnittpunkte wird nun mittels einer kubischen Interpolation be-
stimmt, welche Werte die Variablen des dufleren Elektrons zu Kollisionszeiten ¢ = (o mod
27) /w angenommen hitten. Die auf diese Weise erhaltenen Punkte werden in einem durch
den Ort und den ITmpuls des duleren Elektrons aufgespannten Diagramm aufgetragen.

Abb. 4.2a zeigt das so konstruierte Phasenraumportrait fiir die Feldparameter w = 0.07
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O I I | I |
o 1 2 3
t [Feldzyklen]

Abb. 4.1: Schematische Darstellung des Verfahrens, mit dem der doppelte Poincaré-Schnitt erstellt
wird. Die Abbildung zeigt eine Trajektorie der kollinearen Frozen-Planet-Konfiguration, die einem
externen Feld der Frequenz w = 0.3 und der Amplitude F' = 0.002 ausgesetrt ist. Fiir eine gegebene
Anfangshedingung des Aufleren Elektrons in unserem Beispiel z1(1 =0) = 5.8, p,1(t =0) =0 wird
der Anfangsort zy des inneren Elektrons iiber (2.1) durch die Forderung bestimmt, dafi der Anfangs-
wert, der feldfreien (d.h. fiir ' = 0 berechneten) Gesamtenergie £ = —1 betrigt (der Anfangsimpuls
des inneren Elektrons wird p,» = 0 gesetzt). Tm Verlauf der numerischen Tntegration werden Ort und
Impuls des dufleren Elektrons zu jenen Zeiten registriert, zu denen das innere Elektron am Kernort 1st
(diese Punkte sind in (b) durch Kreise gekennzeichnet). Durch kubische Tnterpolation dieser Punkte
wird ermittelt, welche Werte die Variablen des dufleren Elektrons zu den Zeiten wi = 0 mod 27 ange-
nommen hitten, wire das innere Elektron zu diesen Zeitpunkten mit dem Kern kollidiert (diese Werte
entsprechen den Schnittpunkten der die Interpolation symbolisierenden gepunkteten Kurvenziige mit
den vertikalen, gestrichelten Linien). Die auf diese Weise erhaltenen Wertepaare werden dann im

z1 py1-Diagramm aufgetragen.

explizit anders vermerkt, wird in den im folgenden gezeigten Phasenraumportraits stets diese
Phase verwendet). Wir sehen, dafi sich regulire und chaotische Gebiete innerhalb des Pha-
senraums in priziser Weise unterscheiden lassen. Zum Vergleich zeigen wir in Abb. 4.2¢ einen
einfachen stroboskopischen Schnitt des Phasenraums, bei dem von der numerisch berechneten
Trajektorie Ort und Tmpuls des dufleren Elektrons zu den Zeiten ¢ = (0 mod 27) /w registriert
wurden, ohne Riicksicht auf die Modulation der Trajektorie des dufieren Elektrons durch die
Oszillation des inneren Elektrons. Insbesondere bei kleinen Kernabstinden z;, bei denen sich
die Osrzillation des inneren Elektrons in der Bewegung des dufleren Elektrons relativ deutlich
abzeichnet, liefert der einfache stroboskopische Schnitt ein wesentlich unschdrferes Phasen-
raumbild als der doppelte Poincaré-Schnitt.

Alternativ zur Gesamtenergie 148t sich fiir die Erstellung des Poincaré-Schnitts auch die

durch (2.5) definierte Wirkung N der Kepler-Mode des inneren Elektrons fixieren (Abb. 4.2b).



32 Kapitel 4. Die kollineare, getriebene Frozen-Planet-Konfiguration

0.4

pzl OO r

-0.4

0.4

0.0 -

-0.4 . : !

Abb. 4.2: (a) Phasenraumportrait der kollinearen Konfiguration, das mit, Hilfe der Methode des dop-
pelten Poincaré-Schnitts zur Phase wt = ¢ = 0 fiir die Feldparameter w = 0.07 und F = 0.0005
erstellt wurde. Dazu wurden ca. 20 Trajektorien propagiert, deren Anfangsbedingungen im Bereich
z1 = H.6... 17 entlang der p,1 = 0 Achse des Phasenraums verteilt sind, sowie eine Trajektorie mit der
Anfangsbedingung z; = 14, p,7 = 0.13, um die in diesem Phasenraumgebiet liegende regulére Insel zu
visualisieren. Der Anfangsort des inneren Elektrons wurde jeweils so gewihlt, dal die Gesamtenergie
E = —1 betriagt. Wir sehen, daf} sich reguldare und chaotische Gebiete im Phasenraum in praziser
Weise unterscheiden lassen. (b) Das gleiche Phasenraumportrait wie in (a), mit dem einzigen Unter-
schied, dafl statt der Gesamtenergie die Wirkung des inneren Elektrons gemal N = 1.5 fixiert wurde.
Wir sehen, daB sich dieses Phasenraumportrait von (a) praktisch nicht unterscheidet. (¢) Einfacher
stroboskopischer Schnitt des Phasenraums, bei dem von der numerisch berechneten Trajektorie Ort
und Tmpuls des duBleren Elektrons zu den Zeiten ¢ = (0 mod 27)/w ohne Riicksicht auf zy und p,o
aufgetragen wurden. Wir sehen, dafl dieser stroboskopische Schnitt insbesondere bei kleinen Kern-
abstdnden z; ein wesentlich unscharferes Phasenraumbild als der doppelte Poincaré-Schnitt liefert.
(d) Phasenraumportrait, das durch die direkte Propagation des dufleren Elektrons im effektiven adia-

batischen Potential V( N)

e (2.6) zur Wirkung N = 1.5 gewonnen wurde. Diesem effektiven Potential

ist ein externes elektrisches Wechselfeld der Frequenz w = 0.07 und der Feldamplitude /7 = 0.0005
iiberlagert. Aufgetragen sind Ort und Tmpuls des dufleren Elektrons zu den Zeiten wt = 0 mod 2m.
Wir sehen, dafi dieses stroboskopische Bild sehr gut mit dem durch den doppelten Poincaré-Schnitt

erstellten Phasenraumabbild der exakten Dynamik (b) iibereinstimmt.
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Da diese eine adiabatische Invariante ist (sieche Abschnitt 2.3), ist ihre Konstanz im Lauf der
Zeitentwicklung im allgemeinen besser gewdhrleistet als die der Energie. Das Problem, das
mit der Fixierung der Wirkung verbunden ist, besteht jedoch darin, daf§ die durch feste
Wirkung N definierte Anfangsbedingung des inneren Elektrons sich nur auf kompliziertem
Wege, namlich iiber die numerische Kenntnis des effektiven Potentials (2.6), berechnen 148t
wohingegen bei vorgegebener Gesamtenergie die Position des inneren Elektrons durch die
Auflésung der kollinearen Hamiltonfunktion (2.1) nach zy analytisch bestimmbar ist. Um
die numerische Nachvollziehbarkeit unserer Ergebnisse zu erleichtern, fithren wir daher die
Analyse des klassischen Phasenraums unter der Fixierung der Gesamtenergie F/ = —1 durch.
Fiir den Vergleich mit der Quantenmechanik in Kap. 8 10 hingegen wird es besser sein, die
Wirkung N zu fixieren, die der Hauptquantenzahl des inneren Elektrons entspricht.

Mit geringem numerischen Aufwand 148t sich ein relativ gutes Abbild des Phasenraums
auch durch die direkte Propagation des dufieren Elektrons im effektiven adiabatischen Poten-
tial (2.6), dem ein externes elektrisches Wechselfeld iiberlagert ist, erstellen. Abb. 4.2d zeigt
einen stroboskopischen Poincaré-Schnitt, bei dem der Impuls des in diesem Potential oszillie-
renden Elektrons gegen dessen Ort zur Feldphase wt = 0 aufgetragen ist (die Feldparameter
betragen wie in Abb. 4.2a ¢ w = 0.07, F' = 0.0005). Wir sehen, dafl dieses stroboskopische
Bild sehr gut mit dem durch den doppelten Poincaré-Schnitt erstellten Phasenraumabbild
der exakten Dynamik (Abb. 4.2b) iibereinstimmt. Abweichungen zwischen der exakten Zwei-
Elektronen-Bewegung und der Dynamik im effektiven adiabatischen Potential treten fiir hohe
Feldamplituden F > 0.1 auf, fiir die das innere Elektron durch das externe Feld mafigeblich
beeinfluBlt wird.

4.2 Der Phasenraum der kollinearen, getriebenen Konfigura-

tion

Bei im Vergleich zur Kepler-Frequenz wg des inneren Elektrons kleinen Frequenzen w des
treibenden Feldes und bei im Vergleich zur Coulomb-Kraft des Kerns auf das innere Elektron
kleinen Feldamplituden F wird durch das oszillierende Feld hauptsichlich die Bewegung des
dufleren Elektrons beeinfluBt. Die Dynamik der getriebenen, kollinearen Konfiguration wird
damit im wesentlichen durch das Verhiltnis der Feldparameter F' und w zu den in Abschnitt
2.3 eingefiihrten intrinsischen Skalen Fy und wy bestimmt, welche die langsame Bewegung des
dufleren Elektrons charakterisieren. Die Feldstirkenskala Fr (2.8) gibt die Grofienordnung der
maximalen Feldamplitude F' an, fiir die stabile Dynamik der getriebenen Konfiguration bei
kleinen Frequenzen w zu erwarten ist. Die Frequenzskala wy, die der Frequenz kleiner Schwin-
gungen um die Gleichgewichtslage entspricht, definiert. die Tage der Resonanzen zwischen

dem treibenden Feld und der Oszillation des dufieren Elektrons im ungestérten System. Fiir
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die Gesamtenergie F/ = —1, fiir die wir das System im folgenden untersuchen werden, erhalten

wir aus (2.10) die Wirkung der Kepler-Osrzillation des inneren Elektrons

N ~ 1.5, (4.3)
woraus gemaf (2.7), (2.8) und (2.11)
wr o~ 0.091, (4.4)
Fy o~ 0.006, (4.5)
sowie
wie ~ 1.34 (4.6)
folgt.

Generell ist fiir I < Fr der Phasenraum der getriebenen, kollinearen Konfiguration ge-
mischt reguldr-chaotisch und wird in wesentlichem MafB geprigt durch nichtlineare Reso-
nanzen zwischen dem treibenden Feld und der langsamen Osrillation der Konfiguration um
die Gleichgewichtslage. Um die Storung der Phasenraumstruktur durch diese Resonanzen zu
erdrtern, betrachten wir zundchst den Phasenraum fiir variierende Feldamplitude F bei fester
Frequenz w = 0.05 < wy, fiir die im Phasenraum die fundamentale 7:7 Resonanz auftritt. Bei
dieser nichtlinearen Resonanz oszilliert das duflere Elektron genau einmal innerhalb einer Pe-
riode des treibenden Feldes um die Gleichgewichtslage. Generell bezeichnet die n:m Resonanz
diejenige nichtlineare Resonanz zwischen dem treibenden Feld und dem atomaren System,
bei der m elektronische Oszillationen binnen n Feldzyklen stattfinden.

Abb. 4.3b zeigt das durch den in Abschnitt 4.1 beschriebenen doppelten Poincaré-Schnitt
gewonnene Abbild des Phasenraums fiir w = 0.05 und die Feldamplitude F' = 0.0002, die sehr
klein ist im Vergleich zur intrinsischen Feldstirke Fr. Der Phasenraum ist gemischt reguldr-
chaotisch, hnelt jedoch noch, entsprechend dem Kolmogorov-Arnold-Moser (KAM) Theorem
[78], in groben Ziigen dem Phasenraum des ungestorten Systems (Abb. 4.3a). Nach wie vor
existiert ein grofles Gebiet gebundener reguldrer Bewegung, zentriert um den fundamentalen
periodischen Orbit bei z;1 ~ 5.8, das jedoch auf diejenigen Orbits des ungestérten Systems be-
schridnkt ist, deren duflerer Umkehrpunkt unterhalb zy ~ 25 liegt. Auflerhalb dieses reguldren
Gebiets ist der Phasenraum chaotisch. Trajektorien, die im chaotischen Gebiet starten, fiithren
frither oder spiter zur lonisation, bei der das duflere Elektron ins Unendliche entschwindet.
Dariiber hinaus existieren innerhalb des reguldren Gebiets Substrukturen, die auf nichtlineare
Resonanzen zwischen dem treibenden Feld und der Oszillation des dufleren Elektrons zuriick-
zufiithren sind. In der Nihe dieser Resonanzen ist die feldinduzierte Deformation der Phasen-
raumstruktur besonders ausgeprigt. Aufgrund der Konstanz der Phasenbeziehung zwischen

dem externen, resonanten Antrieb und der Oszillation im ungestérten System kann sich der
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Effekt der kleinen externen Stérung iiber viele Perioden hinweg verstirken bzw. aufschau-
keln; bei nichtresonanter Bewegung hingegen (bei der zu gegebener Phase der ungestorten
Oszillation der Betrag bzw. das Vorzeichen der externen Stérung variiert) verschwindet der
Effekt der kleinen Stérung im Zeitmittel vieler Perioden.

Die regulidre Substruktur bei z; >~ 12.6 entspricht der fundamentalen 1:1 Resonanz zwi-
schen dem treibenden Feld und der Oszillation des dufieren Elektrons. Diese Resonanz weist
im getriebenen System zwei periodische Orbits auf: einen stabilen periodischen Orbit, der
dadurch gekennzeichnet ist, dafl sich das duflere Elektron zur Phase wt = 0 am dufleren Um-
kehrpunkt der Oszillation um die Gleichgewichtslage befindet, und einen instabilen periodi-
schen Orbit, fiir welchen das duflere Elektron sich zur Phase wt = 0 am inneren Umkehrpunkt
befindet. (Streng genommen handelt es sich hier nicht um periodische, sondern um quasipe-
riodische Zwei-Elektronen-Trajektorien, da die Kepler-Bewegung des inneren Elektrons nicht
resonant mit dem treibenden Feld ist; um jedoch die Nomenklatur nicht {ibermafig zu kom-
plizieren, behalten wir die Bezeichnung . periodischer Orbit®.)

In der Umgebung des stabilen periodischen Orbits ist die Dynamik reguldr: Befindet sich
die atomare Konfiguration auf einer Trajektorie, die in der Nihe des stabilen periodischen
Orbits liegt, so wird sie durch das externe Feld derart beschleunigt bzw. gebremst, daf} sie qua-
siperiodische Oszillationen um den stabilen periodischen Orbit vollfiihrt. ITm Phasenraum ist
der stabile periodische Orbit demnach von einer eigenstindigen Torusstruktur umgeben, die
sich im Poincaré-Schnitt in Form von konzentrischen, Ellipsen dhnelnden Strukturen abzeich-
net. In der Umgebung des instabilen periodischen Orbits hingegen ist die Dynamik chaotisch:
Befindet, sich das System anfangs in der Nihe des instabilen periodischen Orbits, so wird es
durch das externe Feld von diesem Orbit weghewegt und vollfiithrt chaotische Bewegung in
der Umgebung der 1:1 Resonanz. Der instabile periodische Orbit erzeugt eine diinne chao-
tische Schicht, die die reguldre Struktur des stabilen periodischen Orbits der feldinduzierten
1:1 Resonanz von den noch unzerstérten Tori der Frozen-Planet-Dynamik trennt.

Am Rande des reguliren Gebiets in Abb. 4.3b existieren weitere Substrukturen, die auf
Resonanzen héherer Ordnung zuriickzufiithren sind. Bei z; ~ 18 und p,; ~ +0.12 etwa erken-
nen wir die der 2:1 Resonanz entsprechenden Strukturen, bei der eine Periode des dufieren
Elektrons innerhalb von zwei Feldzyklen durchlaufen wird (und der stabile bzw. der instabile
periodische Orbit sich demnach jeweils zweimal im Poincaré-Schnitt abzeichnen).

Mit zunehmender Feldamplitude F nimmt die Ausdehnung des reguldren Gebiets der
Frozen-Planet-Dynamik immer mehr ab, wihrend die vom externen Feld erzeugte Substruk-
tur der 1:1 Resonanz immer grofler wird. Fiir F ~ 0.0005 ~ 0.1 F; sind sdmtliche Tori
der intrinsischen Frozen-Planet-Dynamik, die die reguldare Struktur der feldinduzierten 1:1
Resonanz von dem chaotischen Gebiet abschirmen, aufgebrochen (Abb. 4.3¢). Wir erhalten

damit zwei separate regulire ,Inseln“, die von der chaotischen ,,See® umschlossen sind: Die
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Abb. 4.3: Entwicklung des Phasenraums der kollinearen Dynamik der periodisch getriebenen Frozen-
Planet-Konfiguration in Abhangigkeit der Feldamplitude F. Die Feldfrequenz betragt w = 0.05 und
ist so gewahlt, dal die 1:1 Resonanzstruktur im Phasenraum gut ausgepragt ist. (a) F = 0, Pha-
senraumstruktur der ungestorten Frozen-Planet-Konfiguration (vgl. Abb. 2 in [17]); (b) F = 0.0002;
(¢) F = 0.0005; (d) F = 0.001; (¢) F = 0.002; (f) F = 0.003. Mit zunehmender Feldamplitu-
de F = 0...0.0005 wichst die Substruktur der 1:1 Resonanz immer starker an (a  ¢), bis sie bei
F ~ 0.0005 vom intrinsischen reguldren Gebiet der ungestorten Frozen-Planet-Dynamik getrennt wird
(c). Wir erhalten oberhalb F' = 0.0005 zwei separate regulire Tnseln: die ,intrinsische Tnsel“ (zentriert
um z1 ~ 5.7) und die feldinduzierte 1:1 Resonanzinsel (zentriert um z; ~ 13). Mit, weiter zunehmender
Feldamplitude schrumpfen beide Tnseln immer weiter zusammen (d  f), bis der Phasenraum oberhalh

F ~0.003 ~ Fr/2 vollstindig chaotisch wird.
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nintrinsische® Insel, die diejenigen Tori der ungestorten Frozen-Planet-Dynamik umfaft, die
durch das externe Feld noch nicht zerstort worden sind, sowie die Insel der feldinduzierten 1:1
Resonanz. Mit weiter zunehmender Feldamplitude werden die beiden Inseln immer stirker
voneinander getrennt und iiberdecken stetig abnehmende Phasenraumvolumina, bis sie fiir
F'— Fr verschwinden und der Phasenraum vollstindig chaotisch wird (Abb. 4.3f).

Betrachten wir nun den Phasenraum fiir variierende Frequenz bei fester Feldamplitude
F = 0.001, bei der fiir w = 0.05 die Separation zwischen der intrinsischen Insel und der
1:1 Resonanzinsel besonders ausgeprigt ist. Die Entwicklung des Phasenraums in Abhingig-
keit der Frequenz ist in Abb. 4.4 dargestellt. Sie 148t sich unmittelbar anhand des effektiven
Potentials (Abb. 2.4) verstehen, das die langsame Bewegung des dufieren Elektrons um die
Gleichgewichtslage beschreibt. Da die Oszillationsperiode mit zunehmender Anregung im ef-
fektiven Potential zunimmt, werden zum resonanten Antrieb héherenergetischer Trajektorien
zunehmend niederfrequente Felder bendtigt. Umgekehrt verschiebt sich bei einer Zunahme der
Antriebsfrequenz die Resonanz zu niedrigeren Energien innerhalb des effektiven Potentials.

Die zeigt sich in der Tat in Abb. 4.4: Mit zunehmender Frequenz verschiebt sich die 1:1
Resonanzinsel immer mehr zum intrinsischen Gleichgewichtspunkt und wird dabei immer
grofer, auf Kosten der intrinsischen Insel. Bei w = 0.08 schliefilich dominiert die 1:1 Reso-
nanzinsel den regulidren Bereich des Phasenraums; die intrinsische Insel hingegen iiberdeckt
nur noch ein sehr kleines Phasenraumvolumen (Abb. 4.4d). Fiir w > w; ~ 0.091 ist ein re-
sonanter Antrieb der Konfiguration in Form einer 1:1 Resonanz nicht mdéglich. Tatséchlich
finden wir, dafi die 1:1 Resonanzinsel fiir w < w; kontinuierlich iibergeht in die intrinsische
Insel fiir w > wy (Abb. 4.4d f).

Im Frequenzbereich w = 0.08...0.1 treten im Phasenraum verstirkt Resonanzen héherer
Ordnung auf. Bei w = 0.1 (Abb. 4.4f) etwa erkennen wir die zwei Inseln der 2:1 Resonanz (bei
z1 ~ 10.5, p.y ~ +0.15), die drei Inseln der 3:1 Resonanz (bei z; ~ 11.5, p.y ~ +0.2, sowie
bei zy ~ 17.5, p.1 = 0), sowie die Inselketten der 3:2 und der 5:3 Resonanz. n:m Resonanzen
mit n < m treten fiir niedrigere Frequenzen w < wy auf. Fiir w = 0.04 (Abb. 4.4a) etwa
finden wir die reguldre Substruktur der 1:2 Resonanz innerhalb der intrinsischen Insel (bei
z1 ~ 4.5). Mit zunehmender Frequenz verschieben sich die n:m Resonanzen zum intrinsischen
Gleichgewicht und gehen dort fiir w = n/m - wy in die intrinsische Insel iiber.

Der wesentliche Unterschied zwischen der intrinsischen Insel und der feldinduzierten Re-
sonanz besteht darin, dafi innerhalb der intrinsischen Insel die Dynamik im wesentlichen
durch die feldfreien atomaren Wechselwirkungen der Frozen-Planet-Konfiguration geprégt
wird, wihrend die Dynamik der feldinduzierten Resonanz aus der Kopplung der atomaren
Freiheitsgrade und des externen Antriebs resultiert. Dementsprechend zeichnet sich der fun-
damentale periodische Orbit der intrinsischen Insel durch eine nahezu stationire Trajekto-

rie des dufleren Elektrons aus (die dem fundamentalen periodischen Orbit der ungestdrten
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Abb. 4.4: Entwicklung des Phasenraums in Abhédngigkeit der Frequenz bei fester Feldamplitude
F =0.001. (a) w = 0.04; (b) w = 0.06; (¢) w = 0.07; (d) w = 0.08; (e) w = 0.09; (f) w = 0.1. Mit
runehmender Frequenz verschiebt sich die 1:1 Resonanzinsel immer mehr zum intrinsischen Gleichge-
wichtsabstand bei z; ~ 5.7 und wird dabei immer gréfier (a - d)  auf Kosten der intrinsischen Tnsel,
die bei w = 0.08 ein sehr kleines Phasenraumvolumen iiberdeckt (bei 21 ~ 5.7) (d). Bei w ~ w; ~ 0.091
findet ein kontinuierlicher Ubergang von der 1:1 Resonanzinsel fiir w < wy in die intrinsische Insel
fiir w > wy statt (d - f). Dariiber hinaus treten im Phasenraum auch regulare Gebiete auf, die Re-
sonanzen hoherer Ordnung entsprechen: bei w = 0.04 (a) die reguldre Substruktur der 1:2 Resonanz
innerhalb der intrinsischen Tnsel (bei z1 ~ 4.5), sowie bei w ~ w; (d f) die Tnseln der 3:2 Resonanz,
der 5:3 Resonanz, der 2:1 Resonanz (bei zy ~ 10.5, p,q ~ +0.15 in (f)), sowie der 3:1 Resonanz (bei
z1 =~ 11.5, p,y = 0.2, sowie bei z; ~ 17.5, p,1 = 0 in (f)).
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Frozen-Planet-Konfiguration sehr dhnlich ist, siehe Abb. 2.1d), wihrend beim fundamenta-
len periodischen Orbit der feldinduzierten Resonanzinsel das dufiere Elektron in Resonanz
mit dem treibenden Feld um die Gleichgewichtslage oszilliert (Abb. 4.5). Die entsprechende
Zeitentwicklung der Tnseln im Phasenraum 148t sich visualisieren, indem wir doppelte Poin-
caré-Schnitte fiir verschiedene Werte von ¢ erstellen, den Phasenraum also zu verschiedenen
Zeiten bzw. Phasen wt des treibenden Feldes abbilden. Wir sehen in Abb. 4.6, dafi die in-
trinsische Insel innerhalb einer Feldperiode im wesentlichen stationdr bleibt, wahrend die
feldinduzierten Resonanzen in der Poincaré-Schnittebene um die intrinsische Insel entlang

der periodisch getriebenen Trajektorie propagieren.
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Abbh. 4.5: Fundamentaler periodischer Orbit der intrinsischen Tnsel (a) bzw. der feldinduzierten 1:1
Resonanz (b) fiir w = 0.05, F = 0.001. Aufgetragen sind die Koordinaten der Elektronen als Funktion
der Zeit. Wihrend der fundamentale periodische Orbit der intrinsischen Insel einer im wesentlichen
stationdren Trajektorie des dufleren Elektrons entspricht, oszilliert, beim fundamentalen periodischen
Orbit der 1:1 Resonanz das Auflere Elektron in Resonanz mit dem treibenden Feld um die Gleichge-

wichtslage.

Mit zunehmender Frequenz w — wg 148t sich die Separation zwischen den Bewegun-
gen der Elektronen immer weniger gut realisieren, da das innere Elektron durch das externe
Feld zunehmend resonant getrieben wird. Wihrend sich fiir w < wy die gemischt reguldr-
chaotische Dynamik im wesentlichen in der Bewegung des dufleren Elektrons manifestiert
und das innere Elektron im Feldamplitudenbereich F < F7, in dem der Phasenraum ge-
mischt reguldr-chaotisch ist, durch das externe Feld nur sehr schwach beeinflult wird, 148t
sich fiir w > wy die gemischt reguldr-chaotische Dynamik nicht mehr vollstindig anhand
der Bewegung des dufleren Elektrons im effektiven adiabatischen Potential beschreiben. Be-
reits fir w = 0.3 =~ 0.2wg wird bei den hochsten Feldamplituden F ~ 0.2, bei denen der
Phasenraum noch ein regulires Gebiet aufweist, das innere Elektron durch das externe Feld
unmittelbar getrieben (Abb. 4.7). Fiir w — wg sowie fiir w > wr werden beide Elektronen

durch das externe Feld in vergleichbarem Mafle angeregt. Eine detaillierte Analyse der ge-
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Abb. 4.6: Zeitentwicklung der Phasenraumstruktur wiahrend einer Feldperiode 27 /w, dargestellt fiir
die Feldparameter w = 0.05 < wy, F = 0.001 (a, ¢, e), bei denen die 1:1 Resonanzinsel im Phasen-
raum auftritt, sowie fir w = 0.1 > wy, F = 0.001 (b, d, f), bei denen die 2:1 Resonanzinseln sowie
Resonanzinseln héherer Ordnung im Phasenraum auftreten. Die Phasenraumportraits wurden mit der
Methode des doppelten Poincaré-Schnitts fiir verschiedene Werte der Phase wi = g des treibenden
Feldes erstellt: (a, b) ¢q = 0; (¢, d) wo = 7/2; (e, ) ¢y = 7. Auf diese Weise 148t sich die Entwicklung
der reguliaren Tnseln 1m Verlauf einer Feldperiode visualisieren. Wir sehen, dafl die intrinsische Insel
innerhalb einer Feldperiode im wesentlichen stationdr bleibt, wiahrend die feldinduzierten Resonanzen

entlang der resonant getriebenen Trajektorie die intrinsische Tnsel umlaufen.
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mischt reguldr-chaotischen Dynamik in diesem Frequenzbereich erfordert die Visualisierung
eines fiinfdimensionalen Phasenraums, bei dem sich keine Dimension durch die approxima-
tive Separation einer Mode bzw. durch die Existenz einer approximativen Konstanten der

Bewegung eliminieren 158t, und wurde im Rahmen dieser Arbeit nicht durchgefiihrt.
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Abb. 4.7: Stabile Trajektorie, aufgetragen als Funktion der Zeit, fiir w = 0.3 ~ 0.2wg, F = 0.2. Bei
diesen Feldparametern wird das innere Elektron durch das externe Feld derart mafigeblich beeinflufit,
daf} die Zeitentwicklung des Systems nicht mehr durch die Bewegung im effektiven adiabatischen
Potential beschrieben werden kann. Wahrend fiir w < wy bzw. fiir niedrigere Feldamplituden die
Modulation des Kepler-Orbits des inneren Elektrons im wesentlichen allein durch die Bewegung des
AuBeren Elektrons verursacht wird (das seinerseits wiederum durch das externe Feld angetrieben wird),
liegt hier ein unmittelbar nahresonanter Antrieb des inneren Elektrons durch das externe Feld vor.
Dies 148t sich daran erkennen, daf} die Oszillation der Amplitude des Kepler-Orbits im GGegensatz zur
Bewegung fiir w < wy bzw. fiir niedrigere Feldamplituden (siehe Abb. 2.3 baw. Abb. 4.5) gegenphasig
zur Bewegung des dufieren Elektrons erfolgt, also das Maximum erreicht, wenn das duflere Elektron am
mneren Umkehrpunkt ist. Tn der Tat 148t sich der Figur entnehmen, daf§ das innere Elektron in Form
einer 1:5 Resonanz angetrieben wird, bei der innerhalb einer Feldperiode 5 Keplerzyklen durchlaufen

werden.



Kapitel 5
Abweichungen von der Kollinearitit

Unsere vorangehende Analyse des Phasenraums der kollinearen, getriebenen Frozen-Planet-
Konfiguration hat die Existenz reguldrer Inseln gerzeigt, die von der chaotischen See um-
schlossen sind. Dieses Ergebnis mag zu der naiven, vorschnellen Annahme verleiten, daf
diese Inseln auch reguldre Inseln im Phasenraum der dreidimensionalen Bewegung darstellen
und somit langlebigen Quantenzustinden des dreidimensionalen getriebenen Helium-Atoms
entsprechen, die vollstindig entlang der diesen Inseln entsprechenden Orbits lokalisiert sind
(sieche Kap. 6 zur Diskussion der quantenmechanischen Entsprechung reguldrer Inseln des
klassischen Phasenraums). Unterstiitzt wird diese Annahme durch die transversale Stabi-
litdt der ungestérten Frozen-Planet-Konfiguration sowie durch die Tatsache, dafl analoge
reguldre Inseln des eindimensionalen, getriebenen Wasserstoff-Atoms (also des getriebenen
Zwei-Korper-Coulombproblems) in regulire Gebiete im Phasenraum der dreidimensionalen
Bewegung eingebettet sind []3, 84].

Bei der getriebenen Frozen-Planet-Konfiguration 146t sich die Regularitdt des kollinearen
Phasenraums jedoch im allgemeinen nicht auf das dreidimensionale System iibertragen: Es
zeigt sich, dafl die reguldren Gebiete des Phasenraums der kollinearen, getriebenen Konfi-
guration iiberwiegend durch Instabilitdt beziiglich Abweichungen von der Kollinearitit ge-
kennzeichnet sind. Lediglich in der Umgebung von Teilgebieten der intrinsischen Insel sowie
entlang einiger Resonanzen hoher Ordnung ist die Dynamik der nichtkollinearen Konfigura-
tion regulir.

Betrachten wir als typisches Beispiel fiir die Dynamik in der Umgebung eines durch trans-
versale Instabilitit gekennzeichneten (ebiets des kollinearen Phasenraums eine Trajektorie,
deren Anfangsbedingung in der unmittelbaren Nihe des fundamentalen periodischen Orbits
der 1:1 Resonanz fiir w = 0.08, F' = 0.001 (Abb. 4.4d) liegt und eine kleine transversale Kom-
ponente y; (f = 0) = 0.01 in der Position des dufleren Elektrons aufweist. Wir wir in Abb. 5.1
sehen, wird die anfangs kleine Abweichung der Konfiguration von der z-Achse, entlang der

das elektromagnetische Feld polarisiert ist, im Lauf der Zeit verstirkt; beide Elektronen wer-
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Abb. 5.1: Zeitentwicklung einer Trajektorie, die in der transversalen Umgebung der 1:1 Resonanz
des kollinearen Phasenraums fiir w = 0.08, F = 0.001 startet. Aufgetragen sind Ausschnitte der
Trajektorie in den Zeitintervallen (a) ¢ = 0...6 Feldzyklen, (b) # = 6...15 Feldzyklen, (¢) ¢ =
15...30 Feldzyklen, (d) 4 = 95...110 Feldzyklen. Die Anfangswerte betragen z(t = 0) = 8, y1(t =
0) = 001, yo(t = 0) =0, p1(t =0) = pa(t =0) = 0; 22t = 0) ist so gewdhlt, daB die feldfreie
Gesamtenergie anfangs £ = —1 betrigt (der Tndex 1 bezeichnet das auflere, der Tndex 2 das innere
Elektron; das elektrische Wechselfeld ist entlang der z-Achse polarisiert). Wir sehen, daf} die anfanglich
kleine Abweichung der Konfiguration von der z-Achse im Lauf der Zeit verstirkt wird (a), bis die
Konfiguration nach etwa 15 Feldzyklen auf die andere Seite des Kerns kippt (b). Die Konfiguration
vollfithrt anschliefend chaotische Rotationen um den Kern (¢), bis sie nach etwa 100 Feldzyklen

ionisiert (d).
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den von der z-Achse weggetrieben und gelangen, nach etwa 15 Feldzyklen, auf die andere
Seite des Kerns. Die Konfiguration vollfiihrt nun chaotische Rotationen um den Kern. Nach
etwa 100 Feldzyklen bricht die die Frozen-Planet-Konfiguration charakterisierende Korrela-
tion der Elektronen zusammen; es kommt zum Zusammenstofl zwischen den Elektronen und
das System ionisiert.

In diesem Kapitel wird nun das Stabilititsverhalten der Konfiguration in der Umgebung
des kollinearen Phasenraums untersucht. Wir beschreiben zun&chst in Abschnitt 5.1, mit
welcher Methode die Regularitdt bzw. Trregularitdt der Dynamik in der Umgebung des kol-
linearen Phasenraums bestimmt wird. In Abschnitt 5.2 wird die nichtkollineare Dynamik
entlang transversal stabiler und instabiler Resonanzen untersucht. Es wird gezeigt, dafi die
Instabilitit der Dynamik in der Umgebung der Resonanzen durch das Drehmoment verur-
sacht wird, das das externe Feld auf die Konfiguration in der Nihe der Feldpolarisationsachse
ausiibt. Anschlielend werden in Abschnitt 5.3 wesentliche Charakteristika der Dynamik der
chaotisch rotierenden Konfiguration aufgezeigt.

Die Dynamik der nichtkollinearen Konfiguration wird im folgenden anhand von Trajekto-
rien untersucht, die innerhalb des Phasenraums der zweidimensionalen Bewegung des extern
getriebenen Helium-Atoms verlaufen. Aufgrund der Rotationssymmetrie der Konfiguration
beziiglich der z-Achse lassen sich die in diesen Untersuchungen erzielten Ergebnisse (insbe-
sondere zum Phasenraumvolumen transversal stabiler Resonanzen, siehe Kap. 6) auch auf
das dreidimensionale, getriebene Helium-Atom iibertragen. Dies wurde in Stichproben an-
hand von Trajektorien, die nicht auf den zweidimensionalen Konfigurationsraum beschrankt

sind (etwa aufgrund nichtverschwindender Anfangswerte von y; und 23), explizit iiberpriift.

5.1 Bestimmung der transversalen Stabilititseigenschaften

Da die Trajektorie der von der Kollinearitiat abweichenden Konfiguration in Anwesenheit ei-
nes dufleren Antriebs selbst bei Beschriankung auf den zweidimensionalen Konfigurationsraum
innerhalb eines neundimensionalen Phasenraums verlauft (aufgespannt durch die Koordina-
ten und Impulse der Elektronen z;, y;, p.i, pyi sowie durch die Zeit t), ist es nicht méglich, die
transversalen Stabilitdtseigenschaften der getriebenen Frozen-Planet-Konfiguration anhand
von Poincaré-Schnitten zu untersuchen. Um zu bestimmen, ob regulire Gebiete innerhalb
des kollinearen Phasenraums durch Stabilitdt oder Instabilitdt beziiglich Abweichungen von
der Kollinearitit gekennzeichnet sind, betrachten wir daher einzelne, nichtkollineare Anfangs-
bedingungen in der Ndhe des kollinearen Phasenraums und iiberpriifen, ob diese Anfangsbe-
dingungen zu reguldren oder chaotischen Trajektorien fiithren. Als quantitatives Kriterium fiir
Regularitiat bzw. Chaos verwenden wir die Tonisation des Systems. lonisiert das System inner-
halb einer vorgegebenen, hinreichend grofl gewihlten Zeitspanne, so liegt chaotische Dynamik

vor. Bleibt das System hingegen innerhalb dieser Zeitspanne fiir ein endliches Phasenraum-
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volumen von Anfangsbedingungen gebunden, so werten wir dies als Anzeichen fiir regulire
Dynamik innerhalb dieses Phasenraumvolumens.

Konkret betrachten wir das System als ionisiert, wenn der Abstand eines der Elektronen
vom Kern einen vorgegebenen Maximalwert Ri,, iibersteigt (der in unseren Rechnungen
Rion = 100 gesetzt ist) und dieses Elektron dabei einen so grofien Impuls aufweist, dafi es in
dem durch den Kern und das innere Elektron erzeugten Potential nicht gebunden bleibt. Die

Tonisationszeit ist damit definiert durch den Zeitpunkt, zu dem erstmals

r; > Rion (5])
und
1 9 A 1
AFg = —(p; — At - — — >0 5.2
P s AW T (5.2
fiir i = 1 oder 2 gilt, wobei
o
A(t) = ——e.sinwt (5.3)
w

dem ponderomotiven Tmpuls des Elektrons im elektromagnetischen Feld entspricht (e. be-
zeichnet den Einheitsvektor entlang der z-Achse). AFEp gibt somit die negative effektive
Bindungsenergie des dufieren Elektrons an.

Zusdtzlich zur Tonisationszeit berechnen wir, eingedenk des in Abb. 5.1 gerzeigten Verhal-
tens instabiler Trajektorien in der Umgebung des kollinearen Phasenraums, die Kippzeit, die
angibt, zu welcher Zeit die Konfiguration auf die andere Seite des Kerns ,kippt“, und kon-
kret durch den Zeitpunkt definiert ist, zu dem fiir das duBlere Elektron erstmals z; < 0 gilt.
Die Kenntnis der Kippzeit erlaubt wesentliche Riickschliisse iiber die Art der reguldren bzw.
chaotischen Bewegung, die die aus der lonisationszeit gewonnenen Informationen ergdnzen.

Abb. 5.2a 7zeigt die Kipp- und Tonisationszeiten fiir Anfangsbedingungen entlang der durch
p.1 = 0 gekennzeichneten Achse des Phasenraums der kollinearen Konfiguration (Abb. 5.2b)
fir 7 = 0.0005, w = 0.05. Die Kipp- und lonisationszeiten sind in Abh&ngigkeit der z-
Komponente des Anfangsorts des dufleren Elektrons aufgetragen, die in dquidistanten Schrit-
ten der Linge Az = 0.01 von z; = 3.5 bis zy = 20 variiert wurde. Die Abweichung der
Konfiguration von der Kollinearitiat wird durch einen kleinen nichtverschwindenden Anfangs-
wert der y-Komponente des Orts des dufleren Elektrons erzeugt: y(t = 0) = 0.01. Fiir
jede dieser Anfangsbedingungen ist die Trajektorie bis zum lonisationszeitpunkt berechnet
worden. Ist das Atom nach 500 Feldzyklen noch nicht ionisiert, so wird in der Abbildung die
Tonisationszeit (und ebenso die Kippzeit, falls die Konfiguration noch nicht gekippt ist) dieser
maximalen Zeit gleichgesetzt.

Wir sehen in Abb. 5.2a, daf§ die in der transversalen Umgebung der intrinsischen Insel
bzw. der 1:1 Resonanzinsel des kollinearen Phasenraums startende Trajektorie relativ schnell,

namlich bereits nach 10 - 20 Feldzyklen, zum Kippen der Konfiguration fiihrt. Anhand der
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Abb. 5.2: Kipp- und Tonisationsverhalten von Trajektorien, die in der Umgebung des kollinearen
Konfigurationsraums starten. Aufgetragen sind in (a) und (b) die Kippzeiten (dunkle Linie) und die
Tonisationszeiten (helle Linie) in Abhéangigkeit des Anfangsorts z; des dufBieren Elektrons fiir die Feld-
parameter w = 0.05, 7 = 0.0005. Der Anfangswert von z; wurde in dquidistanten Schritten der Lange
Az = 0.01 von z; = 3.5 bis z; = 20 variiert. (zur Hervorhebung reguldren und chaotischen Ver-
haltens sind die Kipp- und Tonisationszeiten benachbarter Werte von z; durch gerade Streckenziige
miteinander verbunden). Die Abweichung von der Kollinearitat wird durch einen nichtverschwinden-
den Anfangswert yi (1 = 0) = 0.01 erzeugt. Die iibrigen Anfangswerte betragen y» = 0, py = p2 = 0;
zo(1 = 0) ist so gewihlt, daBl die feldfreie Gesamtenergie anfangs FF = —1 betragt. (b) Poincaré-Schnitt
des entsprechenden klassischen Phasenraums. Da die Anfangsbedingungen von (a) in der unmittelba-
ren transversalen Umgebung des durch p,; = 0 gekennzeichneten Unterraums des kollinearen Phasen-
raums liegen, 148t sich das Kipp- und Tonisationsverhalten der Konfiguration in eindeutiger Weise den
Strukturen des klassischen Phasenraums zuordnen, die die p,1 = 0 Achse des Phasenraumabbilds in
(b) schneiden. Die reguliren Gebiete etwa, in denen die Konfiguration weder kippt noch ionisiert (und
bei denen Kipp- und Tonisationszeit der maximalen Propagationszeit von 500 Feldzyklen gleichgesetzt
sind), entsprechen den Tori der intrinsischen Tnsel, die zwischen z; ~ 3.9 und z; ~ 4.2 baw. zwischen

z1 ~ 85 und zy ~ 9.5 die p,; = 0 Achse schneiden.
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Tatsache, dafi in der Umgebung dieser reguldren Inseln die Kippzeit eine relativ glatte Funk-
tion des Anfangswertes von zy ist, erkennen wir, daf§ der Kippvorgang, also die Bewegung der
Konfiguration bis zum Kippzeitpunkt, ein im wesentlichen regulirer Prozef} ist. Nach dem
Kippen wird die Dynamik jedoch chaotisch, was daran zu erkennen ist, dafi die Tonisations-
zeit in extrem sensitiver Weise von z((f = 0) abhidngt. In der Umgebung von chaotischen
Gebieten des kollinearen Phasenraums hingegen (etwa bei z; > 16 in Abb. 5.2) ist die Konfi-
guration relativ stabil gegen Kippen und ionisiert gelegentlich, ohne auf die andere Seite des
Kerns gekippt zu sein (in diesem Fall ist in der Abbildung die Kippzeit der Tonisationszeit
gleichgesetzt). Des weiteren existieren in der transversalen Umgebung des Randbereichs der
intrinsischen Insel Gebiete, in denen die Konfiguration weder kippt noch ionisiert. Tatsdchlich
zeigt es sich, dafl in diesen Gebieten die Dynamik reguldr ist.

Das Kipp- und lonisationsverhalten in der Umgebung des kollinearen Phasenraums ist
im wesentlichen unabhingig von der Griofie des Anfangswerts von yy (sofern y; nicht zu grofy
gewahlt wird; fiir y,(f = 0) > 0.1 wird entlang des Randbereichs der intrinsischen Insel in
Abb. 5.2b die Dynamik instabil). Ebensowenig dndert sich das qualitative Kipp- und Tonisa-
tionsverhalten, wenn die anfangliche Abweichung der Konfiguration von der Kollinearitit auf
eine andere Art, etwa durch einen nichtverschwindenden Anfangswert von p,, yo oder pyo,

erzeugt wird.

5.2 Transversal stabile und instabile Gebiete

Mit der im vorigen Abschnitt beschriebenen Methode wurden die reguldren Inseln des kol-
linearen Phasenraums im Hinblick auf transversale Stabilitdt untersucht. Dabei hat sich er-
wiesen, daf} die iiberwiegende Mehrzahl der feldinduzierten Resonanzinseln durch Instabilitédt
beziiglich Abweichungen von der Kollinearitit gekennzeichnet sind. Insbesondere zeichnet sich
auch die 1:1 Resonanz, unabhingig von F und w, durch transversale Instabilitit aus. Stabil
ist die Dynamik lediglich entlang Resonanzen hoher Ordnung, die im kollinearen Phasenraum
fiir w ~ w; auftreten.

Auch entlang des Zentrums der intrinsischen Insel ist die Dynamik instabil. Lediglich der
Randbereich der intrinsischen Insel, dessen Tori die p,; = 0 Achse des kollinearen Phasen-
raums oberhalb zy ~ 9 schneiden, zeichnet sich durch transversale Stabilitdt aus (abgesehen
von der eingebetteten 1:1 Resonanz). Dies ist in Abb. 5.3 gezeigt, in der wir die Kipp- und
Tonisationszeiten entlang des kollinearen Phasenraums fiir verschiedene Feldamplituden bei
fester Frequenz w = 0.05 auftragen. Wie wir in Abb. 5.3 sehen, nimmt mit zunehmendem
I’ die Ausdehnung des stabilen Randbereichs ab, bis dieser oberhalb 7 = 0.0005 vollstindig
verschwindet,.

Bemerkenswert ist in Abb. 5.3, daf} selbst fiir sehr niedrige Feldamplituden die Dyna-

mik entlang der durch die 1:1 Resonanz erzeugten reguldren Substruktur instabil beziiglich
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Abb. 5.3: Kipp- und Tonisationsverhalten in der Umgebung der intrinsischen Tnsel und der 1:1 Resonany
fiir w = 0.05 und variierende Feldamplitude: (al, a2) F = 0.0001; (b1, b2) F = 0.0002; (c1, ¢2)
F = 0.0005; (d1, d2) F = 0.001. (al, b1, c¢1, d1) Kippzeiten (dunkle Linie) und Tonisationszeiten
(helle Linie) als Funktion des Anfangswerts von zy, der in d4quidistanten Schritten der Lange Az = 0.1
von z; = 3.5 bis zy = 20 variiert ist (die iibrigen Anfangswerte sind y; = 0.01, yo = 0, p1 = p2 = 0,
E = —1). (a2, b2, ¢2, d2) Poincaré-Schnitt des entsprechenden kollinearen Phasenraums. Wir sehen,
dafl sowohl das Zentrum der intrinsischen Insel als auch die regulare Struktur der 1:1 Resonanz durch
transversale Instabilitdt gekennzeichnet sind. Stabil ist die Dynamik lediglich entlang des Randbereichs
der intrinsischen Insel, dessen Tori die p,1 = 0 Achse im Poincaré-Schnitt bei z; > 9 schneiden. Wie wir
sehen, nimmt die Grofie dieses stabilen Randbereichs mit zunehmender Feldamplitude ab. Oberhalb
F'=0.0005 (c, d) ist der kollineare Phasenraum vollstidndig durch Tnstabilitét beziiglich Abweichungen
von der Kollinearitit gekennzeichnet (abgesehen von einem kleinen stabilen Gebiet in (d) entlang der

Tori, die die p,1 = 0 Achse bei z; ~ 5 bzw. z; ~ 6.2 schneiden).
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Abweichungen von der Kollinearitdt ist. Abb. 5.4 zeigt eine Trajektorie, die in der unmit-
telbaren transversalen Umgebung des periodischen Orbits der 1:1 Resonanz von Abb. 5.3a
startet. Wir sehen, dafi die Konfiguration im Lauf der 7Zeit von der z-Achse, entlang der das
elektromagnetische Feld polarisiert ist, immer weiter entfernt wird, bis sie schliefilich, nach
etwa 35 Feldzyklen, auf die andere Seite des Kerns kippt.

Diese Instabilitiat ist auf das Drehmoment zuriickzufiithren, das das externe Feld auf die
Konfiguration ausiibt (die aufgrund der starken Winkelkorrelation zwischen den Elektronen
niherungsweise als quasistarrer Korper betrachtet werden kann). Dieses Drehmoment ist de-
sto grofler, je weiter das duflere Elektron vom Kern entfernt ist, je grofier also der ,Hebelarm“
der Konfiguration ist. Wird nun die nahezu kollinear entlang der Feldpolarisation ausgerich-
tete Konfiguration resonant angetrieben, so iiberwiegt innerhalb einer Feldperiode dasjenige
Drehmoment, das am dufferen Umkehrpunkt der Oszillation des dufleren Elektrons vorliegt.
Da beim stabilen periodischen Orbit der kollinearen 1:1 Resonanz die Kraft auf die Elektro-
nen am dufBeren Umkehrpunkt nach innen gerichtet ist, erfihrt die um einen kleinen Winkel
von der Feldpolarisationsachse weggedrehte Konfiguration am dufleren Umkehrpunkt eine
senkrecht zur Symmetrieachse der Konfiguration gerichtete Kraftkomponente, die diese von
der Feldpolarisationsachse wegbewegt. Das iiber eine Feldperiode gemittelte Drehmoment auf
die Konfiguration ist damit so gerichtet, daf} es eine kleine Abweichung der Konfiguration von
der Polarisationsachse verstirkt.

Auch n:1 Resonanzen héherer Ordnung, etwa die 2:1 und die 3:1 Resonanz, zeichnen sich
durch transversale Instabilitdt aus. Tatsdchlich ist auch in der transversalen Umgebung dieser
Resonanzen das iiber n Feldperioden gemittelte Drehmoment auf die Konfiguration so ge-
richtet, daf es diese von der Polarisationsachse wegtreibt. Etwas komplizierter stellt sich die
Situation fiir die 1:n. Resonanzen dar, etwa die 1:2 Resonanz (Abb. 4.4a). In der Umgebung
dieser Resonanz ist das iiber eine Feldperiode gemittelte Drehmoment auf die Konfiguration
so gerichtet, daBl es diese zur Polarisationsachse zuriicktreibt. Jedoch ist das riicktreibende
Drehmoment, so grof, dafl eine anfanglich in Richtung positiver y-Werte ausgelenkte Konfi-
guration durch das externe Feld in die Halbebene negativer y-Werte getrieben wird und dort
eine grofiere Auslenkung von der y-Achse erfihrt, als sie urspriinglich auf der Seite positi-
ver y-Werte aufwies (Abb. 5.5). Durch ein derartiges, die Abweichung von der Kollinearitit
verstirkendes ,,Hin- und Herschaukeln® der Konfiguration entfernt sich diese immer weiter
von der z-Achse und kippt schlieilich auf die andere Seite des Kerns (Abb. 5.5¢).

Neben den transversal instabilen n:1 und 1:» Resonanzen existieren auch n:m Resonanzen
hoher Ordnung, in deren Umgebung die Dynamik stabil ist. Diese n:m Resonanzen zeichnen
sich durch n < m < 2n aus (etwa die 3:2 Resonanz, die 4:3 Resonanz, die 5:3 Resonanz,
etc.) und treten bei Frequenzen w ~ wr im Phasenraum auf. Abb. 5.6 zeigt die Kipp- und

Tonisationszeiten in der Umgebung des kollinearen Phasenraums fiir w = 0.09 und F = 0.001.
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Abb. 5.4: Tnstabile Trajektorie in der Umgebung der 1:1 Resonanz des kollinearen Phasenraums fiir
w = 0.05 und die relativ niedrige Feldamplitude /' = 0.0001. Die anfiangliche Versetzung des dufleren
Flektrons von der z-Achse betriagt y; = 0.001; die iibrigen Anfangswerte lauten z; = 12.6, y» = 0,
p1 = p2 = 0; zo(t = 0) ist so gewihlt, daBl die feldfreie Gesamtenergie anfangs F = —1 betrigt.
Aufgetragen sind Ausschnitte der Trajektorie in den Zeitintervallen (a) ¢+ = 0...9 Feldzyklen, (b)
t =9...20 Feldzyklen, (¢) t = 20...35 Feldzyklen. Aufgrund des Drehmoments, das das externe Feld
auf die Konfiguration ausiibt, wird die Abweichung der Konfiguration von der z-Achse 1m Lauf der
Zeit immer grofler, bis die Konfiguration schliefilich nach etwa 35 Feldzyklen auf die andere Seite des

Kerns kippt.
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Abb. 5.5: Tnstabile Trajektorie in der Umgebung der 1:2 Resonanz des kollinearen Phasenraums fiir
w=0.04 und F = 0.001 (s. Abb. 4.4a). Die anfangliche Versetzung des dufleren Elektrons von der z-
Achse betrdgt y; = 0.001; die iibrigen Anfangswerte betragen zy = 4.5, yo = 0, p1 = pa = 0; 22(1 = 0)
st so gewihlt, dafl die feldfreie Gesamtenergie anfangs F = —1 betriagt. Aufgetragen sind Ausschnitte
der Trajektorie in den Zeitintervallen (a) £ = 0...3 Feldzyklen, (b) t = 3...5 Feldzyklen, (¢) i1 =5...9
Feldzyklen. Tm Gegensatz zur 1:1 Resonanz (bzw. zu n:1 Resonanzen hoherer Ordnung) iibt das externe
Feld auf die Konfiguration ein Drehmoment aus, das diese im Zeitmittel einer Feldperiode zur z-Achse
zuriicktreibt. Wie man sieht, ist dieses riicktreibendes Drehmoment jedoch so grofi, dafi sich im Tauf
der Zeit die Abweichung der Konfiguration von der z-Achse vergréflert. Nach etwa 9 Feldzyklen kippt

die Konfiguration schliellich auf die andere Seite des Kerns.
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Abb. 5.6: Kipp- und Tonisationsverhalten in der Umgebung der 3:2 und der 5:3 Resonanzinseln fiir
w=10.09 ~w;und F = 0.001. (a) Kippzeiten (dunkle Linie) und Tonisationszeiten (helle Linie) als
Funktion des Anfangswerts von zq, der in Aquidistanten Schritten der Lange Az = 0.1 von z; = 3.5 bis
z1 = 20 variiert ist (y1 (1 = 0) = 0.01; alle tibrigen Anfangswerte sind wie in Abb. 5.2). (b) Poincaré-
Schnitt des entsprechenden kollinearen Phasenraums, mit den 3:2 Resonanzinseln bei 21 ~ 4, p,; = 0
und bei zy ~ 10, p,1 ~ +0.1, sowie den 5:3 Resonanzinseln bei z; ~ 12.5, p,1 = 0, bei z; ~ 10.5,
pz1 ~ +0.1 und bei zy ~ 5, p,1 =~ £0.25. Wie wir in (a) sehen, ist die Dynamik in der transversalen
Umgebung dieser Tnseln reguldr: Sowohl entlang der 3:2 Resonanzinsel (bei zq ~ 4) als auch entlang
der 5:3 Resonanzinsel (bei z; ~ 12.5) fiithrt eine kleine Abweichung von der Kollinearitit weder zum
Kippen noch zur Tonisation der Konfiguration. Stabil beziiglich Abweichungen von der Kollinearitat
ist die Dynamik ebenfalls entlang Tori im Randbereich der intrinsischen Insel, die zwischen 2z ~ 4.1

und z; ~ 4.6 sowie zwischen z; ~ 9.4 und 2y ~ 11 die p,; = 0 Achse in der Poincaré-Schnittebene

schneiden.
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Wir sehen, dafl sowohl in der Umgebung der 3:2 Resonanz (deren Insel bei zy ~ 4 die z-
Achse der Poincaré-Schnittfliche schneidet) als auch in der Umgebung der 5:3 Resonanz (bei
z1 ~ 12.5) die Konfiguration weder kippt noch ionisiert.

Die Regularitit der nichtkollinearen Dynamik wird durch das Studium von Trajektorien
bestdtigt, die in der transversalen Umgebung dieser Inseln starten. Betrachten wir als Bei-
spiel eine Trajektorie in der Umgebung der 3:2 Resonanzinseln von Abb. 5.6b. Abb. 5.7 zeigt
die Zeitentwicklung der y-Komponente des Orts des dufleren Elektrons, deren Anfangswert
y1(t = 0) = 0.01 betrdgt. Wir erkennen eine regulidre Bewegung mit quasiperiodischen Oszil-
lationen, die aus verschiedenen Oszillationsmoden zusammengesetzt sind: Neben der radialen
Ogzillation des dufleren Elektrons entlang der 3:2 Resonanz des kollinearen Phasenraums
identifizieren wir eine transversale Komponente, die der in Abb. 5.8 dargestellten, auf einer
Zeitskala von ca. 50 Feldzyklen stattfindenden Schwingung der Konfiguration um die z-Achse
entspricht. Dariiber hinaus treten auch noch langsame Schwankungen der Amplitude dieser
Schwingung auf, die auf einer Zeitskala von ca. 600 Feldzyklen stattfinden.

In dhnlicher Weise verlduft die Bewegung in der Umgebung anderer transversal stabi-
ler Resonanzinseln sowie in der Umgebung des Randbereichs der intrinsischen Insel: Die
Zeitentwicklung der Trajektorie weist in diesen Gebieten ebenfalls quasiperiodische Oszilla-
tionen auf, die aus radialen und transversalen Moden zusammengesetzt sind. Der maximale
Anfangswert von yy, fiir den die Konfiguration stabil bleibt, betrigt fiir diese Gebiete ca.
yi(t = 0) ~ 0.1...0.5 (fiir F ~ 0.0005...0.001). Bei diesem Anfangswert oszilliert y; un-
gefahr zwischen —1 und +1.

FEs ist zu bemerken, dafl die reguldren Gebiete im Phasenraum des zweidimensionalen, ge-
triebenen Helium-Atoms von der diese Gebiete umgebenden chaotischen See prinzipiell nicht
scharf abgegrenzt werden kénnen. Da in einem 2n-dimensionalen Phasenraum die invarianten
Tori n-dimensionalen Mannigfaltigkeiten entsprechen und damit fiir n > 2 keine topologische
Separation verschiedener Phasenraumgebiete erzeugen, sind innerhalb eines hochdimensiona-
len, gemischt reguldr-chaotischen Phasenraums Trajektorien, die in einem reguldren Gebiet
innerhalb dieses Phasenraums starten, stets in der Lage, die reguldren Tori dieses Gebiets zu
umgehen. Als Folge davon tritt in diesen Systemen ,, Arnold-Diffusion auf [78, 85], d.h. eine
prinzipiell irreguldre, typischerweise auf einer sehr langen Zeitskala stattfindende Diffusion
durch das reguldre GGebiet, die es der Trajektorie erlaubt, jedes Phasenraumvolumen innerhalb
und auBlerhalb des regulidren Gebiets zu erreichen. Durch diesen Diffusionsprozefl kénnen ins-
besondere Trajektorien, die am Rand des reguldaren Gebiets starten, dieses innerhalb relativ
kurzer Zeit verlassen. Kine konzeptionell scharfe Unterscheidung zwischen gebundener Bewe-
gung innerhalb des reguldren Gebiets und ungebundener, chaotischer Bewegung auflerhalb
davon ist damit nicht méglich (formal gilt dies auch fiir den fiinfdimensionalen Phasenraum

der kollinearen getriebenen Konfiguration; dort sorgt jedoch die Separation der Zeitskalen
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Abb. 5.7: Stabile Trajektorie in der transversalen Umgebung der 3:2 Resonanz fiir w = 0.09, F' =
0.001 (s. Abb. 5.6). Aufgetragen ist die y-Komponente des Orts des dufieren Elektrons als Funktion
der Zeit, innerhalb von (a) 0...60 Feldzyklen, (b) 0...600 Feldzyklen, (¢) 0...6000 Feldzyklen. Die
Anfangswerte betragen z; = 3.98, y; = 0.01, yo = 0, p1 = p2 = 0; z2(t = 0) ist so gewahlt, dafl
die feldfreie Gesamtenergie anfangs 7/ = —1 betrdagt. Wie wir sehen, entspricht die Trajektorie einer
quasiperiodischen Oszillation, die aus verschiedenen Moden zusammengesetzt ist; wir erkennen die
radiale, der kollinearen 3:2 Resonanz entsprechende Oszillation, die auf der Zeitskala von 1.5 Feldzyklen
ablduft (a), eine transversale Schwingungsmode auf einer Zeitskala von ca. 50 Feldzyklen (b), sowie

langsame Amplitudenschwankungen dieser Schwingung auf einer Zeitskala von ca. 600 Feldzyklen.
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Abb. 5.8: Transversale Schwingung in der Umgebung der 3:2 Resonanzinsel fiir w = 0.09, F = 0.001
(s. Abb. 5.6). Aufgetragen sind die Trajektorien der Elektronen im Konfigurationsraum in den Zei-
tintervallen (a) 1 = 0...8 Feldzyklen, (b) ¢t = 8...16 Feldzyklen, (¢) + = 16...24 Feldzyklen, (d)
t = 24...32 Feldzyklen, (e) t = 32...40 Feldzyklen, (f) t = 40...48 Feldzyklen. Die Anfangsbedin-
gung 1st wie fiir Abb. 5.7 gewahlt.
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Abb. 5.9: Stabile Trajektorie in der Umgebung des Randbereichs der 3:2 Resonanzinsel fiir w = 0.09,
F = 0.001. Aufgetragen ist die y-Komponente des Orts des dufleren Elektrons iiber einen Zeitraum
von 150000 Feldzyklen (a). Die Anfangswerte betragen z(t = 0) = 4, y1(t = 0) = 0.1 (alle iibri-
gen Anfangsbedingungen sind wie in Abb. 5.7). Die Abbildungen (b g) zeigen Ausschnitte dieser
Trajektorie; in (f) und (g) ist die transversale Schwingungsmode der Konfiguration erkennbar (vgl.
Abb. 5.7b). Wir sehen, daf} die Amplitude dieser Schwingung einer langsamen Drift auf Zeitskalen

von 103 ...10% Feldzyklen unterworfen ist.
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der Bewegung der Elektronen dafiir, dal Arnold-Diffusion innerhalb der reguliren Gebiete
extrem stark unterdriickt ist).

Tatsdchlich finden wir am Rande der reguldren Gebiete der getriebenen Frozen-Planet-
Konfiguration Trajektorien, die Signaturen von Arnold-Diffusion auf sehr langen Zeitskalen
aufweisen. Eine derartige Trajektorie, die am Randbereich der 3:2 Resonanzinsel startet, ist
in Abb. 5.9 dargestellt. Wir erkennen Schwankungen der Amplitude der Oszillation, die auf
Zeitskalen von 10° bis 10* Feldzyklen stattfinden. Tm Zentrum der reguliren Gebiete, insbe-
sondere bei der in Abb. 5.7 gezeigten Trajektorie, sind jedoch keine Anzeichen fiir Arnold-

Diffusion festgestellt worden.

5.3 Dynamik instabiler, gekippter Konfigurationen

Die Kippinstabilitit der Konfiguration, also der Umstand, daf} eine kleine Abweichung der
Frozen-Planet-Konfiguration von der Feldpolarisationsachse im Lauf der Zeit verstdrkt wird,
ist ein Phdnomen, das bereits vom extern getriebenen Ein-Elektron-Atom bekannt ist [84].
Ahnlich wie bei der Frozen-Planet-Konfiguration von Helium ist der klassische Phasenraum
des eindimensionalen Wasserstoffatoms im linear polarisierten elektromagnetischen Feld ge-
mischt reguldr-chaotisch und enthilt regulidre Inseln, die nichtlinearen Resonanzen zwischen
dem treibenden Feld und der Kepler-Oszillation des Elektrons entsprechen [83, 84]. Befin-
det, sich das System nun anfangs in der transversalen Umgebung einer solchen Resonanz,
so wird das Elektron (bzw. genauer, dessen Runge-Lenz-Vektor) im Lauf der Zeit von der
Feldpolarisationsachse weggetrieben und kippt schlieilich auf die andere Seite des Kerns. Die
Bewegung nach dem Kippen ist jedoch reguldr; das Elektron gelangt auf die andere Seite
des Kerns und vollfiihrt dort, wie zum Anfangszeitpunkt, resonante Oszillationen entlang der
Feldpolarisationsachse, um anschlieflend erneut auf die gegeniiberliegende Seite des Kerns zu
kippen [84, 18].

Bei der Frozen-Planet-Konfiguration des Helium-Atoms hingegen ist die Dynamik der
gekippten Konfiguration fiir alle betrachteten Feldamplituden und Frequenzen irreguldir und
fiithrt frither oder spater zur Tonisation. Die Zeitskala, innerhalb der typischerweise Tonisation
stattfindet, ist dabei stark abhingig von der Feldamplitude und der Frequenz des treibenden
Feldes. Fiir sehr niedrige Feldamplituden bzw. fiir hohe Frequenzen erweist sich die gekippte
Konfiguration als sehr langlebig; die Konfiguration vollfiihrt, wie in Abb. 5.10 fiir w = 0.05
und F = 0.0001 zu sehen ist, nach dem Kippen nahezu regulidre Rotationen um den Kern, die
durch das duflere Feld nur auf einer sehr langen Zeitskala gestort werden. Fiir hohe Feldam-
plituden bzw. niedrige Frequenzen hingegen ist die Dynamik der gekippten Konfiguration
deutlich chaotisch und fiihrt bereits nach wenigen Rotationen zur lonisation (Abb. 5.11).

Bemerkenswert ist dabei, daf selbst fiir relativ hohe Feldamplituden die die Frozen-Planet-

Konfiguration charakterisierende Winkelkorrelation zwischen den Elektronen im Verlauf der



58 Kapitel 5. Abweichungen von der Kollinearitét

0 e

>
0.

Y, 0 Ww}

-20 | ‘
0 100 200

WV
WY

20 w

-20 b2

Yi 07

e e.e—e—ee—s--
300 400

A
Wy

0

20 cl

[ ——

Y, 0

-20 ‘ !
500 60
t [Feldzyklen]

Abb. 5.10: Langlebige Trajektorie in der Umgebung der 1:1 Resonanzinsel des kollinearen Phasenraums
fiir w = 0.05 und die relativ niedrige Feldamplitude F = 0.0001. Aufgetragen sind die z- und die y-
Komponente des dufieren Elektrons als Funktion der Zeit fiir (al, a2) ¢ = 0...210 Feldzyklen, (b1, b2)
t = 210...420 Feldzyklen, (c1, ¢2) t = 420...630 Feldzyklen. Die Anfangswerte betragen z; = 12.6,
y1 = 0.01, yo = 0, p1 = p2 = 0; z2(t = 0) ist so gewihlt, daBl die anfingliche Gesamtenergie £ = —1
betragt. Wir sehen, dafl die Konfiguration nahezu regulare Rotationen vollfithrt, die durch das externe
Feld nur sehr schwach bzw. nur auf sehr langen Zeitskalen ( ~ 10...100 Feldzyklen) gestort werden.
Nach ca. 620 Feldzyklen ionisiert die Konfiguration.
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Abb. 5.11: Trajektorie in der Umgebung der 1:1 Resonanzinsel des kollinearen Phasenraums fiir
w = 0.05 und die relativ hohe Feldamplitude F' = 0.001. Aufgetragen sind die z- und die y-Komponente
des duBeren Elektrons als Funktion der Zeit Die Anfangswerte betragen zy = 12.8, y; = 0.01 (y = 0,
p1 = p2 = 0; E = —1). Wir erkennen, daBl die Dynamik nach dem Kippen der Konfiguration im
Gegensatz zu Abb. 5.10 deutlich irregulir ist. Nach etwas mehr als 100 Feldzyklen kommt es zu einer
kollisionsdhnlichen Wechselwirkung zwischen den Elektronen, die bewirkt, dafi das dufiere Elektron
auf eine sehr weit vom Kern wegfithrende Kepler-Bahn gerit, jedoch noch gebunden bleibt. Der ei-
gentliche Tonisationsvorgang vollzieht sich knapp 100 Feldzyklen spéter, wenn das duflere Elektron

zum Kerngebiet zuriickkehrt und erneut mit dem inneren Elektron kollidiert.
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Abb. 5.12: Trajektorie in der Umgebung der 1:1 Resonanzinsel des kollinearen Phasenraums fiir w =
0.08 und F = 0.001. Aufgetragen ist die Zeitentwicklung der z Komponenten z;, zo und der y

Komponenten yq, yo des dufleren bzw. des inneren Elektrons. Die Anfangswerte betragen zy (t = 0) = §,
y1(t=0)=10.01 (y2 =0, p1 =p2=0; F = —1) (siche Abb. 5.1). Zu beachten ist hier die ausgeprigt
starke Winkelkorrelation zwischen den Elektronen: Wie wir durch Vergleich von (a) mit (b) bzw. von
(¢) mit (d) sehen, vollfiihrt das innere Elektron die exzentrischen Kepler-Oszillationen stets auf der
Seite des Kerns, auf der sich auch das duflere Elektron befindet. Sogar nach dem Tonisationsvorgang

(nach ca. 105 Feldzyklen) bleibt diese Form der Winkelkorrelation aufrechterhalten.

Rotationen erhalten bleibt. Wie man in Abb. 5.12 sieht, vollfiihrt das innere Elektron Kepler-
artige Oszillationen im wesentlichen stets auf der Seite des Kerns, auf der sich das duflere
Elektron befindet. Die daraus resultierende Abschirmung des dufleren Elektrons vom Kern-
bereich bewirkt, dafi auch fiir hohe Feldamplituden die T.ebensdauer der gekippten Konfi-
guration relativ hoch ist, verglichen mit der typischen lLebensdauer einer Konfiguration, bei
der sich beide Elektronen (bei gleicher Gesamtenergie) im wesentlichen auf entgegengesetzten
Seiten des Kern befinden (wie wir in Abb. 2.1c gesehen haben, betrigt die L.ebensdauer einer
derartigen eZe-dhnlichen Konfiguration typischerweise wenige Kepler-Zyklen).

Wie bereits in Abschnitt 5.1 bemerkt wurde, fithrt die Tatsache, daf3 die Dynamik nach

dem Kippen chaotisch ist, zu einer extrem sensitiven Abh&ngigkeit der lTonisationszeit von
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dem Anfangswert z;(f = 0). Dies ist in Abb. 5.13 verdeutlicht, in der die Tonisationszeiten in
der Umgebung der 1:1 Resonanzinsel fiir w = 0.06, F' = 0.001 (Abb. 4.4b) in Abhdngigkeit
vom Anfangsort z; aufgetragen sind, der in dquidistanten Schritten der Linge Az = 107
zwischen z;y = 10.9 und z; = 10.91 variiert ist (die anfingliche Abweichung von der Kolli-
nearitiit betriigt y; = 1077). Wir erkennen eine fraktale Struktur, die typisch fiir chaotische
Streuvorginge ist [86] (in der Tat entspricht die Tonisation aus einem irreguldren Gebiet des
klassischen Phasenraums einem ,halben® chaotischen Streuvorgang: durch Propagation des
Systems in negativer Zeitrichtung, die ebenfalls zur Tonisation fiihrt, 188t sich die chaotische
Streutrajektorie vervollstandigen).

Auffillig ist in Abb. 5.13 die Existenz vereinzelter Anfangsbedingungen, bei denen die
Konfiguration extrem langlebig ist, d.h. nach einer extrem langen Zeitskala ionisiert. Das
Studium der diesen Anfangsbedingungen entsprechenden Trajektorien 18t erkennen, dafl
diese Langlebigkeit auf das Auftreten von Kollisionen bzw. kollisionsdhnlichen Wechselwir-
kungen zwischen den Elektronen zuriickzufiihren ist, bei denen eines der Elektronen einen
derart hohen Energieiibertrag erhilt, dafl dessen kinetische Energie (abziiglich des feldindu-
zierten Anteils) knapp unterhalb derjenigen Energie liegt, die nétig wire, um dem durch den
Kern und das innere Elektron erzeugten Potential zu entkommen. In diesem Fall vollfiihrt das
duflere Elektron eine extrem weit vom Kern wegfiihrende Kepler-Bewegung, um nach einer
Zeitspanne von

rox |[AFg| 2, (5.4)

wobei |A Fg| die effektive Bindungsenergie (5.2) dieses Elektrons bezeichnet, zum Kerngebiet
zuriickzukehren und erneut mit dem inneren Elektron zu kollidieren, worauf dann schliefilich
die Tonisation erfolgt (sieche Abb. 5.11).

Unter der Annahme, dafl nach derartigen Kollisionen s&mtliche Bindungsenergien des
duBleren Elektrons innerhalb eines sehr kleinen Intervalls unterhalb AFp = 0 mit gleicher
Wahrscheinlichkeit auftreten (diese Annahme sollte gerechtfertigt sein, da der Energieiiber-
trag bei einer Kollision a priori nicht davon abhdngt, wie weit nach dieser Kollision die
kinetische Energie des dufieren Elektrons von der zur lonisation nétigen Fnergie entfernt
ist), ergibt sich aus (5.4), dafi die Wahrscheinlichkeit dafiir, dafi das duflere Elektron nach
der Zeitspanne 7 noch nicht zum Kerngebiet zuriickgekehrt ist, proportional 72/3 abnimmt.
Auf diese Weise erhalten wir, daB die ,,Uberlebenswahrscheinlichkeit“ der getriebenen Frozen-
Planet-Konfiguration (d.h. die Wahrscheinlichkeit, dafi die Konfiguration nach der Zeit £ noch
nicht ionisiert ist) fiir grofle Zeiten t sehr langsam, namlich proportional +2/3 abfillt.

Tatsichlich finden wir eine derartige algebraische Abnahme der Uberlebenswahrschein-
lichkeit in der Umgebung der transversal instabilen Gebiete des kollinearen Phasenraums. In
Abb. 5.14 st als Funktion der Zeit der Anteil derjenigen in der Umgebung der 1:1 Resonanzin-
sel fiir w = 0.06, F = 0.001 startenden Trajektorien aufgetragen, bei denen die Konfiguration
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Abb. 5.13: Tonisationszeiten in der Umgebung des Zentrums der kollinearen 1:1 Resonanz fiir w = 0.06,
F =0.001. Aufgetragen sind die Tonisationszeiten von jeweils 500 Anfangsbedinungen, die Aquidistant
zwischen (a) z; = 10.9 und 2z = 10.95 bzw. (b) zy = 10.92 und z; = 10.925 verteilt sind. Die
iibrigen Anfangswerte betragen y1 = 107° yo = 0, p1 = p2 = 0, F = —1. Die VergréBerung (b) zeigt
deutlich die fraktale Abhangigkeit der Tonisationszeit vom Anfangsort z1(f = 0). Auffallend ist die
Fxistenz vereinzelter Anfangsbedingungen, bei denen die Konfiguration extrem langlebig ist. Diese
Anfangsbedinungen entsprechen Trajektorien, bei denen eines der Elektronen nach einer Kollision
bzw. kollisionsdhnlichen Wechselwirkung mit dem anderen Elektron auf eine extrem hochangeregte
(jedoch noch gebundene) Kepler-Trajektorie beférdert wird (s. Abb. 5.11) und somit erst nach sehr

langer Zeit zum Kerngebiet zuriickkehrt und erneut mit dem inneren Elektron wechselwirkt.
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nach dieser Zeit noch nicht ionisiert ist (dabei wurden insgesamt 5000 Trajektorien beriick-
sichtigt, deren Anfangsbedingungen dquidistant zwischen zy = 10.9 und z; = 10.95 liegen).
Wir erkennen, daf8 der Anteil der nichtionisierten Trajektorien fiir grofie Zeiten proportional
t=% abnimmt. Der Zerfallsexponent betrigt dabei ca. z ~ 0.9 und liegt damit in der Nihe
der Vorhersage z = 2/3. Auch bei anderen Feldparametern bzw. in der Umgebung anderer
Gebiete des kollinearen Phasenraums finden wir fiir grofie Zeiten eine algebraische Abnahme
der Uberlebenswahrscheinlichkeit, die durch Zerfallsexponenten in der Nihe von z = 2/3
gekennzeichnet, ist.

Eine algebraische Abnahme der Uberlebenswahrscheinlichkeit proportional +=2/3 konnte
auch fiir das eindimensionale Wasserstoffatom im externen elektrischen Wechselfeld gerzeigt
werden [87] (und ist dort ebenfalls auf das Auftreten hochangeregter Kepler-Trajektorien
zuriickzufiithren). Andere Studien zum algebraischen Zerfall im eindimensionalen getriebenen
Wasserstoffatom [88] haben jedoch gezeigt, dafi in diesem System auch andere algebraische
Zerfallskomponenten mit Exponenten im Bereich z ~ 1...2 existieren (siehe auch [89]). Diese
Zerfallskomponenten sind auf die Existenz reguldrer Gebiete im gemischt reguldr-chaotischen
Phasenraum zuriickzufiihren, in deren unmittelbarer Umgebung aufgrund der Anwesenheit
von Cantori[90] (d.h. von aufgebrochenen Tori im chaotischen Bereich des Phasenraums) der
chaotische Transport stark unterdriickt ist [90, 91, 92]. Es ist daher im allgemeinen davon
anszugehen, daf die Zeitentwicklung der Uberlebenswahrscheinlichkeit durch eine Vielzahl
unterschiedlicher Zerfallskomponenten geprigt ist, die unterschiedliche Zerfallsexponenten

aufweisen und auf verschiedenen Zeitskalen bedeutsam werden (siehe auch [93]).
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Abb. 5.14: Zeitentwicklung der Uberlebenswahrscheinlichkeit, der Konfiguration in der Umgebung des
Zentrums der kollinearen 1:1 Resonanzinsel fiir w = 0.06, F = 0.001. Aufgetragen ist der Anteil der
nach der Zeit t noch nicht ionisierten Trajektorien, die in der transversalen Umgebung der 1:1 Reso-
nanz starten. Dabel wurden insgesamt 5000 Trajektorien beriicksichtigt, deren Anfangsbedingungen
Aquidistant zwischen z; = 10.9 und z; = 10.95 verteilt sind (die iibrigen Anfangswerte betragen
y1 = 107° yo = 0, p1 = p2 = 0, £ = —1). Wir sehen, daB die zeitliche Abnahme der Uberlebens-
wahrscheinlichkeit in guter Naherung durch eine algebraische Funktion P o 7% beschrieben wird.
Der Zerfallsexponent liegt fiir grofie Zeiten bei z ~ 0.9 (helle Linie) und liegt damit in der Nahe der
Vorhersage z = 2/3, die sich aus der Betrachtung hochangeregter Kepler-Trajektorien der Elektronen

ergibt.



Kapitel 6

Konsequenzen fiir das

quantenmechanische System

In diesem Kapitel wird nun erdrtert, welche Konsequenzen sich aus der Existenz der reguliren
Inseln im klassischen Phasenraum der extern getriebenen Frozen-Planet-Konfiguration fiir
das reale, quantenmechanische Helium-Atom ergeben. Speziell interessieren wir uns fiir das
Auftreten quantenmechanischer Figenzustinde, die vollstindig entlang der reguldren Inseln
des klassischen Phasenraums lokalisiert sind. In Abschnitt 6.1 werden zunichst die allge-
meinen Eigenschaften derartiger Zustinde erértert. Anschlielend wird in Abschnitt 6.2 und
6.3 unter Verwendung der semiklassischen Einstein-Brillouin-Keller (EBK) Quantisierungs-
vorschrift abgeschitzt, ab welcher Anregung des Systems (d.h. ab welcher Hauptquantenzahl
des inneren Elektrons) quantenmechanische Zustinde, die entlang der reguldren Inseln der ge-
triebenen Frozen-Planet-Konfiguration lokalisiert sind, im Floquet-Spektrum des getriebenen

Helium-Atoms 7zu erwarten sind.

6.1 Quantenmechanische Entsprechung regulirer Inseln

Generell impliziert das Vorhandensein eines reguldren Gebiets innerhalb eines gemischt re-
guldr-chaotischen Phasenraums die Existenz einer Serie von Zustinden im entsprechenden
Quantensystem, die im Phasenraum auf diesem regulidren Gebiet lokalisiert sind. Diese Zu-
stinde ergeben sich im wesentlichen aus der semiklassischen Quantisierung der Bewegungs-
moden, die die Dynamik innerhalb dieses Gebiets charakterisieren. Aufgrund der lokalen Inte-
grabilitdt der klassischen Mechanik, die bewirkt, daf§ klassisch kein Transport vom reguldren
Gebiet in die dieses Gebiet umgebende chaotische See erfolgt (abgesehen von Arnold-Diffusion
in hochdimensionalen Systemen), ist die Aufenthaltswahrscheinlichkeit eines derartigen 7Zu-
stands im Phasenraum vollstindig auf das regulire Gebiet konzentriert. Eine Kopplung dieser

Zustidnde an die chaotische See ist quantenmechanisch nur iiber ,dynamisches Tunneln® durch
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die mehrdimensionalen reguliaren Phasenraumbarrieren moglich [94, 95]. Tn einem atomaren
System entspricht eine reguldre Insel des gemischt regulidr-chaotischen klassischen Phasen-
raums einer Serie von entweder gebundenen Zustinden (etwa bei Wasserstoff im Magnetfeld
[96]) oder autoionisierenden Zustinden, die sich aufgrund dieser Tunnelkopplung durch sehr
kleine Zerfallsbreiten auszeichnen. Ein Beispiel fiir derart langlebige Zustinde sind die bereits
in Kap. 2.2 erwdhnten Frozen-Planet-Zustidnde in Helium, die sich durch eine scharf entlang
des klassischen Frozen-Planet-Orbits konzentrierte Aufenthaltswahrscheinlichkeit auszeich-
nen (siehe Abb. 12 in [17]).

Fine im Prinzip analoge Situation liegt bei periodisch getriebenen Systemen vor. Auf-
grund der expliziten Zeitabhdngigkeit der externen Stérung wird die quantenmechanische
Dynamik dieser Systeme jedoch nicht durch stationdre Eigenzustinde, sondern durch zeitlich
periodische Quasienergie-Zustinde des entsprechenden Floquet-Operators (siehe Abschnitt
8.2) beschrieben. Eine regulire Insel des klassischen Phasenraums entspricht im getriebenen
atomaren System damit einer Serie von zeitlich periodischen, autoionisierenden Zustinden
des Floquet-Systems, deren Wellenfunktionen entlang dieser reguliren Insel lokalisiert sind
und der Zeitentwicklung dieser Insel im Verlauf einer Periode des treibenden Feldes folgen.

Besonders ausgeprigt ist die Zeitabhiingigkeit der Wellenfunktion auf reguldren Inseln,
die durch nichtlineare Resonanzen zwischen dem externen Antrieb und der Dynamik des
ungestorten Systems erzeugt werden [97, 98]. Ein auf einer derartigen Resonanzinsel lokali-
sierter Floquet-Zustand entspricht im Konfigurationsraum einem Wellenpaket, das der Os-
zillation der Insel entlang der resonant getriebenen Mode des ungestérten Systems folgt und
aufgrund seiner periodischen Zeitabhingigkeit im Gegensatz zu ,konventionellen® Wellenpa-
keten, die durch kohirente Uberlagerungen von Eigenfunktionen im ungestérten System ge-
bildet werden, keiner Dispersion unterliegt [18]. Unter einem anderen Blickwinkel betrachtet,
wird dasjenige Wellenpaket, das durch die diesem Floquet-Zustand entsprechende kohédrente
Uberlagerung von Eigenfunktionen des ungestérten Systems erzeugt wird, durch die An-
wesenheit des externen Feldes derart in Form gehalten, dafi es, ohne zu dispergieren, der
klassischen Oszillationsmode folgt und nur aufgrund der nichtverschwindenden Tonisations-
breite des Floquet-Zustands auf der dieser Breite entsprechenden Zeitskala zerfdllt. Derartige
nichtdispergierende Wellenpakete — mit Lebensdauern bis zu 10° Feldzyklen  wurden zu-
erst in Wasserstoff im linear polarisierten elektromagnetischen Feld entlang der 1:1 Resonanz,
des kollinearen Phasenraums gefunden [18, 19, 99], spiter auch in Wasserstoff im zirkular
polarisierten [20, 21, 100, 101, 102] bzw. elliptisch polarisierten Feld [103] entlang analoger
Resonanzinseln des klassischen Phasenraums nachgewiesen.

Die Existenz feldinduzierter Resonanzinseln im Phasenraum der getriebenen Frozen-Planet-
Konfiguration deutet darauf hin, daff im quantenmechanischen, getriebenen Helium-Atom

nichtdispergierende Zwei-Elektronen-Wellenpakete erzeugt werden kdnnen, also nichtdisper-
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gierende Wellenpakete, deren zeitlich periodischer Charakter sich in den Koordinaten beider
Elektronen manifestiert (wie wir bereits in Abb. 2.3 gesehen haben, manifestiert sich die
langsame Oszillation um die Gleichgewichtslage, die vom externen Feld resonant getrieben
wird, sowohl in der Bewegung des dufleren als auch in der des inneren Elektrons). Diese
nichtdispergierenden Wellenpakete sind entlang feldinduzierter Resonanzen lokalisiert, die
reguldren Gebieten im Phasenraum der dreidimensionalen Bewegung entsprechen, sich also
durch Stabilitdt beziiglich Abweichungen von der Kollinearitit auszeichnen. Wir erwarten also
fiir die extern getriebene Frozen-Planet-Konfiguration nichtdispergierende Zwei-Elektronen-
Wellenpakete entlang der transversal stabilen Resonanzen des kollinearen Phasenraums (etwa
der 3:2 Resonanz). Entlang des transversal stabilen Bereichs der intrinsischen Insel hingegen

sind Floquet-Zustinde zu erwarten, die im wesentlichen stationidr sind.

6.2 Quantisierung der Inseln des kollinearen Phasenraums

Von besonderem Interesse ist die Frage, ab welchen Quantenzahlen mit der Existenz von auf
reguldren Inseln des klassischen Phasenraums lokalisierten Figenzustinden des quantenme-
chanischen Systems zu rechnen ist. Kine Abschitzung dieser Mindestquantenzahl 148t sich
mittels des semiklassischen Einstein-Brillonin-Keller (EBK) Quantisierungskriteriums gewin-
nen [29, 31, 104]. Das EBK-Kriterium besagt, daf} der zu quantisierende Torus fiir jede ge-
schlossene Kurve C im Phasenraum, die auf der Hyperfliche des Torus verlduft (und diesen

im gleichen Umlaufsinn wie die klassische Trajektorie umrundet), die Bedingung

.épdq = 9 h (n—l— %) (6.1)

fiir eine nichtnegative, ganze Zahl n erfiillen muf} (h = 1 im folgenden). Dabei bezeichnen q, p
die kanonisch konjugierten Koordinaten und Tmpulse des Systems. u steht fiir den ,,Maslov-
Index“ [105], der die Anzahl der Umkehrpunkte der klassischen Bewegung entlang dieser
Kurve angibt [106].

Damit gemiB 6.1 zumindest, ein Quantenzustand auf einer reguldren Insel des klassischen
Phasenraums existiert, mufi die Insel mindestens so grof} sein, daf3 der duflerste Torus die-
ser Insel (d.h. derjenige invariante Torus, der sich durch die héchsten Wirkungen in den
die reguliare Dynamik in dieser Insel charakterisierenden Bewegungsmoden auszeichnet) die

Quantisierungsbedingung (6.1) fiir n = 0 erfiillt:

épdq Zﬂg (6.2)

Typischerweise iiberpriift man diese Bedingung anhand von topologisch unabhdngigen Kur-
ven C; , von denen jede innerhalb der durch ein Paar kanonisch konjugierte Variablen g¢;,

p; aufgespannten Phasenraumebene verlduft [53, 107] und innerhalb dieser Ebene den Torus
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genau einmal umrundet. Das Wirkungsintegral (6.2) entlang einer solchen Kurve ist damit
durch die Querschnittsfliche des Torus in der entsprechenden Phasenraumebene gegeben.
Innerhalb des Phasenraums der kollinearen getriebenen Konfiguration 148t sich eine solche
semiklassische Abschiatzung relativ leicht durchfiihren. Da die Bewegungen der Elektronen im
kollinearen Konfigurationsraum approximativ separieren, ist es naheliegend, das Wirkungs-
integral (6.2) fiir diejenigen Kurven Cy, Co 7u betrachten, die die reguldre Insel innerhalb der
durch zy und p,y bzw. durch z5 und p,9 aufgespannten Phasenraumebenen, bei festen Werten
der jeweils anderen Phasenraumvariablen sowie der Phase wt des treibenden Feldes, genau
einmal umrunden. Wihrend das Integral entlang der Kurve C5, die im wesentlichen der Pha-
senraumtrajektorie der Kepler-Oszillation entspricht, durch die Wirkung N der Kepler-Mode
gegeben ist (analog (2.5)) und somit (6.2) fiir ¥ = —1 erfiillt, liefert das Integral entlang
Ci die Querschnittsfliche A der reguldren Insel innerhalb der Poincaré-Schnittebene. (Der
Maslov-Index ist bei beiden Kurven p = 2.) Die kritische Bedingung fiir die Existenz eines

Quantenzustands auf dieser reguldren Insel lautet damit
A > . (6.3)

Fiir die reguldren Inseln des kollinearen Phasenraums ist diese Bedingung bei der Gesamt-
energie I/ = —1 bzw. bei der Wirkung N = 1.5 im allgemeinen nicht erfiillt. Anhand der
Querschnittsfliche A 148t sich jedoch unmittelbar bestimmen, wie das System gemif (3.5
3.10) skaliert werden muf}, um (6.3) zu erfiillen: der dazu nétige Skalierungsparameter A muf}

so grof3 sein, daf die transformierte Querschnittsfliche
A= AN > ¢ (6.4)

geniigt. Da N unter der Skalierungstransformation in der gleichen Weise wie A transformiert
wird, ergibt sich damit der Mindestwert von N, fiir den die Quantisierungsbedingung (6.2)
erfiillt ist, zu

Nuin ~ 1.5AY2 = 157/A. (6.5)

Dieser Wert entspricht also der Mindesthauptquantenzahl des inneren Elektrons, ab der im
kollinearen System Quantenzustinde auf der reguldren Insel des klassischen Phasenraums
lokalisiert sind. Konkret erhalten wir fiir die kollineare 1:1 Resonanzinsel bei w = 0.05, F' =
0.001 (Abb. 4.3d): Ny ~ 13.

Genau genommen mufl ebenfalls das Wirkungsintegral innerhalb der Ebene betrachtet
werden, die durch die Zeit (bzw. die Phase des treibenden Feldes) und deren kanonisch kon-
jugierte Variable, die Energie, aufgespannt wird. Da die dem Torus folgende Kurve innerhalb
dieser Ebene jedoch keine Umkehrpunkte aufweist (die Zeit verlauft nie ,,riickwérts®) ist der
Maslov-Index dieser Kurve p = 0; die Bedingung (6.2) ist fiir diese Kurve damit stets erfiillt.
Wie Breuer und Holthaus gezeigt haben [108], liefert die Quantisierung des Torus entlang

dieser Kurve im wesentlichen die w Periodizitit der Quasienergien im Floquet-Spektrum.
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6.3 Quantenzustinde auf Inseln im nichtkollinearen Phasen-

raum

Das Verfahren zur Quantisierung der kollinearen Inseln 148t sich im Prinzip auch auf die In-
seln im Phasenraum der dreidimensionalen Bewegung iibertragen. Ahnlich wie im kollinearen
System betrachten wir Integrationspfade innerhalb der Phasenraumebenen, die durch kano-
nisch konjugierte Variablen der transversalen Dynamik aufgespannt sind. Das Integral (6.2)
liefert damit die Querschnittsfliche der Insel innerhalb der jeweiligen Phasenraumebene. Auf-
grund der Hochdimensionalitidt des Phasenraums lassen sich diese Querschnittsflichen jedoch
nicht (bzw. nur unter hohem Aufwand [53]) anhand von Poincaré-Schnitten bestimmen.
Fine Abschidtzung des Phasenraumvolumens reguldrer Bewegung in den transversalen Va-
riablen ergibt sich aus der Ausdehnung des reguldren Gebiets entlang der Koordinatenachsen,
die den transversalen Phasenraum aufspannen. Dazu verwenden wir als kanonisch konjugierte
Variablen der transversalen Dynamik die Winkeldifferenz ¢ zwischen den Elektronen und

die halbe Differenz I15 deren Drehimpulse,

Y12 = 1 — (6.6)
1
112 = 5 (]1 — 12)7 (67)

sowie den mittleren Winkel ¢ der Elektronen und den Gesamtdrehimpuls I,

1
v = 5o ), (6.8)
Dabei bezeichnet
w1 = arctan (y1/21) (6.10)

den Winkel, den das duflere Elektron mit der z-Achse einschlieit, o den entsprechenden
Winkel des Runge-T.enz-Vektors des inneren Elektrons
1 T
A = A p2 X (rg X p2) — 7/ —— (6.11)

[EECAN— p% |I'2|

[ra]
und
li = 2 pyi — Yi P (6.12)

den Drehimpuls des Elektrons ¢ um den Kern. Wie aus der adiabatischen Theorie der Frozen-
Planet-Konfiguration von Ostrovsky und Prudov hervorgeht [59] (siehe Abschnitt 2.3), sind
diese Phasenraumvariablen speziell fiir die Beschreibung von transversalen Schwingungen der
ungestorten Frozen-Planet-Konfiguration geeignet.

Die maximale Ausdehnung der reguldren Insel entlang einer der transversalen Variablen

bestimmen wir anhand der Kipp- und Tonisationszeiten. Diese berechnen wir in einem Intervall
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entlang der z-Achse, in dem die betrachtete regulire Insel die p,; = 0 Achse des kollinearen
Phasenraums schneidet. Die Abweichung von der Kollinearitiat wird durch einen nichtver-
schwindenden Anfangswert einer der transversalen Variablen (6.6  6.9) erzeugt, wobei die
Anfangswerte aller anderen transversalen Phasenraumvariablen gleich Null gesetzt sind. An-
hand der Kipp- und lonisationszeiten werden so die Maximalwerte (©12)maxs (112)max; (¢)maxs
(I)max der Variablen (6.6  6.9) bestimmt, fiir die die transversale Dynamik stabil ist.
Unter der Annahme eines ellipsenférmigen Querschnitts der regulidren Insel in den von den
kanonisch konjugierten Variablen aufgespannten Phasenraumebenen (diese Annahme wurde
in Stichproben bestitigt), ergibt sich der Flacheninhalt dieses Querschnitts in der von ¢

und [y aufgespannten Ebene zu

A1 ~ 7 (9912)max (]1 Q)ma)u (6]3)
sowie in der von ¢ und I aufgespannten Ebene zu
AQ ~ 7 (@)max (L)max- (6]4)

Aus der Skalierungstransformation (3.5  3.10), die ndtig ist, um die Quantisierungsbedin-

gungen (6.4) Ay > 7 und Ay > 7 zu erfiillen, erhalten wir damit, zusidtzlich zu (6.5), die

Bedingungen
1.5
N > 6.15
- (@12)max(l12)max ( )
sowie
1.5
z (6.16)

() max () max

fiir das Auftreten eines Quantenzustands, der auf einem reguldren Gebiet des klassischen
Phasenraums der dreidimensionalen Bewegung lokalisiert ist.

Fiir die 3:2 Resonanzinsel bei w = 0.09, F = 0.001 (Abb. 5.6) liefert diese Abschitzung
N > 750. Es ist daher zu erwarten, dafl Quantenzustinde, die auf dieser Insel lokalisiert sind,
ab Hauptquantenzahlen dieser Grofienordnung N ~ 750 ~ 500...1000 im Spektrum des
getriebenen Helium-Atoms auftreten. Generell héhere Mindestquantenzahlen ergeben sich
fiir n:m Resonanzinseln héherer Ordnung (fiir die 5:3 Resonanzinsel bei w = 0.09, F' =
0.001 etwa N > 3000). Etwas niedrigere Mindestquantenzahlen hingegen errechnen wir fiir
den Randbereich der intrinsischen Insel. Fiir w = 0.09, F© = 0.001 etwa erhalten wir, daf
entsprechende Quantenzustinde ab Quantenzahlen der GréBenordnung N ~ 200 7zu erwarten
sind.

Die hier errechneten Quantenzahlen liegen auflerhalb der gegenwirtigen experimentellen
Reichweite. Mit Hilfe von mehrstufigen “isolated core” Anregungsprozessen [109] lassen sich
in Atomen mit zwei Valenzelektronen wie etwa Barium autoionisierende Zustiande mit Quan-

tenzahlen maximal bis zu N ~ 100 selektiv bevilkern [71]. Fiir das Helium-Atom liegen die
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héchstangeregten Zustinde, die, unter Verwendung von monochromatisierter Synchrotron-
strahlung, photospektroskopisch untersucht werden konnen, bei N ~ 10 [110]. Es ist daher im
allgemeinen nicht davon auszugehen, dafl nichtdispergierende Zwei-Elektronen-Wellenpakete,
die auf Resonanzinseln hoher Ordnung der getriebenen Frozen-Planet-Konfiguration lokali-
siert sind, experimentell realisiert werden konnen.

Bei aller Skepsis ist jedoch zu bemerken, dafl die semiklassische Abschdtzung anhand des
EBK-Kriteriums mit erheblichen Unsicherheiten verbunden ist. Zum einen 48t sich das Pha-
senraumvolumen reguldrer Bewegung in den transversalen Variablen nur ungefihr bestimmen.
Des weiteren hat sich in anderen atomaren Systemen gezeigt, daff das EBK-Kriterium generell
dazu neigt, die Mindestquantenzahl fiir das Auftreten eines auf einer reguldren Insel des klas-
sischen Phasenraums lokalisierten Quantenzustands zu iiberschitzen. So hat die von Miiller,
Burgdérfer und Noid durchgefiihrte semiklassische Quantisierung des Langmuir-Orbits von
Helium ergeben, dafl Quantenzustinde, die auf dem regulidren Gebiet des Langmuir-Orbits lo-
kalisiert sind, erst ab Quantenzahlen der GréBienordnung N ~ 500 zu erwarten sind [53]. Eine
quantenmechanische Rechnung hat jedoch gezeigt, dafl bereits bei N ~ 10 quantenmechani-
sche Zustdnde im Spektrum von Helium auftreten, die eine erhéhte Aufenthaltswahrschein-
lichkeit entlang des Langmuir-Orbits aufweisen [63]. Wir erwarten daher, daf sich bereits fiir
Quantenzahlen, die weit unterhalb N ~ 500 liegen, Signaturen der klassischen 3:2 Resonanz

im Spektrum abzeichnen.



Kapitel 7

Stabilisierung durch ein statisches

elektrisches Feld

Die Analyse der transversalen Stabilitdtseigenschaften der getriebenen Frozen-Planet-Kon-
figuration hat gezeigt, dafl die reguldren Inseln des kollinearen Phasenraums iiberwiegend
durch Instabilitit beziiglich Abweichungen von der Kollinearitit gekennzeichnet sind. Re-
gulidre Gebiete innerhalb des Phasenraums der dreidimensionalen Bewegung existieren ledig-
lich am Randbereich der intrinsischen Insel sowie entlang von feldinduzierten Resonanzen
hoher Ordnung. Wie die Abschitzung in Kap. 6 gezeigt hat, ist die transversale Ausdehnung
dieser regulidren Inseln so klein, dafl quantenmechanische Zustinde, die auf diesen Inseln loka-
lisiert sind, nur fiir sehr hohe Quantenzahlen N ~ 100...1000 des inneren Elektrons erwartet
werden. Dies impliziert insbesondere, dafy nichtdispergierende Zwei-Elektronen-Wellenpakete,
die auf den feldinduzierten Resonanzinseln der getriebenen Frozen-Planet-Konfiguration loka-
lisiert sind, im Spektrum des extern getriebenen Helium-Atoms fiir experimentell realistische
Anregungen nicht auftreten.

I'm Hinblick auf die Erzeugung derartiger hochkorrelierter Zwei-Elektronen-Zustande stellt
sich nun die Frage, ob mit Hilfe eines zusidtzlichen dufieren Eingriffs die getriebene Frozen-
Planet-Konfiguration beziiglich Abweichungen von der Kollinearitit stabilisiert werden kann.
Wie wir in Kap. 5 gesehen haben, wird der Destabilisierungsprozefl der Konfiguration in der
Umgebung der reguldren Inseln des kollinearen Phasenraums durch das Kippen der Konfigu-
ration auf die andere Seite des Kerns eingeleitet. Es liegt also nahe, ein zusitzliches, statisches
elektrisches Feld parallel zur Polarisation des oszillierenden Feldes an die Konfiguration an-
zulegen, das so gerichtet ist, dafi es diesem Kippvorgang entgegenwirkt.

Tatsdchlich ist es mit Hilfe eines derartigen statischen Feldes mdoglich, das Kippen der
Konfiguration in der Umgebung der reguldren Inseln des kollinearen Phasenraums zu ver-
hindern und die Konfiguration auf ein Gebiet in der Umgebung der Feldpolarisationsachse

zu beschrianken. Fiir geeignete Parameter des oszillierenden und des statischen Feldes ist das
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Phasenraumvolumen der auf diese Weise entstehenden reguldren Inseln im Phasenraum der
dreidimensionalen Bewegung so grofl, dafi Quantenzustinde, die auf diesen Inseln lokalisiert
sind, fiir experimentell zugingliche Quantenzahlen zu erwarten sind.

In diesem Kapitel wird nun dieses Stabilisierungsphidnomen niher untersucht. Wir konzen-
trieren uns dabei auf Resonanzen niedriger Ordnung, deren Stabilisierung im Hinblick auf die
Erzengung nichtdispergierender Zwei-Elektronen-Wellenpakete interessant ist. In Abschnitt
7.1 werden zunéchst wesentliche Charakteristika der Dynamik der stabilisierten Konfigurati-
on erlautert. Es wird gezeigt, dafl zwei verschiedene Formen der Bewegung der stabilisierten
Konfiguration auftreten eine kollineare bzw. quasikollineare und eine nichtkollineare Bewe-
gungsform  die im Phasenraum durch eine Bifurkation ineinander iibergehen. Anschliefend
schitzen wir in Abschnitt 7.2 anhand des EBK-Quantisierungskriteriums ab, ab welchen An-

regungen quantenmechanische Zustande existieren, die auf diesen Inseln lokalisiert sind.

7.1 Stabilisierung der Konfiguration gegen Kippen und Ioni-

sation

Die Idee, ein statisches elektrisches Feld zur Stabilisierung der getriebenen Frozen-Planet-
Konfiguration zu verwenden, geht auf die Arbeit von Leopold und Richards zuriick, die die
klassische Dynamik von Wasserstoff im linear polarisierten Mikrowellenfeld, dem ein zusitz-
liches, statisches elektrisches Feld iiberlagert ist, untersucht haben [111]. Tn dieser Arbeit,
konnte gezeigt werden, dafi die Bewegung des Elektrons in der Umgebung der 1:1 Reso-
nanz des kollinearen Phasenraums durch das Anlegen eines statischen elektrischen Feldes
Py parallel zur Polarisation des Mikrowellenfeldes F' mit 0.22 F' < F, < F auf die unmit-
telbare Umgebung der Feldpolarisationsachse beschrinkt werden kann. Auf diese Weise ist
es moglich, nichtdispergierende Wellenpakete im extern getriebenen Wasserstoffatom zu er-
reugen, die vollstindig entlang des 1:1 Resonanz-Orbits des kollinearen Konfigurationsraums
lokalisiert sind [112].

In der Tat 148t sich dieses Verfahren auf die getriebene Frozen-Planet-Konfiguration von
Helium iibertragen und ist geeignet, die Resonanzinseln des kollinearen Phasenraums, eben-
so wie die intrinsische Insel, beziiglich Abweichungen von der Kollinearitit zu stabilisieren.
Sofern die Amplitude F des oszillierenden elektrischen Feldes nicht zu grof} ist, wird durch
das Anlegen eines statischen elektrischen Feldes mit geeigneter Stirke Fi, also durch eine

Modifikation von (3.4) gemif
F(t) = (Fcoswt — Fy)e,, (7.1)

die Konfiguration in der transversalen Umgebung der reguliren Insel des kollinearen Pha-
senraums am Kippen gehindert und vollfiihrt quasiperiodische Oszillationen, die auf den

Halbraum mit z > 0 beschrinkt bleiben (Abb. 7.1).
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Abb. 7.1: Stabilisierung der Dynamik in der Umgebung der 1:1 Resonanz des kollinearen Phasenraums
fiir w = 0.05, F = 0.0005. (a) Tnstabile Trajektorie fiir Fy, = 0. (b) Trajektorie der stabilisierten
Konfiguration bei der statischen Feldstirke Fy = 0.0001. Die Anfangsbedingung ist in (a) und (b)
durch zy = 12,6, y; = 0.01 gegeben (yo = 0, p1 = p2 = 0, £ = —1). Die Zeitentwicklung dieser
Trajektorie ist in den Abbildungen (¢) und (d) dargestellt, in denen die y-Komponenten des Orts des
auBeren und des inneren Flektrons aufgetragen sind. Wir sehen, dafl die Bewegung der Konfiguration
nicht auf die unmittelbare Umgebung der Feldpolarisationsachse beschriankt bleibt (man beachte, dafl
die maximale Abweichung des dufieren Elektrons von der z-Achse, yi max ~ £1, wesentlich grofer ist
als die anfiangliche Abweichung y; = 0.01), sondern um einen fundamentalen Orbit oszilliert, der nicht

innerhalb des kollinearen Phasenraums liegt.
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Wihrend der Phasenraum der kollinearen getriebenen Konfiguration durch die Anwe-
senheit eines statischen Feldes, dessen Feldstiarke kleiner als die Amplitude des oszillieren-
den Feldes F'ist, nur unwesentlich gedndert wird die Resonanzstrukturen des kollinearen
Phasenraums werden mit zunehmendem Fy lediglich etwas in Richtung des intrinsischen
Gleichgewichts verschoben | ist das transversale Stabilisierungsphdnomen bei der getriebe-
nen Frozen-Planet-Konfiguration von Helium insgesamt weitaus komplizierter als im Fall von
getriebenem Wasserstoff. So zeigt es sich, dafl entlang einer regulidren Insel des kollinearen
Phasenraums die Konfiguration nur stabilisiert werden kann, wenn die Amplitude des oszil-
lierenden Feldes nicht zu grof} ist. Fiir die 1:1 Resonanzinsel bei w = 0.05 etwa betrigt die
maximale Feldamplitude, unterhalb der Stabilisierung méglich ist, ca. F/ ~ 0.0006 und liegt
damit nur knapp oberhalb der Feldamplitude F ~ 0.0005, bei der im kollinearen Phasenraum
die 1:1 Resonanz vom intrinsischen reguldren Gebiet getrennt wird (sieche Abb. 4.3¢). Des wei-
teren ist das Stabilitdtsverhalten im allgemeinen uneinheitlich entlang einer reguldren Insel
des kollinearen Phasenraums: so 148t sich etwa fiir w = 0.05, F = 0.0005 bei Fy = 0.0001
(Abb. 7.1) das Zentrum der 1:1 Resonanzinsel in ein stabiles Gebiet innerhalb des Pha-
senraums der dreidimensionalen Bewegung eingebetten, wihrend der Randbereich der 1:1
Resonanzinsel instabil beziiglich Abweichungen von der Kollinearitit bleibt. Dariiber hinaus
treten bei der getriebenen Frozen-Planet-Konfiguration von Helium zwei verschiedene For-
men der stabilisierten Bewegung auf: eine kollineare bzw. quasikollineare Bewegungsform, bei
der die Konfiguration auf die unmittelbare Umgebung der Feldpolarisationsachse beschrankt
wird (d.h. bei der die maximale Entfernung der Konfiguration von der Feldpolarisations-
achse direkt proportional zur anfinglichen Abweichung von dieser Achse ist  analog der
Bewegung in der Umgebung der stabilen 3:2 Resonanz ohne statisches Feld, siehe Abb. 5.8),
sowie eine nichtkollineare Bewegungsform, bei der die Konfiguration um einen fundamentalen
periodischen Orbit oszilliert, der nicht innerhalb des kollinearen Konfigurationsraums liegt
(Abb. 7.1).

Das Auftreten dieser beiden Bewegungsformen wird am Beispiel der Stabilisierung der 1:1
Resonanz bei w = 0.05 und F = 0.0002 (siehe Abb. 5.3b) erldutert. Bei diesen Feldparame-
tern 1481 sich die Bewegung in der der transversalen Umgebung der 1:1 Resonanz mit einem
statischen Feld der Stirke Iy, > 4- 107" stabilisieren: eine kleine Abweichung der Konfigura-
tion von der Kollinearitit fiithrt zu quasiperiodischen Osrzillationen der Konfiguration um den
Orbit der kollinearen 1:1 Resonanz. Dies 148t sich anhand von stroboskopischen Bildern von
Trajektorien in der Umgebung des kollinearen Phasenraums zeigen, bei denen wir die halbe
Drehimpulsdifferenz 15 der Elektronen (6.7) gegen deren Winkeldifferenz @15 (6.6) zu den
Zeiten wt = 0 mod 27 auftragen. Obwohl ein derartiges stroboskopisches Bild der Trajektorie
keinen Poincaré-Schnitt des Phasenraums darstellt (pro erhaltenen Punkt im @9 /12 Dia-

gramm sind lediglich zwei der vier transversalen Phasenraumvariablen sowie ndherungweise
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Abb. T7.2: Stroboskopische Bilder von Trajektorien der stabilisierten 1:1 Resonanz fiir w = 0.05,
F' = 0.0002 und (a) Fg = 0.00015, (b) Fy = 0.00017, (¢) Fs = 0.0002, (d) Fs = 0.00025. Auf-
getragen sind die halbe Drehimpulsdifferenz 119 = 15(11 —15) gegen die Winkeldifferenz o102 = o1 — 9
der Elektronen zu den Zeiten wt = 0 mod 27. Trajektorien zu verschiedenen Anfangsbedingungen sind
durch unterschiedliche Symbole gekennzeichnet; in (b) etwa betragen die Anfangshedingungen (von
innen nach aufien) y; = 0.01 (Punkte), 0.1 (Kreuze), 0.2 (Kreise), 0.3 (Kreuze), 0.4 (Kreise) (21 = 12.6,
y2 =0, p1 = p2 =0, £ = —1). Wir erkennen fiir Fy; = 0.00015 ellipsendhnliche Strukturen, die um
den kollinearen Orbit bei ¢15 = I15 = 0 zentriert sind. Bei Fi ~ 0.00016 findet eine Bifurkation im
Phasenraum statt. Der kollineare Orbit ist oberhalb Fi ~ 0.00016 in eine Separatrixstruktur einge-
bettet, die mit zunehmendem Fy grofler wird. Der fundamentale Orbit der Resonanzinsel entspricht
nun dem Zentrum des von der Separatrix umschlossenen Gebiets oberhalb bzw. unterhalb der 15 = 0
Achse. (e) und (f) zeigen die (durch Kreise gekennzeichneten) Separatrixtrajektorien von (c¢) und (d)

im Konfigurationsraum (y; (¢ = 0) = 0.01).
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die kollinearen Phasenraumvariablen festgelegt) liefert es hinreichend konsistente Strukturen,
die Riickschliisse auf die transversale Phasenraumstruktur des reguldren Gebiets erlauben.
Fiir 4-107° < Fy < 0.00016 liegen die Punkte des stroboskopischen Bildes der Trajektorien
entlang von ellipsendhnlichen Strukturen, die um den kollinearen periodischen Orbit der 1:1
Resonanz zentriert sind (Abb. 7.2a).

Oberhalb einer Feldstiarke von Fy ~ 0.00016 wird die Konfiguration nicht mehr auf die
unmittelbare Umgebung des kollinearen Phasenraums beschrinkt: die Konfiguration entfernt
sich von dem Orbit der kollinearen 1:1 Resonanz, bleibt jedoch nach wie vor in ein regulires
Gebiet eingebunden, das die Bewegung des dufleren Elektrons auf den Halbraum positiver
z-Werte beschrankt. Entsprechend erkennen wir in Abb. 7.2b, dafi bei Fy; ~ 0.00016 im Pha-
senraum ein Bifurkation auftritt. Der kollineare Orbit stellt oberhalb Fgy ~ 0.00016 nicht
mehr das Zentrum eines elliptischen (ebiets dar, sondern bildet eine diinne, in das regulire
Gebiet der stabilisierten 1:1 Resonanz eingebettete chaotische Schicht aus, die sich im strobo-
skopischen Bild in Form einer Separatrixstruktur abzeichnet. Der fundamentale periodische
Orbit dieser Konfiguration liegt nun im Zentrum des Gebiets, das im stroboskopischen Bild
von der Separatrix oberhalb bzw. unterhalb der durch Iy = 0 definierten Achse umschlossen
wird; er entspricht, wie wir in Abb. 7.3 sehen, einer nichtkollinearen, resonanten Oszillation
der Konfiguration, deren Periodendauer doppelt so grof ist wie die Periode des treibenden
Feldes.

Mit zunehmender statischer Feldstarke Fi nimmt die Abweichung der Separatrix bzw.
des fundamentalen periodischen Orbits von der Kollinearitit immer mehr zu (Abb. 7.2¢ d).
Die die Separatrix umgebende Schicht reguldrer Strukturen wird dabei immer diinner, bis
sie schliefflich bei Fy ~ 0.0003 vollstindig verschwindet. Oberhalb dieser Feldstdrke ist die
Dynamik in der Umgebung der kollinearen 1:1 Resonanz instabil.

In dhnlicher Weise wird durch ein statisches Feld auch die Bewegung entlang n:1 Reso-
nanzen hdherer Ordnung stabilisiert. Dabei zeigt es sich, daf§ bei Feldparametern, bei denen
diese Resonanzen von der intrinisischen Insel getrennt sind, die Bewegung der stabilisierten
Konfiguration in der Regel nichtkollinear ist, d.h. nicht auf die unmittelbare Umgebung der
Feldpolarisationsachse beschrinkt ist. Auch in der Umgebung des Zentrums der intrinsischen
Insel 148t sich die Dynamik durch ein statisches Feld stabilisieren. Der maximale Wert von
I, fiir den eine Stabilisierung moglich ist, liegt, fiir die intrinsische Insel im allgemeinen héher
als fiir die Resonanzinseln.

Wie bereits in Abschnitt 5.2 erwdhnt wurde, 148t sich in hochdimensionalen Systemen
aufgrund von Arnold-Diffusion eine regulire Insel nicht scharf von der sie umgebenden chao-
tischen See abgrenzen: Da die invarianten Tori dieser Insel keine topologisch uniiberwindbaren
Phasenraumbarrieren darstellen, kann eine Trajektorie, die innerhalb dieser Insel startet, die-

se Tori umgehen und in das chaotische Gebiet des Phasenraums gelangen. Tatsdchlich 158t
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Abb. 7.3: Fundamentaler periodischer Orbit der stabilisierten 1:1 Resonangz fiir w = 0.08, F = 0.001,
Fy = 0.0003 (s. Abb. 4.4d). (a) Trajektorie, die in der unmittelbaren Umgebung der z-Achse startet
(mit der Anfangsbedingung z1 = 8, y; = 0.01,y2 = 0, p1 = p2 =0, £ = —1). (b) Trajektorie des fun-
damentalen periodischen Orbits. Die Anfangswerte betragen z; = 8.092, p,y = 0.07871, y1 = y» = 0,
P21 = Po2 = 05 25 und py5 sind so gewihlt, dal die Gesamtenergie ' = —1 und der Gesamtdrehimpuls
I = 0.04704 betragt (diese Anfangswerte wurden mit Hilfe eines Minimierungsverfahrens gefunden).
Die Bewegung der Elektronen im fundamentalen Orbit ist in (¢) und (d) aufgetragen. Wir sehen, daf§
sowohl das duBere (¢) als auch das innere Elektron (d) periodische (bzw. quasiperiodische) Oszillatio-

nen vollfithrt, deren Periodendauer doppelt so grof} ist wie die Periode der kollinearen 1:1 Resonanz.
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Abb. 7.4: Langfristig instabile Trajektorie, die innerhalb des reguldren Gebiets der stabilisierten 1:1
Resonanz fiir w = 0.08, F = 0.001, Fy = 0.0003 startet. Aufgetragen ist in (a) die Zeitentwicklung
der y-Komponente des dufieren Elektrons iiber einen Zeitraum von 10000 Feldzyklen; (b g) zeigen
Ausschnitte von (a). Die Anfangswerte betragen z1 = 8.1, py1 = 0.02, g1 = y2 = 0, po1 = pa2 = 0; Py
und zs sind so gewahlt, dafl die Gesamtenergie £ = —1 und der Gesamtdrehimpuls 1. = 0.0125 betra-
gen (im Phasenraum liegt der Anfangspunkt damit zwischen dem kollinearen und dem fundamentalen
Orbit der stabilisierten 1:1 Resonanz, wobei die Entfernung zum fundamentalen Orbit etwa dreimal so
groB ist wie die zum kollinearen Orbit). Wir erkennen langfristige, auf Arnold-Diffusion hinweisende
Schwankungen der Amplitude der transversalen Oszillation auf Zeitskalen von ca. 100 Feldzyklen (vgl.
Abb. 5.9). Nach ca. 9000 Feldzyklen wird die Dynamik instabil (c,e,g); die Konfiguration verldfit das

reguliare (Gebiet und ionisiert.
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sich diese Auswirkung der Hochdimensionalitit des Phasenraums bei Konfigurationen, die
mit einem statischen Feld in Form einer nichtkollinearen Bewegung stabilisiert, sind, deutlich
bemerken. So finden wir insbesondere in der Nihe der Separatrix, entlang der die Dynamik
generell durch Trregularitidt gekennzeichnet ist, Trajektorien, die das Gebiet gebundener Be-
wegung nach einer sehr langen aber endlichen Zeitspanne verlassen und zur lonisation fiihren.
Ein Beispiel fiir eine solche Trajektorie ist in Abb. 7.4 dargestellt. Wir sehen, dafi die Trajek-
torie langfristigen, auf Arnold-Diffusion hinweisenden Schwankungen in der Amplitude der
transversalen Schwingung unterworfen ist und schlieBlich, nach etwa 10* Feldzyklen, instabil

wird und ionisiert.

7.2 Konsequenzen fiir das quantenmechanische System

GemiB der in Abschnitt 6.1 angestellten Uberlegungen entsprechen die reguliren Tnseln der
stabilisierten Konfiguration im quantenmechanischen, getriebenen Helium-Atom langlebigen
Zustdnden, die im klassischen Phasenraum entlang dieser Inseln lokalisiert sind. Wihrend
Quantenzustinde, die entlang der intrinsischen Insel lokalisiert sind, im wesentlichen stati-
ondrsind, sind entlang der stabilisierten Resonanzinseln nichtdispergierende Zwei-Elektronen-
Wellenpakete zu erwarten. Um die Mindestquantenzahl N abzuschitzen, ab der derartige
Zustidnde im Spektrum des getriebenen Helium-Atoms auftreten, gehen wir wie in Kap. 6
vor. Wir bestimmen zunichst die maximale Ausdehnung der reguldren Insel entlang der
Phasenraumvariablen der transversalen Dynamik und schitzen daraus, unter Annahme eines
ellipsenférmigen Querschnitts, die Querschnittsflichen der Insel innerhalb der von kanonisch
konjugierten Phasenraumvariablen aufgespannten Ebenen ab. Daraus ergibt sich die gesuchte
Mindestquantenzahl durch die Bedingungen (6.15) und (6.16).

Fiir die stabilisierte 1:1 Resonanz liegen die Mindestquantenzahlen, ab denen Quanten-
zustinde auf der klassischen Insel lokalisiert sind, auflerhalb der experimentellen Reichweite.
Konkret erhalten wir fiir w = 0.05, F = 0.0005, Fy = 0.0001 (Abb. 7.1): Ny =~ 750.
Vergleichbare bzw. héhere Mindestquantenzahlen erhalten wir fiir andere Feldparameter, bei
denen die 1:1 Resonanz im kollinearen Phasenraum von der intrinsischen Insel getrennt ist.

Giinstigere Bedingungen fiir die Erzeugung nichtdispergierender Zwei-Elektronen-Wellen-
pakete liegen bei Resonanzen héherer Ordnung vor. So erhalten wir fiir w = 0.15, F = 0.002
bei einem statischen Feld von Fy = 0.0001 (Abb. 7.5) eine Mindestquantenzahl von N ~
60 ~ 50 ...100 fiir die Existenz eines Quantenzustands, der auf einer der 2:1 Resonanzinseln
lokalisiert ist. Diese Quantenzahl liegt bereits im Bereich experimentell zuginglicher Anre-
gungen in Zwei-Elektronen-Atomen wie Barium [71]. Auch fiir die 3:1 Resonanz, etwa bei
w = 0.2, FF = 0.002, Fy = 0.0002, erhalten wir Mindestquantenzahlen der GréBenordnung
Nmin ~ 50...100 fiir die Existenz eines entsprechenden Quantenzustands. Fiir die intrinsische

Insel finden wir, bei gleichen Feldparametern, typischerweise niedrigere Mindestquantenzah-
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Abh. 7.5: Stabilisierte 2:1 Resonanz fiir w = 0.1, F = 0.0015, Fs, = 0.0001. (a ¢) Poincaré-Schnitt des
kollinearen Phasenraums fiir wt = 0 (a), wt = 7/2 (b), wt = 7 (c). (d) Trajektorie, die in der Umgebung
der z-Achse startet (mit der Anfangsbedingung zy = 8.5, y1 = 0.01, 492 =0, p1 =p2=0, £ = —1).
(e) Fundamentaler periodischer Orbit der stabilisierten 2:1 Resonanz (mit der Anfangsbedingung
z1 = 8499, p,1 = 0.03767, . = 0.001961, 34 = y2 = 0, ps1 = ps2 = 0, £ = —1). Bei diesen
Feldparametern ist die transversale Ausdehnung der stabilisierten 2:1 Resonanzinsel im Phasenraum
der dreidimensionalen Bewegung so grofl, daffi Quantenzustiande auf dieser Tnsel fiir Quantenzahlen

der Groflenordnung N ~ 50...100 erwartet werden.

len als fiir die Resonanzinseln. Bei w = 0.15, F' = 0.002, Fy = 0.0001 etwa (Abb. 7.5) sind
stationdre Quantenzustinde auf der intrinsischen Insel ab N, ~ 20...50 7u erwarten.

Insgesamt 148t sich feststellen, dafl sowohl fiir die intrinsische Insel als auch fiir feldindu-
zierte Resonanzinseln (ndmlich die 2:1 und die 3:1 Resonanzinseln) bei geeignet gew&hlten
Feldparametern w, F, Fyi quantenmechanische Zustinde, die vollstindig auf diesen Inseln
lokalisiert sind, fiir experimentell zugingliche Quantenzahlen existieren sollten. Insbesondere
erwarten wir, dafl nichtdispergierende Zwei-Elektronen-Wellenpakete, die entlang der 2:1 und
der 3:1 Resonanzinseln lokalisiert sind, ab Quantenzahlen der Gréfienordnung N ~ 50...100
im Spektrum des getriebenen Helium-Atoms auftreten. Bei einer Quantenzahl von N = 50
betragen die Laborwerte der zur Erzeugung dieser Resonanzinseln gewihlten Feldparameter,
etwa w = 0.15, F = 0.002, I = 0.0001 bei der 2:1 Resonanz, gemiB den Skalierungsgesetzen
(3.5 3.10) ungefdhr

w/(2m) 30 GHz, (7.2)

F

12

12

8 V/em, (7.3)
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Fy ~ 0.4V/em (7.4)

und liegen damit in der Grofienordnung jener Feldparameter, die in Mikrowellen-Tonisations-
experimenten in Ein-Elektron-Atomen typischerweise verwendet werden [77]. Eine experimen-
telle Realisierung von nichtdispergierenden Zwei-Elektronen-Wellenpaketen im Mikrowellen-
getriebenen Helium-Atom ist damit prinzipiell méglich.

Wie schon in Abschnitt 6.3 ist anzumerken, dafl die Abschitzung anhand des EBK-
Kriteriums mit erheblichen Unsicherheiten verbunden ist und inshesondere dazu tendiert,
die Mindestquantenzahl, ab der Quantenzustinde auf reguldren Inseln des klassischen Pha-
senraums lokalisiert sind, zu i{iberschitzen [53, 63]. Fs ist daher davon auszugehen, daf
N ~ 50...100 eine eher pessimistische Abschdtzung fiir das Auftreten nichtdispergierender
7wei-Elektronen-Wellenpakete darstellt. Zu erwarten ist, daf8 bereits fiir niedrigere Quanten-
zahlen Quantenzustinde im Spektrum des getriebenen Helium-Atoms auftreten, die auf den

feldinduzierten Resonanzinseln der stabilisierten Konfiguration lokalisiert sind.
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Kapitel 8

Formulierung und numerische

Losung des Eigenwertproblems

In bezug auf konkrete quantitative Figenschaften der Zustinde, die mit reguldren Inseln des
klassischen Phasenraums assoziiert sind, 148t die klassische Analyse einige Fragen offen. So
148t sich zwar anhand des EBK-Quantisierungskriteriums die Gréfienordnung der Anregung

bzw. Quantenzahl abschitzen, ab der diese Zustdnde im quantenmechanischen Spektrum

ser Zustinde vor (die insbesondere zur Charakterisierung nichtdispergierender Wellenpake-
te wichtig ist). Diese Lebensdauer ist einer klassischen Analyse des Systems generell nicht
zuginglich, da auf den regulidren Inseln, auf denen diese Zustande lokalisiert sind, die quanten-
mechanische Tonisation nur iiber dynamisches Tunneln (also durch einen klassisch verbotenen
ProzeB) erfolgt. Um also quantitativ zu ermitteln, ab welcher Quantenzahl hochkorrelierte
7wei-Elektronen-Wellenpakete im getriebenen System existieren, die der Oszillation der klas-
sischen Insel auf einer hinreichend langen Zeitskala ohne Dispersion folgen, ist daher in jedem
Fall eine exakte quantenmechanische Rechnung erforderlich. Derartige quantenmechanische
Rechnungen sind in dem uns interessierenden Anregungsbereich beim gegenwirtigen Stand
der numerischen Technik jedoch nicht méglich. Konkret lassen sich im ungestérten Helium-
Atom ab initio Quantenrechnungen derzeit bis zur Hauptquantenzahl N ~ 10 durchfiihren
[113].

Um einen Einblick in die quantenmechanische Entsprechung der reguldren Inseln des klas-
sischen Phasenraums zu gewinnen, wird in den nun folgenden Kapiteln die Quantendynamik
des eindimensionalen, der kollinearen Frozen-Planet-Konfiguration entsprechenden Helium-
Atoms unter externem Antrieb untersucht. Dabei interessieren wir uns fiir das Auftreten
von Quantenzustdnden, die mit regulidren Inseln des klassischen Phasenraums der kollinearen
Konfiguration assoziiert sind. Zu untersuchen ist, wie die charakteristischen Figenschaften

dieser Zustinde, also deren lokalisierung im klassischen Phasenraum, deren l.ebensdauern,
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sowie deren Zusammensetzung aus Eigenzustinden des ungestdrten Systems, durch die ge-
mischt reguldr-chaotische Struktur des klassischen Phasenraums beeinflufit werden bzw. wie
sich diese Figenschaften mit zunehmender Anregung des Systems bzw. abnehmender Grofie
des effektiven Wirkungsquantums verhalten.

Neben einem tiefgehenden Einblick in die Quantenmechanik nichtdispergierender Zwei-
Elektronen-Wellenpakete liefert, diese eindimensionale Rechnung auch konkrete Informatio-
nen iiber die entsprechenden Quantenzustinde des dreidimensionalen Systems. Wie wir in
Kap. 7 gesehen haben, wird durch das statische Feld die Konfiguration auf die Umgebung
der Feldpolarisationsachse beschrinkt. Die durch das statische Feld stabilisierten Resonanzen
entsprechen damit quasi kollinearen Quantenzustinden, deren Wahrscheinlichkeitsdichte auf
die unmittelbare Umgebung des kollinearen Phasenraums konzentriert ist. Folglich sollten we-
sentliche Figenschaften dieser Zusténde, insbesondere deren Lokalisierung auf Strukturen des
kollinearen Phasenraums, durch eine eindimensionale Rechnung korrekt reproduziert werden.

In diesem Kapitel werden zunéchst formale Aspekte zur numerischen .ésung des eindi-
mensionalen Quantensystems beschrieben. Wir fiithren in Abschnitt 8.1 die Koordinaten ein,
die sich fiir die numerische Behandlung des Systems eignen. Die Floquet-Theorie, mit der das
periodisch getriebene System in ein zeitunabhingiges Eigenwertproblem transformiert wird,
wird in Abschnitt 8.2 beschrieben. Um im Floquet-Spektrum die autoionisierenden Resonan-
zen vom Kontinuum zu isolieren, wenden wir die Methode der komplexen Skalierung an, deren
wesentliche Figenschaften in Abschnitt 8.3 dargelegt werden. Die Entwicklung des komplex
skalierten Floquet-Hamiltonoperators nach Sturmschen Basisfunktionen wird in Abschnitt
8.4 behandelt. Dabei wird auch die Methode beschrieben, mit der die numerische Diagonali-
sierung konkret, durchgefiihrt, wird. Schlieilich wird in Abschnitt 8.5 dargelegt, wie aus den
Figenvektoren des komplex skalierten Systems die Dichteverteilung der Floquet-Zustinde im

Konfigurationsraum bzw. im Phasenraum berechnet wird.

8.1 Der Hamiltonoperator der kollinearen Zee-Konfiguration

Die Quantenmechanik des eindimensionalen Helium-Atoms zeichnet sich durch grundsitzliche
konzeptionelle Besonderheiten gegeniiber dem dreidimensionalen Helium-Atom aus, die damit
zusammenhingen, dafi die beteiligten Teilchen, der Atomkern und die beiden FElektronen,
aufgrund der Coulomb-Singularitit der Wechselwirkung nicht in der Lage sind, aneinander
vorbei zu gelangen: Zum einen muf}, wie in der klassischen Dynamik, prinzipiell unterschieden
werden zwischen der eZe-Konfiguration, bei der die Elektronen auf unterschiedlichen Seiten
des Kerns angeordnet sind, und der Zee-Konfiguration, bei der sich beide Elektronen auf
der gleichen Seite des Kerns befinden, zum anderen findet kein Austausch zwischen den
Elektronen statt, was dazu fiihrt, daf§ in dem zu diagonalisierenden Hamiltonoperator die

Elektronen effektiv als unterscheidbare Teilchen auftreten.
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Die Wellenfunktion 1, die den Zustand der kollinearen, durch ein externes oszillierendes
elektrisches Feld linearer Polarisation getriebenen Zee-Konfiguration beschreibt, ist definiert
auf {(z1,22) : 0 < z1, 29 < oo}. Die Zeitentwicklung der Wellenfunktion gemaf

J

i = HY (8.1)

ist durch den auf den kollinearen Konfigurationsraum beschriankten Hamiltonoperator des

getriebenen Helium-Atoms

e ez oz F,f(1a+1a) 8.
= — — _— — SIn wit ]—a ]—(()—227 .

75(()—212 58—23 z Z9 |21 — 29| w
gegeben, wobei das oszillierende elektrische Feld (der Amplitude F' und Frequenz w) iiber die
Geschwindigkeitseichung eingekoppelt ist (um die Identifizierung der die Wechselwirkung mit
dem Kern beschreibenden Terme zu erleichtern, verwenden wir fiir die formale Beschreibung
des Figenwertproblems die allgemeine Kernladung 7, wobei natiirlich die konkreten Rechnun-
gen mit 7 = 2 durchgefiihrt wurden). Aufgrund der Coulomb-Singularitit der Kernanziehung
ergeben sich die Randbedingungen der Wellenfunktion zu

¥(z1,22) = 0 fiir z =0 oder z —0. (R.3)

Fine weitere Bedingung ergibt sich aus der Coulomb-Singularitdt der Elektron-Elektron-
Wechselwirkung:
¥(z1,29) = 0 fiir zy = zo. (R.4)

Die Austauschsymmetrie, also die Tatsache, dafl die Elektronen a priori ununterscheidbar

sind, erfordert

V(21,29) = (2, 21) (R.5)
fiir Singulett-Zustinde, sowie

V(z1,22) = —P(22,21) (R.6)
fiir Triplett-Zustinde. Es bietet sich an,

V(z1,22) = Vs (21,22) £ s (29, 21) (8.7)

fiir Singulett- bzw. fiir Triplett-Zustinde anzusetzen, wobei

(z1,29) @ oz > 2
0 T2 < 29

Vs (21, 22) = { (R.8)

die Einschriankung der Wellenfunktion auf den Teilraum Us = {(z1,22) : 0 < 2z < z <
oo} bezeichnet, in dem das zweite Elektron niher am Kern ist als das erste Elektron. Die

Anwendung des Hamiltonoperators auf i ergibt

Hi = (Hss)(z1,22) + (Hs95) (29, 21) (8-9)



88 Kapitel 8. Formulierung und numerische Losung des Eigenwertproblems

mit,

1 92 1 02 7 7 1
(H>¢>)(21722) ( +

20 203 a m T aa
o 10 10
— Z sin wit (]—a + 78—22))¢>(Z1’22)' (8]0)

Da s (z1, z2) und s (22, z1) auf disjunkten Teilrdumen nichtverschwindende Werte an-

nehmen, li6t sich die Schrédinger-Gleichung separieren:

.0 .
]E¢>(21722) = (Hsvs)(z1,29) fiir z1 > 2, (R.11)
.0 .
IE¢>(Z’2,Z1) = (Hsts)(z2,21) fiir z < z. (R.12)

Da s aufgrund (8.3) und (8.4) am Rand des Gebiets Us verschwindet, stellt Hs in (8.11)
bzw. (8.12) effektiv einen hermiteschen Hamiltonoperator dar. Es geniigt also, das unitire
Zeitentwicklungsproblem (8.11) fiir unterscheidbare Elektronen mit zy > z9 zu losen und die
tatsdchliche Wellenfunktion des Systems iiber (8.7) zu bestimmen.

Anschaulich formuliert, findet im Lauf der Zeitentwicklung kein Austausch zwischen den
Elektronen statt; das innere Elektron bleibt stets ,innen“ aufgrund der uniiberwindbaren
Coulomb-Singularitit der Elektron-Elektron-Wechselwirkung. Eine unmittelbare Konsequen
der Separation der Schrodinger-Gleichung gemifl (8.11, 8.12) ist die Tatsache, dafi Singulett-
und Triplett-Zustiande (gemaf (8.7)) entartet sind bzw. dafi der Elektronenspin fiir die kolli-
neare Konfiguration nicht von Bedeutung ist.

I'm folgenden betrachten wir also, ohne Beschriankung der Allgemeinheit, den Hamilton-
operator
10 10
Toe, + 1_3—22)’ (R.13)

wobei z9 € [0, 00 [ und z; € | 29, 00 [ gilt. Um die gegenseitige Abhangigkeit der Koordinaten

H=H, = — — sinwt

2027 20z3 2 29 21 — 29 w

1 92 1 92 7 7 1 F (

zu beseitigen, bietet es sich an, neue Koordinaten gemifl
T o= 2z — 29 (R.14)
y = 2 (8.15)
einzufithren, die beide, unabhingig voneinander, alle Werte aus ]0, 00 [ annehmen und den

perimetrischen Koordinaten [114, 115], spezialisiert auf die kollineare Zee-Konfiguration, ent-

sprechen. Mit

0 _ 2 (5.16)
0z ox
00 0 .
0z ay ox
erhalten wir fiir den Hamiltonoperator, ausgedriickt in diesen Koordinaten,
2 2 2
[_[:,8 Y 0 7 Z—I—lesinwt?—i. (R.18)

wi§w+f)mf)yim+y ; x w iy
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8.2 Das Floquet-Theorem

Die Tatsache, dafi die Zeitabhdngigkeit des Hamiltonoperators (8.18) periodischer Natur ist,
erlaubt die Anwendung des Floquet-Theorems [116, 117, 118]. Das Floquet-Theorem impli-
ziert die Umformulierung des periodischen Zeitentwicklungsproblems in ein zeitunabhdngiges
Eigenwertproblem und ermdéglicht damit eine konzeptionell ,,handliche Beschreibung des Sy-
stems iiber zeitlich periodische Quasienergiefunktionen und deren zugehorige Quasienergien.

Wir betrachten den Hamiltonoperator
H = Hy + Vel 4 Vie v (8.19)

wobei, in unserem Fall, Hy und V' durch

I N N Z 7] 520)
o ox? 2 dy? ozdy T4ty Yy T ’
F o

gegeben sind. Aufgrund der periodischen Zeitabhdngigkeit des Hamiltonoperators ist es an-
gebracht, die Schridinger-Gleichung (8.1) im Fourier-Raum zu betrachten. In Analogie zur
Einfiihrung der Brillouin-Zone im rdumlich periodischen Potential liegt es nahe, ein Energie-
intervall der Breite w, etwa [0,w[, vorzugeben und in bezug auf diese ,,Floquet-Zone“ die
Fourierkomponenten ﬁw der Wellenfunktion v, durch die ,,Quasienergie® ¢ € [0,w] sowie

durch einen ganzzahligen Index k gemif}

b = /m dw’ /¥4, = ) (8.22)

[l
O\E
[
2
'™
:.D_..
e
€
I
=
=
E

7u bezeichnen. Die Fourier-Transformation der Schrédinger-Gleichung liefert damit
(ot ko) 67+ Va2 + vIg = e (8.23)

fiiralle k € Z, e € [0,w].

Wie man sofort erkennt, handelt es sich bei (8.23) um ein System von Eigenwertglei-
chungen zu dem Eigenwert € und der zugehdrigen, vektorwertigen Figenfunktion (Q;’(:))kew'
Unter Annahme eines diskreten Spektrums von Eigenwerten €, € [0,w[ mit den zugehéri’gej;]

Eigenvektoren (Qﬁéﬂ'))k ’ ergibt sich die Wellenfunktion iiber (8.22) zu
) hew

b= Con(t)e ™ (8.24)

mit,

bo(t) = 3 Pl el (8.25)
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iy 148t sich also, Ahnlich wie im zeitunabhingigen Quantensystem, als Linearkombination von
zeitlich periodischen ,,Quasienergiefunktionen® bzw. ,,Floquet-Eigenfunktionen“ ¢, darstel-
len. Die Kenntnis sdmtlicher Floquet-Eigenfunktionen ¢,, sowie deren ,,Quasienergien® bzw.
»Floquet-Energien® ¢, ermdglicht somit eine vollstindige Charakterisierung der Dynamik
des periodisch getriebenen Systems. Formal spielt die genaue Lage der Floquet-Zone auf der
Energieachse keine Rolle: Wie man sofort sieht, ist zum Eigenwert €, auch ¢, + w Eigenwert
des Gleichungssystems (8.23) mit der Eigenfunktion ¢ = e'“?¢, . Das gesamte Figenspektrum
von (8.23) ist also periodisch mit der Frequenz w, und jede beliebig gewihlte Floquet-Zone
liefert. den vollstindigen Satz von Floquet-Figenfunktionen und -Figenwerten.

Die Annahme eines diskreten Spektrums von Floquet-Eigenwerten ist fiir atomare Syste-
me in aller Regel falsch. Dies liegt an der Existenz von Kontinua im ungestdrten Atom, an
die, bei eingeschaltetem Antrieb, jeder gebundene Zustand durch Multiphotonen-Anregung
mit einer hinreichend hohen Anzahl von Photonen koppelt. Das Floquet-Spektrum des getrie-
benen atomaren Systems ist damit vollstindig kontinuierlich. Die im stérungsfreien Limes
gebundenen atomaren Zustinde manifestieren sich im Kontinuumsspektrum in Form von

Resonanzen, deren Breiten den Photoionisationsraten dieser Zustinde entsprechen.

8.3 Komplexe Skalierung

Um die Resonanzstrukturen im Floquet-Spektrum aufzulésen, wenden wir die Methode der
»komplexen Skalierung® (auch ,komplexe Rotation“ bzw. ,,komplexe Dilatation* genannt)
an. Die Methode erméglicht einen konzeptionell eleganten Zugang zu ins Kontinuum ein-
gebetteten autoionisierenden (bzw., im Floquet-Problem, photoionisierenden) Zustinden.
In diesem Abschnitt sollen die grundlegenden FEigenschaften der Methode kurz beschrie-
ben werden; weitergehende und ausfiihrlichere Informationen finden sich in der Literatur
[119, 120, 121, 122, 123, 124].

Die Grundidee der komplexen Skalierung besteht darin, die Transformation

r — re'’ (R.26)
0 o

mit reellem 6 € [0,7/4[[119] an dem 7zu untersuchenden Hamiltonoperator durchzufiihren

(r bezeichnet hier die Gesamtheit aller Ortskoordinaten), was durch
H ~— Hy = R(8) HR(-0) (R.28)

mit,

noy = e ( 2+ L4 24)) 529
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geleistet wird. Der resultierende Hamiltonoperator Hy ist komplex symmetrisch (nicht her-
mitesch!) und besitzt damit komplexe Eigenwerte sowie komplexe Eigenvektoren, die (sofern

H rein reell ist) beziiglich des Skalarprodukts

@loy = [alrvir) o) (3.30)

(wobei in dem Integral ¢ nicht komplex konjugiert wird) orthogonal sind.

Das Figenspektrum des komplex skalierten Hamiltonoperators eines atomaren Systems
gliedert sich im allgemeinen in reell-diskrete Figenwerte, komplex-diskrete Figenwerte mit ne-
gativem Imaginirteil, sowie komplex-kontinuierliche Eigenwerte. Die reell-diskreten Figenwer-
te entsprechen den gebundenen Zustidnden des unskalierten Hamiltonoperators; sie stimmen
mit deren Energien iiberein. Diskrete Eigenwerte mit negativem Imaginirteil existieren ener-
getisch oberhalb der niedrigsten Tonisationsschwelle des atomaren Systems und entsprechen
den autoionisierenden Resonanzzustdnden des unskalierten Systems; die Realteile der Eigen-
werte stimmen mit den Energielagen, die Imaginirteile mit den halben Tonisationsbreiten der
Resonanzzustinde iiberein. Daneben existiert zu jeder lonisationsschwelle Fjy des Atoms ein
nahezu strukturloses Kontinuum von Eigenwerten entlang der Halbgeraden Fy + ee 21? mit
€ > 0. Diese Kontinua entsprechen im wesentlichen den Kontinuumskanilen des unskalierten
Hamiltonoperators, die sich an die jeweiligen Tonisationsschwellen anschliefien.

Grob gesprochen, separiert die komplexe Skalierung die autoionisierenden Zustdnde des
betrachteten Systems von den einzelnen Kontinuumskanilen, in die diese Zustinde einge-
bettet sind. Sofern der Skalierungswinkel # so grof} ist, dafl die Breite der autoionisierenden
Resonanz kleiner ist als die negativen Imaginirteile der Kontinua, in die sie im unskalier-
ten System eingebettet ist, sofern also durch die Rotation dieser Kontinua die betrachte-
te Resonanz ,aufgedeckt* wird, ist diese Resonanz im Spektrum des komplex skalierten
Hamiltonoperators als diskreter Zustand vertreten, dessen Kigenschaften unabhingig vom
Skalierungswinkel # sind. Die Methode erlaubt daher, die Struktur des Kontinuums, etwa im
Zusammenhang mit einem Photoionisationsprozef [23, 125], allein anhand einzelner, diskreter
Resonanzzustinde quantitativ korrekt zu reproduzieren.

Der Zusammenhang zwischen dem Spektrum des unskalierten Hamiltonoperators und
jenem des komplex skalierten Hamiltonoperators 1a8t sich formal iiber die Greens-Funktion
GF(F) des unskalierten Systems herleiten, die sich durch die Greens-Funktion des komplex
skalierten Systems gemif

1 1

+ _ : S _ -
GHE) = i e - e,

R(6) (R.31)
ausdriicken 148t [123]. Die komplexe Skalierung liefert also den Zugang zu der analytischen
Fortsetzung der Greens-Funktion in die negative komplexe Halbebene, deren Polstellen den
autoionisierenden Zustinden des Systems entsprechen. Fiir den Projektor auf den Kontinu-

umszustand zur Energie I/ des unskalierten Systems erhdlt man damit unter der Annahme
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nichtentarteter Kontinua

- —];Tm (GH(E)) = ;ImZR(())%j;M%'R(G)v

v

FY(F

(8.32)

wobei iiber simtliche Eigenfunktionen |v)g mit den zugehérigen Figenenergien F,4 des kom-

plex skalierten Systems summiert (bzw., bei kontinuierlichen |v)g, integriert) wird [124]. Die

Strukturierung des Kontinuums |F) wird bestimmt durch die diskreten, den autoionisie-
renden Resonanzen entsprechenden Zustidnde, wihrend die kontinuierlichen Zustinde einen
flachen Hintergrund liefern. Liegt F in der Nihe eines autoionisierenden Zustands [v)g, so

dominiert dessen Beitrag die Summe (8.32):

U BEO) [v)e o] R(O)
s Eyg - F v

(8.33)

Uber diesen Projektor lassen sich Uberlappmatrixelemente zwischen (normierbaren) Wel-
lenfunktionen des unskalierten Systems und autoionisierenden Figenzustinden des komplex
skalierten Systems in wohldefinierter Weise berechnen. Konkret, wird der Uberla,pp einer Wel-

lenfunktion |¢) des unskalierten Systems mit einem autoionisierenden Zustand |v)g iiber

(e — (| E)(E
~ 1 e (/dfr B(r) () / A v ¢+ (r) le,(r)) (8.34)

7 |TmF,4]

$)| F=ReF,q

berechnet, wobei
bulr) = (I R(-8) [v)s (3.35)

als Wellenfunktion des autoionisierenden Zustands im unskalierten System interpretiert wer-
den kann.

Die Aquivalenz zwischen dem unskalierten und dem komplex skalierten System konnte fiir
eine Reihe von ,dilatationsanalytischen® Systemen gezeigt werden, unter anderem fiir Atome
im externen statischen elektrischen Feld [126, 127, 128, 129] sowie fiir das Floquet-Problem
atomarer Systeme im externen elektromagnetischen Feld [130, 131]. Tn Analogie zum unge-
triebenen System erhalten wir im Spektrum des komplex skalierten Floquet-Operators Kon-
tinnumszustinde, die den um ein ganzzahliges Vielfaches der treibenden Frequenz verschobe-
nen lonisationsschwellen angehéren. Neben diesen Kontinua treten auch diskrete FEigenwerte
mit negativem Imaginirteil im Spektrum auf, die den im ungestérten System gebundenenen
(bzw., im Mehr-Elektronen-System, autoionisierenden) Zustinden entsprechen, die durch das
treibende Feld an die atomaren Kontinua gekoppelt sind. Die Imaginirteile dieser diskreten
Eigenwerte geben die Photoionisationsbreiten (bzw., im Mehr-Elektronen-System, die kom-

binierten Autoionisations- und Photoionisationsbreiten) dieser Zustinde an.
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8.4 Entwicklung nach Sturmschen Basisfunktionen

Fiir die numerische Diagonalisierung des Hamiltonoperators wird die Eigenfunktion in bei-
den Koordinaten z und y nach den Sturmschen Funktionen des eindimensionalen Coulomb-
Potentials [132] entwickelt. Diese sind definiert durch

1 2 - 2
Sy = 7 (- Zr exp (%) Lnlj) (Er) fiir n>1, (R.36)

()

wobei LY die zugeordneten Taguerre-Polynome bezeichnen [133] und o > 0 einen belie-
bigen reellen Parameter, den ,,Sturmschen Skalierungsparameter®, darstellt. Sie eignen sich
speziell fiir die Modellierung wasserstoffihnlicher Figenfunktionen: die Sturmsche Funktion
S'q(fy:n) stimmt mit dem Radialteil der gebundenen Wasserstoffeigenfunktion zur Hauptquan-
tenzahl n (und zur Drehimpulsquantenzahl [ = 0) iiberein. Tm Gegensatz zu den gebundenen

Wasserstoffeigenfunktionen sind die Sturmschen Funktionen vollstindig; in bezug auf das

Skalarprodukt
— 0o
(o) = [ 5101 gty ar (337

bildet, {S'q(fy) :n > 1} einen vollstindigen orthonormierten Basissatz auf dem Raum der auf
[0, 00 [ definierten Funktionen, die fiir r — 0 proportional O(r) gegen Null gehen.
Uber die Rekursionsformel sowie die Differentialgleichungen der zugeordneten Laguerre-

Polynome [133] gewinnt man die Operatoren

g . 2.7 o (8.38)
D4 = 5 r W :F r E %7 e
- a  9? r
Sy = ——r— — 8.39
? 2" Br? + 20 ( )
die die fundamentalen Abbildungen
Sy 8 = nm+1)8Y,, (8.40)
S35 = 5§ (8.41)
definieren. Anhand S’i, S5 148t sich die Anwendung der Operatoren
1 . . .
r = o (5 (S+ —I— S,) —I— Sg) (842)
0 1, -
— = (5 - A
e (L (3.43)
9? I RPN .
r W = E (5 (Aq_l_ + 517) — Aqg) (844)

(<)

sowie samtlicher Kombinationen dieser Operatoren auf S;,"’ bestimmen.
Da der Hamiltonoperator (8.20, 8.21) in bezug auf das Skalarprodukt (8.37), das wir

einfiihren wollen, um die Orthogonalitit der Sturmschen Funktionen ausniitzen zu kénnen,
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nicht hermitesch ist (bzw. nach Durchfiihrung der komplexen Skalierung nicht komplex sym-
metrisch ist), ist es erforderlich, statt (H — F) ¢ = 0 das beziiglich (8.37) hermitesche (bzw.

komplex symmetrische) Eigenwertproblem
xy(H—F)y =0 (R.45)

7u studieren. Um beziiglich des effektiven Hamiltonoperators strenge Auswahlregeln 7u gewdhr-
leisten (und damit die Bandbreite der zu diagonalisierenden Matrix so niedrig wie méglich
zu halten) mit Ausnahme des Terms 2y/(x + y) sind bereits simtliche, den Operator 2y H
konstituierenden Terme als Kombination der elementaren Operatoren (8.42 8.44) darstell-
bar und weisen somit strenge Auswahlregeln in der Sturmschen Basis auf empfiehlt sich die

Transformation
P(r,y) = (z4y) oz, y). (8.46)

Entwickeln wir ¢ nach Sturmschen Funktionen, so skaliert die Wellenfunktion ¢ proportional
xy (x 4+ y) fiir x — 0 und y — 0. Diese Skalierung stellt im Prinzip eine Beschrinkung
der Allgemeinheit dar, da (aufgrund der Coulomb-Wechselwirkung zwischen den geladenen
Teilchen) formal lediglich ¢ « 2 fiir x — 0 bzw. ¢ x y fiir y — 0 gilt und somit die
Wellenfunktion fir z — 0 und y — 0 formal nur proportional zy skaliert. Zu beachten
ist jedoch, dal der Fall  — 0 und y — 0 einer Dreifachkollision der Elektronen und des
Kerns entspricht, die in der Zee-Konfiguration grundsitzlich vermieden wird. Da folglich
die Wahrscheinlichkeitsdichte der Zee-Wellenfunktion fiir x — 0 und y — 0 extrem stark
abnimmt, ist die Ausfaktorisierung eines zusitzlichen Terms der Form (x4 y) gerechtfertigt.

Die Formulierung des Eigenwertproblems des komplex skalierten Floquet-Hamiltonopera-

tors lautet damit,

(x+y)zy(Hop+ ko — F) (x4 y) ér(r,y) +

(+y)ryVe(r+y) (dr—1(2,y) — Pt (2yy)) = 0 (8.47)
wobei Hog und Vi durch die komplex skalierten Operatoren
19 9 : 7 7 1 .
Hyp = |—=—— —=— 216 ( - — —) —id 8.48
06 ( 2 2((),112_'_(().77(()'1/)9 + Tty y+.77 € ( )
F o i,
V), = — e 8.49
o 2w ¢ ( )
gegeben sind und die Floquet-Komponenten ¢ nach Sturmschen Funktionen entwickelt wer-
den: -
Srlwyy) = D O SE (@) SEI(y). (8.50)
N Mgy =1

Die in das unskalierte System zuriicktransformierte Floquet-Eigenfunktion ist als Funktion

der Ortskoordinaten zy, z9 der Elektronen fiir Singulett- bzw. Triplett-Zustinde durch

¢t(21 - 22722) 2> 2

(8.51)
igbt(z’g — 21, Z]) s 21 < 29

¢t(21 s 22) = {
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mit,
OO

du(,y) = Z (m—l—y)f?m(/ﬁk (mefi97yefi9) ol bwt (8.52)

k=—o00
gegeben. Die Berechnung der Matrixelemente von (8.48, 8.49) wird in Anhang A.2 skizziert.
Wie dort gerzeigt wird, verfiigen der effektive Hamiltonoperator sowie die darstellende Matrix

des Skalarprodukts zy (z + y)* innerhalb der Sturmschen Basis iiber die Auswahlregeln
|An,| <3, |An,| <3, (R.53)

wobei n,, n, die in der Entwicklung (8.50) verwendeten Indizes bezeichnen.

Die zur numerischen Lésung unvermeidliche Niherung besteht nun darin, die Gréfie der
Basis sowie die Anzahl der Floquet-Komponenten zu begrenzen. Konkret beschrianken wir
uns auf die ersten N, Basisfunktionen in der 2-Variable, die ersten N, Basisfunktionen in der

y-Variable, sowie auf Ni Floquet-Komponenten. Aus (8.50) wird damit

Srlw,y) = D 0 OB, S (@) Sl (y) (8.54)

na=1ny=1
fiir k. = —kg...kg mit N = 2kg + 1. In dieser Basis sind der effektive Hamiltonoperator
und die darstellende Matrix des Skalarprodukts durch Bandmatrizen gegeben, die sehr diinn
besetzt sind.

Zur Bestimmung der Eigenwerte und Eigenvektoren wird eine effiziente Implementierung
des Lanczos-Algorithmus mit inverser Iteration verwendet [134, 135]. Bei diesem Verfahren
wird durch iterative Multiplikation der Inversen der zu diagonalisierenden Matrix, ausgehend
von einem beliebigen Startvektor, ein ,Krylov“-Unterraum von vergleichsweise handlicher
Grofe erzeugt, der vorwiegend Eigenvektoren zu Eigenwerten nahe Null enthdlt und inner-
halb dessen die betrachtete Matrix effizient diagonalisiert wird. Durch geeignete Wahl des
Nullpunkts im Spektrum (der durch Subtraktion von Vielfachen der Einheitsmatrix beliebig
verschoben werden kann) gelingt es damit, mit vergleichsweise geringem Aufwand die Eigen-
vektoren zu den Eigenwerten in der Nihe eines beliebig vorgegebenen Referenzwertes bis auf
Maschinengenauigkeit zu berechnen.

7Zur Berechnung der Inversen der komplex symmetrischen Bandmatrix wird diese durch
eine Cholesky-Zerlegung [136] als Produkt zweier Dreiecksmatrizen dargestellt. Diese weisen
die gleiche Bandstruktur wie die zu diagonalisierende Matrix auf, sind jedoch im Gegensatz zu
dieser innerhalb des Bandes im allgemeinen voll besetzt. Der gesamte Speicherplatzbedarf ist
damit dem Produkt aus [Linge und Bandbreite der zu diagonalisierenden Matrix proportional,
skaliert also in unserem Fall quadratisch mit zwei und linear mit einer der drei Dimensionen
Ny, Ny, Ny (was bei der Wahl der Hierarchie der Indizes im Hinblick auf einen moglichst
geringen Gesamtspeicherplatzbedarf zu beachten ist).

Auf Details zu Fragen der numerischen Konvergenz der Rechnungen wird in Anhang A.3

eingegangen.
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8.5 Visualisierung der Wellenfunktion

Da die Wellenfunktion der kollinearen Konfiguration nur von zwei Koordinaten abhingt,
ist es moglich, deren Dynamik in nahezu vollstindiger Weise auf einer zweidimensionalen
Flache zu visualisieren: Es bietet sich an, die Wahrscheinlichkeitsdichte der Wellenfunkti-
on [1(z1, 29)|* als Funktion der Koordinaten z;,z, der Elektronen aufzutragen. Allerdings
erlaubt diese Wahrscheinlichkeitsdichte nur sehr eingeschrinkte Aussagen in berzug auf die
Lokalisierung der Zustinde auf Strukturen des zugrunde liegenden klassischen Phasenraums.
Fs ist daher angebracht, neben der Wahrscheinlichkeitsdichte im Konfigurationsraum auch
die ,,Husimi-Verteilung® [99, 137, 138, 139] dieser Zustinde aufzutragen, die als Projektion
der Wellenfunktion auf den Phasenraum interpretiert werden kann.

Die Husimi-Dichte einer Wellenfunktion 14t sich definieren als das Betragsquadrat des
Uberlapps dieser Wellenfunktion mit einem kohirenten Zustand, der um einen gegebenen Ort
g und einen gegebenen ITmpuls p (bzw. um eine gegebene Wirkung I und einen gegebenen

Winkel #) mit minimaler Unschirfe zentriert ist. Konkret definieren wir

Qa,p) = WS4 )" (8.55)

Gap(r) = exp (%ws(r —q)* - ipr) : (8.56)

Q(q, p) gibt ein Maf fiir die Wahrscheinlichkeit an, unter Beriicksichtigung der Unschirferela-
tion das System in der Nidhe des Ortes ¢ und des Impulses p zu finden, und 148t sich damit als
Dichte der Wellenfunktion ¢ innerhalb des klassischen Phasenraums interpretieren. Uber den
»oqueezing“-Parameter w,, der der Frequenz desjenigen harmonischen Oszillators entspricht,
dessen Grundzustandseigenfunktion durch ¢,—¢ ,—0 gegeben ist, 148t sich die Auflésung in
der Orts- bzw. in der Impulskoordinate einstellen: maximale Ortsaufldsung (bzw. minimale
Impulsauflésung) erhilt man fiir w, — oo mit Q(q,p) — ¥ (¢)|?, maximale Tmpulsauflsung
(bzw. minimale Ortsauflésung) erhilt man fiir w, — 0, mit Q(q, p) — | [ dreP ¥ (r)|2%

Fiir Wellenfunktionen der Zee-Konfiguration mufy die Definition (8.56) der Husimi-Vertei-
lung in Anpassung an die klassische Phasenraumvisualisierung modifiziert werden. Der klassi-
sche Phasenraum wird gemaf der in Abschnitt 4.1 besprochenen Methode visualisiert, wobei
wir hier, im Gegensatz zu Kap. 4 7, statt der Gesamtenergie die Wirkung bzw. Hauptquan-
tenzahl N des inneren Elektrons fixieren. Letztere stellt approximativ eine gute Quantenzahl
dar (siehe auch Abschnitt 2.3), da Zustinde zu verschiedenen Quantenzahlen N durch das
externe Feld nur sehr schwach gemischt werden. Wir tragen also fiir feste Wirkung N und
festen Ort z3 = 0 des inneren FElektrons bei fester Phase wt des treibenden Feldes den Tm-

puls gegen den Ort des dufleren Elektrons auf. Die quantenmechanische Entsprechung dieser

Phasenraumvisualisierung ist durch die Husimi-Verteilung der Floquet-Eigenfunktion in den
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Koordinaten des dufleren Elektrons gegeben, wobei das innere Elektron auf z9 & 0 fixiert

wird. Wir betrachten also den Uberlapp der Floquet-Eigenfunktion mit

Ggp(z1,22) = exp (%ws(m —q)? ipz1) §(z9 — 29), (R.57)
wobei 20 nahe bei Null liegt (die Wahl 20 = 0 ist nicht sinnvoll, da dort die Wellenfunktion
verschwindet). Fiir den Squeezing-Parameter wg verwenden wir die intrinsische Frequenzskala
wr = 0.3 N=* (2.7) der Frozen-Planet-Konfiguration.

Fiir die Berechnung der Wahrscheinlichkeitsdichte sowie der Husimi-Verteilung des mit
der Methode der komplexen Skalierung berechneten Floquet-Figenzustands ist zu beachten,
dafl das Betragsquadrat der Matrixelemente durch einen (8.34) analogen Ausdruck zu ersetzen

ist. Bezeichnet,

Z e U R(—0) |di)e (8.58)

k=—00
die in das unskalierte System zuriicktransformierte Floquet-FEigenfunktion zu dem im kom-
plex skalierten System berechneten Eigenvektor (|¢n)g)rez, so ist der Uberlapp mit einer

beliebigen normierbaren Wellenfunktion |¢) unter Auslassung der Vorfaktoren gemif

(O1) — Re ([ alr 5 vutr) [ a'r o(r) o)) (8.59)

zu berechnen. ¥_; 148t sich hier als die zu (8.58) adjungierte Wellenfunktion interpretie-
ren, bei der aufgrund der Definition der Adjunktion gemif (8.30) die Figenvektoren des
komplex skalierten Systems |¢g)s unverdndert bleiben, die zeitabhdngigen Vorfaktoren die-
ser Figenvektoren hingegen komplex konjugiert werden. Konkret erhalten wir damit fiir die

Wahrscheinlichkeitsdichte der Floquet-Eigenfunktion ¢;(zy, z2) (8.51) im Konfigurationsraum

(21, 2) 2 —— { Regi(z1 — 22,22) d4(21 — 20,22) 1 21 > 29 7 (8.60)

Re(bt(zz*21721)@54(22*21721) o5 < zZg

sowie fiir deren iiber (8.55) und (8.57) definierte Husimi-Dichte

(oo | OV]® —> Re((./:odz1 ./Oood@(b;’p(m,zz)(bt(m22722))

% (/00(121 /mdzzqﬁq,p(m,zz) é (= Zz,zz)))
— ((/ dz exp (%wg(mq) +1PZ1)¢f( 23723))
(/ dz PXp( wy(z1 — g)? — ipz1) 6 (21 — 23,22))) (8.61)

wobei ¢; durch (8.52) gegeben ist.
Fiir die Berechnung von ¢;(2,y) gemif (8.52) und (8.50) ist zu beachten, dafl die Auswer-

tung der Sturmschen Funktionen bei komplexen Argumenten im allgemeinen zu numerischen
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Instabilitiaten neigt. Es empfiehlt sich daher [124], die ,,komplex skalierten“ Sturmschen Funk-
tionen Sn(me*m) als komplexe linearkombinationen der ,unskalierten® Sturmschen Funktio-
nen S, (x) darzustellen, was sich mit der Kenntnis der Darstellung des Skalierungsoperators
R(#) in der Sturmschen Basis analytisch durchfiithren 188t [124], und diese Linearkombination

fiir die Auswertung von (8.50) zu verwenden.



Kapitel 9

Das Spektrum des kollinearen

Zee-Helilum-Atoms

Bevor wir das Verhalten der kollinearen Frozen-Planet-Konfiguration von Helium im externen
elektromagnetischen Feld studieren, sollen in diesem Kapitel zundchst einmal die wesentlichen
FEigenschaften der ungestorten kollinearen Konfiguration erértert werden. Im Mittelpunkt un-
seres Interesses steht dabei die Frage, inwieweit die reguldre Struktur des dieser Konfiguration
zugrunde liegenden klassischen Phasenraunms das quantenmechanische System beeinfluf3t. In
Abschnitt 9.1 und 9.2 werden zunichst die Energien und lonisationsbreiten der autoioni-
sierenden Zustinde dieses Systems analysiert. Es wird gezeigt, dafi diese lTonisationsbreiten
oberhalb der Quantenzahl N = 4 des inneren Elektrons exponentiell mit N abnehmen. Diese
exponentielle Abnahme wird darauf zuriickgefiihrt, dafi die entsprechenden Quantenzustinde
innerhalb des Gebiets gebundener reguldrer Bewegung im klassischen Phasenraum lokalisiert
sind und nur iiber dynamisches Tunneln an das Tonisationskontinuum gekoppelt sind. Die
lokalisierung dieser Zustinde wird in Abschnitt 9.3 anhand der Phasenraumprojektion bzw.

Husimi-Verteilung der entsprechenden Wellenfunktionen explizit. dargestellt.

9.1 Energien der autoionisierenden Zustinde

Abgesehen von Arbeiten, in denen die Coulomb-Wechselwirkung zwischen den geladenen Teil-
chen durch ein “soft core” Potential ersetzt wurde (etwa [140]), wurde die Quantenmechanik

des eindimensionalen Helium-Atoms bislang nur von Bliimel und Reinhardt untersucht, die

Kerns angeordnet sind) konzentrierten [141, 142]. In diesen Untersuchungen wurde gezeigt,
dafl das Spektrum des kollinearen Helium-Atoms in der eZe-Konfiguration sich durch typi-
sche Signaturen klassisch chaotischer Systeme auszeichnet. So tritt bereits ab der Quanten-

zahl N =~ 5 ein energetischer Uberlapp von verschiedenen Zustandsserien auf, der zu einer

99
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betrichtlichen Mischung der entsprechenden Zustdnde fiihrt. Des weiteren wurde ermittelt,
daB oberhalb N ~ 30 ein ,,Ericson-Regime® iiberlappender Resonanzen vorliegt [143], in dem
die Breiten der autoionisierenden Zustinde von vergleichbarer Gréfle bzw. gréfier sind als die
mittleren Abstidnde benachbarter Niveaus.

Im Gegensatz zu eZe-Helium ist die klassische Dynamik der kollinearen Zee-Konfiguration
von Helium nahezu vollstindig reguldir. Konsequenterweise ergibt sich fiir dieses System ein
Lregulires® Quantenspektrum, in dem die autoionisierenden Zustinde durch nahezu gu-
te Quantenzahlen charakterisiert sind: die Quantenzahl N, die der Wirkung der Kepler-
Oszillation des inneren Elektrons entspricht, sowie die Quantenzahl n, die sich aus der Quan-
tisierung der langsamen Oszillation des dufleren Elektrons um die Gleichgewichtslage ergibt.
Abb. 9.1 zeigt die Energien und Tonisationsbreiten der autoionisierenden Zustinde fiir N < 10.
Wir sehen, dafi Zustandsserien zu verschiedenen Quantenzahlen N des inneren Elektrons in
diesem Bereich von N deutlich voneinander getrennt sind (und somit eine eindeutige Tdenti-
fizierung der Quantenzahlen der Zustdnde innerhalb dieser Serien erlauben).

In der Tat zeigt sich, daB ein energetischer Uberlapp von Zustandsserien zu verschiedenen
Quantenzahlen N erst ab N = 20 auftritt. Dies ergibt sich bereits aus dem effektiven Po-
tential (2.6), das die langsame Osrzillation des dufleren Elektrons um die Gleichgewichtslage
beschreibt. Wie man Abb. 2.4 entnehmen kann, betrdgt der Wert des effektiven Potentials
im Minimum Vi,in ~ —0.22N 2. Eine untere Grenze fiir die Energie des niedrigsten Zustands

der Serie zur Quantenzahl N ist damit durch

A LV 7=2  2.22
2N2 min —_— N2

(9.1)

gegeben. Aus der Forderung, dafl diese Energie unterhalb der Tonisationsschwelle zur Quan-

EN,min =

tenzahl N — 1 liegen soll,

thr 2
EN,min < E](V—1) = 7@7 (()2)

ergibt sich damit die Mindestquantenzahl, ab der Serien zu verschiedenen Quantenzahlen
iiberlappen, zu N = 20.

Tab. 9.1 vergleicht die Energien der jeweils niedrigsten Zustinde (n = 1) der Serien zu den
Quantenzahlen N = 3...10 mit den Energien der von Richter, Wintgen und Mitarbeitern
[17] im dreidimensionalen Helium-Atom berechneten Frozen-Planet-Zustinde, die sich durch
verschwindende Anregungen beziiglich transversaler Freiheitsgrade auszeichnen und damit
die dreidimensionalen Entsprechungen der Zustinde des eindimensionalen Systems darstellen.
Wir sehen, dafi die Energien der eindimensionalen und der dreidimensionalen Frozen-Planet-
Zustinde gut iibereinstimmen, wobei der relative Unterschied zwischen diesen Energien mit
zunehmendem N kleiner wird. Da die Elektronen im dreidimensionalen Konfigurationsraum
einander in transversaler Richtung ausweichen konnen, liegen die FEnergien der Zustinde im

dreidimensionalen Helium-Atom etwas niedriger als im kollinearen Zee-Helium.
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Abb. 9.1: Spektrum des kollinearen Zee Helium-Atoms. Aufgetragen sind die Energien und Tonisati-

onsbreiten der (durch Kreuze gekennzeichneten) autoionisierenden Zustinde, die den Serien zu den

Quantenzahlen (a) N =2 (b) N =3, (¢) N=4, (d) N =5, () N=6, () N=7,(g) N =8,

(h) N = 9 angehoren (T'/2 bezeichnet die halbe Breite bei halbem Maximum der autoionisieren-

den Resonanz (HWHM)). Wir sehen, daf Zustandsserien zu verschiedenen Quantenzahlen N deutlich

voneinander getrennt sind. Die reguldre Abfolge der Zustinde 1m Spektrum ist die unmittelbare Mani-

festation der Regularitiat der zugrunde liegenden klassischen Dynamik. Zu beachten ist insbesondere,

wie die Tonisationsbreiten fiir N < 4 mit zunehmendem N zunehmen (a ¢), oberhalb N = 4 jedoch

stark abfallen (¢ h). Dieses Verhalten der Tonisationsbreiten deutet an, da ab N ~ 4 die autoionisie-

renden Zustinde vollstandig innerhalb des (Gebiets gebundener klassischer Bewegung lokalisiert sind.
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Tab. 9.1: Energien der kollinearen und der dreidimensionalen Frozen-Planet-Zustande. F('P) hezeich-
net die Energie des niedrigsten Zustands (n = 1) der Serie zur Quantenzahl N des inneren Elektrons
im kollinearen System. EP)(1S) und EGP)(38) hezeichnen die aus Tab. 1 in [17] entnommenen Ener-
gien der Singulett- und Triplett-Zustiande der dreidimensionalen Frozen-Planet-Konfiguration, die sich
durch verschwindende Anregungen in den kollinearen und transversalen Fretheitsgraden auszeichnen,

zur Hauptquantenzahl N des inneren Elektrons. Die Energien sind in atomaren Einheiten gegeben.

N T D) PESEIEERIES)
3| —0.2420 —0.2574 —0.2500
41 —0.1368 —0.1411 —0.1401
5| —0.08783 || —0.08957 | —0.08947
6 || —0.06112 || —0.06205 | —0.06204
7| —0.04497 || —0.04554 | —0.04554
8 || —0.03447 || —0.03484 | —0.03484
9 || —0.02726 || —0.02752 | —0.02752
10 || —0.02210 || —0.02228 | —0.02228

9.2 Tonisationsbreiten

Der Einflufl der reguldren Struktur des zugrunde liegenden klassischen Phasenraums ma-
nifestiert sich bereits ab der Quantenzahl N = 4 des inneren Elektrons. Dies ergibt sich
unmittelbar aus dem Verhalten der lonisationsbreiten der autoionisierenden Zustinde als
Funktion von N. Wir sehen in Abb. 9.1, daf§ diese Breiten fiir N < 4 mit zunehmendem N
anwachsen, oberhalb dieser Quantenzahl jedoch stark abnehmen.

Die Abnahme der Tonisationsbreiten als Funktion von N ist ein unmittelbarer Hinweis
darauf, daBl die entsprechenden Zustinde auf Gebieten gebundener regulirer Bewegung im
klassischen Phasenraum lokalisiert sind. In einem derartigen Gebiet ist eine Kopplung an das
Kontinuum nur iiber ,dynamisches Tunneln® [94] durch die reguldren Phasenraumbarrieren
der klassischen Dynamik méglich (im Fall der kollinearen Frozen-Planet-Konfiguration ist
dieser Tunnelvorgang mit der Brechung der adiabatischen Invarianz der Wirkung des inneren
Flektrons assoziiert [17]). Ahnlich wie bei Systemen mit einem Freiheitsgrad ist die Rate dieses
Tunnelprozesses proportional exp(—Sy), wobei Sy die klassische Wirkung darstellt, die die
Hohe der Barrieren im ,,verbotenen“ Bereich des klassischen Phasenraums bei der Wirkung N
charakterisiert. Da diese Wirkung unter einer Skalierungstransformation in gleicher Weise wie
N transformiert wird, also Sy = NS, gilt, erhalten wir fiir die Tunnel- bzw. Tonisationsrate

des Quantenzustands, der auf dem gebundenen (ebiet des klassischen Phasenraums lokalisiert



9.2. Tonisationsbreiten 103

-11

l 0 I I I I j< I

0% X S X .

- X
1013 | X i | < A

r/2[au]

-14

-15

10
11

10- T T X f T T X

X
-12 X
10" - . 1t x :

13 X

-15 |

10

mA
©4

4 5 6 7

I\)A
wA

1 23 456 7 8 91011 1

Abh. 9.2: Tonisationsbreiten (HWHM) der jeweils vier niedrigsten autoionisierenden Zustande einer
Serie  also der Zustinde zu den Quantenzahlen (a) n =1, (b) n =2, (¢) n =3, (d) n =4 in
Abhangigkeit der Quantenzahl N. Wir sehen, dafl diese Breiten unterhalb N = 4 mit zunehmendem
N zunehmen, oberhalb N = 4 jedoch exponentiell abfallen. Diese exponentielle Abnahme ist eine
unmittelbare Manifestation der Tatsache, dafy die zugehérigen Eigenfunktionen auf einem Gebiet ge-
bundener Bewegung im requldren klassischen Phasenraum lokalisiert sind. Fine Kopplung aus diesem
Gebiet an das Tonisationskontinuum ist nur iiber dynamisches Tunneln durch die regularen Barrieren
des Phasenraums moglich. Die Rate dieses Tunnelprozesses nimmt mit der klassischen Wirkung, die
die Hohe der Barrieren im verbotenen Bereich des Phasenraums charakterisiert, exponentiell ab und
ist damit aufgrund des Skalierungsverhaltens der Wirkung (3.11) proportional exp(—N.Sy). Aus der
Abnahme der Tonisationsbreiten oberhalb N = 4 148t sich die skalierte Wirkung 57, die die Hohe der
Barrieren fiir N = 1 charakterisiert, numerisch bestimmen. Wir erhalten konkret (a) Sy ~ 0.90 fiir

n=1,(b) S ~0.80 fir n=2, (¢) Sy ~0.71 fiir n =3, (d) Sy ~0.64 fiir n = 4.

10 11
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Tab. 9.2: Tonisationsbreiten der kollinearen und der dreidimensionalen Frozen-Planet-Zustande.
TP} /2 bereichnet die halbe Breite bei halbem Maximum der autoionisierenden Resonanz (HWHM)
des niedrigsten Zustands (n = 1) der Serie zur Quantenzahl N des inneren Elektrons im kollinea-
ren System. (T'3P)/2)('S) und (T(®?)/2)(?S) bezeichnen die aus Tab. 5 in [17] entnommenen Toni-
sationsbreiten (HWHM) der Singulett- und Triplett-Zustidnde der dreidimensionalen Frozen-Planet-
Konfiguration, die sich durch verschwindende Anregungen in den kollinearen und transversalen Frei-
heitsgraden auszeichnen, zur Hauptquantenzahl N des inneren Elektrons. Die Tonisationsbreiten sind

in atomaren Finheiten gegeben.

N[ TP2 rEP2)(18) | (M6 /2)(%8)
30 1.4-107"2 | 1.1-107° 6.8-10°°
4 44-10712 1 1.2-107° 4.4-1076
51 2.5-107"2 || 2.0-10°° 1.8-1077
61 1.0-107"2 || 5.6-1077 3.3-1078
7139-107" | 2.0-1077 3.8-1077
8 1.5-107"3 || 3.7-1077 1.4-1077
91 6.4-107" | 1.2-10°° 2.2-108
10 || 2.8-107" || 5.3-10°7 3.5-1078

ist, eine exponentielle Abnahme mit N:
I' x exp(—NSy). (9.3)

Tatsdchlich finden wir eine derartige exponentielle Abnahme der Tonisationsbreiten fiir die
Zustinde des kollinearen Zee-Helium-Atoms. Dies ist in Abb. 9.2 gereigt, in der die Breiten
der niedrigsten vier Zustinde einer Serie (also der Zustinde zu n = 1, n = 2, n = 3 und
n = 4) in Abhédngigkeit von N aufgetragen sind. Wir erkennen, dafl die Abnahme der Breiten
oberhalb N = 4 sehr gut durch eine Exponentialfunktion der obigen Form (9.3) beschrieben
werden kann. Aus dieser exponentiellen Abnahme 1481t sich unmittelbar die skalierte Wirkung
St bestimmen, die die Hohe der Tunnelbarrieren im Phasenraum fiir N = 1 charakterisiert.
Aus den Breiten des Zustands zu n — 1 erhalten wir konkret Sy ~ 0.9.

Tab. 9.2 vergleicht die Tonisationsbreiten der jeweils niedrigsten Zustinde (n = 1) der Se-
rien zu den Quantenzahlen N = 3...10 mit den lonisationsbreiten der entsprechenden drei-
dimensionalen Frozen-Planet-Zustinde [17]. Wir sehen, daff sich die Tonisationsbreiten der
eindimensionalen und der dreidimensionalen Zustinde um etliche Gréfenordnungen vonein-
ander unterscheiden: Wihrend die Breiten der Zustinde des kollinearen Systems im Bereich
N =5...10von 107 "2 auf 10~ " a.u. abfallen, liegen die Breiten der entsprechenden Zustinde

im dreidimensionalen Atom fiir N = 5...10 im Bereich von 107°...107% a.u. (und weisen
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dariiber hinaus starke Fluktuationen auf, die auf die gemischt regulidr-chaotische Struktur des
klassischen Phasenraums der dreidimensionalen Bewegung zuriickzufiihren sind; siehe dazu
Abschnitt 10.3). Wir schlielen daraus, dafl im dreidimensionalen System effiziente Zerfalls-
kanile existieren, die mit den transversalen Freiheitsgraden der Frozen-Planet-Konfiguration
assoziiert sind  also etwa mit dynamischem Tunneln durch die transversalen Phasenraum-
barrieren oder einem im kollinearen System verbotenen Ubergang des inneren Elektrons auf
die andere Seite des Kerns (der einen Wechsel von einer stabilen Zee-Anordnung zu einer
instabilen eZe-Anordnung induziert; siche hierzu auch [60]). Die Tonisation der dreidimen-
sionalen Frozen-Planet-Zustinde erfolgt damit offenbar dominant iiber derartige transversale

Freiheitsgrade.

9.3 Wellenfunktionen

Ein genauer Aufschluf} iiber die Tokalisierungseigenschaften der autoionisierenden Zustidnde
ergibt sich aus dem Studium der Wellenfunktionen dieser Zustinde. Da das auf den kol-
linearen Konfigurationsraum eingeschrinkte atomare System nur iiber zwei Freiheitsgrade
verfiigt, lassen sich diese Wellenfunktionen, wie bereits in Abschnitt 8.5 erwidhnt wurde, in
nahezu vollstindiger Weise auf einer zweidimensionalen Fliche visualisieren. Abb. 9.3 zeigt
die Wahrscheinlichkeitsdichte der drei niedrigsten Zustédnde der Serie zur Quantenzahl N = 8§
als Funktion der Koordinaten der Elektronen. Entsprechend der Tatsache, dafi die Bewe-
gungen der Elektronen in der klassischen Dynamik approximativ separieren, 14t sich diese
Dichteverteilung in guter Naherung als Produkt zweier unabhingiger Ein-Elektron-Dichten
darstellen. Entlang der Koordinate des inneren Elektrons erhalten wir die Struktur einer
wasserstoffartigen Eigenfunktion zur Knotenzahl n, = N — 1 = 7. In der Koordinate des
dufBleren Elektrons ist die Wellenfunktion durch die Form des effektiven adiabatischen Poten-
tials (Abb. 9.3d) geprigt; die Zustinde mit n = 1, n = 2 und n = 3in Abb. 9.3a centsprechen
dem Grundzustand, dem ersten angeregten Zustand, sowie dem zweiten angeregten Zustand
des effektiven Potentials zur Wirkung N = &8 des inneren Elektrons.

Der unmittelbare Zusammenhang zwischen der quantenmechanischen Wellenfunktion und
dem zugrunde liegenden klassischen Phasenraum 188t sich anhand der in Abschnitt 8.5 be-
schriebenen Phasenraumprojektion bzw. Husimi-Verteilung dieser Wellenfunktion herstellen.
Dazu berechnen wir den Uberlapp dieser Wellenfunktion mit einem um einen gegebenen Ort
z und einen gegebenen Impuls p, zentrierten Gaufischen Wellenpaket in der Koordinate des
dufBleren Elektrons, wobei die Koordinate des inneren Elektrons auf einen festen Wert na-
he zo = 0 fixiert ist. Auf diese Weise erhalten wir das quantenmechanische Analogon zur
Visualisierung des klassischen Phasenraums; diese wird gemifl der in Abschnitt 4.1 beschrie-
benen Methode des doppelten Poincaré-Schnitts durchgefiihrt, wobei wir hier, im (Gegensatz

7u Kap. 4 7, die Wirkung N des inneren Elektrons fixieren. Abb. 9.4 zeigt die Phasenraum-
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Abb. 9.3: Wahrscheinlichkeitsdichte der drei niedrigsten Zustinde zur Quantenzahl N = 8 im Kon-
figurationsraum. Die Abbildungen (a  ¢) zeigen Konturplots der Wahrscheinlichkeitsdichte (mit 15
Aquidistanten Niveaus) in Abhidngigkeit der Koordinaten der Elektronen fiir die Zustande (a) n =1,
(b) n = 2, (¢) n = 3. Wir sehen, dafB die Dichteverteilung in guter Ndherung als Produkt zweier
unabhangiger Ein-Elektron-Dichten dargestellt werden kann. Wahrend in der Koordinate des inneren
Elektrons die Wahrscheinlichkeitsdichte naherungsweise durch die Struktur einer wasserstoffartigen
Eigenfunktion zur Knotenzahl n, = N —1 = 7 gegeben ist, entsprechen in der Koordinate des Aufleren
Flektrons die Zustidnde verschiedenen Anregungen innerhalb des effektiven adiabatischen Potentials,
das in (d) gezeigt ist: ndmlich dem Grundzustand (a), dem ersten (b) und dem zweiten angeregten

Zustand (c¢) des effektiven Potentials zur Quantenzahl N = &.
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Abb. 9.4: (a ¢) Husimi-Verteilungen der drei niedrigsten Zustinde der Serie zur Quantenzahl N = 8.

Die Abbildungen (a  ¢) zeigen Konturplots der Husimi-Verteilung (mit 15 dquidistanten Niveaus) in
Abhingigkeit der Phasenraumvariablen des duBeren Elektrons fiir die Zustiande (a) n =1, (b) n = 2,
(¢) n = 3. Das Quadrat unten links in (a) markiert die GroBe von 27h. (d) Poincaré-Schnitt des klas-
sischen Phasenraums. Man beachte die ausgepriagte Lokalisierung der quantenmechanischen Zustinde
entlang von regulidren Tori der klassischen Dynamik, die unterschiedlichen Anregungen innerhalb des
effektiven Potentials entsprechen. Wahrend der Zustand zu n = 1 im Zentrum des reguldren Ge-
biets (bzw. im Minimum des effektiven Potentials) lokalisiert ist, sind die Zustinde zu n = 2 und
n = 3 auf Tori lokalisiert, die bei zy ~ 4 (n = 2) baw. z; =~ 5 (n = 3) die p,; = 0 Achse in der

Poincaré-Schnittflache schneiden.
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projektionen der drei niedrigsten Zustidnde der Serie zur Quantenzahl N = 8. Deutlich 148t
sich erkennen, daf8 die quantenmechanischen Figenfunktionen entlang regulidrer Tori der ge-
bundenen klassischen Dynamik der Frozen-Planet-Konfiguration lokalisiert sind.

Das Verhalten der Tonisationsbreiten als Funktion von N (Abb. 9.2) deutet an, daf§ ei-
ne derartige Lokalisierung auf den gebundenen Strukturen des klassischen Phasenraums fiir
Zustinde mit Quantenzahlen N > 4 vorliegt. Dies zeigt sich tatsdchlich in Abb. 9.5, in der wir
die Husimi-Dichten der jeweils zwei niedrigsten Zustdnde der Serien zu den Quantenzahlen
N =2, N =3, N =4 auftragen. Fiir N = 2 (Abb. 9.2a, b) weisen die Zustinde zwar eine
erhohte Aufenthaltswahrscheinlichkeit innerhalb des Phasenraumgebiets gebundener Bewe-
gung auf, sind jedoch nicht vollstindig auf dieses GGebiet beschrinkt. Insbesondere h6herange-
regte Zustinde dieser Serie weisen einen erheblichen Uberlapp mit dem Gebiet ungebundener
Bewegung auf (Abb. 9.2b). Eine vollstindige Lokalisierung der Zustinde entlang der Tori der
gebundenen klassischen Dynamik liegt erst bei bzw. oberhalb N = 4 vor. Wie man durch
Vergleich von Abb. 9.5 und Abb. 9.4 erkennt, wird diese lokalisierung mit zunehmendem
N immer ausgeprigter. Dies entspricht der Tatsache, dafl die effektive, auf die Struktur des
klassischen Phasenraums bezogene Gréfie des Wirkungsquantums h mit zunehmendem N
proportional 1/N abnimmt, wodurch, entsprechend der semiklassischen Quantisierungsregel
(6.1), die Zahl der Quantenzustinde innerhalb eines gegebenen Phasenraumgebiets zunimmt
bzw. die Ausdehnung eines einzelnen Quantenzustands bezogen auf dieses Phasenraumgebiet
kleiner wird.

Bei der Interpretation der Husimi-Verteilung als Dichte des Zustands im klassischen Pha-
senraum ist generell Vorsicht geboten. So scheint die Phasenraumprojektion des Zustands
mit den Quantenzahlen N = 8, n = 3 7u suggerieren, dafi dieser vollstindig in der Umgebung
des dufleren Umkehrpunkts des dufleren Elektrons lokalisiert ist (Abb. 9.4c). Wie man der
Dichteverteilung im Konfigurationsraum entnehmen kann (Abb. 9.3¢), ist die Wellenfunk-
tion dieses Zustands tatsichlich auf den gesamten Bereich des klassischen Orbits verteilt.
Da jedoch das Maximum der Dichte am inneren Umkehrpunkt relativ schmal ist  was dar-
auf zuriickzufiihren ist, daf die klassische Dynamik in der Umgebung dieses Umkehrpunkts
durch eine relativ grofie Variation des Tmpulses gekennzeichnet ist  ist der Uberlapp der
Wellenfunktion mit einem um diesen Umkehrpunkt zentrierten Gaufischen Wellenpaket, des-
sen Squeezing-Parameter wy der Dynamik in der Umgebung des Minimums des effektiven
Potentials angepafit ist (und dessen Breite im Ortsraum in etwa der Breite des niedrigsten
Zustands dieser Serie entspricht), sehr klein im Gegensatz zum Uberlapp mit dem um den
duBleren Umkehrpunkt zentrierten Wellenpaket und liefert damit praktisch keinen Beitrag
zur Husimi-Verteilung dieser Wellenfunktion. Tats&chlich 1468t sich durch eine Erh6hung der
Squeezing-Frequenz w;, (also durch den Uberlapp der Wellenfunktion mit einem im Ortsranm

schmaleren Wellenpaket) die Verteilung der Wellenfunktion in der Umgebung des inneren
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Abb. 9.5: Husimi-Verteilungen der zwei niedrigsten Zustinde n =1 (a, ¢, ¢) und n = 2 (b, d, f) zu

den Quantenzahlen N = 2 (a, b), N = 3 (¢, d) und N = 4 (e, f). Die gestrichelte Linie markiert
die Separatrix zwischen der gebundenen und der ungebundenen Dynamik im klassischen Phasenraum.
Die Quadrate unten links in (a, ¢, e) markieren die GroBe von 2mh. Wir sehen, daff fiir N = 2
die Dichteverteilungen der autoionisierenden Zustidnde nicht vollstidndig auf das Gebiet gebundener
klassischer Bewegung beschrankt ist. Insbesondere hoherangeregte Zustande dieser Serie weisen einen
erheblichen Uberlapp mit dem Gebiet ungebundener Bewegung anf (b). Eine vollstandige Lokalisierung
der Zustande innerhalb des Gebiets gebundener Bewegung setzt erst oberhalb N = 3 ein. Entsprechend
der Tatsache, dafl die effektive, auf die Struktur des klassischen Phasenraums bezogene Grofle des
Wirkungsquantums mit, zunehmendem N proportional zu 1/N abnimmt, wird diese T.okalisierung

zunehmend ausgepragter mit zunehmendem N (vgl. hierzu auch die Husimi-Verteilungen der Zustande

zu N = 8 in Abb.9.4).
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Umkehrpunkts besser hervorheben. Dies zeigt Abb. 9.6, in der die Phasenraumprojektion
des Zustands mit den Quantenzahlen N = 8, n = 3 fiir verschiedene Werte der Squeezing-

Frequenz w, aufgetragen sind.
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Abb. 9.6: Husimi-Verteilungen des Zustands zu N = 8 und n = 3 fiir verschiedene Werte der Squeezing-
Frequenz w, (gemaf (8.56)). (a) ws = 0.05 N~ (b)w, = 0.1 N3 () wy = 0.2 N3 (d) wy = 0.5 N~
(e) wy =1 N3 (f) wy = 2 N3 Wie wir sehen, bestimmt die Wahl von w, die Unschérfe der Husimi-
Verteilung in Ort und Tmpuls: Maximale Auflésung in der Impulskoordinate p bei minimaler Auflésung
in der Ortskoordinate x erhalten wir fiir kleine w; (a,b), maximale Ortsauflésung bei minimaler Tmpul-
sauflésung erhalten wir fiir grofie w; (e,f). Der Ubergang von einer ,impulsaufgeldsten® zu einer , orts-
aufgeldsten® Husimi-Verteilung findet in der Umgebung der intrinsischen Frequenzskala wy ~ (0.3 N3
statt (c, d). Tn der Umgebung dieser Frequenz 148t sich die Tokalisierung des Zustands auf Strukturen

des zugrunde liegenden klassischen Phasenraums besonders gut visualisieren.



Kapitel 10

Das kollineare Helium-Atom unter

externem Antrieb

Nachdem in den vorangegangenen Kapitel die wesentlichen Figenschaften der Figenzustdnde
des ungestérten kollinearen Systems aufgezeigt wurden, ist in diesem Kapitel zu untersuchen,
wie sich die kollineare Konfiguration unter Einfluf} eines periodischen Antriebs verhilt. Da-
bei interessieren wir uns insbesondere fiir die Charakteristika von Kigenzustinden, die mit
requldren Inseln des klassischen Phasenraums der getriebenen Konfiguration assoziiert sind.
Um einen direkten Vergleich zwischen stationfren Zustidnden, die auf der intrinsischen Insel
lokalisiert sind, und nichtdispergierenden Zwei-Elektronen-Wellenpaketen, die auf der feldin-
duzierten Resonanzinsel lokalisiert sind, zu erméglichen, wiahlen wir die Feldparameter F und
w 80, dafl im klassischen Phasenraum sowohl die intrinsische Tnsel als auch die feldinduzierte
1:1 Resonanzinsel in gut ausgeprigter Weise vertreten sind. Dies ist, wie Abb. 10.1 zeigt, bei
w = 0.2 und F = 0.005 fir N = 1 der Fall. Bei diesen Feldparametern sind beide Inseln
so grof}, dafl Quantenzustinde, die auf ihnen lokalisiert sind, fiir Quantenzahlen N < 10 im
Spektrum auftreten. Konkret erhalten wir aus den Querschnittsflichen dieser Inseln iiber das
EBK-Kriterium (Abschnitt 6.2) die Mindestquantenzahlen N ~ 6 fiir Quantenzustiande auf
der intrinsischen Insel sowie N ~ 7 fiir Quantenzustinde auf der 1:1 Resonanzinsel.

Damit die klassische Phasenraumstruktur fiir alle betrachteten Quantenzahlen N gleich
bleibt, ist es erforderlich, die Feldparameter entsprechend der Skalierungsgesetze (3.5  3.10)

gemifl

= 02N 7, (10.1)
= 0.005N* (10.2)

zu skalieren. Es empfiehlt sich, ,skalierte Feldparameter gemifl

wyg = wN?, (10.3)
Fo = FN* (10.4)
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Abb. 10.1: Poincaré-Schnitt des klassischen, kollinearen Phasenraums fiir w = 0.2, F = 0.005 zu den
Feldphasen (a) wt = 0, (b) wt = 7/2, (¢) wt = m. Tm Gegensatz zu den Poincaré-Schnitten in Kap. 4 7
wird hier statt der Gesamtenergie die Wirkung des inneren Elektrons gemafl N = 1 fixiert. Bei diesen
Feldparametern sind sowohl die intrinsische Insel als auch die feldinduzierte 1:1 Resonanzinsel so grof,
dafl im Spektrum ab Quantenzahlen N = 5 des inneren Elektrons sowohl stationdre Quantenzustiande
auf der intrinsischen Tnsel als auch nichtdispergierende Wellenpakete auf der 1:1 Resonanzinsel auf-
treten (in guter Ubereinstimmung mit dem EBK-Kriterium, das die Mindestquantenzahlen Ny, ~ 6

fiir die intrinsische und Ny, ~ 7 fiir die 1:1 Resonanzinsel vorhersagt).
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einzufiihren, die, in Abhdngigkeit der Quantenzahl N, die Feldparameter w, F auf die zu-
grunde liegende klassische Phasenraumstruktur beziehen. Fiir jede Serie zur Quantenzahl
N betrachten wir damit einen externen Antrieb der skalierten Frequenz wg = 0.2 und der
skalierten Feldamplitude Fy = 0.005.

Um zu untersuchen, inwieweit stationdre Zustidnde auf der intrinsischen Insel und nicht-
dispergierende Wellenpakete auf der 1:1 Resonanzinsel durch die feldinduzierte Kopplung
von Zustinden innerhalb einer Serie des ungestérten Systems erzeugt werden (es zeigt sich,
dafl die Kopplungen zwischen Zustdnden verschiedener Serien bei den betrachteten Feldpa-
rametern und Quantenzahlen keine Rolle spielen), betrachten wir in Abschnitt 10.1 zunichst
die Entwicklung dieser Floquet-Zustinde in Abhingigkeit der Feldamplitude. ITm Anschlufl
daran analysieren wir die Lokalisierungseigenschaften (Abschnitt 10.2) und Lebensdauern
(Abschnitt 10.3) der mit den reguldren Inseln assoziierten Zustinde. SchlieSlich untersuchen
wir in Abschnitt 10.4, inwieweit durch das Anlegen eines zusitzlichen, statischen elektrischen
Feldes, dessen Feldstirke Fi in dem fiir die Stabilisierung der dreidimensionalen Konfigura-
tion relevanten Bereich 0 < F < F/2 liegt (siche Kap. 7), die Eigenschaften der auf den

reguldren Inseln lokalisierten Zustinde modifiziert werden.

10.1 Floquet-Zustinde in Abhingigkeit der Feldamplitude

Bei der Untersuchung der Entwicklung stationdrer Zustinde und nichtdispergierender Wel-
lenpakete aus FKigenzustdnden des ungestorte Systems konzentrieren wir uns auf das Floquet-
Spektrum der Serie zur Quantenzahl N = 8. Abb. 10.2 zeigt dieses Floquet-Spektrum fiir
w = 0.2N"3 = 0.0003906 innerhalb der Floquet-Zone zwischen F = —0.0323906 und
F = —0.032 im Grenzfall verschwindender Feldamplitude. Bei I’ = 0 entsprechen die Floquet-
Zustinde den Eigenzustinden des ungestérten atomaren Systems, deren Energien durch Ad-
dition bzw. Subtraktion eines ganzzahligen Vielfachen der Frequenz w in die Floquet-Zone
verschoben sind. Wird die externe Stérung eingeschaltet, so tritt eine starke feldinduzierte
Wechselwirkung vor allem zwischen denjenigen Zustdnden auf, die innerhalb der Floquet-Zone
relativ nahe nebeneinander liegen (also nahezu resonant gekoppelt sind) und im Phasenraum
stark iiberlappende Dichteverteilungen aufweisen (also durch relativ nahe benachbarte Quan-
tenzahlen gekennzeichnet sind). Dies trifft insbesondere auf die Zustinde zu den Quantenzah-
len n. =2 und n = 3 zu, die durch das externe Feld in Form eines Ein-Photonen-Ubergangs
nahezu resonant gekoppelt sind. Es ist zu erwarten, daff aus der Mischung dieser beiden
Zustidnde das nichtdispergierende Wellenpaket hervorgeht, das auf der 1:1 Resonanzinsel lo-
kalisiert ist. Entsprechend erkennt man durch Vergleich von Abb. 9.4 und Abb. 10.1a, daf§
die Zustinde zu n = 2 und n = 3 entlang reguldrer Tori in dem Phasenraumgebiet lokalisiert
sind, in dem sich bei nichtverschwindender Stérung die 1:1 Resonanzinsel befindet. Fiir den

Zustand zu n = 1 hingegen ist zu erwarten, dafl er bei Finschalten des Feldes in einen auf
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der intrinsischen Insel lokalisierten, stationdren Zustand iibergeht.
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Abb. 10.2: Energien und Tonisationshreiten (HWHM) der Floquet-Zustinde zur Quantenzahl N = 8
im Grenzfall verschwindender Feldamplitude F' = (0. Die Zustidnde entsprechen den autoionisierenden
Zustanden des ungestorten Systems zu N = 8, die durch Addition bzw. Subtraktion ganzzahliger Viel-
facher von w = 0.0003906 in die Floquet-Zone zwischen F = —0.0323906 und ¥ = —0.032 verschoben
sind (vgl. Abb. 9.1g). Die ersten zehn Zustande dieser Serie sind durch Nummern gekennzeichnet. Bei
Finschalten des externen Feldes tritt eine starke Kopplung vor allem zwischen denjenigen Zustinden
auf, die in der Floquet-Zone energetisch nahe nebeneinander liegen (also nahezu resonant gekoppelt
sind) und deren Dichteverteilungen im Phasenraum stark iiberlappen (die also durch relativ nahe
benachbarte Quantenzahlen n gekennzeichnet sind). Wie wir sehen, trifft dies insbesondere auf die
Zustinde zu n = 2 und n = 3 zu. In der Tat ergibt sich aus der feldinduzierten Kopplung dieser

Zustiande das mit der 1:1 Resonanz assoziierte nichtdispergierende Zwei-Elektronen-Wellenpaket.

Abb. 10.3 zeigt die Entwicklung des Floquet-Spektrums zur Quantenzahl N = 8 als
Funktion der Feldamplitude, die in dquidistanten Schritten der Linge AFy = 0.0005 von
Fo = 0 bis Fop = 0.01 variiert ist. Aufgetragen sind in Abb. 10.3a2 d2 die Energieniveaus
in der Umgebung derjenigen (durch Kreise gekennzeichneten) Floquet-Zustinde, die aus den
ungestorten Zustinden zu den Quantenzahlen n = 1 (Abb. 10.3a2), n = 2 (Abb. 10.3b2),
n =3 (Abb. 10.3¢2) und n = 4 (Abb. 10.3d2) hervorgehen. Zusitzlich zeigen Abb 10.3a1 d1
die Tonisationshreiten dieser Floquet-Zustinde. Um die Ubersichtlichkeit der Abbildung zu
gewihrleisten, sind im Floquet-Spektrum lediglich diejenigen Niveaus dargestellt, die autoio-
nisierenden Resonanzzustinden entsprechen (d.h. nicht dem Kontinuum angehoren).

Wir sehen, daf§ unter dem Einflul des dufleren Feldes eine dynamische Verschiebung der
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Abb. 10.3: Entwicklung der Floquet-Zustinde n = 1, n = 2, n = 3, n = 4 zur Quantenzahl N = &.

Gezeigt sind in (a2, b2, ¢2, d2) Ausschnitte des Floquet-Spektrums, zentriert um die (durch Kreise

gekennzeichneten) Floquet-Zustinde, die die diabatische Fortsetzung der Zustinde zun =1 (a), n = 2

(b), n =3 (c) und n =4 (d) darstellen. Aufgetragen sind jeweils die Quasienergien ¢ in Abhangigkeit

der Feldamplitude F' bei der Frequenz wy = 0.2. Die Tonisationsbreiten (HWHM) dieser Floquet-

Zustdnde sind entsprechend in (al, b1, ¢, d1) aufgetragen. Wir sehen, dafl diese Tonisationsbreiten

insbesondere bei vermiedenen Kreuzungen zunehmen, bei denen diese Zustdnde mit hoherangeregten

Zustanden der gleichen Serie resonant gekoppelt sind. Auffallend ist dariiber hinaus die starke Ni-

veauverschiebung des Zustands zu n = 2 (b). Tn der Tat entspricht dieser Zustand dem auf der 1:1

Resonanzinsel lokalisierten, nichtdispergierenden Wellenpaket.
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Niveaus im Floquet-Spektrum stattfindet. Besonders ansgeprigt ist diese Niveauverschiebung
bei dem Floquet-Zustand, der aus dem Figenzustand zur Quantenzahl n = 2 des ungestérten
Systems hervorgeht. Da die Anderung der Energie mit der Amplitude des treibenden Feldes
dem dynamischen Dipolmoment der atomaren Konfiguration entspricht, eine starke Anderung
der Energie mit F also auf ein ausgeprigtes Osvzillationsverhalten der Wellenfunktion im
Konfigurationsraum hinweist, ist daraus bereits zu erkennen, dafl dieser Floquet-Zustand
dem nichtdispergierenden Wellenpaket entspricht, das auf der 1:1 Resonanzinsel lokalisiert
ist. Dies ergibt sich auch aus der Tatsache, dafl die Energie dieses Zustands, im Gegensatz,
zu den Energien der Zustinde zu n = 1, n = 3 und n = 4, mit zunehmendem F zunimmt:
Wie wir in Abb. 4.3 gesehen haben (bzw. in Abb. 10.11 sehen werden), verschiebt sich die 1:1
Resonanzinsel mit zunehmender Feldamplitude ein wenig zu hdheren Energien im effektiven
Potential. Die Energie eines auf dieser Insel lokalisierten Zustands sollte daher ebenfalls mit
zunehmendem F anwachsen.

Die Zuordnung der Floquet-Zustinde zu Quantenzahlen des ungestorten Systems ergibt
sich zum einen unmittelbar aus der Entwicklung der Energieniveaus als Funktion von F,
zum anderen 138t sie sich anhand der Uberlappmatrixelemente dieser Floquet-Zustinde mit
Zustinden des ungestdrten Systems rechtfertigen. Die Betragsquadrate dieser Uberlappma-
trixelemente sind fiir die Floquet-Zustinde zu den Quantenzahlen n =1, n =2, n = 3 und
n =4 in Abb. 10.4 dargestellt. Wir sehen, daf§ fiir niedrige Feldamplituden Fy < 0.005 diese
Floquet-Zustinde einen wesentlichen Uberlapp hauptsichlich mit denjenigen Eigenzustinden
des ungestorten Systems aufweisen, aus denen sie im Grenzfall verschwindender Feldampli-
tude hervorgehen.

Fine starke Beimischung anderer Komponenten des ungestérten Systems liegt vor allem
in der Umgebung ,,vermiedener Kreuzungen“ (“avoided crossings”) vor [144, 145, 146]. Diese
Kreuzungen treten stets dann auf, wenn zwei atomare Zustinde durch das externe Feld
resonant gekoppelt werden. Da eine nichtverschwindende, wenn auch kleine Wechselwirkung
zwischen diesen Zustinden deren energetische Entartung verhindert, kommt es bei derartigen
resonanten Kopplungen zu einer ,AbstoBung® der Niveaus, die bewirkt, dafl diese beiden
Zustinde an der Kreuzung kontinuierlich ineinander iibergehen. Dies ist in Abb. 10.5 gezeigt,
in der die vermiedene Kreuzung zwischen dem Zustand zu n = 4 und dem Floquet-Zustand,
der den Zustand zu n = 19 des ungestorten Systems fortsetzt, bei Fy ~ 0.006 vergréfert
dargestellt ist. Wir sehen, da der Zustand zu n = 4 bei Erhéhung von Fy kontinuierlich
in den Zweig iibergeht, der der geradlinigen Fortsetzung des Niveaus zu n = 19 entspricht,
wihrend der Zustand zu n = 19 kontinuierlich in die geradlinige Fortsetzung des Zustands
7u n = 4 iibergeht. Durch eine adiabatische Variation der Feldamplitude d.h. durch eine
Variation von F, die im Vergleich zu der Zeitskala, die dem inversen Niveauabstand der

vermiedenen Kreuzung entspricht, langsam ablauft 148t sich also der Floquet-Zustand zu
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Abb. 10.4: Uberlapp P der Floquet-Zustinde zu n = 1 (a), n =2 (b), n =3 (¢) und n = 4 (d)
mit Zustinden des ungestorten Systems zur Quantenzahl N = 8 (s. Abb. 10.3). Aufgetragen sind in
Abhingigkeit der Feldamplitude F' die Betragsquadrate der Uberlappmatrixelemente dieser Floguet-
Zustinde mit den Zustidnden zu n = 1(), n = 2(0), n = 3(O), n = 4(A), n = 5(<1), n = 6(v), n =
T(>), n = 8(x), n = 9(+), n = 10(*) des ungestorten Systems. (Betragsquadrate, die kleiner als 0.01
sind, wurden nicht aufgetragen.) Wir sehen, dafl diese Floquet-Zustande fiir niedrige Feldamplituden
Fy < 0.005 einen wesentlichen Uberlapp hauptsichlich mit. den Zustinden des ungestorten Systems
aufweisen, die sie im Spektrum diabatisch fortsetzen. Fine starke Beimischung anderer Komponenten
des ungestorten Systems liegt vor allem in der Umgebung vermiedener Kreuzungen vor (in (a) bei
Fo =~ 0.0095 sowie in (d) bei Fy ~ 0.006, vgl. dazu Abb. 10.3a und d). Dariiber hinaus tritt eine relativ
starke Mischung auch zwischen den nahezu resonant gekoppelten Zustinden n = 2 und n = 3 auf (b

und ¢), die sich hereits bei relativ niedrigen Feldamplituden bemerkbar macht.
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n = 4 kontinuierlich in den Zustand zu n = 19 {iberfiihren.
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Abb. 10.5: Vergriflerte Darstellung der vermiedenen Kreuzung zwischen dem Zustand n = 4 und

dem Zustand n = 19 aus Abb. 10.3d. Wir sehen, daBl der Zustand zu n = 4 (oberer linker baw.
unterer rechter Zweig der Kreuzung) bei adiabatischer Variation von F' kontinuierlich in den Zustand

zu n = 19 (unterer linker bzw. oberer rechter Zweig der Kreuzung) iibergeht.

Die von uns gewidhlte Notation entspricht einem diabatischen Einschalten des Feldes, d.h.
einem Einschaltvorgang, der langsam ablduft im Vergleich zur Zeitskala, die dem inversen
mittleren Abstand benachbarter Niveaus entspricht, jedoch schnell ist im Vergleich zum in-
versen Niveauabstand bei vermiedenen Kreuzungen. Ein derartiger Finschaltvorgang sorgt
dafiir, daf§ das System der Entwicklung des Floquet-Niveaus zwischen vermiedenen Kreuzun-
gen folgt, die Kreuzungen selbst jedoch ,.iiberspringt®, d.h. in den Zweig iibergeht, der das
Niveau jenseits der Krenzung geradlinig fortsetzt. Wie wir anhand der Uberlappmatrixele-
mente in Abb. 10.4 sehen, setzt eine derartige Notation die Floquet-Zustdnde in sinnvoller
Weise 7u den Eigenzustinden des ungestérten Systems in Beziehung. In der unmittelbaren
Umgebung der vermiedenen Kreuzungen ist diese Notation jedoch uneindeutig, da nicht ge-
nau festgelegt werden kann, bei welcher Feldamplitude die Zuordnung des Floquet-Zustands
zu einer Quantenzahl n. vom unteren in den oberen Zweig der Kreuzung (bzw. umgekehrt)
wechselt.

Das Auftreten vermiedener Kreuzungen manifestiert sich auch in den Tonisationsbrei-
ten. Wie wir in Abb. 10.3a1 d1 sehen, nehmen fiir die Zustinde zu den Quantenzahlen
n = 1,2,3,4 die lonisationsbreiten generell zu mit zunehmendem F. lokale, signifikante

Erhéhungen der Breiten treten in der Umgebung von vermiedenen Kreuzungen mit Zustinden
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auf, die héheren Quantenzahlen innerhalb der Serie zu N = 8 entsprechen und daher im all-
gemeinen durch héhere lonisationsbreiten gekennzeichnet sind. Im atomaren System 158t
sich eine derartige lokale Erh6hung der Tonisationsrate als Verstirkung der Tonisation durch
resonante Multiphotonenkopplung (REMPI) interpretieren (siehe etwa [147]).

Fine starke Mischung zwischen Zustinden des ungestorten Systems tritt nicht nur auf,
wenn die entsprechenden Floquet-Niveaus energetisch nahezu entartet sind, sondern vor al-
lem auch dann, wenn diese Zustidnde durch Dichteverteilungen gekennzeichnet sind, die im
Phasenraum einen relativ groBen gemeinsamen Uberlapp aufweisen (was auf Zustinde be-
nachbarter Quantenzahlen n zutrifft), bzw. wenn diese Zustinde durch eine geringe Zahl von
Photonen aneinander gekoppelt sind (was auf die Zustdnde zu niedrigen n zutrifft). Dement-
sprechend finden wir, daf§ die Floquet-Zustdnde zu n = 1,2, 3,4 auflerhalb von vermiedenen
Kreuzungen hauptsidchlich aus der Mischung derjenigen Komponenten gebildet werden, die
den niedrigsten Zustinden der Serie des ungestérten Systems entsprechen. Besonders ausge-
priagt ist die Mischung zwischen den nahezu resonant gekoppelten Zustinden zu n = 2 und
n = 3, die sich bereits bei relativ niedrigen Feldamplituden bemerkbar macht (Abb. 10.4b.c).

Eine prinzipiell dhnliche Situation liegt auch bei Serien zu anderen Quantenzahlen N vor.
Die Abbildungen 10.6, 10.7 zeigen die FEntwicklung der Energien und Breiten der Floquet-
Zustinde zu n = 1,2, 3, 4fiir die Serien zu den Quantenzahlen N =9 (Abb. 10.6) und N = 10
(Abb. 10.7) (die Frequenz betrigt jeweils wg = 0.2). Wir sehen, daf fiir jede dieser Quanten-
zahlen ein Floquet-Zustand existiert, der sich durch ein starkes Anwachsen der Energie als
Funktion der Feldamplitude auszeichnet. Dieser Zustand entspricht dem nichtdispergierenden
Wellenpaket, das auf der 1:1 Resonanzinsel lokalisiert ist.

Die Uberlappmatrixelemente dieser Wellenpaketzustinde mit den Eigenzustinden des
ungestdrten Systems sind in Abb. 10.8 dargestellt. Wie fiir N = 8 wird dieser Zustand
auch fir N =7, N = 9 und N = 10 durch Mischungen verschiedener Komponenten des
ungestorten Systems gebildet, insbesondere der Komponenten zu n = 2 und n = 3 sowie, fiir
N =10, auch der zu n = 4. Dabei wird mit zunehmendem N, entsprechend der zunehmenden
Auflésung der klassischen Phasenraumstruktur durch die Quantendynamik, die Quantenzahl
der dominierenden Komponente immer gréfier. Wihrend fiir N = 7 der Wellenpaketzustand
hauptsichlich durch den Zustand n = 2 gebildet wird, setzt er sich fiir N = 9 zu nahezu
gleichen Teilen aus den Zustinden zu n = 2 und n = 3 zusammen. Fiir N = 10 dominiert
die Komponente n = 3; das nichtdispergierende Wellenpaket entspricht hier der diabatischen

Fortsetzung des Zustands n = 3 des ungestérten Systems.
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Abb. 10.6: Entwicklung der Floquet-Zustinde n = 1, n = 2, n = 3, n = 4 zur Quantenzahl N = 9.

Gezeigt sind in (a2, b2, ¢2, d2) Ausschnitte des Floquet-Spektrums, zentriert um die (durch Krei-

se gekennzeichneten) Floquet-Zustinde, die die diabatische Fortsetzung der Zustinde zu n = 1 (a),

n =2 (b),n =3 (c) und n = 4 (d) darstellen. Aufgetragen sind jeweils die Quasienergien ¢ in

Abhingigkeit der Feldamplitude F bei der Frequenz wp = 0.2. Die Tonisationsbreiten (HWHM) dieser

Floguet-Zustinde sind in (al, b1, ¢, d1) aufgetragen. Wie auch bei N = 8 (Abb. 10.3) entspricht. der

Floquet-Zustand zu n = 2 dem auf der 1:1 Resonanzinsel lokalisierten, nichtdispergierenden Wellen-

paket, wahrend der Zustand zu n = 1 den auf der intrinischen Insel lokalisierten, stationdren Zustand

darstellt. Man beachte die im Vergleich zu N = 8 gestiegene Zahl vermiedener Kreuzungen, die der sta-

tiondre Zustand und das nichtdispergierende Wellenpaket im Bereich 0 < F < 0.01 N=% durchlaufen.
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Abb. 10.7: Entwicklung der Floquet-Zustinde n = 1, n = 2, n = 3, n = 4 zur Quantenzahl N = 10.

Gezeigt sind in (a2, b2, ¢2, d2) Ausschnitte des Floquet-Spektrums, zentriert um die (durch Kreise

gekennzeichneten) Floquet-Zustinde, die die diabatische Fortsetzung der Zustande zu n = 1 (a),

n =2 (b),n =3 (c) und n = 4 (d) darstellen. Aufgetragen sind jeweils die Quasienergien ¢ in

Abhingigkeit der Feldamplitude F bei der Frequenz wp = 0.2. Die Tonisationsbreiten (HWHM) dieser

Floguet-Zustinde sind in (al, b1, ¢1, d1) aufgetragen. Tm Gegensatz zu N = 8,9 entspricht das

nichtdispergierende Wellenpaket hier der diabatischen Fortsetzung des Zustands n = 3 (c¢). Dies ist

an dem starken Anstieg dessen Energie mit F' zu erkennen (c2).
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Abb. 10.8: Uberlapp P der nichtdispergierenden Wellenpakete mit Zustdnden des ungestorten Sy-
stems zur Quantenzahl (a) N =7, (b) N =8 (Abb. 10.3b), (¢) N =9 (Abb. 10.6b) und (d) N =10
(Abb. 10.7¢). Aufgetragen sind in Abhingigkeit der Feldamplitude F' die Betragsquadrate der Uber-

lappmatrixelemente der entsprechenden Floquet-Zustinde mit den Zustanden zu n = 1((0), n = 2(0),

n=3(C), n =4(A), n =5(«), n=6(), n =7(>), n = 8(x), n = 9(+), n = 10(x) des ungestorten

Systems (Betragsquadrate, die kleiner als 0.01 sind, wurden nicht aufgetragen). Wir sehen, daf} sich

mit zunehmendem N die dominierende Komponente zu hoheren Quantenzahlen verschiebt. Wahrend

fiir N = 7 das Wellenpaket einen wesentlichen Uberlapp hauptsichlich mit dem Zustand n = 2 anf-

weist, (a), setzt es sich fiir N = 9 zu nahezu gleichen Teilen aus den Zustanden zu n =2 und n =3

zusammen (¢). Fiir N = 10 dominiert die Komponente n = 3 (d); das nichtdispergierende Wellenpaket

entspricht hier der diabatischen Fortsetzung des Zustands n = 3 des ungestérten Systems.
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10.2 Stationire Zustinde und nichtdispergierende Wellenpa-
kete

Wie im vorigen Abschnitt erwdhnt wurde, 148t sich bereits aus dem starken Anstieg seiner
Energie mit F erkennen, dafl derjenige Floquet-Zustand, der die diabatische Fortsetzung
des Zustands zu n = 2 (bzw. zu n = 3 fiir N = 10) darstellt, mit der 1:1 Resonanzinsel
des klassischen Phasenraums assoziiert ist. Vom Floquet-Zustand zur Quantenzahl n = 1
hingegen ist zu erwarten, dafl er im Phasenraum auf der intrinsischen Insel lokalisiert ist. Dies
158t sich anhand der Husimi-Verteilungen der Floquet-Zustdnde verifizieren, die in Abb. 10.9
fiir N = 8 und fiir die Feldparameter wg = 0.2, Fy = 0.005 7u den Zeiten wt = 0, /2 und
7 dargestellt sind. Wir sehen, dafl der Zustand zu n = 1 einen im wesentlichen stationdren
Zustand darstellt, wihrend der Zustand zu n = 2 einem nichidispergierenden Wellenpaket
entspricht, das der Qszillation der 1:1 Resonanzinsel folgt.

Abb. 10.10 zeigt die Wahrscheinlichkeitsdichte des stationdren Zustands und des nichtdi-
spergierenden Wellenpakets im Konfigurationsraum. Wir sehen, dafl der stationire Zustand
im wesentlichen mit dem ungestérten Zustand n = 1 der Serie N = 8 iibereinstimmt. Das
nichtdispergierende Wellenpaket hingegen 148t sich nicht unmittelbar einem Eigenzustand
des ungestorten Systems zuordnen, sondern entspricht vielmehr einer zeitabh&ngigen Linear-
kombination mehrerer Eigenzustinde, insbesondere der Zustinde zu n = 2 und n = 3 (wie
wir anhand der Wahrscheinlichkeitsdichten dieser Zustdnde im Konfigurationsraum erken-
nen, siche Abb. 9.3). Wihrend es in der Koordinate des inneren Elektrons im wesentlichen
durch eine Wasserstoff-Eigenfunktion zur Knotenzahl N — 1 = 7 gegeben ist, folgt es in der
Koordinate des dufieren Elektrons der klassischen Trajektorie der 1:1 Resonanz. Wie wir an
der klassischen Trajektorie in Abb. 4.5b gesehen haben, manifestiert sich der Wellenpaket-
charakter auch in der Koordinate des inneren Elektrons, ndmlich in Form von periodischen
Modulationen der Ausdehnung der Dichteverteilung in z3. Diese Modulationen sind jedoch
bei der hier betrachteten Quantenzahl N = 8 kaum erkennbar.

Die Entwicklung des nichtdispergierenden Wellenpakets aus der Wellenfunktion des Zu-
stands » = 2 des ungestdérten Systems ist in Abb. 10.11 fiir wt = 0 und in Abb. 10.12 fiir
wt = 7 dargestellt. Wir sehen, dafi der Eigenzustand zu n = 2 mit zunehmendem Fy < 0.005
kontinuierlich der Entwicklung der 1:1 Resonanzstruktur folgt. Dabei verlagert sich die Wahr-
scheinlichkeitsdichte immer mehr zum duferen Umkehrpunkt fiir wt = 0 (Abb. 10.11) sowie
zum inneren Umkehrpunkt fiir wt = 7 (Abb. 10.12). Fiir Fy > 0.005 verschlechtert sich die
Lokalisierung des nichtdispergierenden Wellenpakets: Bei Fy = 0.01 (Abb. 10.11e) iiberdeckt
das Wellenpaket einen deutlich gréeren Bereich im Phasenraum als bei Fy = 0.005, was dar-
auf zuriickzufiihren ist, dafl sich durch die Verkleinerung der 1:1 Resonanzinsel die Kopplung

des Wellenpaketzustands an die diese Insel umgebende chaotische See vergréfiert.
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Abb. 10.9: Stationdrer Zustand und nichtdispergierendes Wellenpaket im Phasenraum. Aufgetragen
sind die Husimi-Verteilungen der Floquet-Zustinde zu n = 1 (a, ¢, e) und zu n = 2 (h, d, f) fiir
N =8, wy = 0.2, Fy = 0.005 (siehe Abh. 10.3a und Abb. 10.3b) zu verschiedenen Zeiten bzw. Phasen
des treibenden Feldes: (a, b) wt = 0, (¢, d) wt = 7/2, (e, f) wt = 7. Durch Vergleich mit, dem
Poincaré-Schnitt der klassischen Dynamik in Abb. 10.1 erkennen wir, dafl diese Floquet-Zustinde
vollstandig auf den entsprechenden reguldren Inseln des klassischen Phasenraums lokalisiert sind.
Wihrend der Zustand zu n =1 (a, ¢, e) auf der intrinsischen Tnsel lokalisiert, ist, und somit einen im
wesentlichen stationdren 7Zustand darstellt, entspricht der Zustand zu n = 2 einem nichtdispergierenden

Wellenpaket, das der Zeitentwicklung der 1:1 Resonanzinsel im Verlauf der Feldperiode folgt.
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Abb. 10.10: Stationarer Zustand und nichtdispergierendes Wellenpaket im Konfigurationsraum. Auf-
getragen sind die Wahrscheinlichkeitsdichten der Floquet-Zustande zu n =1 (a, ¢, e) und zu n = 2 (b,
d, f), fir N =8, wg = 0.2, Fy = 0.005 und die Feldphasen (a, b) wi =0, (¢, d) wt = 7/2, (e, f) wi = .
Wir sehen, daB der stationdre Zustand (a, ¢, e) im wesentlichen mit dem ungestérten Zustand n = 1
der Serie zur Quantenzahl N = 8 iibereinstimmt (s. Abb. 9.3a). Das nichtdispergierende Wellenpaket,
hingegen (b, d, ) konstituiert sich aus der (periodisch) zeitabhdngigen Linearkombination verschiede-
ner Eigenzustinde des ungestorten Systems, insbesondere der Zustande zu n = 2 und n = 3 (vgl. dazu
auch die Wahrscheinlichkeitsdichte dieser Zustiande im Konfigurationsraum in Abb. 9.3b, ¢). Wihrend
es in der Koordinate des inneren Elektrons im wesentlichen durch eine Wasserstoff-Eigenfunktion zur
Knotenzahl 7 gegeben ist, folgt es in der Koordinate des dufleren Elektrons der klassischen Trajektorie

der 1:1 Resonanz.
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Abb. 10.11: Entwicklung des nichtdispergierenden Wellenpakets in Abhéangigkeit der Feldamplitude
zur Phase wt = 0. Aufgetragen sind in (a, ¢, e) die Husimi-Verteilungen des Floquet-Zustands zu
n=2fir N =8 wy=0.2und (a) Fy = 0.001, (b) Fy = 0.005, (¢) Fo = 0.01. (b, d, f) zeigen die
Poincaré-Schnitte des entsprechenden klassischen Phasenraums. Wir sehen, dafi der Floquet-Zustand
kontinuierlich von dem stationédren, ungestorten Zustand n = 2 (vgl. Abb. 9.4b) in den nichistationdren
Wellenpaketzustand auf der 1:1 Resonanz iibergeht (a, ¢) (vgl. hierzu auch Abb. 10.12). Fiir Fy >
0.005 verschlechtert sich die Tokalisierung des Wellenpakets: Wie wir in (e) sehen, iiberdeckt der
Wellenpaketzustand bei Fy = 0.01 einen deutlich gréferen Bereich im Phasenraum als bei Fiy = 0.005
(c). Dies ist auf die Verkleinerung der 1:1 Resonanzinsel (f) zuriickzufiihren, die bewirkt, dafl sich die

Kopplung des auf ihr lokalisierten Zustands an die chaotische See vergrofiert.
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Abb. 10.12: Entwicklung des nichtdispergierenden Wellenpakets in Abhéangigkeit der Feldamplitude
zur Phase wt = . Aufgetragen sind in (a, ¢, ) die Husimi-Verteilungen des Floquet-Zustands zu
n =2, fir N =8 wy=0.2und (a) Fy = 0.001, (b) Fy = 0.005, (¢) Fy = 0.01. (b, d, f) zeigen die
Poincaré-Schnitte des entsprechenden klassischen Phasenraums. Der Vergleich mit Abb. 10.11 sowie
mit der Husimi-Verteilung des ungestorten Zustands n = 2 in Abb. 9.4b 148t erkennen, wie sich mit

runehmendem Fyy < 0.005 der zeitabhangige Charakter des Wellenpakets immer starker herausbildet.
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Floquet-Zustande zu héheren Quantenzahlen n > 2 sind bei Fy = 0.005 ausschliefilich
mit. dem chaotischen Bereich des klassischen Phasenraums assoziiert. Abb. 10.13 zeigt die
Husimi-Dichte der Zustinde zu n = 3 und n = 4 fiir wt = 0, 7/2 und 7. Wir sehen, daf§
diese Floquet-Zustinde Minima in der Phasenraumdichte auf den regulidren Inseln des klas-
sischen Phasenraums aufweisen (vgl. Abb. 10.1). Der Zustand n = 3 (a, ¢, e) ist mit der
Separatrixstruktur der 1:1 Resonanz assoziiert: Wir erkennen eine erhéhte Aufenthaltswahr-
scheinlichkeit sowohl in dem die 1:1 Resonanzinsel umgebenden chaotischen Phasenraum-
gebiet (Abb. 10.13a) als auch entlang des instabilen periodischen Orbits der 1:1 Resonanz,
(Abb. 10.13e).

Wihrend das EBK-Quantisierungskriterium die Existenz von Zustdnden auf der intrinsi-
schen Insel ab N ~ 6 und auf der 1:1 Resonanzinsel ab N ~ 7 vorhersagt, finden wir bereits ab
N = 5 Zustdnde im Floquet-Spektrum, die auf der intrinsischen Insel bzw. der 1:1 Resonan-
zinsel lokalisiert sind. Wie fiir N = 8 geht auch fiir N = 5,6, 7 der auf der intrinsischen Insel
lokalisierte Zustand aus dem Eigenzustand n = 1 des ungestdrten Systems hervor, wihrend
der mit der 1:1 Resonanzinsel assoziierte Zustand der diabatischen Fortsetzung des Zustands
n = 2 entspricht. Abb. 10.14 zeigt die Husimi-Verteilungen der stationdren Zustinde bzw.
der nichtdispergierenden Wellenpakete fiir N = 6, N = 8 und N = 10. Wir sehen, daf$
die lokalisierung dieser Zustinde mit zunehmendem N schirfer wird, entsprechend der Tat-
sache, daff die auf die Struktur des klassischen Phasenraums bezogene, effektive Grofie des

Wirkungsquantums h abnimmt.

10.3 Lebensdauern der Wellenpaketzustinde

Die in Abschnitt 10.2 gezeigten Abbildungen sowie der Begriff , nichtdispergierendes Wellen-
paket® suggerieren, dafi den mit der 1:1 Resonanzinsel assoziierten Zustinden Wellenfunk-
tionen entsprechen, die der Zeitentwicklung dieser Insel in exakt periodischer Weise folgen
und damit auf unbestimmte Zeit ihre Form wahren. Eine obere Grenze fiir diese periodische
Zeitentwicklung ergibt sich jedoch aus der Tatsache, dafi es sich bei diesen Zustinden um
autoionisierende 7Zustinde des Floquet-Systems handelt, die durch nichtverschwindende lToni-
sationsbreiten gekennzeichnet sind. Jene Uberlagerung von Eigenzustinden des ungestdrten
Systems, die dem Floquet-Zustand auf der 1:1 Resonanzinsel entspricht, folgt daher im ex-
ternen Antrieb der Oszillation dieser Insel nur auf einer Zeitskala, die der inversen lonisati-
onsbreite dieses Floquet-Zustands entspricht (danach ist die Population auf das Kontinuum
verteilt). Um also quantitativ zu charakterisieren, inwieweit ein auf einer feldinduzierten
Resonanzinsel lokalisierter Zustand im Konfigurationsraum tatsichlich einem nichtdisper-
gierenden Wellenpaket entspricht (d.h. auf einer im Vergleich zur Feldperiode sehr langen
Zeitskala der resonant getriebenen, klassischen Trajektorie folgt, ohne zu dispergieren), ist es

erforderlich, die Tonisationsbreiten dieser Zustidnde zu untersuchen.
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Abb. 10.13: Floquet-Zustande, die mit dem chaotischen Bereich des Phasenraums assoziiert sind. Auf-
getragen ist die Husimi-Verteilung der Zustinde n = 3 (a, ¢, e) und n =4 (b, d, f) zur Quantenzahl
N = 8 bei den Feldphasen (a, b) wt =0, (¢, d) wt = 7/2, (e, f) w = 7. Die Feldparameter betragen
wo = 0.2 und Fy = 0.005. Wir erkennen, dafl diese Floquet-Zustande Minima in der Aufenthaltswahr-
scheinlichkeit auf den regularen Tnseln des klassischen Phasenraums aufweisen (vgl. Abb. 10.1). Der
Zustand n = 3 (a, ¢, e) ist mit der Separatrixstruktur der 1:1 Resonanz assoziiert: Wir erkennen eine
erhohte Aufenthaltswahrscheinlichkeit sowohl in dem die 1:1 Resonanzinsel umgebenden chaotischen

Phasenraumgebiet. (a) als auch entlang des instabilen periodischen Orbits der 1:1 Resonanz (e).
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P,/ N*

Abb. 10.14: Stationédre Zustiande und nichtdispergierende Wellenpakete fiir verschiedene Quantenzah-
len N. Aufgetragen sind die Husimi-Verteilungen der Floquet-Zustande zu n = 1 (a, d, e) und zu
n =2 (b, d, f) zu den Quantenzahlen (a, b) N =6, (¢, d) N =8, (e, f) N = 10 (die Grofie von 27h
ist durch Quadrate unten links in (a, ¢, e) markiert). Die Feldparameter betragen jeweils w = 0.2 N2
und F = 0.005 N~*. Der klassische Phasenraum entspricht damit fiir jede dieser Quantenzahlen der
in Abb. 10.1 gezeigten Struktur. Wir sehen, dafi mit zunehmender Quantenzahl N die Lokalisierung
des Quantenzustands auf der reguliaren Insel immer schéarfer wird, entsprechend der Tatsache, dafl
die effektive, auf die Struktur des klassischen Phasenraums bezogene Grofie des Wirkungsquantums

h proportional 1/N abnimmt.
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Tatsdchlich zeichnen sich nichtdispergierende Wellenpakete auf feldinduzierten Resonanz-
inseln typischerweise durch sehr hohe l.ebensdauern aus: in Wasserstoff im linear polarisierten
Mikrowellenfeld etwa von der GréBSenordnung von 10% Kepler-Zyklen [18, 19]. Diese Langle-
bigkeit ist darauf zuriickzufiihren, dafl die entsprechenden Floquet-Zustinde auf reguldren
Inseln im klassischen Phasenraum lokalisiert sind, auf denen eine Kopplung an das Kontinu-
um nur iiber dynamisches Tunneln durch klassisch impenetrable Tori erfolgen kann. In der Tat
erhalten wir ebenfalls sehr lange L.ebensdauern fiir die nichtdispergierenden Zwei-Flektronen-
Wellenpakete im kollinearen, getriebenen Helium-Atom. Tab. 10.1 zeigt die Tonisationsbreiten
und TLebensdauern der den stationdren Zustdnden und den nichtdispergierenden Wellenpake-
ten entsprechenden Floquet-Zustinde fiir w = 0.2 N2 und F = 0.005 N~* in Abhingigkeit
der Quantenzahl N. Wir sehen, dafl die T.ebensdauern der stationdren Zustdnde und der

nichtdispergierenden Wellenpakete im Bereich von 10*...107 Feldzyklen liegen.

Tab. 10.1: Tonisationsbreiten und TLebensdauern der stationdren Zustande und der nichtdispergieren-
den Wellenpakete bei der Frequenz w = 0.2 N~3 und der Feldamplitude F = 0.005 N —%. T’(s)/Q und
1) /2 hezeichnen die Tonisationsbreiten (HWHM) des stationidren Zustands (Tndex s) und des nicht-
dispergierenden Wellenpakets (Tndex w) zur Quantenzahl N des inneren Elektrons. ) = 1/T’(s) und

() = 1/T) hezeichnen die entsprechenden Lebensdauern.

N || TG /2 [an] | 76 27/0] || T /2 [au] | 7(9) [27 /w]
5 4.48-10712 | 2.8-107 5.53-107'2 | 2.3-107
6 || 8.43-107"2 | 8.7-106 1.09-107'° | 6.8-10°
719.35-107"" | 5.0-10° 5.99-107° | 7.7-10%
81 3.36-107"2 [ 9.3-10°6 1.77-107"" | 1.8-10°
9 || 1.14-107"3 | 1.9-108 1.35-107"2 | 1.6-107
10| 2.22-107'° | 7.2-10* 1.35-107"2 | 1.2-107

Ahnlich wie bei den Eigenzustinden des ungestérten kollinearen Systems, die im Pha-
senraumgebiet gebundener Bewegung lokalisiert sind (siehe Abschnitt 9.2), ist zu erwarten,
dafi die l.ebensdauern der mit den reguldren Inseln assoziierten Zustdnde exponentiell mit
N abnehmen. Im Gegensatz zum ungestorten System 148t sich eine derartige exponentielle
Abnahme im Bereich N = 5...10 jedoch nicht feststellen: Sowohl die stationdren Zustdnde
als auch die nichtdispergierenden Wellenpakete sind durch Tonisationsbreiten gekennzeichnet,
die iiber mehrere Gréflenordnungen hinweg fluktuieren und keinem eindeutigen Trend folgen.
Dies 146t sich zum einen dadurch erkldren, dafl in dem hier untersuchten Bereich von Quan-
tenzahlen N =5...10 die reguldren Inseln zu klein sind, um eine hinreichende Lokalisierung
zu gewdhrleisten; die Tonisation der mit diesen Inseln assoziierten Zustinde erfolgt damit nicht

nur durch dynamisches Tunneln, sondern auch durch direkten Uberlapp der Wellenfunktion
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mit dem chaotischen Bereich des Phasenraums.

Aufgrund der gemischt reguldr-chaotischen Struktur des Phasenraums ist ein nichtmo-
notones Verhalten der lonisationsbreite als Funktion von N jedoch auch bei hohen Quan-
tenzahlen zu erwarten, bei denen die Zustinde vollstindig im Zentrum der reguldren Insel
lokalisiert, sind. ITm Gegensatz zum ungestérten kollinearen Helium-Atom, in dem die klas-
sische Dynamik sowohl innerhalb als auch auBlerhalb des Gebiets gebundener Bewegung re-
guldr ist, ist im getriebenen System die Kopplung der auf den reguliren Inseln lokalisierten
Zustinde an das Kontinuum nicht durch einen ,reinen“ Tunnelprozefi gegeben; sie enthilt,
neben einer reguldiren Komponente, die dem Tunneln durch die Phasenraumbarrieren dieser
Insel entspricht, auch eine irrequlire Komponente, die den sich diesem Tunnelprozefi anschlie-
fenden Transport durch den chaotischen Bereich des Phasenraums kennzeichnet. Ahnlich
wie bei ,,Chaos-assistiertem Tunneln® zwischen auf unterschiedlichen reguldren Inseln loka-
lisierten Zustdnden, deren Niveauaufspaltungen durch die diese Inseln trennende chaotische
Schicht stochastisch moduliert werden [148, 149], fiihrt dieser chaotische Transport zu sto-
chastischen Fluktuationen in der Tonisationsbreite (man kénnte also von ,,Chaos-assistierter
Tunnel-Tonisation“ sprechen). Tatsichlich wurden derartige Fluktuationen in der Tonisations-
breite fiir die nichtdispergierenden Wellenpakete in Wasserstoff im externen Mikrowellenfeld
nachgewiesen [21, 150].

Konkret lassen sich die Fluktuationen der Tonisationsbreite durch nahresonante Kopp-
lungen mit Zustinden erkldren, die mit dem chaotischen Bereich des Phasenraums assoziiert
sind. Wie wir in Abschnitt 10.1 gesehen haben, fiihrt eine derartige Kopplung im Floquet-
Spektrum zu einer vermiedenen Kreuzung, in deren Umgebung sich die Tonisationsbreiten
der mit reguldren Inseln assoziierten Zustdnde signifikant erhéhen. Die lTonisationsbreite des
reguliiren Zustands bei F = 0.005 N~* wird damit wesentlich durch das Auftreten vermiede-
ner Kreuzungen in der Umgebung dieser Feldamplitude beeinflufit. Da die Lage und Grofie
dieser vermiedenen Kreuzungen in der Umgebung von F = 0.005 N~% von N zu N variie-
ren (vgl. Abb. 10.3, 10.6, 10.7), ist die Beeinflussung der lTonisationsbreite durch chaotische
Komponenten bei F' = 0.005 N~* unterschiedlich gro8 fiir verschiedene N. Folglich nimmt
die Tonisationsbreite der auf reguldren Inseln lokalisierten Zustidnde nicht monoton ab mit N,
sondern ist unregelmifliigen Fluktuationen unterworfen.

Um im Fall der kollinearen, getriebenen Frozen-Planet-Konfiguration zu bestimmen, in
welcher Weise die Tonisationsbreiten der auf reguldren Inseln lokalisierten Zustdnde fluktuie-
ren bzw. mit welcher Rate diese lonisationsbreiten im Mittel exponentiell mit N abnehmen,
ist es erforderlich, die Floquet-Zustinde in einem Bereich von Quantenzahlen zu berech-
nen, der den bisher untersuchten Bereich N = 5...10 weit iibersteigt. Wie wir jedoch in
Tab. 10.1 sehen, liegen bereits bei N ~ 10 die lonisationsbreiten dieser Zustidnde im Bereich

von 107'2...107 "% a.u. und damit nur wenige GréBenordnungen oberhalb des Rundungsfeh-
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lers der numerischen Diagonalisierung ~ 107", Eine konvergente Berechnung der Breiten

dieser Zustinde ist damit weit oberhalb von N = 10 nicht m&glich.

10.4 Einfluf} eines zusitzlichen, statischen elektrischen Feldes

Wie wir in Kap. 7 gezeigt haben, wird ein zusitzliches, statisches elektrisches Feld bendétigt,
um die Konfiguration gegen Kippen und lonisation zu stabilisieren und auf die Umgebung des
kollinearen Phasenraums zu beschrinken. Es stellt sich daher die Frage, welche Auswirkungen
die Anwendung dieses statischen Feldes auf die eindimensionale getriebene Frozen-Planet-
Konfiguration hat. Speziell interessiert, uns dabei, ob bzw. inwieweit die auf regulidren Inseln
lokalisierten Zustiande durch die Anwesenheit eines statischen Feldes, dessen Feldstiarke Fi;
in dem fiir die Stabilisierung der dreidimensionalen Konfiguration relevanten Bereich 0 <
Fi < F/2 liegt (siehe Abschnitt 7.2), in ihren Lokalisierungseigenschaften sowie in ihren
l.ebensdauern wesentlich modifiziert werden.

Fiir eine quantenmechanische Beschreibung der einem zusétzlichem, statischen Feld aus-
gesetzten Konfiguration sind zunédchst einige Modifikationen in der Formulierung des Eigen-
wertproblems nétig (Kap. 8). Gemif der klassischen Analyse von Kap. 7 ist das zur Stabi-
lisierung der Konfiguration erforderliche statische Feld entlang der z-Achse polarisiert und
dabei so gerichtet, dafl es auf die Elektronen eine Kraft in Richtung zunehmender z-Werte
ausiibt. Der das kollineare System beschreibende Hamiltonoperator (8.2) ist daher um den
Term

Hst = 7F;t (Z1 + 22) (]05)

7u ergidnzen, der der Energie der Elektronen im statischen Feld der Stirke Fy entspricht
(Fst > 0). Ausgedriickt in den perimetrischen Koordinaten 2,y (8.14, 8.15) lautet diese

zusatzliche Komponente des Hamiltonoperators

Wie bereits in Abschnitt 8.3 erwihnt wurde, ist die Aquivalenz zwischen dem unskalierten
und dem komplex skalierten System auch bei Anwesenheit eines externen statischen Feldes
gewihrleistet [126, 127, 128, 129]. Unter Anwendung der komplexen Skalierung erhilt die
zusitzliche Komponente im Hamiltonoperator den Phasenfaktor e, Tnsgesamt erhalten wir
damit, daf die formale Beschreibung des komplex skalierten Floquet-Systems (8.47  8.52)
durch das statische Feld gemif}

Hog — Hop — Fu (z +2y) e (10.7)

modifiziert wird. Unter Beriicksichtigung der zusitzlichen Faktoren, die sich aus der Entwick-

lung der Wellenfunktion nach Sturmschen Basisfunktionen ergeben, erhalten wir damit einen
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zusitzlichen Term der Form (v +y)? 2 y (v +2y) in dem effektiv zu diagonalisierenden Hamil-
tonoperator. Wie alle anderen Terme dieses Hamiltonoperators weist auch dieser zusitzliche
Term strenge Auswahlregeln in der Sturmschen Basis auf; das Auftreten von vierten Potenzen

von 2 und y vergrofiert lediglich die Bandbreite der Auswahlregeln (8.53) zu
|An,| <4, |An,| < 4. (10.8)

Abb. 10.15 zeigt die Entwicklung des nichtdispergierenden Wellenpakets mit F' zur Quan-
tenzahl N = 8 fiir die statischen Feldstirken Fy = 0.0005 N~ % Fy = 0.001 N 4 F, =
0.0015 N~*und Fy = 0.002 N 4. Wir sehen, daB sich das Verhalten des Niveaus in Abhingig-
keit der Amplitude F des oszillierenden Feldes qualitativ nicht dndert: fiir simtliche dieser
statischen Feldstiarken finden wir einen signifikanten, von Fy nahezu unabhingigen Anstieg
des Floquet-Niveaus mit zunehmendem F.

Auffallend ist die mit zunehmendem F,; abnehmende Anzahl vermiedener Kreuzungen.
Diese Abnahme ist darauf zuriickzufiithren, dafi das statische Feld die effektive Potential-
barriere, die die Bindung des dufleren Elektrons bewirkt, absenkt. Auf diese Weise existiert
bereits im ungestdrten System zu einer gegebenen Quantenzahl N nur eine endliche, mit zu-
nehmendem Fi; geringer werdende Anzahl autoionisierender Zustdnde. Folglich wird auch im
periodisch getriebenen System die Anzahl der Zustinde, mit denen der Floquet-Zustand zu
n = 2 resonant koppelt, verringert. Die Abnahme der vermiedenen Kreuzungen mit zuneh-
mendem Fy; 148t sich auch als Manifestation der zunehmenden Regularitit des klassischen
Tonisationsprozesses interpretieren  verursacht dadurch, dafl durch das statische Feld die Be-
wegung im chaotischen Bereich des Phasenraums relativ schnell zu Tonisation fiithrt und somit
die Bedeutung der chaotischen Komponente der Chaos-assistierten Tunnelionisation verrin-
gert wird (in ahnlicher Weise induziert auch die Einbeziehung eines zusitzlichen, reguliren
Zerfallskanals, etwa spontane Uberginge zu niedrigen atomaren Zustinden, eine Regularisie-
rung des Zerfallsprozesses nichtdispergierender Wellenpakete [151]).

Auch die Abnahme der Energien mit zunehmendem Fy bei festem F ist auf die Ab-
senkung des effektiven Potentials zuriickzufiihren. FEntsprechend verschieben sich auch die
reguldren Inseln im klassischen Phasenraum mit zunehmendem Fg zu niedrigeren Anregun-
gen innerhalb des effektiven Potentials. Dies ist in Abb. 10.16 gereigt, in der wir die klassische
Phasenraumstruktur fiir w = 0.2, I/ = 0.005 und fiir variierende statische Feldstiarke Fy = 0,
0.001, 0.002 darstellen.

Eine bedeutsame Anderung findet vor allem bei den Tonisationsbreiten der anf reguliren
Inseln lokalisierten Zustinde statt. Wie wir in Abb. 10.15 sehen, erhéht sich die Tonisations-
breite des nichtdispergierenden Wellenpakets fiir Fy = 0.005 um 2 bis 3 Gréflenordnungen
von ca. 107" bei Fyy = 0 auf ca. 1078 bei Fy = 0.002 N~*. Auch bei dem auf der int-
rinsischen Insel lokalisierten, stationdren Zustand finden wir einen deutlichen Anstieg der

Tonisationsbreite mit zunehmendem Fg;. Diese erhoht sich fiir Fy = 0.005 ebenfalls von ca.
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Abb. 10.15: Entwicklung des nichtdispergierenden Wellenpakets zur Quantenzahl N = 8 fiir verschie-
dene statische Feldstirken: (a) Fi = 0.00056 N=% (b) Fy = 0.001 N=% (c) Fy = 0.0015 N~* (d)
Fg = 0.002 N =%, Aufgetragen sind in (a2, b2, ¢2, d2) die um den Wellenpaketzustand zur Quanten-

zahl n = 2 zentrierten Ausschnitte des Floquet-Spektrums in Abhangigkeit der Feldamplitude F' bei

der Frequenz wg = 0.2. Die Tonisationsbreiten der Wellenpakete sind in (al, b1, ¢1, d1) aufgetragen.

Wir sehen, daB sich die Entwicklung der Energieniveaus mit F' bei Einschalten eines statischen Feldes

nicht wesentlich andert (siche Abb. 10.3b fiir Fy, = 0). Aufgrund der Absenkung der Potentialbar-

riere verschieben sich die Niveaus mit zunehmendem Fg zu niedrigeren Energien. Das Absenken der

Potentialbarriere bewirkt auch einen Riickgang der Anzahl vermiedener Kreuzungen (vgl. (a) baw.

Abb. 10.3b mit (d)), der sich als Manifestation der zunehmenden Regularitit des Tonisationsprozes-

ses interpretieren 1iB8t. Eine bedeutende Anderung beobachten wir in den Tonisationsbreiten. Diese

erhdhen sich fiir Fy = 0.005 von ca. 107" bei Fiy = 0 auf ca. 1078 bei Fir = 0.002 N—*.
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Abb. 10.16: Poincaré-Schnitt des klassischen, kollinearen Phasenraums fiir w = 0.2, I = 0.005 und
fiir die statischen Feldstirken (a) Fi = 0, (b) Fs = 0.001 N=* (c) Fy = 0.002 N=* Wir sehen,
daf} ein statisches Feld in diesem Feldstarkebereich die klassische Phasenraumstruktur nur geringfiigig
modifiziert. Lediglich die Ausdehnung der reguldren Inseln verringert sich etwas mit zunehmendem

Fst .
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107" bei Fy, = 0 auf ca. 1072 bei F, = 0.002 N ~*. Die zugehérige Floquet-FEnergie verhlt
sich fiir Fgi > 0 qualitativ dhnlich wie fiir Fy = 0, verschiebt sich also, wie in Abb. 10.3a,
mit zunehmendem F zu niedrigeren Energien.

Abb. 10.17 zeigt die Husimi-Dichten der Zustinde zu n = 1 und n = 2 fiir verschie-
dene statische Feldstirken Fy = 0, Fy = 0.001 N~* und Fy = 0.002 N % Die Amplitude
des treibenden Feldes betriagt Fy = 0.005. Wir sehen, dafl die Phasenprojektionen des sta-
tiondren Zustands und des nichtdispergierenden Wellenpakets mit zunehmendem Fy keine
merklichen Anderungen erfahren. Tnsbesondere sind beide Zustinde bei Fy = 0.002 N—* in
nahezu der gleichen Weise auf den entsprechenden reguldren Inseln lokalisiert wie bei Fg = 0.
Wir schlielen daraus, dafl die signifikante Erhéhung der Tonisationsbreiten nicht mit einem
erhdhten direkten Uberlapp der Wellenfunktion mit dem chaotischen Bereich des Phasen-
raums zu assoziieren ist, sondern in erster Linie auf die durch das statische Feld erhéhte
Tunnelwahrscheinlichkeit aus der reguldren Insel zuriickzufiihren ist (bzw. auf die Tatsache,
dafi bei Anwesenheit eines statischen Feldes die chaotische Dynamik relativ schnell zur Toni-
sation fiihrt).

Analog verhalten sich die auf der intrinsischen Insel bzw. der 1:1 Resonanzinsel lokalisier-
ten Zustande bei Variation von Fy auch fiir andere Quantenzahlen N £ 8. Fs 146t sich daher
zusammenfassend feststellen, dafi durch das Anlegen eines zusitzlichen, statischen Feldes
die FEnergien und l.okalisierungseigenschaften der mit reguldren Inseln assoziierten Zustinde
nur marginal modifiziert werden. Die lonisationsbreiten hingegen werden durch das statische
Feld erheblich gedndert und steigen um einige Gréflenordnungen an. Wir sehen daraus ins-
besondere, daf} allein aus der Lokalisierung der Zustinde auf reguldren Inseln im klassischen
Phasenraums im allgemeinen nicht entnommen werden kann, durch welche l.ebensdauern

diese Zustinde gekennzeichnet sind (siehe dazu auch [99]).
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Abb. 10.17: Entwicklung des stationdren Zustands und des nichtdispergierenden Wellenpakets in
Abhangigkeit der statischen Feldstarke. Aufgetragen sind die Husimi-Verteilungen der Floquet-
Zustinde zu n = 1 (a, ¢, ¢) und zu n = 2 (b, d, f) der Serie zur Quantenzahl N = & fiir
w=02N"3 F =0.006 N * und die statische Feldstirke (a, b) Fy = 0, (¢, d) Fi = 0.001 N4
(e, f) Fs = 0.002 N~* Wir sehen, dafl sich die Tokalisierungseigenschaften dieser Zustinde mit
zunehmendem Fy < 0.002 N ~* nicht wesentlich dndern. Selbst bei Fiyx = 0.4 F sind sowohl der intrin-
sische Zustand als auch das nichtdispergierende Wellenpaket noch vollstandig auf den entsprechenden
reguliren Tnseln des (in Abb. 10.16 dargestellten) klassischen Phasenraums lokalisiert, (abgesehen von
einer kleinen Beimischung einer mit der 1:1 Resonanz assorierten Komponente beim stationdren Zu-

stand in (e)).



Kapitel 11

Zusammenfassung und Ausblick

11.1 Zusammenfassung der Arbeit

In dieser Arbeit wurde die klassische und quantenmechanische Dynamik der Frozen-Planet-
Konfiguration von Helium im externen elektromagnetischen Feld untersucht. Im Mittelpunkt
unseres Interesses stand dabei die Frage, inwieweit durch die Kombination des externen nicht-
linearen Antriebs und der intrinsischen Nichtlinearitdt der hochkorrelierten Konfiguration
Gebiete reguldrer Bewegung im klassischen Phasenraum induziert werden, die einer durch
das externe Feld resonant getriebenen Konfiguration entsprechen, sowie welche Konsequen-
zen sich aus der Fxistenz dieser regulidren (Gebiete fiir das entsprechende quantenmechanische
System ergeben.

In der Tat hat die Analyse der klassischen Dynamik der kollinearen, getriebenen Kon-
figuration gezeigt, dafi der Phasenraum dieser Konfiguration im allgemeinen gemischt re-
guldr-chaotisch ist. Neben der intrinsischen Insel, die die durch das externe Feld noch nicht
zerstorten Tori der Frozen-Planet-Konfiguration umfafit, treten auch feldinduzierte regulire
Inseln auf, die durch nichtlineare Resonanzen zwischen dem externen Antrieb und der un-
gestorten Frozen-Planet-Dynamik entstehen. Die Erfahrungen in extern getriebenen FEin-
Elektronen-Atomen suggerieren, dafl diese Resonanzinseln im quantenmechanischen System
7wei-Elektronen-Wellenpaketen entsprechen, die der klassischen Trajektorie dieser Resonanz
auf sehr langer Zeitskala ohne Dispersion folgen.

Die Regularitdt der Dynamik entlang der kollinearen Resonanzen 1dfit sich jedoch im
allgemeinen nicht auf das dreidimensionale System iibertragen. Wie die Analyse der trans-
versalen Stabilititseigenschaften der getriebenen Konfiguration gezeigt hat, zeichnen sich die
feldinduzierten Resonanzen im allgemeinen durch Instabilitit beziiglich Abweichungen von
der Kollinearitit aus: Eine anfdanglich kleine Abweichung der Konfiguration von der Feld-
polarisationsachse verstirkt sich im Lauf der Zeit und fiihrt zu chaotischer Bewegung der

Konfiguration im zwei- bzw. dreidimensionalen Konfigurationsraum, die schlie§lich zur Toni-
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sation fiihrt. Lediglich in der Umgebung von Resonanzen hoher Ordnung finden wir regulire,
quasiperiodische Bewegung.

Im Hinblick auf die Erzeugung nichtdispergierender Zwei-Elektronen-Wellenpakete ent-
lang der Resonanzen der kollinearen Dynamik wurde der Einflufl eines zuséitzlichen, statischen
elektrischen Feldes auf die getriebene Konfiguration untersucht. Tatsdchlich konnte gezeigt
werden, dafl durch ein derartiges statisches Feld die Konfiguration beziiglich Abweichungen
von der Kollinearitat stabilisiert wird. Auf diese Weise ergibt sich eine Einbettung der kolli-
nearen Resonanzen in regulidre Inseln der dreidimensionalen Dynamik, die einer auf die Umge-
bung des kollinearen Phasenraums beschriankten Bewegung entsprechen. Entlang dieser Inseln
werden, gemif der Abschitzung anhand des semiklassischen EBK-Quantisierungskriteriums,
nichtdispergierende Zwei-Elektronen-Wellenpakete fiir experimentell zugingliche Quanten-
zahlen der Gréflenordnung N ~ 50...100 erwartet.

Um einen Einblick in die quantenmechanische Entsprechung der reguldren Inseln der ex-
tern getriebenen Frozen-Planet-Konfiguration zu gewinnen, wurde im zweiten Teil der Arbeit
die Quantenmechanik des eindimensionalen getriebenen Helium-Atoms betrachtet. Die Ana-
lyse des ungestorten kollinearen Quantensystems ergab ein reguldres Quantenspektrum, das
unmittelbar auf die Regularitit der zugrunde liegenden klassischen Dynamik zuriickzufiihren
ist. Insbesondere wurde eine exponentielle Abnahme der Tonisationsbreiten der autoionisie-
renden Zustdnde gefunden, die auf deren lokalisierung auf Phasenraumgebieten gebundener
klassischer Bewegung zuriickzufiihren ist. Fin Vergleich dieser Tonisationsbreiten mit den lo-
nisationsbreiten der entsprechenden dreidimensionalen Frozen-Planet-Zustinde ergab Unter-
schiede um etliche Gréenordnungen, woraus sich schlielen 148t, dafl die quantenmechanische
Tonisation der dreidimensionalen Zustinde im wesentlichen iiber Zerfallskanile verlauft, die
mit den transversalen Freiheitsgraden der Konfiguration assoziiert sind.

Die Analyse des extern getriebenen, kollinearen Systems konnte die Existenz nichtdi-
spergierender Zwei-Elektronen-Wellenpakete bestitigen: Floquet-Rechnungen im Bereich der
Quantenzahlen N < 10 des inneren Elektrons konnten zeigen, dafi ab Quantenzahlen N > 5
sowohl stationdre Zustinde, die auf der intrinsischen Insel lokalisiert sind, als auch nicht-
dispergierende Zwei-Elektronen-Wellenpakete, die mit der 1:1 Resonanz assoziiert sind, im
quantenmechanischen Spektrum auftreten. Es wurde aufgezeigt, wie sich diese Zustidnde durch
Variation der Feldamplitude aus Eigenzustinden des ungestorten Systems entwickeln. Des
weiteren wurden die Lebensdauern dieser Zustinde diskutiert. Diese liegen im Bereich von
10*...107 Feldzyklen und weisen starke Fluktuationen auf, die auf die gemischt regulir-
chaotische Struktur des klassischen Phasenraums zuriickzufiihren sind. Es wurde abschliefend
untersucht, inwieweit durch das Anlegen eines zusitzlichen, statischen elektrischen Feldes die
Figenschaften der reguldren Zustinde modifiziert werden. Floquet-Rechnungen unter Einbe-

ziehung dieses statischen Feldes ergaben einen mit zunehmender statischer Feldstirke signifi-
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kanten Anstieg der Tonisationsbreiten der Zustinde (bei gleichbleibender Lokalisierung), der

mit, der zunehmenden Regularitit des klassischen lonisationsprozesses erklart wird.

11.2 Perspektiven

Als wesentliches FErgebnis hat unsere Arbeit gezeigt, dafi im extern getriebenen Helium-Atom
nichtdispergierende Zwei-Elektronen-Wellenpakete existieren, die auf feldinduzierten Reso-
nanzinseln der Frozen-Planet-Konfiguration lokalisiert sind. Viele Aspekte, die sich im Zu-
sammenhang mit dem Auftreten dieser nichtdispergierenden Wellenpakete ergeben, konnten
im Rahmen dieser Arbeit jedoch nicht behandelt werden. So wurde der Einflu} eines externen
elektromagnetischen Feldes im klassischen Helium-Atom bislang nur an der Frozen-Planet-
Konfiguration untersucht. Weitere Konfigurationen, die aufgrund ihrer Symmetrie im Zusam-
menhang mit der Erzeugung reguldrer Inseln durch ein externes Feld linearer Polarisation
prinzipiell interessant sind, sind die kollineare eZe-Konfiguration, bei der sich die Elektronen
auf entgegengesetzten Seiten des Kerns befinden, sowie der Langmuir-Orbit. Vorldufige Rech-
nungen zur extern getriebenen eZe-Konfiguration scheinen allerdings anzudeuten, dafi eine
Stabilisierung der (im ungestorten System instabilen) Orbits der eZe-Konfiguration, insbe-
sondere des Asymmetric-Stretch-Orbits, durch ein linear polarisiertes elektrisches Wechselfeld
nicht moglich ist.

Auch die extern getriebene Frozen-Planet-Konfiguration wurde bisher nur unter einge-
schrianktem Blickwinkel untersucht. So wurde die Analyse des Phasenraums der kollinearen
getriebenen Konfiguration bisher nur im Bereich von Frequenzen w durchgefiihrt, die wesent-
lich kleiner als die Kepler-Frequenz wg des inneren Elektrons sind, fiir die also durch den
externen Antrieb nur das dufiere Elektron mafigeblich beeinfluit wird. FEine qualitativ unter-
schiedliche Dynamik wird im Frequenzbereich w ~ wx bzw. w > wx erwartet, in dem durch
das externe Feld beide Elektronen in vergleichbarem Mafie angeregt werden. Zunéchst ist es
plausibel, hier mit grofler Wahrscheinlichkeit auch Doppelionisationsprozesse zu beobachten,
d.h. die Tonisation beider Elektronen nach einer durch das Feld induzierten Kollision (derar-
tige Prozesse wurden bei den in der vorliegenden Arbeit betrachteten niedrigen Frequenzen
lediglich fiir sehr hohe Feldamplituden verzeichnet). Weiter stellt sich die Frage, welche Kon-
sequenzen sich aus einem resonanten Antrieb des inneren Elektrons, der bei Frequenzen der
Groflenordnung w ~ wy realisiert wird, ergeben. Sofern ein derartiger resonanter Antrieb
zu einer reguldren klassischen Bewegung fiihrt, ist in der Tat zu erwarten, daf§ auch entlang
der in dieser Form resonant getriebenen Kepler-Mode nichtdispergierende Zwei-Elektronen-
Wellenpakete im entsprechenden Quantensystem lokalisiert sind.

Weitere Fragen schlieflen sich an unsere Untersuchungen zur transversalen Stabilitdt bzw.
Instabilitit der getriebenenen Konfiguration an. Im Rahmen dieser Arbeit konnten wir we-

sentliche Aspekte der transversalen Dynamik nur aufzeigen, jedoch nicht zur Géanze kldaren. In-
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teressante Fragestellungen ergeben sich hinsichtlich des Mechanismus der Destabilisierung der
resonant getriebenen Konfiguration (insbesondere bei extrem niedrigen Feldamplituden), hin-
sichtlich der Langzeitdynamik in der Umgebung transversal stabiler bzw. durch ein statisches
Feld stabilisierter Resonanzen (insbesondere im Hinblick auf die Rolle von Arnold-Diffusion),
sowie hinsichtlich der Dynamik der chaotisch rotierenden Konfiguration. Auch quantenmecha-
nische Aspekte zur transversal instabilen Konfiguration sind bislang noch nicht betrachtet
worden. Zu erwarten ist in der Tat, dafl sich auch die transversal instabilen Resonanzen
der getriebenen Konfiguration im quantenmechanischen Spektrum in Form von Zustinden
manifestieren, die eine erhéhte Aufenthaltswahrscheinlichkeit entlang des kollinearen Orbits
aufweisen.

Als wichtige Erkenntnis hat unsere Arbeit wesentliche qualitative Unterschiede hinsicht-
lich der Stabilitat der Konfiguration zwischen der dimensionsreduzierten, kollinearen Dyna-
mik und der uneingeschrankten Dynamik im dreidimensionalen Konfigurationsraum gezeigt.
Dies gilt nicht nur fiir die Regularitit der resonant getriebenen Frozen-Planet-Bewegung in
der klassischen Mechanik, sondern trifft auch auf die Stabilitit bzw. Langlebigkeit entspre-
chender quantenmechanischer Zustinde zu. Die enormen Unterschiede zwischen den lTonisa-
tionsraten der kollinearen und der dreidimensionalen Frozen-Planet-Zustande im ungestorten
Helium-Atom lassen in der Tat den Schluf§ zu, dafi auch im extern getriebenen System langle-
bige, mit regulirer klassischer Dynamik der Frozen-Planet-Konfiguration assoziierte Quanten-
zustinde im dreidimensionalen atomaren System auf einer wesentlich kiirzeren Zeitskala zer-
fallen als in einer kollinearen Beschreibung. Insbesondere ist zu erwarten, dafl nichtdispergie-
rende Zwei-Elektronen-Wellenpakete des dreidimensionalen getriebenen Helium-Atoms, die
mit transversal stabilen (bzw. stabilisierten) Resonanzen der Frozen-Planet-Konfiguration
assoziiert sind, bei gleichen Quantenzahlen N durch weitaus niedrigere Lebensdauern ge-
kennzeichnet sind als die entsprechenden kollinearen Wellenpaketzustinde. Zu kldren ist da-
bei jedoch noch, wie sich der Einfluff der (im ungestorten System effizienten) transversa-
len Zerfallskanile der Frozen-Planet-Konfiguration in Anwesenheit der zeitlich periodischen
bzw. statischen Stérung verhilt. Derartige Fragen lassen sich jedoch nur durch exakte Quan-
tenrechnungen zum dreidimensionalen, getriebenen Helium-Atom beantworten, die beim ge-
genwartigen Stand der numerischen Technik in dem im Hinblick auf das Auftreten nicht-
dispergierender Zwei-Elektronen-Wellenpakete interessanten Bereich von Doppelanregungen
nicht moglich sind.

Finen approximativen Zugang zu Quantenzahlen der Grofienordnung N ~ 50...100 lie-
fert unter Umstanden das von Richter, Wintgen und Mitarbeitern entwickelte, auf dem Prin-
zip der Born-Oppenheimer-Ndherung basierende Verfahren, das sich die approximative Sepa-
ration der Zeitskalen der Bewegung der Elektronen zunutze macht [17]. Bei diesem Verfahren

wird, dhnlich wie bei der Born-Oppenheimer-Beschreibung von Molekiilen, die quantenmecha-
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nische Dynamik der Frozen-Planet-Konfiguration durch die Dynamik des dufleren Elektrons
in dem effektiven adiabatischen Potential genihert, das sich aus der Lésung der Schrédinger-
Gleichung des inneren Elektrons bei festem Ort des dufieren Elektrons ergibt. Wie Richter
und Mitarbeiter gezeigt haben, lassen sich die Energien der Frozen-Planet-Zustiande durch
dieses Verfahren gut reproduzieren [17]. Obwohl die Verallgemeinerung dieses Verfahrens
auf das periodisch getriebene System mit Komplikationen verbunden ist, die eine numerische
Anwendung im Vergleich zum ungestorten System erheblich erschweren (so miissen im getrie-
benen System verschiedene Werte des Gesamtdrehimpulses, der keine Erhaltungsgréofie mehr
darstellt, beriicksichtigt werden), ist anzunehmen, dafl es dieses Verfahren erheblich leich-
ter erlaubt, doppelt hochangeregte Frozen-Planet-Zustinde im externen elektromagnetischen
Feld zu beschreiben, als ab initio Methoden.

Neben der numerischen Berechnung nichtdispergierender Zwei-Elektronen-Wellenpakete
im dreidimensionalen, getriebenen Helium-Atom stellt auch die Visualisierung dieser Wellen-
pakete eine groie Herausforderung dar (siehe zu diesem Thema auch [152]). ITm Gegensatz
zur kollinearen Dynamik ist es im dreidimensionalen Konfigurationsraum aufgrund der hohen
Zahl der Freiheitsgrade nicht mdglich, die Wahrscheinlichkeitsdichte des Zwei-Elektronen-
Zustands in Abhidngigkeit sdmtlicher Koordinaten des Systems aufzutragen. Zu priifen ist
daher, auf welche Koordinaten- bzw. Phasenraumebenen die Wellenfunktion sinnvollerweise
zu projizieren ist, um die kollineare und transversale l.okalisierung der Wellenpakete entlang

der feldinduzierten Resonanzen anhand von Dichteverteilungen unzweideutig darzustellen.



Anhang

A.1 Numerische Integration der Bewegungsgleichungen

Die numerische Integration der klassischen Bewegungsgleichungen (3.46  3.51) wurde mit
der Routine DO2CJF der NAG-Library [153] durchgefiihrt, die eine Adams-Methode variabler
Ordnung und Schrittweite verwendet. Diese Routine hat sich als effizienter gegeniiber Runge-
Kutta-Methoden erwiesen. Verglichen mit dieser Routine wurde auflerdem eine auf dem von
Meyer [154] entwickelten Verfahren basierende Integrationsroutine, bei dem neben der ersten
Zeitableitung auch hdhere Zeitableitungen der Variablen berechnet werden, was die Wahl
relativ grofler Zeitschritte ermoglicht und damit den EinfluB von Rundungsfehlern gering
hilt. Wahrend bei Wasserstoffsystemen dieses Verfahren eine sehr effiziente Integration der
Bewegungsgleichungen erlaubt [155], hat es sich fiir die Integration von (3.46  3.51) als
vergleichsweise ineffizient erwiesen, da die Berechnung héherer Ableitungen der in (3.50) und
(3.51) auftretenden Terme mit erheblichem numerischen Rechenaufwand verbunden ist.
Aufgrund der endlichen numerischen Rechengenauigkeit 138t sich die Konvergenz der nu-
merischen Integration nicht {iber einen beliebig langen Integrationszeitraum gewé&hrleisten.
Insbesondere im chaotischen Bereich des Phasenraums, in dem kleine Abweichungen von ei-
ner gegebenen Trajektorie sich im Lauf der Zeit exponentiell verstirken, ist eine konvergente
Integration der Bewegungsgleichungen nur innerhalb eines begrenzten Zeitraums moglich.
So sind die in Kap. 5 und Kap. 7 gezeigten Trajektorien, die sich durch chaotische Dynamik
(etwa Abb. 5.1) bzw. durch Trregularititen auf sehr langer Zeitskala (etwa Abb. 5.9) auszeich-
nen, im allgemeinen nicht iiber den in den entsprechenden Abbildungen betrachteten Zeitram
konvergent berechnet worden. Dies spielt jedoch keine Rolle, da zur Charakterisierung der
chaotischen Dynamik die quantitativ genaue Zeitentwicklung einzelner Trajektorien nicht
relevant, ist. Von Belang hingegen sind statistische Merkmale der betrachteten chaotischen
Dynamik (etwa die Zeitentwicklung der Uberlebenswahrscheinlichkeit, siehe Abb. 5.14), die,
wie durch Variation der Integrationsgenauigkeit iiberpriift wurde, in den numerischen Rech-

nungen korrekt reproduziert wurden.
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A.2 Berechnung der Matrixelemente in der Sturmschen Basis

In diesem Anhang wird die Berechnung der Matrixelemente des effektiven Hamiltonoperators
und des effektiven Identitdtsoperators aus (8.47) in der Sturmschen Basis skizziert. Ausge-
schrieben in ihren elementaren Komponenten lauten die in (8.47) auftretenden Operatoren
2 2 2 2
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1 , 07 9 0? , 07 . 07
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Jede dieser hier auftretenden Komponenten 138t sich als Produkt der Operatoren (8.42
8.44) darstellen und damit durch die Operatoren Si, Ss (R.38, 8.39) unter Beriicksichtigung
der Regeln
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NSO . 1 .

~ 1 -
S_ (S5 — S3+2) + ZSE (S5 — 1) + §S3). (A.13)
Die Anwendung auf eine Sturmsche Basisfunktion 5'7(7,0) ergibt sich damit umittelbar aus (8.40,

8.41). Fiir (A.8) etwa erhalten wir
I 1 U R T
TQ(()—TS’qg ) = ()/(Z(n—l—]) n(n+2) 5'7(714_)2 — 5(77/—{—]) n (n—|—1)5'7(71+)1 — 577/5’7(71 )

+%(n71) m(n—1)S" 4+ %(nq) n(nz)s;“g). (A.14)

Da der Index n der Sturmschen Funktionen durch die Operatoren (A.6 A.13) maximal um
An = +3 gedndert wird, lassen sich die Anwendungen der Operatoren (A.1 A.3) auf das
Produkt 9'7(7?)(7“) 9'7(7?”)(1/) als Linearkombintationen der Produkte 9’7(7(,:”(7“) 9’7(7(,:”)(1/) mit [n, —

n.| < 3 und |n, —n)| < 3 darstellen. Innerhalb der Sturmschen Basis (850) verfiigen die
Operatoren (A.6 A.13) damit iiber die Auswahlregeln |An,| < 3 und |An,| < 3.

A.3 Konvergenz der quantenmechanischen Rechnungen

Wie bereits in Abschnitt 8.4 erwdhnt wurde, besteht die fiir eine numerische Lésung des Fi-
genwertproblems unvermeidliche Naherung darin, die Anzahl der Basisfunktionen sowie die
Zahl Nj der Floquet-Blocke zu beschrianken. Es ist daher zu untersuchen, ab welchen Ba-
sislingen N, N, in der - und y-Variablen, sowie ab welchen Werten von Nj das FErgebnis
der numerischen Rechnung konvergiert ist, d.h. sich fiir gréfiere Werte von N, N, und N
nicht mehr &ndert. Dabei ist zu beachten, dafl in dem uns interessierenden Figenwertproblem
frei wihlbare Parameter existieren, von deren Werten die Konvergenzgeschwindigkeit im all-
gemeinen abhidngt: die Sturmschen Skalierungsparameter a,, «a,, die im wesentlichen die
Ortsauflosung der Sturmschen Basis in den Koordinaten z und y charakterisieren, sowie der
Winkel # der komplexen Skalierung. ITm Hinblick auf einen méglichst geringen Gesamtspei-
cherplatz fiir die numerische Diagonalisierung ist daher zu untersuchen, bei welcher Wahl
dieser Parameter die fiir eine konvergente Rechnung erforderlichen Mindestwerte von N,, N,
und N minimal werden.

Konkret sind wir daran interessiert, die Eigenschaften von autoionisierenden Zustinden
zu bestimmen, die mit den reguldren Strukturen des klassischen Phasenraums der kollinearen,
getriebenen Frozen-Planet-Konfiguration assoziiert sind. Neben den Energien dieser Zustinde
und deren Uberlappmatrixelementen mit Zustinden des ungestdrten Systems geht es uns ins-
besondere auch um deren lonisationsbreiten, die in der Regel sehr hohe Anforderungen an
die numerische Konvergenz stellen, da sie eine sehr gute Beschreibung der Wellenfunktion
im gesamten Phasenraum (insbesondere auch in den mit klassischer Tonisation assoziierten,
sverbotenen® Gebieten) erfordert. Da wir die Tonisationsbreiten dieser Zustdnde insbesonde-

re auch bei Feldparametern bestimmen wollen, bei denen diese Zustinde stark mit anderen
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Zustinden der gleichen Serie mischen (bei vermiedenen Kreuzungen also), ist eine konvergen-
te Berechnung der Tonisationsbreiten samtlicher autoionisierender Zustidnde der betrachteten
Serie wiinschenswert. Konkret fordern wir, dafl die Tonisationsbreiten niedrig liegender au-
toionisierender Zustinde (d.h. mit niedrigen Quantenzahlen n) bis auf einen Absolutfehler
von 107" a.u. konvergiert sind.

Aufgrund der Tatsache, daBl die Wahrscheinlichkeitsdichte der autoionisierenden Zustidnde
in den Koordinaten der Elektronen approximativ separiert (sieche Abb. 9.3), bestimmen wir
die Kombination der Basislingen N., N, und Parameter a,, a,, bei denen eine derartige
Konvergenz unter relativ guten Bedingungen (d.h. bei relativ geringem Gesamtspeicherplatz-
bedarf) vorliegt, separat in den Variablen 2 und y. Dazu wihlen wir eine relativ kleine Basis,
die die grundlegende Struktur des betrachteten Floquet-Spektrums im wesentlichen korrekt
reproduziert. In dieser Basis werden zunichst der Parameter a,, und die Basislinge N, vari-
iert; es wird eine geeignete Kombination von «, und N, gesucht, bei der N, relativ niedrig ist
und die uns interessierenden lonisationsbreiten konvergiert sind (d.h. sich bei Verdopplung
von N, um weniger als 10'* a.u. indern). Analog bestimmen wir eine geeignete Kombination
von a,, und N, durch separate Variation dieser beiden Groflen.

Fine Teilbedingung fiir die optimale Kombination von N, und a, bzw. von N, und «a,
ergibt sich aus der Ausdehnung der Dichteverteilung der Zustinde im Konfigurationsraum.
71 beachten ist dabei, dafi die n-te Sturmsche Funktion S'q(f)(r) maximal wird bei ca. r ~ 2na
und oberhalb davon exponentiell abfillt (ahnlich wie die Wasserstoffeigenfunktion zur Dre-
himpulsquantenzahl [ = 0), im wesentlichen also den Bereich r = 0...2na« iiberdeckt. Folglich
wird eine Wellenfunktion, deren Wahrscheinlichkeitsdichte auf den Bereich r = 0...r .« kon-
zentriert ist und auflerhalb dieses Bereichs nahezu verschwindet, optimal durch die Sturmsche
Basis {5'1(0), .. .,S'](\(,y)} beschrieben, bei der das Produkt von N und « etwas oberhalb ry,,y/2
liegt, die Basis den Bereich r = 0...rya also gut beschreibt.

Da die Wellenfunktionen sdmtlicher Zustinde der Serie zu einer gegebenen Quantenzahl
N in der Koordinate des inneren Elektrons ndherungsweise durch die Wasserstoffeigenfunk-
tion zur Knotenzahl N — 1 bei der Kernladung 7 = 2 gegeben sind (siche Abb. 9.3), deren
maximale Ausdehnung in 2z ca. 23 max ™~ N? betrigt, ist es fiir eine konvergente Beschreibung
dieser Zustinde erforderlich, die Sturmsche Basis in der Variable y so zu wihlen, daf§ N,a,,
groBer als N2/2 ist (konkret finden wir gute Konvergenz bei Ny, ~ N?). Typischerweise
ergeben sich in der Variable 2 hohere Werte fiir die Basislinge und den Skalierungsparameter
als in y. Zum einen zeichnen sich, wie wir in Abb. 9.3 sehen, die Wellenfunktionen in der Ko-
ordinate z; durch Variationen auf viel grofieren Ortsskalen aus als in zo (und erfordern daher
eine geringere Ortsauflésung in 2 als in y), zum anderen muf} in der Koordinate des dufleren
Elektrons insgesamt ein viel groflerer Bereich iiberdeckt werden als in der des inneren Elek-

trons, da die Zustidnde einer Serie durch unterschiedliche Ausdehnungen in z; gekennzeichnet
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sind.

Auch die optimale Anzahl N; der Floquet-Komponenten wird durch separate Variati-
on von Nj bestimmt. Bei der Wahl von N, ist zu beachten, dafi neben sdmtlichen autoio-
nisierenden Zustinde der betrachteten Serie auch die niedrigsten Kontinuumszustinde in
die Rechnung miteinbezogen werden miissen, die um ein bis zwei Vielfache der treibenden
Frequenz von der Tonisationsschwelle entfernt sind [156]. Es zeigt sich, daf Kopplungen 7u
autoionisierenden Zustinden, die Serien zu anderen Quantenzahlen angehdren, keine Rolle
spielen (d.h. die Tonisationsbreiten der uns interessierenden Zustinde um weniger als 107
a.u. verandern). Typischerweise legen wir die Floquet-Zone genau in die Mitte zwischen der
Energie des niedrigsten Zustands der Serie und der Kontinuumsschwelle. Die Summe (8.52)
erstreckt sich dann von —kq bis kg, wobei das Produkt aus N, = 2kg+ 1 und w etwas gréfler
ist als der Abstand des niedrigsten Zustands der Serie von der Kontinuumsschwelle.

Der Parameter @ wurde zur Optimierung der Konvergenzgeschwindigkeit nicht variiert.
Als gute Wahl hat sich # = 0.1 erwiesen.

Die auf diese Weise bestimmten Basislangen und Parameter werden dann zur eigentlichen
Berechnung des Floquet-Spektrums kombiniert. Die numerische Konvergenz der Rechnung
wird durch Variation von a,, a, und @ iiberpriift. Dabei hat sich gezeigt, dafi die uns interes-
sierenden Tonisationsbreiten beziiglich Variation dieser Parameter stabil sind. Wir erwarten
daher, da8 die Tonisationsbreiten in Tab. 9.2 und Tab. 10.1 bis auf einen Absolutfehler von

107" konvergiert sind.
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