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iZusammenfassungWir pr�asentieren eine detaillierte Analyse der klassischen und quantenmechanischen Dy-namik der Frozen-Planet-Kon�guration von Helium im externen elektromagnetischen Feld.Es wird gezeigt, da� der klassische Phasenraum der kollinearen, getriebenen Frozen-Planet-Kon�guration gemischt regul�ar-chaotische Struktur aufweist. Insbesondere enth�alt er regul�areInseln, die nichtlinearen Resonanzen zwischen dem externen Antrieb und der korreliertenDynamik der ungest�orten Kon�guration entsprechen. Die diesen nichtlinearen Resonanzenentsprechende Kon�guration zeichnet sich im allgemeinen durch transversale Instabilit�ataus, l�a�t sich jedoch mit Hilfe eines zus�atzlichen, statischen elektrischen Feldes bez�uglichAbweichungen von der Kollinearit�at stabilisieren. Die auf diese Weise stabilisierten Reso-nanzen entsprechen im quantenmechanischen System nichtdispergierenden Zwei-Elektronen-Wellenpaketen, die f�ur experimentell zug�angliche Quantenzahlen im Spektrum des getriebe-nen Helium-Atoms erwartet werden. Diese Hypothese wird durch quantenmechanische Rech-nungen zum kollinearen, getriebenen Helium-Atom untermauert. In der Tat �nden wir beiQuantenzahlen N � 10 des inneren Elektrons auf der feldinduzierten Resonanzinsel loka-lisierte, nichtdispergierende Zwei-Elektronen-Wellenpakete. Deren Lebensdauern liegen imBereich von 104 : : :107 Feldzyklen und weisen starke Fluktuationen auf, die auf die gemischtregul�ar-chaotische Struktur des klassischen Phasenraums zur�uckzuf�uhren sind.AbstractWe present a detailed analysis of the classical and quantum dynamics of the frozen-planetcon�guration of helium in an external electromagnetic �eld. We show that the classical phasespace of the collinear, driven con�guration exhibits a mixed regular-chaotic structure. Inparticular, it contains regular islands which correspond to nonlinear resonances between theexternal driving and the correlated dynamics of the unperturbed con�guration. Along theseresonances, the con�guration is generally characterized by transverse instability. However,the application of an additional, static electric �eld allows to stabilize the con�gurationwith respect to deviations from collinearity. The thereby stabilized resonances correspondto nondispersive two-electron wave packets in the quantum mechanical system, which areexpected at experimentally accessible quantum numbers. This hypothesis is supported byquantum calculations on the collinear, driven helium atom. Indeed, we �nd nondispersive two-electron wave packets which are localized on the �eld-induced resonance island for quantumnumbers N < 10 of the inner electron. They are characterized by life times of the order of104 : : :107 �eld cycles, which exhibit strong 
uctuations due to the mixed regular-chaoticstructure of the classical phase space.
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Inhaltsverzeichnis1 Einleitung 11.1 Hintergrund und Themenstellung . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Gliederung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3I Klassische Mechanik der getriebenen Frozen-Planet-Kon�guration 72 Die Frozen-Planet-Kon�guration des klassischen Helium-Atoms 92.1 Allgemeines zum klassischen Helium-Atom . . . . . . . . . . . . . . . . . . . . 92.2 Die Frozen-Planet-Kon�guration . . . . . . . . . . . . . . . . . . . . . . . . . 132.3 Adiabatische Theorie der Frozen-Planet-Kon�guration . . . . . . . . . . . . . 173 Formale Behandlung des klassischen Systems 223.1 Fundamentale Eigenschaften des klassischen Systems . . . . . . . . . . . . . . 223.2 Regularisierung der Bewegungsgleichungen . . . . . . . . . . . . . . . . . . . . 244 Die kollineare, getriebene Frozen-Planet-Kon�guration 284.1 Phasenraumvisualisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294.2 Der Phasenraum der kollinearen, getriebenen Kon�guration . . . . . . . . . . 335 Abweichungen von der Kollinearit�at 425.1 Bestimmung der transversalen Stabilit�atseigenschaften . . . . . . . . . . . . . 445.2 Transversal stabile und instabile Gebiete . . . . . . . . . . . . . . . . . . . . . 475.3 Dynamik instabiler, gekippter Kon�gurationen . . . . . . . . . . . . . . . . . 576 Konsequenzen f�ur das quantenmechanische System 656.1 Quantenmechanische Entsprechung regul�arer Inseln . . . . . . . . . . . . . . . 656.2 Quantisierung der Inseln des kollinearen Phasenraums . . . . . . . . . . . . . 676.3 Quantenzust�ande auf Inseln im nichtkollinearen Phasenraum . . . . . . . . . 69iv



Inhaltsverzeichnis v7 Stabilisierung durch ein statisches elektrisches Feld 727.1 Stabilisierung der Kon�guration gegen Kippen und Ionisation . . . . . . . . . 737.2 Konsequenzen f�ur das quantenmechanische System . . . . . . . . . . . . . . . 80II Quantenmechanik des kollinearen, getriebenen Helium-Atoms 838 Formulierung und numerische L�osung des Eigenwertproblems 858.1 Der Hamiltonoperator der kollinearen Zee-Kon�guration . . . . . . . . . . . . 868.2 Das Floquet-Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898.3 Komplexe Skalierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908.4 Entwicklung nach Sturmschen Basisfunktionen . . . . . . . . . . . . . . . . . 938.5 Visualisierung der Wellenfunktion . . . . . . . . . . . . . . . . . . . . . . . . . 969 Das Spektrum des kollinearen Zee-Helium-Atoms 999.1 Energien der autoionisierenden Zust�ande . . . . . . . . . . . . . . . . . . . . . 999.2 Ionisationsbreiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029.3 Wellenfunktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10510 Das kollineare Helium-Atom unter externem Antrieb 11210.1 Floquet-Zust�ande in Abh�angigkeit der Feldamplitude . . . . . . . . . . . . . . 11410.2 Station�are Zust�ande und nichtdispergierende Wellenpakete . . . . . . . . . . . 12410.3 Lebensdauern der Wellenpaketzust�ande . . . . . . . . . . . . . . . . . . . . . 12910.4 Ein
u� eines zus�atzlichen, statischen elektrischen Feldes . . . . . . . . . . . . 13411 Zusammenfassung und Ausblick 14011.1 Zusammenfassung der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . 14011.2 Perspektiven . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Anhang 145A.1 Numerische Integration der Bewegungsgleichungen . . . . . . . . . . . . . . . 145A.2 Berechnung der Matrixelemente in der Sturmschen Basis . . . . . . . . . . . . 146A.3 Konvergenz der quantenmechanischen Rechnungen . . . . . . . . . . . . . . . 147Literaturverzeichnis 149Vorver�o�entlichungen 156



vi



Kapitel 1Einleitung1.1 Hintergrund und ThemenstellungIm vergangenen Jahrzehnt sind erhebliche Anstrengungen unternommen worden, ein umfas-sendes Verst�andnis der Dynamik von Zwei-Elektronen-Atomen im starken elektromagneti-schen Feld zu gewinnen (siehe etwa [1] f�ur einen �Uberblick). Verschiedene numerische Verfah-ren wurden entwickelt bzw. ausgebaut (etwa [2, 3, 4, 5]), um eine quantitative Beschreibungvon Anregungs- und Ionisationsprozessen zu erm�oglichen, die in Experimenten zur Wech-selwirkung von Zwei-Elektronen-Atomen mit starken Laserfeldern typischerweise auftreten.Einer der zentralen Aspekte ist dabei die Fragestellung, inwieweit Zwei-Elektronen-E�ektebzw. "Korrelationse�ekte\ (d.h. E�ekte, die nicht im Rahmen eines e�ektiven Einteilchen-bildes, etwa der Hartree-Fock-Methode, beschrieben werden k�onnen [1]) in solchen Prozesseneine Rolle spielen bzw. wie derartige Korrelationse�ekte zu interpretieren sind. InsbesondereExperimente zur Doppelionisation von Helium (etwa [6]), die deutliche Anzeichen f�ur eineSignatur derartiger Korrelationse�ekte gezeigt haben, stimulierten intensive, auf unterschied-lichsten N�aherungsverfahren basierende Untersuchungen zu diesem Thema (etwa [7, 8, 9]).In der vorliegenden Arbeit wird die Dynamik korrelierter Zwei-Elektronen-Atome im ex-ternen elektromagnetischen Feld unter dem in diesem Zusammenhang bislang unbeachtetenklassischen Aspekt untersucht. Wir betrachten, gewisserma�en komplement�ar zum Studiumvon Korrelationse�ekten in vom Grundzustand (bzw. von niedrig angeregten Zust�anden)ausgehenden Ionisationsprozessen, Zust�ande bzw. Kon�gurationen im doppelt angeregten Be-reich, die sich aufgrund der zugrunde liegenden klassischen Dynamik a priori durch ein hohesMa� an Elektron-Elektron-Korrelation auszeichnen, und untersuchen, wie sich derartige Kon-�gurationen unter der Einwirkung eines externen elektromagnetischen Feldes verhalten. Dabeiinteressieren wir uns insbesondere f�ur den Aspekt der Koexistenz regul�arer und chaotischerDynamik im klassischen Phasenraum. Speziell untersuchen wir, inwieweit durch die Kom-bination der externen St�orung und der intrinsischen, der Elektron-Elektron-Wechselwirkung1



2 Kapitel 1. Einleitungentsprechenden Nichtlinearit�at des atomaren Systems Gebiete regul�arer Bewegung im klassi-schen Phasenraum induziert werden, sowie welche Konsequenzen sich aus der Existenz dieserregul�aren Gebiete f�ur das quantenmechanische, getriebene Helium-Atom ergeben. Wir steu-ern damit nicht unmittelbar auf den Parameter- bzw. Anregungsbereich zu, der in oben ge-nannten Arbeiten im Zusammenhang mit der Wechselwirkung von Zwei-Elektronen-Atomenmit starken elektromagnetischen Feldern typischerweise betrachtet wird. Unser Zugang zurhochkorrelierten Zwei-Elektronen-Dynamik ist jedoch frei von willk�urlichen Annahmen undN�aherungen und erlaubt somit allgemeine Aussagen, die prinzipiell auch f�ur die Beschreibungvon Laserionisationsprozessen aus niedrig angeregten Zust�anden relevant sind.In der Tat ist die klassische Mechanik des durch ein externes elektromagnetisches Feldgetriebenen Helium-Atoms bislang so gut wie unerforscht geblieben. Es wurden zwar Ans�atzezu einer Beschreibung von Ionisationsprozessen in Zwei-Elektronen-Atomen anhand "klassi-scher\ bzw. quasiklassischer Modelle unternommen [9, 10, 11, 12, 13]. Diese Modelle verwen-den jedoch entweder eine gegl�attete, nichtsingul�are Coulomb-Wechselwirkung [9, 10, 11] oderzus�atzliche Terme in der Wechselwirkung zwischen den geladenen Teilchen [12, 13]. Sie er-scheinen somit als letztlich ungeeignet, um mehr als nur grobe qualitative Eigenschaften desbetrachteten Systems zu reproduzieren. Des weiteren enthalten diese Modelle freie Parameter,was im Hinblick auf den Vergleich der erzielten Ergebnisse mit experimentellen Resultatennicht unproblematisch ist.Im Gegensatz zu solchen Modellsystemen ist der Zusammenhang der ungesch�onten klassi-schen Mechanik mit dem realen, quantenmechanischen System in wohlde�nierterWeise durchden semiklassischen Grenzfall der Quantenmechanik gegeben. Die Kenntnis der klassischenMechanik eines atomaren Systems erlaubt somit �uber die entsprechende semiklassische Theo-rie weitreichende Vorhersagen und Interpretationen zur Quantendynamik dieses Systems, ins-besondere auch im Bereich niedriger atomarer Anregungen. Dies haben unter anderem die vonRichter und Wintgen initiierten Arbeiten zum klassischen und semiklassischen Helium-Atomgezeigt [14, 15].Ein herausragendes Beispiel stellt die erst vor kurzem entdeckte [16], hochkorrelierte"Frozen-Planet-Kon�guration\ des Helium-Atoms dar, in der sich beide Elektronen in einerquasi-kollinearen Anordnung auf der gleichen Seite des Kerns be�nden. Entgegen der Intuitionzeichnet sich diese Kon�guration durch klassische Stabilit�at gegen Autoionisation aus, die inwesentlichem Ma�e auf die nichtlineare, im Vergleich zur Kernanziehung nichtvernachl�assig-bare Elektron-Elektron-Wechselwirkung zur�uckzuf�uhren ist. Diese Stabilit�at bewirkt, da� imquantenmechanischen Helium-Atom bereits f�ur relativ niedrige Doppelanregungen langlebigeund hochkorrelierte autoionisierende Zust�ande auftreten, die entlang des klassischen Orbitsder Frozen-Planet-Kon�guration lokalisiert sind [17].Gest�utzt auf diese Erfahrung mit dem ungest�orten Drei-K�orper-Coulombproblem wollen



1.2. Gliederung 3wir hier die Dynamik der Frozen-Planet-Kon�guration unter dem Ein
u� einer periodischenKraft untersuchen. Von besonderem Interesse wird dabei die Situation sein, in der Feldst�arkeund Frequenz des externen Antriebs in der N�ahe der die Dynamik der ungest�orten Kon-�guration charakterisierenden intrinsischen Feldst�arke- und Frequenzskalen liegen, das ato-mare System also einem starken, nahresonanten Antrieb unterworfen wird. Wie Arbeitenzum Wassersto�atom im externen Mikrowellenfeld gezeigt haben [18, 19, 20, 21], treten beieinem derartigen resonanten Antrieb des Ein-Elektron-Atoms Quantenzust�ande im Floquet-Spektrum auf, die im Kon�gurationsraum nichtdispergierenden Wellenpaketen entsprechen,die der resonant getriebenen Kepler-Trajektorie �uber einen Zeitraum von �uber 106 Keplerzy-klen folgen. Die hohe Stabilit�at dieser nichtdispergierenden Wellenpakete ist im wesentlichenein klassisches Ph�anomen: Im Phasenraum sind diese Wellenpaketzust�ande auf regul�aren,nichtstation�aren Inseln lokalisiert, die durch die nichtlineare Resonanz zwischen dem exter-nen Antrieb und der ungest�orten Kepler-Bewegung erzeugt werden.Wie die vorliegende Arbeit zeigt, l�a�t sich das Konzept nichtdispergierender Wellenpakete,die mit feldinduzierten regul�aren Inseln des klassischen Phasenraums assoziiert sind, auch aufZwei-Elektronen-Atome �ubertragen. Unsere Analyse des klassischen Phasenraums der externgetriebenen Frozen-Planet-Kon�guration von Helium belegt dessen regul�ar-chaotische Struk-tur und insbesondere die Existenz regul�arer Inseln, die nichtlinearen Resonanzen zwischendem externen Antrieb und der ungest�orten, korrelierten Zwei-Elektronen-Dynamik entspre-chen. Im Quantenspektrum induzieren derartige nichtlineare Resonanzen auf den zugeh�ori-gen regul�aren Inseln lokalisierte Eigenzust�ande, die wegen der zeitlich periodischen Phasen-raumstruktur dieser Inseln (induziert durch die Periodizit�at der die Dynamik erzeugendenHamiltonfunktion) tats�achlich nichtdispergierende Zwei-Elektronen-Wellenpakete darstellen.Wir weisen die Existenz dieser Wellenpakete durch L�osung des quantenmechanischen Eigen-wertproblems f�ur die kollineare, getriebene Kon�guration explizit nach.Unser eingehendes Studium der klassischen und quantenmechanischen Dynamik der hoch-korrelierten Zwei-Elektronen-Kon�guration weist schlie�lich auf wesentliche qualitative Un-terschiede zwischen der dimensionsreduzierten und der uneingeschr�ankt hochdimensionalenDynamik des betrachteten Systems hin, die insbesondere die Stabilit�at der Kon�gurationin klassischer wie in quantenmechanischer Hinsicht betre�en. Diese Beobachtung impliziertauch eine deutliche Warnung hinsichtlich der Reduktion der Dreik�orperdynamik auf quasieindimensionale Modellsysteme mit gegl�atteter Coulomb-Singularit�at [10, 11].1.2 GliederungDie vorliegende Arbeit gliedert sich in zwei Teile. In Teil I wird die klassische Mechanik derFrozen-Planet-Kon�guration im externen elektromagnetischen Feld analysiert.Wir liefern zun�achst in Kapitel 2 einen �Uberblick �uber bereits bestehende Erkennt-



4 Kapitel 1. Einleitungnisse zum klassischen Helium-Atom im allgemeinen sowie zur Frozen-Planet-Kon�gurationdes klassischen Helium-Atoms im besonderen. Wir gehen dabei vor allem auf die kollineareFrozen-Planet-Kon�guration sowie auf deren approximative Beschreibung anhand der Theo-rie der adiabatischen Invarianten ein.InKapitel 3 werden formale Eigenschaften des klassischen Atoms im externen elektroma-gnetischen Feld dargelegt. Es wird dar�uber hinaus die Variablentransformation beschrieben,die f�ur die numerische Behandlung des Systems erforderlich ist.Kapitel 4 wendet sich der klassischen Dynamik der extern getriebenen Frozen-Planet-Kon�guration zu. Wir betrachten zun�achst den Unterraum des klassischen Phasenraums, derder kollinearen Frozen-Planet-Kon�guration entspricht. Es zeigt sich, da� der Phasenraumdurch die Anwesenheit der externen St�orung gemischt regul�ar-chaotisch wird und regul�areInseln enth�alt, die nichtlinearen Resonanzen zwischen dem externen Feld und der Dynamikder ungest�orten Kon�guration entsprechen.In Kapitel 5 wird die Dynamik in der unmittelbaren Umgebung des kollinearen Phasen-raums untersucht. Es wird ermittelt, inwieweit die regul�aren Gebiete des kollinearen Phasen-raums durch Stabilit�at bez�uglich Abweichungen von der Kollinearit�at gekennzeichnet sindund somit regul�aren Inseln im Phasenraum der dreidimensionalen Bewegung entsprechen.Aspekte der regul�aren bzw. irregul�aren Dynamik in der Umgebung der Inseln des kollinearenPhasenraums werden er�ortert.Der Bezug zur Quantenmechanik wird in Kapitel 6 hergestellt. Es wird erl�autert, welcheEigenschaften Quantenzust�ande aufweisen, die auf regul�aren Inseln des klassischen Phasen-raums lokalisiert sind. Des weiteren wird anhand des semiklassischen Einstein-Brillouin-Keller(EBK)-Quantisierungskriteriums abgesch�atzt, ab welchen Anregungen derartige Zust�ande imQuantenspektrum zu erwarten sind.Im Hinblick auf die Erzeugung nichtdispergierender Zwei-Elektronen-Wellenpakete wirdin Kapitel 7 die Dynamik der getriebenen Kon�guration in einem zus�atzlichen, statischenelektrischen Feld untersucht. Es wird gezeigt, da� ein derartiges statisches elektrisches Feldbei geeigneten Feldparametern die Dynamik in der transversalen Umgebung von regul�arenInseln des kollinearen Phasenraums stabilisiert. Anhand des EBK-Kriteriums ergibt sich,da� Quantenzust�ande entlang der so stabilisierten Resonanzen f�ur experimentell zug�anglicheQuantenzahlen erwartet werden.Im Teil II der Arbeit wird die Quantenmechanik der kollinearen, getriebenen Frozen-Planet-Kon�guration behandelt.In Kapitel 8 wird zun�achst die Formulierung und numerische Behandlung des eindimen-sionalen Quantensystems beschrieben. Insbesondere werden dabei die Floquet-Theorie, diekomplexe Skalierung und die wesentlichen Eigenschaften der Sturmschen Basis beschrieben.InKapitel 9 wird das quantenmechanische Spektrum des ungest�orten kollinearen Helium-



1.2. Gliederung 5Atoms untersucht. Es wird gezeigt, da� die autoionisierenden Zust�ande dieses Systems durchEigenschaften gekennzeichnet sind, die sich unmittelbar aus den regul�aren Strukturen deszugrunde liegenden klassischen Phasenraums ergeben.Kapitel 10 behandelt die Quantenmechanik des extern getriebenen kollinearen Systems.Floquet-Zust�ande, die mit den regul�aren Inseln des klassischen Phasenraums assoziiert sind,werden identi�ziert. Es wird gezeigt, wie diese Floquet-Zust�ande aus den Eigenzust�anden desungest�orten Systems hervorgehen. Die Lebensdauern dieser Zust�ande sowie deren Verhaltenim zus�atzlichen statischen Feld werden diskutiert.Die Arbeit schlie�t mit einer Zusammenfassung der wesentlichen Ergebnisse der Arbeitsowie einem Ausblick auf weiterf�uhrende Fragestellungen. Im Anhang der Arbeit werdendie Konvergenz der klassischen und der quantenmechanischen Rechnungen diskutiert sowiedie Berechnung der Hamilton-Matrixelemente in der Sturmschen Basis aufgezeigt.
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Kapitel 2Die Frozen-Planet-Kon�gurationdes klassischen Helium-Atoms2.1 Allgemeines zum klassischen Helium-AtomW�ahrend die Untersuchung des quantenmechanischen Helium-Atoms innerhalb der letztenJahrzehnte kontinuierlich vorangetrieben wurde und heute ein beachtliches Niveau erreichthat [22, 23, 24], ist die klassische Dynamik von Helium zum gro�en Teil noch unerforscht.Die ersten Arbeiten zum klassischen Helium-Atom stammen aus der Anfangszeit der Quan-tentheorie [25, 26, 27, 28]. Spezielle periodische Orbits wurden untersucht, anhand derer man�uber eine geeignete, dem Wassersto�-Atom analoge Vorschrift das Helium-Atom zu quan-tisieren (bzw. dessen Ionisationspotential korrekt zu reproduzieren) suchte. Bedingt durchdas Scheitern dieser Quantisierungsversuche (das unter anderem auf die Nichtintegrabilit�atder klassischen Dynamik von Helium zur�uckzuf�uhren ist [29]) sowie durch den Erfolg derquantenmechanischen Theorie erlosch das Interesse am klassischen Helium-Atom. Abgese-hen von vereinzelten Ausnahmen (wie [30]) erschienen erst in den achtziger Jahren, vor demHintergrund der Fortentwicklung der semiklassischen Theorie [31, 32, 33, 34, 35], neue Arbei-ten zum klassischen Helium-Atom, die zum Teil auf die historischen Quantisierungsversuche[25, 26, 27, 28] bezug nahmen [36, 37, 38], zum Teil aber auch das klassische Helium-Atomunter neuen Gesichtspunkten wie etwa der Veranschaulichung quantenmechanischer Prozes-se [39] oder der Untersuchung dynamischer Gleichgewichtskon�gurationen [40, 41, 42, 43]betrachteten.Die Erfolge der semiklassischen Theorie bei der Beschreibung von nichtintegrablen Syste-men (etwa Wassersto� im Magnetfeld [44]) stimulierten weitergehende Untersuchungen zumklassischen Helium-Atom. Die ersten (und in ihrer Ausf�uhrlichkeit bisher einzigen) systema-tischen Phasenraumanalysen wurden von Richter und Wintgen unternommen [14, 15]. ImHinblick auf eine semiklassische Quantisierung anhand stabiler und instabiler periodischer9



10 Kapitel 2. Die Frozen-Planet-Kon�guration des klassischen Helium-AtomsOrbits untersuchten sie die unter dem Ein
u� der klassischen Dynamik invarianten Sym-metrier�aume innerhalb des zweidimensionalen Kon�gurationsraums wie etwa den "Wannier-Sattel\ [45] sowie die "Frozen-Planet-Kon�guration\ [16, 17, 46]. Weitere, zum Teil auf die-sen Untersuchungen aufbauende Arbeiten, die ebenfalls im Hinblick auf eine semiklassischeQuantisierung unternommen wurden, erschienen zur kollinearen Kon�guration mit beidenElektronen auf entgegengesetzten Seiten des Kerns [47, 48, 49] (die sp�ater auch unter demAspekt von klassischem chaotischen Streuen studiert wurde [50, 51, 52]), zum "Langmuir-Orbit\ [53], sowie zur "asynchronen\ Kon�guration [54, 55]. Die von Richter und Wintgenentdeckte Frozen-Planet-Kon�guration wurde in einer globalen Suche nach regul�aren Ge-bieten innerhalb des zweidimensionalen Kon�gurationsraums [56] als stabile Kon�gurationbest�atigt, sowie von mehreren Gruppen [57, 58, 59, 60, 61] im Hinblick auf die Anwendunggeeigneter N�aherungsverfahren untersucht.Die bisherigen Untersuchungen haben gezeigt, da� die klassische Dynamik von Helium�uberwiegend chaotisch ist, was zur Folge hat, da� die allermeisten Anfangsbedingungen imklassischen Helium-Atom zur Autoionisation f�uhren. Am eingehendsten untersucht sind dabeidie von Richter und Wintgen betrachteten Symmetrieebenen. Innerhalb bzw. in der Umge-bung dieser Symmetrieebenen hat sich gezeigt, da� vor allem diejenigen Kon�gurationen, beidenen sich die Elektronen im wesentlichen auf entgegengesetzten Seiten des Kerns be�nden,durch Instabilit�at gekennzeichnet sind; Abweichungen von dem einer solchen Kon�gurationentsprechenden periodischen Orbit { insbesondere solche, die einer Variation des Verh�alt-nisses r1=r2 der Kernabst�ande entsprechen { verst�arken sich im Lauf der Zeitentwicklungexponentiell und f�uhren zur Autoionisation.Ein typisches Beispiel stellt der "Wannier-Orbit\ [30] dar, der den durch r1 = �r2, p1 =�p2 de�nierten Wannier-Sattel konstituiert [40, 45, 62] (r1, r2 und p1, p2 bezeichnen dieOrte bzw. Impulse der Elektronen 1 und 2): Variiert man das Verh�altnis der Kernabst�ande,d.h. f�uhrt man ein Elektron dem Kern n�aher zu und entfernt das andere etwas vom Kern,so bewirkt die ver�anderte e�ektive Kernladungsabschirmung, da� das innere Elektron vomKernpotential eingefangen wird, w�ahrend das �au�ere Elektron ins Unendliche abgesto�enwird (Abb. 2.1a). Diese Instabilit�at { quanti�ziert durch den Lyapunov-Exponenten, der dieZeitskala angibt, auf der in�nitesimal benachbarte Trajektorien auseinanderlaufen { nimmt zumit zunehmender Exzentrizit�at des Orbits und wird im Grenzfall einer kollinearen Anordnungaufgrund der involvierten Dreifachkollision unendlich gro� [45].Ein Beispiel f�ur einen stabilen periodischen Orbit im klassischen Helium-Atom stellt derLangmuir-Orbit dar, der erstmals von Langmuir f�ur die Quantisierung von Helium vorge-schlagen wurde [26] und dem fundamentalen periodischen Orbit innerhalb des durch x1 = x2,y1 = �y2, z1 = z2 = 0, px1 = px2, py1 = �py2, pz1 = pz2 = 0 de�nierten Symmetrieraumsentspricht (mit ri = (xi; yi; zi) und pi = (pxi; pyi; pzi)). Kleine Abweichungen von diesem Or-
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Abb. 2.1: Einige periodische Orbits des klassischen Helium-Atoms. (a) Instabiler Wannier-Orbit.(b) Stabiler Langmuir-Orbit. (c) Instabiler Asymmetric-Stretch-Orbit. (d) Stabiler Frozen-Planet-Orbit. (a) und (b): Trajektorien innerhalb des zweidimensionalen Kon�gurationsraums; (c) und (d):Zeitentwicklung innerhalb des kollinearen Kon�gurationsraums (der Kern be�ndet sich jeweils beix = y = z = 0). Die gestrichelten Linien in (a) und (c) zeigen Trajektorien, die sich ergeben, wenneines der Elektronen vom Kern etwas entfernt, das andere dem Kern etwas zugef�uhrt wird. x, y, zund t sind in atomaren Einheiten gegeben.



12 Kapitel 2. Die Frozen-Planet-Kon�guration des klassischen Helium-Atomsbit f�uhren zu regul�aren, quasiperiodischen Oszillationen, die auf die unmittelbare Umgebungdes Langmuir-Orbits beschr�ankt bleiben; der Langmuir-Orbit bildet damit eines der weni-gen regul�aren Gebiete innerhalb des �uberwiegend chaotischen Phasenraums des klassischenHelium-Atoms (das andere bekannte regul�are Gebiet ist die Frozen-Planet-Kon�guration)[45]. Der Parameterbereich, innerhalb dessen r1=r2 variiert werden kann, ohne die Kon�gu-ration zu destabilisieren, ist jedoch so klein, da� eine semiklassische Quantisierung langlebigequantenmechanische Zust�ande, die vollst�andig auf dem Langmuir-Orbit lokalisiert sind, erstf�ur sehr hohe Hauptquantenzahlen N � 500 erwarten l�a�t [53] (N entspricht der Hauptquan-tenzahl der Ionisationsschwelle von Helium, unterhalb der diese Zust�ande liegen). Tats�achlichwurden quantenmechanische Zust�ande mit erh�ohter Wahrscheinlichkeitsdichte entlang desLangmuir-Orbits jedoch bereits bei der Hauptquantenzahl N = 10 entdeckt [63].Innerhalb des kollinearen Phasenraums mu� aufgrund der Coulomb-Singularit�at des Kerns,die die Elektronen in einer kollinearen Anordnung nicht �uberschreiten k�onnen (siehe etwa[60]), prinzipiell unterschieden werden zwischen der "Zee\-Kon�guration, bei der sich beideElektronen auf der gleichen Seite des Kerns be�nden, und der "eZe\-Kon�guration, bei derbeide Elektronen auf entgegengesetzten Seiten des Kerns angeordnet sind. Entgegen der Intui-tion ist es die Zee-Kon�guration, welche sich durch einen (nahezu vollst�andig) regul�aren Pha-senraum auszeichnet, w�ahrend der Phasenraum der eZe-Kon�guration vollst�andig chaotischist: S�amtliche periodischen Orbits der eZe-Kon�guration sind instabil bez�uglich Variationeninnerhalb des kollinearen Phasenraums. Durch eine "Cycle Expansion\ der Produktdarstel-lung der Gutzwillerschen Spurformel [64, 65] konnte gezeigt werden, da� im wesentlichen nurein einziger periodischer Orbit dieser Kon�guration, n�amlich der in Abb. 2.1c gezeigte, einergegenphasigen Streckschwingung der Elektronen entsprechende "Asymmetric Stretch\-Orbit(also nicht der Wannier-Orbit), zur semiklassischen Zustandsdichte beitr�agt [48]. Tats�achlichkonnte in quantenmechanischen Rechnungen gezeigt werden, da� doppelt angeregte Zust�andevon Helium mit hcos �12i � �1 (wobei �12 den Zwischenwinkel zwischen den Elektronen be-zeichnet), bei denen beide Elektronen also auf entgegengesetzten Seiten des Kerns angeordnetsind, entlang des Asymmetric-Stretch-Orbits lokalisiert sind [48, 66, 67].Au�erhalb der von Richter und Wintgen betrachteten Symmetrier�aume wurde in [54, 55]die von den Autoren sogenannte "asynchrone\ Kon�guration untersucht, die im wesentlichendie Verallgemeinerung des Asymmetric-Stretch-Orbits auf den zweidimensionalen Kon�gu-rationsraum darstellt. So gut wie unerforscht sind periodische Orbits innerhalb des zwei-dimensionalen Kon�gurationsraums mit nichtverschwindendem Drehimpuls, die nicht demWannier-Sattel angeh�oren (abgesehen von der rotierenden Frozen-Planet-Kon�guration [61]),sowie periodische Orbits au�erhalb des zweidimensionalen Kon�gurationsraums { abgesehenvon quasistarr rotierenden Gleichgewichtskon�gurationen, bei denen sich die Abst�ande derElektronen voneinander und vom Kern im Lauf der Zeit nicht �andern [40, 41, 42, 43] (diese



2.2. Die Frozen-Planet-Kon�guration 13Kon�gurationen haben sich ebenfalls als instabil erwiesen). Die Schwierigkeit bei der Erfor-schung des Phasenraums der dreidimensionalen Dynamik liegt in der Anzahl der Freiheits-grade f = 6, die f�ur eine Visualisierung etwa anhand von Poincar�e-Schnitten zu hoch ist.Methoden wie die Stabilit�atsanalyse einzelner periodischer Orbits sowie die globale Suchenach regul�aren Gebieten [56, 68] sind wahrscheinlich nur bedingt in der Lage, Einblick in diePhasenraumstruktur des dreidimensionalen Kon�gurationsraums zu vermitteln.2.2 Die Frozen-Planet-Kon�gurationDie Frozen-Planet-Kon�guration wurde erst vor knapp einem Jahrzehnt von Richter undWintgen entdeckt [16] und im Anschlu� daran von denselben Autoren im Hinblick auf ihreklassischen und semiklassischen Eigenschaften sowie auf ihre quantenmechanische Entspre-chung eingehend analysiert [14, 15, 17, 46, 69]. In dieser Kon�guration be�nden sich beideElektronen auf der gleichen Seite des Atomkerns, wobei sie sich durch unterschiedlich hoheAnregungen auszeichnen, wir also ein "inneres\ und ein "�au�eres\ Elektron unterscheiden.Das innere Elektron oszilliert auf extrem exzentrischen Kepler-Bahnen um den Kern. Das�au�ere Elektron wird durch die Bewegung des inneren Elektrons dynamisch stabilisiert undoszilliert um einen Gleichgewichtsabstand, der dadurch gekennzeichnet ist, da� sich dort dieanziehende Kraft { die �uberwiegt, wenn das innere Elektron in der N�ahe des Kerns ist { unddie absto�ende Kraft { die �uberwiegt, wenn das innere Elektron den �au�eren Umkehrpunktseines Umlaufs erreicht { im Zeitmittel einer Kepler-Periode aufheben.Der Name "Frozen-Planet-Kon�guration\ leitet sich von dem auf Percival zur�uckgehen-den Begri� der "planetaren Zust�ande\ her [70], die doppelt hochangeregte Zust�ande des Zwei-Elektronen-Atoms mit unterschiedlich hoher Anregung beider Elektronen bezeichnen. Bei derFrozen-Planet-Kon�guration handelt es sich also um eine einem planetaren Zustand �ahnli-che Kon�guration, bei der das �au�ere Elektron quasi "eingefroren\ ist. Der Begri� "frozenplanet\ wurde von Eichmann und Mitarbeitern eingef�uhrt [71], die hochaufgel�oste Spektrendoppelt hochangeregter Barium-Atome mit Hilfe einer in der betre�enden Arbeit sogenannten"Frozen-Planet-Approximation\ reproduzieren konnten: Bei dieser N�aherung wird das �au�ereElektron �xiert und die Wellenfunktion des inneren Elektrons im resultierenden statischenZweik�orperpotential berechnet [72].Das besonders Antiintuitive dieser Kon�guration ist ihre Stabilit�at. Neben dem Langmuir-Orbit stellt die Frozen-Planet-Kon�guration die einzige bekannte Kon�guration des klassi-schen Helium-Atoms dar, die klassisch stabil gegen Autoionisation ist, d.h. bei der Abwei-chungen vom fundamentalen Orbit zu stabilen, quasiperiodischen Oszillationen f�uhren. DasPhasenraumvolumen, innerhalb dessen die Frozen-Planet-Kon�guration stabil ist, ist �uber-raschend gro�, was in Abb. 2.2b angedeutet wird, die eine stabile, vom kollinearen funda-mentalen Orbit der Kon�guration relativ stark abweichende Trajektorie zeigt. Die Frozen-
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Abb. 2.2: Einige regul�are Trajektorien vom Typ der Frozen-Planet-Kon�guration von Helium im zwei-dimensionalen Kon�gurationsraum (y und z sind in atomaren Einheiten gegeben). W�ahrend bei (a)und (b) der Gesamtdrehimpuls L = 0 ist, besitzt die Kon�guration in (c) einen nichtverschwindendenGesamtdrehimpuls L = 0:1625 a.u.



2.2. Die Frozen-Planet-Kon�guration 15Planet-Kon�guration ist auch stabil bez�uglich Abweichungen, die einen nichtverschwindendenGesamtdrehimpuls implizieren, und existiert somit auch, wie in Abb. 2.2c gezeigt wird, alsrotierende Kon�guration (siehe auch [61]).Eine Konsequenz des gro�en Phasenraumvolumens der stabilen Frozen-Planet-Kon�gu-ration ist die Tatsache, da� sich diese im quantenmechanischen Spektrum bereits f�ur relativniedrige Doppelanregungen manifestiert: In ab initio Rechnungen zum doppelt angeregtenHelium-Atom konnte gezeigt werden [17], da� f�ur Hauptquantenzahlen N � 3 des innerenElektrons autoionisierende Zust�ande existieren, die entlang des klassischen Frozen-Planet-Orbits lokalisiert sind. Diese Frozen-Planet-Zust�ande zeichnen sich durch sehr kleine Ionisa-tionsbreiten aus (verglichen mit Zust�anden gleicher Quantenzahl N , also mit Zust�anden, dieder gleichen Ionisationsschwelle von Helium angeh�oren), die als Funktion von N im Mittelexponentiell abnehmen. Neben dem Asymmetric-Stretch-Orbit ist damit der Frozen-Planet-Orbit der einzige periodische Orbit des klassischen Helium-Atoms, der im Spektrum moderatdoppelt angeregter Zust�ande (N < 10) mit niedrigem Drehimpuls nachgewiesen werden konn-te [67].Im Gegensatz zur theoretischen Berechnung ist ein experimenteller Zugang zu Frozen-Planet-Zust�anden bislang noch nicht erfolgt [73]. Die Schwierigkeit, die mit der experimen-tellen Anregung von mit der Frozen-Planet-Kon�guration assoziierten Zust�anden verbundenist, besteht darin, da� diese Zust�ande aufgrund der speziellen Symmetrie der Frozen-Planet-Kon�guration einen verschwindend geringen �Uberlapp mit dem Grundzustand bzw. mit denvom Grundzustand aus leicht zug�anglichen angeregten Zust�anden aufweisen. Die Fortschritte,die im vergangenen Jahrzehnt im Hinblick auf die experimentelle Anregung hochangeregterplanetarer Zust�ande in Zwei-Elektronen-Atomen erzielt wurden [71, 72, 74, 75], geben jedochAnla� zur Ho�nung, da� derartige Schwierigkeiten bald �uberwunden werden k�onnen.Wir werden uns im folgenden insbesondere f�ur die kollineare Frozen-Planet-Kon�gurationinteressieren, die der kollinearen Zee-Anordnung der Elektronen entspricht. Wie Richter,Wintgen und Mitarbeiter [14] gezeigt haben, ist der Phasenraum der kollinearen Zee-Kon-�guration nahezu vollst�andig regul�ar und enth�alt ein gro�es Gebiet gebundener Bewegung,zentriert um den fundamentalen periodischen Orbit der Frozen-Planet-Kon�guration. DieseRegularit�at manifestiert sich darin, da� die Bewegungen beider Elektronen trotz ihrer starkenWechselwirkung nahezu unabh�angig voneinander ablaufen: Das innere Elektron oszilliert aufexzentrischen, Kepler-artigen Trajektorien, die durch die langsame Oszillation des �au�erenElektrons nur sehr schwach moduliert werden; das �au�ere Elektron vollf�uhrt Oszillationenum den Gleichgewichtsabstand, denen die schnellen Oszillationen des inneren Elektrons nursehr schwach �uberlagert sind (Abb. 2.3). Die kollineare Dynamik wird also durch zwei Modenkonstituiert, die in sehr guter N�aherung separieren: n�amlich die Kepler-Mode und die lang-same Oszillation um die Gleichgewichtslage (deren jede in der Bewegung beider Elektronen
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Abb. 2.3: Trajektorien der kollinearen Frozen-Planet-Kon�guration, aufgetragen als Funktion der Zeit(z und t sind in atomaren Einheiten gegeben). Wie man sieht, ist die regul�are Dynamik innerhalbdes kollinearen Kon�gurationsraums durch zwei Bewegungsmoden charakterisiert, die approximativseparieren: die der schnellen Kepler-Oszillation des inneren Elektrons entsprechende Mode, die sich inder Bewegung des �au�eren Elektrons in Form von Oszillationen mit kleiner Amplitude abzeichnet (b),sowie die der langsamen Oszillation des �au�eren Elektrons um die Gleichgewichtslage entsprechendeMode, die in der Bewegung des inneren Elektrons zu kleinen Modulationen der Amplitude des Kepler-Orbits f�uhrt (c).



2.3. Adiabatische Theorie der Frozen-Planet-Kon�guration 17aufscheint und sich daher, streng genommen, nicht mit einem einzelnen Elektron identi�zierenl�a�t).Es ist bemerkenswert, da� die approximative Separation der Moden innerhalb des kollinea-ren Kon�gurationsraums auf die Nichtvernachl�assigbarkeit der Elektron-Elektron-Wechsel-wirkung im Vergleich zur Kernanziehung zur�uckzuf�uhren ist. F�ur zunehmende Kernladungs-zahlen Z > 2, f�ur die die St�arke der Elektron-Elektron-Wechselwirkung geringer wird und dasSystem sich scheinbar der regul�aren Dynamik zweier unkorrelierter Elektronen ann�ahert, �n-det man einen gemischt regul�ar-chaotischen Phasenraum, dessen regul�arer Anteil zunehmendkleiner wird und f�ur Z � 13 vollst�andig verschwindet [17]. Umgekehrt wird f�ur Z ! 1 derPhasenraum immer regul�arer und die Separation zwischen den Elektronen immer besser (f�urZ � 1 existiert die Frozen-Planet-Kon�guration nicht, da bei derartigen Kernladungszahlendas �au�ere Elektron in dem durch den Kern und das innere Elektron gebildeten Potentialnicht gebunden wird). Dies zeigt, wie wichtig das gleichwertige Zusammenspiel aller betei-ligten Wechselwirkungen, der Kernanziehung und der Elektron-Elektron-Absto�ung, f�ur dasZustandekommen der Frozen-Planet-Kon�guration ist.2.3 Adiabatische Theorie der Frozen-Planet-Kon�gurationDie approximative Separation der schnellen Kepler-Mode und der langsamen Oszillation umden fundamentalen periodischen Orbit erlaubt die Anwendung verschiedener N�aherungsver-fahren zum Studium der Frozen-Planet-Kon�guration [57, 58, 59, 60, 61]. F�ur diese Arbeitvon besonderem Interesse ist die von Ostrovsky und Prudov [59] durchgef�uhrte Separation derModen unter Verwendung der Theorie der adiabatischen Invarianten, �uber die die langsameKomponente der Oszillation des �au�eren Elektrons innerhalb des kollinearen Kon�gurations-raums durch die Bewegung in einem e�ektiven, den Abschirmungse�ekt des inneren Elektronsber�ucksichtigenden Potential beschrieben werden kann.Gem�a� der Theorie der adiabatischen Invarianten [76] bleibt in einem Hamiltonschen Sy-stem mit einem Freiheitsgrad q und zugeh�origem kanonischen Impuls p das WirkungsintegralH p dq invariant, wenn ein externer Parameter der Hamiltonfunktion in sehr langsamer Weisezeitlich variiert wird (verglichen mit der Zeitskala, die die Dynamik von q und p charakteri-siert). Im Fall der kollinearen Frozen-Planet-Kon�guration, die durch die HamiltonfunktionH = p2z12 + p2z22 � Zz1 � Zz2 + 1z1 � z2 (2.1)mit den Ortskoordinaten z1, z2 und den Impulsen pz1, pz2 des �au�eren bzw. des innerenElektrons beschrieben wird, l�a�t sich der Ort z1 des �au�eren Elektrons in dem Wechsel-wirkungsterm 1=(z1 � z2) als zeitlich langsam ver�anderlicher Parameter interpretieren, derdie schnelle Oszillation des inneren Elektrons adiabatisch beein
u�t. Unter Anwendung derTheorie der adiabatischen Invarianten ergibt sich damit, da� das Wirkungsintegral H pz2 dz2,



18 Kapitel 2. Die Frozen-Planet-Kon�guration des klassischen Helium-Atomsintegriert �uber einen Zyklus der Kepler-Oszillation des inneren Elektrons, n�aherungsweiseinvariant bleibt als Funktion der Zeit.Die Auswertung dieses Wirkungsintegrals l�a�t sich nach der Transformation der Variablenz2, pz2 des inneren Elektrons auf die Winkel-Wirkungs-Variablen �, I des eindimensionalenKepler-Problems, de�niert durch z2 =: I2Z (1� cos �); (2.2)pz2 =: ZI sin �1� cos � ; (2.3)wobei die exzentrische Anomalie �(�) durch � = ��sin � gegeben ist, vornehmen. Ausgedr�ucktin diesen neuen Variablen lautet die Hamiltonfunktion (2.1)H(z1; pz1; I; �) = p2z12 � Zz1 � Z22I2 + 1z1 � I2Z (1� cos �) : (2.4)Die adiabatische Invarianz des Wirkungsintegrals l�a�t sich nun gem�a�12� Z 2�0 I d� = N (2.5)formulieren, wobei N eine Konstante ist, die der "Wirkung\ der Kepler-artigen Oszillationdes inneren Elektrons entspricht (und bei der Quantisierung des Systems mit dessen Haupt-quantenzahl identi�ziert wird). �Uber (2.4) l�a�t sich I als Funktion der Gesamtenergie, derWinkelvariable �, sowie der Variablen des �au�eren Elektrons ausdr�ucken: I = I(H; �; z1; pz1).Nach Einsetzen dieses Ausdrucks in (2.5) ergibt sich eine implizite Relation zwischen H ,z1 und pz1, aus der man, nach Au
�osung nach H , eine e�ektive Hamiltonfunktion f�ur dieBeschreibung der langsamen Komponente der Bewegung des �au�eren Elektrons erh�alt:H(N)e� (z1; pz1) = p2z12 + V (N)e� (z1): (2.6)Das e�ektive Potential V (N)e� l�a�t sich nur numerisch berechnen, da die Integration von (2.5)analytisch nicht durchf�uhrbar ist.Abb. 2.4 zeigt das e�ektive Potential f�ur das Helium-Atom (Z = 2). Wir erkennen, da�es sich f�ur gro�e Abst�ande einem attraktiven 1=z Potential ann�ahert, w�ahrend es f�ur kleineAbst�ande aufgrund der �uberhand nehmenden Coulomb-Absto�ung durch das innere Elektronstark repulsiv ist. Dazwischen weist es ein lokales Minimum an dem Ort z1 ' 2:6N2 auf,der dem Gleichgewichtsabstand des �au�eren Elektrons in der Frozen-Planet-Kon�gurationentspricht.Anhand dieses Potentials lassen sich nun intrinsische, allein von der Wirkung N des in-neren Elektrons abh�angende Skalen f�ur Feldst�arke und Frequenz bestimmen, die sp�ater f�urden externen Antrieb der Frozen-Planet-Kon�guration durch ein elektromagnetisches Feldvon Bedeutung sein werden. Die Frequenzskala ist durch die Kr�ummung des Potentials in
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Abb. 2.4: E�ektives adiabatisches Potential, das die langsame Komponente der Bewegung des �au�erenElektrons in der kollinearen Frozen-Planet-Kon�guration beschreibt.seinem Minimum gegeben. Sie entspricht der Frequenz kleiner Schwingungen um die Gleich-gewichtslage. Wie man an der Form des e�ektiven Potentials in Abb. 2.4 erkennt, ist dieszugleich die maximale Frequenz, mit der das �au�ere Elektron um die Gleichgewichtslageoszilliert. Die Feldst�arkenskala ist durch die maximale positive Steigung des e�ektiven Po-tentials gegeben (bei z1 ' 3:7N2). Sie entspricht der maximalen r�ucktreibenden Kraft aufdas innere Elektron und gibt die maximale St�arke eines statischen Feldes an, das man an dieFrozen-Planet-Kon�guration anlegen kann, ohne diese vollkommen zu destabilisieren.Konkret erhalten wir, sowohl aus dem e�ektiven Potential als auch aus numerisch berech-neten Trajektorien der Frozen-Planet-Kon�guration, f�ur die intrinsische Frequenzskala!I ' 0:30N�3 (2.7)und f�ur die intrinsische Feldst�arkenskalaFI ' 0:030N�4: (2.8)Im Minimum des e�ektiven Potentials bei erhalten wir bei z1 ' 2:6N2V (N)e� ' �0:22N�2; (2.9)woraus sich die Gesamtenergie der Kon�guration zuE ' �2:2N�2: (2.10)



20 Kapitel 2. Die Frozen-Planet-Kon�guration des klassischen Helium-Atomsergibt. F�ur die Frequenz der Kepler-artigen Oszillation des inneren Elektrons erhalten wiraus der numerisch berechneten Trajektorie!K ' 4:4N�3: (2.11)Die G�ute der adiabatischen N�aherung wird damit durch das Verh�altnis !I=!K ' 0:07 cha-rakterisiert, das wesentlich kleiner als Eins ist.Bei Wirkungen bzw. Quantenzahlen der Gr�o�enordnung N � 50, die f�ur den resonantenAntrieb der Kon�guration relevant sind (siehe die folgenden Kapitel), liegen die intrinsi-schen Frequenz- und Feldst�arkeskalen im Bereich der Frequenzen und Feldamplituden, diein Mikrowellen-Ionisationsexperimenten von Ein-Elektron-Atomen typischerweise verwendetwerden [77]. Konkret erhalten wir f�ur N = 50!I=(2�) ' 16 GHz; (2.12)!K=(2�) ' 230 GHz; (2.13)FI ' 25 V=cm: (2.14)Mit der Theorie der adiabatischen Invarianten lassen sich auch Oszillationsmoden derFrozen-Planet-Kon�guration au�erhalb des kollinearen Kon�gurationsraums beschreiben. Be-zeichnet l12 die halbe Di�erenz der Drehimpulse der Elektronen in bezug auf den Kernortund '12 den Winkel zwischen dem Ortsvektor des �au�eren Elektrons und der gro�en Haupt-achse der Kepler-Ellipse des inneren Elektrons, so l�a�t sich f�ur die Zeitentwicklung dieserkanonisch konjugierten Variablen bei kleinen Schwingungen transversal zur Achse, entlangder die Frozen-Planet-Kon�guration ausgerichtet ist, die e�ektive HamiltonfunktionHe� = �12 k1 l212 � 12 k2 '212 (2.15)herleiten, wobei k1 und k2 positive Konstanten darstellen [59]. Die daraus resultierendenBewegungsgleichungen entsprechen denen eines harmonischen Oszillators, bei dem jedoch dieRollen der Orts- und Impulsvariablen vertauscht sind (der "Impuls\ l12 erf�ahrt hier also einenpositiven Zuwachs f�ur positive Werte der "Ortsvariablen\ '12):ddt l12 = k2 '12 (2.16)ddt '12 = �k1 l12: (2.17)Abb. 2.5 zeigt die Trajektorie einer derartigen transversalen Schwingung, bei der sich dasinnere Elektron anf�anglich auf der z-Achse be�ndet, das �au�ere Elektron hingegen gegen�uberder z-Achse etwas versetzt ist. Die aus der numerisch berechneten Trajektorie ermittelteFrequenz der transversalen Schwingung betr�agt !ang ' 0:17N�3 und stimmt gut mit demWert �uberein, den die Theorie der adiabatischen Invarianten liefert [59].
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c dAbb. 2.5: Trajektorie einer transversalen Schwingung der Frozen-Planet-Kon�guration. Die Anfangs-bedingung ist durch z1 = 2:58, y1 = 0:2, y2 = 0, p1 = p2 = 0 gegeben; der Anfangswert von z2ist so gew�ahlt, da� die Wirkung des inneren Elektrons N = 1 betr�agt (der Index 1 bezeichnet dasinnere, der Index 2 das �au�ere Elektron; alle Orts- und Zeitvariablen sind in atomaren Einheiten ge-geben). Dargestellt sind Ausschnitte der Trajektorie zu den Zeiten (a) t = 0 : : :4:6; (b) t = 4:6 : : :9:2;(c) t = 9:2 : : :13:8; (d) t = 13:8 : : :18:4. Bei t = 18:4 ist ungef�ahr die H�alfte des Oszillationszyklusvollzogen. Die Kon�guration schwingt anschlie�end zur�uck in die Anfangsposition (a).



Kapitel 3Formale Behandlung desklassischen SystemsIn den folgenden Kapiteln untersuchen wir den Ein
u� eines externen elektromagnetischenFeldes auf die Dynamik des klassischen Helium-Atoms. Zun�achst werden in diesem Kapitelformale Aspekte des klassischen Drei-K�orper-Problems unter einem externen, zeitlich peri-odischen Antrieb behandelt. Wir de�nieren in Abschnitt 3.1 die klassische Hamiltonfunktionund er�ortern wesentliche fundamentale Eigenschaften der aus dieser Hamiltonfunktion resul-tierenden klassischen Dynamik. In Abschnitt 3.2 beschreiben wir die Variablentransformati-on, die auf das klassische System angewandt wird, um die klassischen Bewegungsgleichungennumerisch zu integrieren.3.1 Fundamentale Eigenschaften des klassischen SystemsWir betrachten die klassische Dynamik des dreidimensionalen Helium-Atoms im externenelektromagnetischen Feld linearer Polarisation. Das System wird beschrieben durch zwei klas-sische, �uber die elektrostatische Coulomb-Kraft miteinander wechselwirkende Punktladungenim attraktiven Coulomb-Potential, die einem externen oszillierenden elektrischen Feld aus-gesetzt sind. Relativistische Korrekturen der Wechselwirkung sowie E�ekte aufgrund derendlichen Masse bzw. der nichtverschwindenden Ausdehnung des Atomkerns werden ver-nachl�assigt.Unter Verwendung atomarer Einheiten ist die Hamiltonfunktion dieses Systems gegebendurchH(r1; r2; p1; p2; t) = p212 + p222 � Zjr1j � Zjr2j + 1jr1 � r2j + (r1 + r2)F(t): (3.1)Dabei bezeichnen r1, r2 bzw. p1, p2 die Ortskoordinaten bzw. Impulse der beiden Elektronen,22



3.1. Fundamentale Eigenschaften des klassischen Systems 23deren Zeitentwicklung durch die Hamiltonschen Gleichungendridt = @H@pi ; (3.2)dpidt = �@H@ri (3.3)f�ur i = 1; 2 gegeben ist. Z bezeichnet die Kernladungszahl, die in den konkreten Rechnungenstets Z = 2 gesetzt wird. Im Fall linearer Polarisation ist das externe Feld F(t) (unterVerwendung der Dipoln�aherung) durchF(t) = F e cos!t (3.4)gegeben, wobei F die (zeitlich konstante) Amplitude, ! die Frequenz und e den Einheitsvektorin Richtung der Polarisation des elektromagnetischen Feldes bezeichnen.Als einzige Konstante der Bewegung des Systems verbleibt unter dem zeitlich periodi-schen Antrieb bei linearer Polarisation die Komponente des Gesamtdrehimpulses entlang derPolarisationsrichtung des elektrischen Feldes. Die Trajektorie verl�auft damit innerhalb eineselfdimensionalen Unterraums des zw�olfdimensionalen Phasenraums. Es bietet sich an, die Zeitbzw. die Phase des treibenden Feldes !t mod 2� als zus�atzliche Dimension des klassischenPhasenraums einzuf�uhren, um formal zu gew�ahrleisten, da� die klassischen Bewegungsglei-chungen im erweiterten Phasenraum autonom sind [78]. Damit erhalten wir e�ektiv einenzw�olfdimensionalen Phasenraum, innerhalb dessen die klassische Dynamik zu analysieren ist.Die Hamiltonfunktion (3.1) zeichnet sich durch folgende fundamentale Skalierungseigen-schaft aus [70, 79]: Bezeichnet � > 0 einen reellen, positiven Parameter, so bleiben unter derTransformation ri 7�! � ri (i = 1; 2) (3.5)pi 7�! ��1=2 pi (i = 1; 2) (3.6)t 7�! �3=2 t (3.7)F 7�! ��2F (3.8)! 7�! ��3=2 ! (3.9)H 7�! ��1H (3.10)die Bewegungsgleichungen (3.2, 3.3) invariant. Es emp�ehlt sich also, die Analyse der klas-sischen Dynamik auf einen festen Wert der Skalierung � zu beschr�anken, was sich durchFestsetzung des Anfangswerts einer zeitabh�angigen Variablen, etwa der Gesamtenergie H ,oder durch Fixierung eines zeitunabh�angigen Parameters, etwa der Frequenz !, erreichenl�a�t. Im Bedarfsfall l�a�t sich der klassische Phasenraum �uber (3.5 { 3.10) auf die Skala destats�achlich betrachteten Systems isomorph abbilden. Dabei ist zu beachten, da� eine Gr�o�e,



24 Kapitel 3. Formale Behandlung des klassischen Systemsderen Einheit durch das Produkt mehrerer in (3.5 { 3.10) aufgef�uhrter Variablen bzw. Pa-rameter bestimmt ist, entsprechend transformiert wird. Eine Wirkungsvariable N etwa, mitder durch das Produkt von Ort und Impuls (bzw. von Energie und Zeit) gegebenen Einheit,transformiert sich unter (3.5 { 3.10) gem�a�N 7�! �1=2N: (3.11)3.2 Regularisierung der BewegungsgleichungenF�ur eine numerische Integration sind die Bewegungsgleichungen (3.2, 3.3) im allgemeinenungeeignet: Kommt ein Elektron dem Kernort sehr nahe, so w�achst dessen Impuls jpijsehr stark, n�amlich proportional zu jrij�1=2, an und divergiert im Fall eines direkten Zu-sammensto�es mit dem Kern. Da sich derartige Zusammenst�o�e in der uns speziell inter-essierenden Frozen-Planet-Kon�guration regelm�a�ig ereignen, ist es erforderlich, die Bewe-gungsgleichungen zu regularisieren. Die geeignete Methode zur Regularisierung ist durch dieKustaanheimo-Stiefel-Transformation [80] gegeben. Bei dieser kanonischen Transformationwerden die Koordinaten und Impulse der Elektronen auf neue Variablen transformiert, diebei Elektron-Kern-Zusammenst�o�en ein regul�ares Verhalten aufweisen. Im Gegensatz zu inklassischen Zwei-Elektronen-Atomen g�angigen "Regularisierungsverfahren\, bei denen dasCoulomb-Potential durch ein gegl�attetes, im Ursprung regul�ares (\soft core") Potential er-setzt wird [11], sind die aus dieser Transformation resultierenden Bewegungsgleichungenexakt �aquivalent zu den Newtonschen Bewegungsgleichungen in den urspr�unglichen Varia-blen. (Ein \soft core"-Potential w�urde, nebenbei bemerkt, das Auftreten der Frozen-Planet-Kon�guration nicht erm�oglichen, da in einem derartigen Potential der Kern keine un�uber-windliche Barriere f�ur das innere Elektron in einer kollinearen Anordnung darstellt.) Imfolgenden wird nun im einzelnen beschrieben, wie die Transformation im Zwei-Elektronen-System gem�a� der von Aarseth und Zare f�ur das gravitative Dreik�orperproblem beschriebenenMethode [81] durchgef�uhrt wird.Bei der Kustaanheimo-Stiefel-Transformation werden der Ortsvektor r und der Impuls-vektor p eines im dreidimensionalen Kon�gurationsraum beschriebenen Teilchens auf vier-komponentige, ebenfalls kanonisch konjugierte Variablen Q, P abgebildet:r = (rx; ry; rz)Tp = (px; py ; pz)T 7�! Q = (Qa; Qb; Qc; Qd)TP = (Pa; Pb; Pc; Pd)T : (3.12)Die Transformation ist de�niert durch die ErzeugendeW (p;Q) = p � f(Q); (3.13)wobei f(Q) = (fx(Q); fy(Q); fz(Q))T (3.14)



3.2. Regularisierung der Bewegungsgleichungen 25durch fx(Q) = Q2a � Q2b � Q2c + Q2d; (3.15)fy(Q) = 2 (QaQb � QcQd); (3.16)fz(Q) = 2 (QaQc + QbQd) (3.17)gegeben ist. Wir erhalten r = @W@p = f(Q); (3.18)P = @W@Q = A(Q)p; (3.19)mit A(Q) = 20BBBBB@ Qa Qb Qc�Qb Qa Qd�Qc �Qd QaQd �Qc Qb 1CCCCCA : (3.20)Wegen AT(Q)A(Q) = 4Q2 1I; (3.21)wobei 1I die Einheitsmatrix in IR3 bezeichnet, ergibt sich die Inversion von (3.19) zup = 14Q2 AT(Q)P: (3.22)Die Umkehrung von (3.18) ist nicht eindeutig vorgegeben. Sie l�a�t sich zum Beispiel durchQ = G(r) = (Ga(r); Gb(r); Gc(r); Gd(r))T (3.23)mit Ga(r) = r12 (jrj+ rx); (3.24)Gb(r) = ry2Ga(r) ; (3.25)Gc(r) = rz2Ga(r) ; (3.26)Gd(r) = 0 (3.27)f�ur rx � 0 bzw. Gb(r) = r12 (jrj � rx); (3.28)Ga(r) = ry2Gb(r) ; (3.29)Gd(r) = rz2Gb(r) ; (3.30)Gc(r) = 0 (3.31)



26 Kapitel 3. Formale Behandlung des klassischen Systemsf�ur rx < 0 de�nieren.Mit (3.15 { 3.17) folgt schlie�lich Q2 = jrj (3.32)und P2 = 4Q2 p2 = 4 jrjp2: (3.33)Dies garantiert f�ur die neuen Variablen die eingangs geforderte Eigenschaft, bei Zusam-menst�o�en mit der Coulomb-Singularit�at, bei denen p2 � jrj�1 divergiert, regul�ar zu bleiben.In dem uns interessierenden System zweier Elektronen im attraktiven Coulomb-Potentialwird auf die Orts- und Impulsvariablen jedes der beiden Elektronen separat eine Kustaanheimo-Stiefel-Transformation (3.12) angewandt:(r1;p1) 7�! (Q1;P1); (3.34)(r2;p2) 7�! (Q2;P2); (3.35)mit Qi = G(ri); (3.36)Pi = A(Qi)pi (3.37)bzw. ri = f(Qi); (3.38)pi = 14Ri AT(Qi)Pi (3.39)f�ur i = 1; 2, wobei Ri durch Ri = Q2i (3.40)de�niert ist. Zus�atzlich werden eine neue "Zeit\ � sowie eine neue Hamiltonfunktion H gem�a�dt =: R1R2 d� (3.41)bzw. H := R1R2 (H �E) (3.42)eingef�uhrt, wobei H die urspr�ungliche Hamiltonfunktion des Systems, ausgedr�uckt in denneuen Variablen Q, P, darstellt und E deren Wert zum jeweils aktuellen Zeitpunkt t be-zeichnet. Per Konstruktion verschwindet H f�ur alle Zeiten � und repr�asentiert damit (imGegensatz zu (3.1)) ein autonomes System.Entsprechend werden E und t als zus�atzliche, kanonisch konjugierte Variablen des Systemseingef�uhrt, deren Zeitentwicklung durchdtd� = �@H@E ; (3.43)dEd� = @H@t (3.44)



3.2. Regularisierung der Bewegungsgleichungen 27beschrieben wird. Unter Verwendung des Ausdrucks (3.1) f�ur H erhalten wir schlie�lich dieHamiltonfunktionH = H(Q1; Q2; P1; P2; E; t)= 18 R2P21 + 18 R1P22 � (R1 +R2)Z + R1R2jf(Q1)� f(Q2)j+ R1R2 (f(Q1) + f(Q2)) � F(t)� R1R2E; (3.45)die die Bewegungsgleichungendtd� = R1R2; (3.46)dEd� = R1R2 (f(Q1) + f(Q2)) � dFdt (t); (3.47)dQ1d� = 14 R2P1; (3.48)dQ2d� = 14 R1P2; (3.49)dP1d� = R1R2 Xj=x;y;z �fj(Q1)� fj(Q2)R312 � Fj(t)� @fj@Q1 ;+ 2Q1��18 P22 + Z � R2R12 �R2 (f(Q1) + f(Q2)) �F(t) + R2E� ; (3.50)dP2d� = R1R2 Xj=x;y;z �fj(Q2)� fj(Q1)R312 � Fj(t)� @fj@Q2 ;+ 2Q2��18 P21 + Z � R1R12 �R1 (f(Q1) + f(Q2)) �F(t) + R1E� (3.51)mit R12 = jf(Q1)� f(Q2)j (3.52)erzeugt.Wie man sieht, sind die (3.46 { 3.51) regul�ar f�ur jr1j = 0 oder jr2j = 0 und lassen sichdamit numerisch stabil �uber Elektron-Kern-Zusammenst�o�e integrieren. Instabilit�aten tretenlediglich im Fall von Elektron-Elektron-Zusammenst�o�en jr1j = jr2j auf, die jedoch aus Ener-gieerhaltungsgr�unden nur bei Dreifachkollisionen, bei denen beide Elektronen zugleich auf denKern st�urzen, statt�nden. Wie von Siegel gezeigt wurde [82], sind derartige Dreifachkollisio-nen prinzipiell nicht regularisierbar. Numerisch lassen sich jedoch die Bewegungsgleichungenentlang von Trajektorien, die der Dreifachkollision sehr nahe kommen, problemlos integrieren,da mit jr1j�jr2j auch jr1j und jr2j sehr klein werden und somit die Br�uche in (3.50) und (3.51)bzw. die Zeitableitungen von P1 und P2 stets beschr�ankt bleiben. Details zur numerischenIntegration der klassischen Bewegungsgleichungen werden in Anhang A.1 beschrieben.



Kapitel 4Die kollineare, getriebeneFrozen-Planet-Kon�gurationIn den nun folgenden Kapiteln wird die klassische Dynamik der Frozen-Planet-Kon�gurationim externen elektromagnetischen Feld untersucht. Dabei konzentrieren wir uns auf Feldam-plituden F des elektrischen Feldes, die klein sind im Vergleich zur Coulomb-Anziehung desinneren Elektrons durch den Kern (d.h. typischerweise weniger als 1% des Kernfeldes betra-gen), sowie auf im Vergleich zur Frequenz !K der Kepler-Oszillation des inneren Elektronskleine Frequenzen !. Wir untersuchen zun�achst den invarianten Unterraum des klassischenPhasenraums, der der kollinearen Anordnung der Elektronen entlang der Polarisationsachsedes elektrischen Wechselfeldes entspricht. Aufgrund der Separation der die Bewegung derElektronen charakterisierenden Zeitskalen (siehe Abschnitt 2.2) l�a�t sich die Struktur deskollinearen Phasenraums anhand eines Poincar�e-Schnitt-Verfahrens, das in Abschnitt 4.1 be-schrieben wird, vollst�andig visualisieren. Der gemischt regul�ar-chaotische Phasenraum derkollinearen, getriebenen Frozen-Planet-Kon�guration wird in Abschnitt 4.2 analysiert. Erenth�alt regul�are Inseln innerhalb der chaotischen "See\, die nichtlinearen Resonanzen zwi-schen dem treibenden Feld und der Dynamik des ungest�orten atomaren Systems entsprechen.Im folgenden sind die Koordinaten und Impulse des �au�eren Elektrons durchr1 = (x1; y1; z1)T bzw. p1 = (px1; py1; pz1)T (4.1)und jene des inneren Elektrons durchr2 = (x2; y2; z2)T bzw. p2 = (px2; py2; pz2)T (4.2)gegeben. Die z-Achse de�niert die Polarisation des externen Wechselfeldes. Atomare Einheitenwerden im folgenden durchgehend verwendet.28



4.1. Phasenraumvisualisierung 294.1 PhasenraumvisualisierungInnerhalb des kollinearen Kon�gurationsraums besitzt das klassische Helium-Atom zwei Frei-heitsgrade. Nach Einf�uhrung der Phase !t des treibenden Feldes als zus�atzliche Phasenraum-variable ist der erweiterte Phasenraum der kollinearen, getriebenen Kon�guration damit f�unf-dimensional. Da keine Konstanten der Bewegung existieren, ist es im Prinzip nicht m�oglich,die Struktur des Phasenraums mit einem einfachen Poincar�e-Schnitt zu visualisieren. F�urFrequenzen des treibenden Feldes, die klein sind im Vergleich zur Frequenz !K der Kepler-Oszillation des inneren Elektrons (und f�ur Feldamplituden, die den Kepler-artigen Charakterder Bewegung des inneren Elektrons nicht wesentlich ver�andern) l�a�t sich jedoch, unter Aus-nutzung der approximativen Separation der Zeitskalen (siehe Abschnitt 2.2), ein doppelterPoincar�e-Schnitt durchf�uhren, durch den der Phasenraum auf einer zweidimensionalen Fl�achebzw. Mannigfaltigkeit dargestellt werden kann.Generell ist die Methode der Poincar�e-Schnitte geeignet, die Dynamik solcher klassischerSysteme zu visualisieren, deren Zeitentwicklung e�ektiv innerhalb eines dreidimensionalenPhasenraums verl�auft (dazu z�ahlen autonome Systeme mit zwei Freiheitsgraden, sowie pe-riodisch getriebene Systeme mit einem Freiheitsgrad). Man de�niert eine zweidimensionaleFl�ache bzw. Mannigfaltigkeit innerhalb des dreidimensionalen Phasenraums und registriertauf dieser "Poincar�e-Schnitt
�ache\ s�amtliche Punkte, in denen die numerisch berechnete Tra-jektorie diese Fl�ache mit de�nierter Orientierung schneidet [78]. F�uhrt man diesen Poincar�e-Schnitt f�ur hinreichend viele Trajektorien durch, so erh�alt man ein genaues Abbild der Struk-tur des Phasenraums, welches die Unterscheidung von regul�aren und chaotischen Gebietenerlaubt. Regul�are Gebiete zeichnen sich als eindimensionale Kurven ab, die die Existenz eineszus�atzlichen (lokalen) Integrals der Bewegung widerspiegeln. Chaotische Trajektorien hinge-gen, die die Energiehyper
�ache (bzw. deren Analogon in periodisch getriebenen Systemen)vollst�andig ausf�ullen, werden auf zweidimensionale Teilmengen der Schnitt
�ache abgebildet.F�ur h�oherdimensionale Phasenr�aume ist die Methode der Poincar�e-Schnitte zur Visuali-sierung im allgemeinen ungeeignet. Innerhalb eines vier- bzw. h�oherdimensionalen Phasen-raums ist eine zweidimensionale Fl�ache durch zwei bzw. mehr als zwei Bedingungen festgelegtund besitzt damit generisch keinen Schnittpunkt mit einer eindimensionalen Trajektorie. ImFall der kollinearen, getriebenen Frozen-Planet-Kon�guration l�a�t sich dieses Problem durcheinen doppelten Poincar�e-Schnitt umgehen. Dabei verwenden wir die Tatsache, da� eine derOszillationsmoden des Systems, die Kepler-Mode, durch eine wesentlich k�urzere Zeitskalagekennzeichnet ist als alle anderen Oszillationsmoden.Wir f�uhren zun�achst einen Poincar�e-Schnitt der durch z1, z2, pz1, pz2, t parametrisiertenTrajektorie mit einer vierdimensionalen Hyper
�ache durch, die durch die Fixierung des Ortsdes inneren Elektrons gem�a� z2 = 0 de�niert ist und damit einem festen Wert der Winkelva-riable � der Kepler-Oszillation entspricht. Pro Kepler-Zyklus des inneren Elektrons erhalten



30 Kapitel 4. Die kollineare, getriebene Frozen-Planet-Kon�gurationwir damit genau einen Schnittpunkt. Die Phasenraumvariablen, durch die diese Schnittpunktebeschrieben werden, variieren auf einer im Vergleich zur Kepler-Periode des inneren Elektronslangsamen Zeitskala. Die zeitlich aufeinander folgenden Schnittpunkte lassen sich damit re-lativ glatt zu einer e�ektiv dreidimenisonalen Phasenraumtrajektorie interpolieren. Letztererl�a�t sich entnehmen, welche Werte diese Phasenraumvariablen zu gegebener Zeit t angenom-men h�atten, wenn die Kepler-Oszillation zu diesem Zeitpunkt (und nicht, wie tats�achlich,etwas fr�uher bzw. sp�ater) durch z2 = 0 gegangen w�are. An dieser Phasenraumtrajektorie l�a�tsich nun durch Fixierung der Phase des treibenden Feldes gem�a� !t = '0 mod 2� (f�ur festes'0) ein weiterer, stroboskopischer Poincar�e-Schnitt vornehmen. Aufgrund der Tatsache, da�die Gesamtenergie des Systems f�ur feste Phase des treibenden Feldes n�aherungsweise konstantbleibt (zumindest f�ur regul�are Bewegung, die nicht in Resonanz mit dem treibenden Feld ist),liegen die Schnittpunkte auf der durch z2 = 0 und !t = '0 de�nierten, dreidimensionalenPoincar�e-Hyper
�ache in der unmittelbaren N�ahe der zweidimensionalen Untermannigfaltig-keit konstanter Energie und lassen sich somit auf einer zweidimensionalen Fl�ache darstellen.Man beachte, da� das durch dieses Verfahren gewonnene Abbild der Phasenraumstrukturnahezu exakt dem entspricht, das ein einfacher, durch die simultane Fixierung von z2 = 0 und!t = '0 de�nierter Poincar�e-Schnitt im Grenzfall unendlich langer Integrationszeiten liefert.Da die Kepler-Mode von der langsamen Oszillation nahezu entkoppelt ist und Resonanze�ektezwischen der schnellen Mode und der langsamen Mode damit vernachl�assigbar sind, f�ullt dieGesamtheit der Schnittpunkte innerhalb der durch z2 = 0 de�nierten Poincar�e-Hyper
�achepraktisch dieselbe regul�are bzw. chaotische Struktur aus wie die durch die oben beschrie-bene Interpolation der Schnittpunkte gewonnene Trajektorie. Der durch !t = '0 de�niertePoincar�e-Schnitt dieser "interpolierenden\ Trajektorie ist demnach dem durch z2 = 0 und!t = '0 de�nierten Poincar�e-Schnitt der tats�achlichen Phasenraumtrajektorie des Systemsin sehr guter N�aherung �aquivalent.Die konkrete Methode, mit der der doppelte Poincar�e-Schnitt durchgef�uhrt wird, ist inAbb. 4.1 dargestellt. Zun�achst wird f�ur gegebene Anfangswerte der Orts- und Impulsva-riablen des �au�eren Elektrons der Anfangsort des inneren Elektrons durch die Forderungbestimmt, da� der Anfangswert der feldfreien (d.h. f�ur F = 0 berechneten) GesamtenergieE = �1 betr�agt (der Anfangsimpuls des inneren Elektrons wird pz2 = 0 gesetzt). Bei dernumerischen Integration der Trajektorie werden Ort und Impuls des �au�eren Elektrons zujenen Zeitpunkten registriert, zu denen das innere Elektron mit dem Kern zusammenst�o�t.Anhand dieser Poincar�e-Schnittpunkte wird nun mittels einer kubischen Interpolation be-stimmt, welche Werte die Variablen des �au�eren Elektrons zu Kollisionszeiten t = ('0 mod2�)=! angenommen h�atten. Die auf diese Weise erhaltenen Punkte werden in einem durchden Ort und den Impuls des �au�eren Elektrons aufgespannten Diagramm aufgetragen.Abb. 4.2a zeigt das so konstruierte Phasenraumportrait f�ur die Feldparameter ! = 0:07
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Abb. 4.1: Schematische Darstellung des Verfahrens, mit dem der doppelte Poincar�e-Schnitt erstelltwird. Die Abbildung zeigt eine Trajektorie der kollinearen Frozen-Planet-Kon�guration, die einemexternen Feld der Frequenz ! = 0:3 und der Amplitude F = 0:002 ausgesetzt ist. F�ur eine gegebeneAnfangsbedingung des �au�eren Elektrons { in unserem Beispiel z1(t = 0) = 5:8, pz1(t = 0) = 0 { wirdder Anfangsort z2 des inneren Elektrons �uber (2.1) durch die Forderung bestimmt, da� der Anfangs-wert der feldfreien (d.h. f�ur F = 0 berechneten) Gesamtenergie E = �1 betr�agt (der Anfangsimpulsdes inneren Elektrons wird pz2 = 0 gesetzt). Im Verlauf der numerischen Integration werden Ort undImpuls des �au�eren Elektrons zu jenen Zeiten registriert, zu denen das innere Elektron am Kernort ist(diese Punkte sind in (b) durch Kreise gekennzeichnet). Durch kubische Interpolation dieser Punktewird ermittelt, welche Werte die Variablen des �au�eren Elektrons zu den Zeiten !t = 0 mod 2� ange-nommen h�atten, w�are das innere Elektron zu diesen Zeitpunkten mit dem Kern kollidiert (diese Werteentsprechen den Schnittpunkten der die Interpolation symbolisierenden gepunkteten Kurvenz�uge mitden vertikalen, gestrichelten Linien). Die auf diese Weise erhaltenen Wertepaare werden dann imz1{pz1-Diagramm aufgetragen.und F = 0:0005, wobei die Phase des treibenden Feldes '0 = 0 gesetzt ist (sofern nichtexplizit anders vermerkt, wird in den im folgenden gezeigten Phasenraumportraits stets diesePhase verwendet). Wir sehen, da� sich regul�are und chaotische Gebiete innerhalb des Pha-senraums in pr�aziser Weise unterscheiden lassen. Zum Vergleich zeigen wir in Abb. 4.2c eineneinfachen stroboskopischen Schnitt des Phasenraums, bei dem von der numerisch berechnetenTrajektorie Ort und Impuls des �au�eren Elektrons zu den Zeiten t = (0 mod 2�)=! registriertwurden, ohne R�ucksicht auf die Modulation der Trajektorie des �au�eren Elektrons durch dieOszillation des inneren Elektrons. Insbesondere bei kleinen Kernabst�anden z1, bei denen sichdie Oszillation des inneren Elektrons in der Bewegung des �au�eren Elektrons relativ deutlichabzeichnet, liefert der einfache stroboskopische Schnitt ein wesentlich unsch�arferes Phasen-raumbild als der doppelte Poincar�e-Schnitt.Alternativ zur Gesamtenergie l�a�t sich f�ur die Erstellung des Poincar�e-Schnitts auch diedurch (2.5) de�nierte Wirkung N der Kepler-Mode des inneren Elektrons �xieren (Abb. 4.2b).
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Abb. 4.2: (a) Phasenraumportrait der kollinearen Kon�guration, das mit Hilfe der Methode des dop-pelten Poincar�e-Schnitts zur Phase !t = '0 = 0 f�ur die Feldparameter ! = 0:07 und F = 0:0005erstellt wurde. Dazu wurden ca. 20 Trajektorien propagiert, deren Anfangsbedingungen im Bereichz1 = 5:6 : : :17 entlang der pz1 = 0 Achse des Phasenraums verteilt sind, sowie eine Trajektorie mit derAnfangsbedingung z1 = 14, pz1 = 0:13, um die in diesem Phasenraumgebiet liegende regul�are Insel zuvisualisieren. Der Anfangsort des inneren Elektrons wurde jeweils so gew�ahlt, da� die GesamtenergieE = �1 betr�agt. Wir sehen, da� sich regul�are und chaotische Gebiete im Phasenraum in pr�aziserWeise unterscheiden lassen. (b) Das gleiche Phasenraumportrait wie in (a), mit dem einzigen Unter-schied, da� statt der Gesamtenergie die Wirkung des inneren Elektrons gem�a� N = 1:5 �xiert wurde.Wir sehen, da� sich dieses Phasenraumportrait von (a) praktisch nicht unterscheidet. (c) Einfacherstroboskopischer Schnitt des Phasenraums, bei dem von der numerisch berechneten Trajektorie Ortund Impuls des �au�eren Elektrons zu den Zeiten t = (0 mod 2�)=! ohne R�ucksicht auf z2 und pz2aufgetragen wurden. Wir sehen, da� dieser stroboskopische Schnitt insbesondere bei kleinen Kern-abst�anden z1 ein wesentlich unsch�arferes Phasenraumbild als der doppelte Poincar�e-Schnitt liefert.(d) Phasenraumportrait, das durch die direkte Propagation des �au�eren Elektrons im e�ektiven adia-batischen Potential V (N)e� (2.6) zur Wirkung N = 1:5 gewonnen wurde. Diesem e�ektiven Potentialist ein externes elektrisches Wechselfeld der Frequenz ! = 0:07 und der Feldamplitude F = 0:0005�uberlagert. Aufgetragen sind Ort und Impuls des �au�eren Elektrons zu den Zeiten !t = 0 mod 2�.Wir sehen, da� dieses stroboskopische Bild sehr gut mit dem durch den doppelten Poincar�e-Schnitterstellten Phasenraumabbild der exakten Dynamik (b) �ubereinstimmt.



4.2. Der Phasenraum der kollinearen, getriebenen Kon�guration 33Da diese eine adiabatische Invariante ist (siehe Abschnitt 2.3), ist ihre Konstanz im Lauf derZeitentwicklung im allgemeinen besser gew�ahrleistet als die der Energie. Das Problem, dasmit der Fixierung der Wirkung verbunden ist, besteht jedoch darin, da� die durch festeWirkung N de�nierte Anfangsbedingung des inneren Elektrons sich nur auf kompliziertemWege, n�amlich �uber die numerische Kenntnis des e�ektiven Potentials (2.6), berechnen l�a�t,wohingegen bei vorgegebener Gesamtenergie die Position des inneren Elektrons durch dieAu
�osung der kollinearen Hamiltonfunktion (2.1) nach z2 analytisch bestimmbar ist. Umdie numerische Nachvollziehbarkeit unserer Ergebnisse zu erleichtern, f�uhren wir daher dieAnalyse des klassischen Phasenraums unter der Fixierung der Gesamtenergie E = �1 durch.F�ur den Vergleich mit der Quantenmechanik in Kap. 8{10 hingegen wird es besser sein, dieWirkung N zu �xieren, die der Hauptquantenzahl des inneren Elektrons entspricht.Mit geringem numerischen Aufwand l�a�t sich ein relativ gutes Abbild des Phasenraumsauch durch die direkte Propagation des �au�eren Elektrons im e�ektiven adiabatischen Poten-tial (2.6), dem ein externes elektrisches Wechselfeld �uberlagert ist, erstellen. Abb. 4.2d zeigteinen stroboskopischen Poincar�e-Schnitt, bei dem der Impuls des in diesem Potential oszillie-renden Elektrons gegen dessen Ort zur Feldphase !t = 0 aufgetragen ist (die Feldparameterbetragen wie in Abb. 4.2a{c ! = 0:07, F = 0:0005). Wir sehen, da� dieses stroboskopischeBild sehr gut mit dem durch den doppelten Poincar�e-Schnitt erstellten Phasenraumabbildder exakten Dynamik (Abb. 4.2b) �ubereinstimmt. Abweichungen zwischen der exakten Zwei-Elektronen-Bewegung und der Dynamik im e�ektiven adiabatischen Potential treten f�ur hoheFeldamplituden F >� 0:1 auf, f�ur die das innere Elektron durch das externe Feld ma�geblichbeein
u�t wird.4.2 Der Phasenraum der kollinearen, getriebenen Kon�gura-tionBei im Vergleich zur Kepler-Frequenz !K des inneren Elektrons kleinen Frequenzen ! destreibenden Feldes und bei im Vergleich zur Coulomb-Kraft des Kerns auf das innere Elektronkleinen Feldamplituden F wird durch das oszillierende Feld haupts�achlich die Bewegung des�au�eren Elektrons beein
u�t. Die Dynamik der getriebenen, kollinearen Kon�guration wirddamit im wesentlichen durch das Verh�altnis der Feldparameter F und ! zu den in Abschnitt2.3 eingef�uhrten intrinsischen Skalen FI und !I bestimmt, welche die langsame Bewegung des�au�eren Elektrons charakterisieren. Die Feldst�arkenskala FI (2.8) gibt die Gr�o�enordnung dermaximalen Feldamplitude F an, f�ur die stabile Dynamik der getriebenen Kon�guration beikleinen Frequenzen ! zu erwarten ist. Die Frequenzskala !I , die der Frequenz kleiner Schwin-gungen um die Gleichgewichtslage entspricht, de�niert die Lage der Resonanzen zwischendem treibenden Feld und der Oszillation des �au�eren Elektrons im ungest�orten System. F�ur



34 Kapitel 4. Die kollineare, getriebene Frozen-Planet-Kon�gurationdie Gesamtenergie E = �1, f�ur die wir das System im folgenden untersuchen werden, erhaltenwir aus (2.10) die Wirkung der Kepler-Oszillation des inneren ElektronsN ' 1:5; (4.3)woraus gem�a� (2.7), (2.8) und (2.11) !I ' 0:091; (4.4)FI ' 0:006; (4.5)sowie !K ' 1:34 (4.6)folgt.Generell ist f�ur F < FI der Phasenraum der getriebenen, kollinearen Kon�guration ge-mischt regul�ar-chaotisch und wird in wesentlichem Ma� gepr�agt durch nichtlineare Reso-nanzen zwischen dem treibenden Feld und der langsamen Oszillation der Kon�guration umdie Gleichgewichtslage. Um die St�orung der Phasenraumstruktur durch diese Resonanzen zuer�ortern, betrachten wir zun�achst den Phasenraum f�ur variierende Feldamplitude F bei festerFrequenz ! = 0:05 < !I , f�ur die im Phasenraum die fundamentale 1:1 Resonanz auftritt. Beidieser nichtlinearen Resonanz oszilliert das �au�ere Elektron genau einmal innerhalb einer Pe-riode des treibenden Feldes um die Gleichgewichtslage. Generell bezeichnet die n:m Resonanzdiejenige nichtlineare Resonanz zwischen dem treibenden Feld und dem atomaren System,bei der m elektronische Oszillationen binnen n Feldzyklen statt�nden.Abb. 4.3b zeigt das durch den in Abschnitt 4.1 beschriebenen doppelten Poincar�e-Schnittgewonnene Abbild des Phasenraums f�ur ! = 0:05 und die Feldamplitude F = 0:0002, die sehrklein ist im Vergleich zur intrinsischen Feldst�arke FI . Der Phasenraum ist gemischt regul�ar-chaotisch, �ahnelt jedoch noch, entsprechend dem Kolmogorov-Arnold-Moser (KAM) Theorem[78], in groben Z�ugen dem Phasenraum des ungest�orten Systems (Abb. 4.3a). Nach wie vorexistiert ein gro�es Gebiet gebundener regul�arer Bewegung, zentriert um den fundamentalenperiodischen Orbit bei z1 ' 5:8, das jedoch auf diejenigen Orbits des ungest�orten Systems be-schr�ankt ist, deren �au�erer Umkehrpunkt unterhalb z1 ' 25 liegt. Au�erhalb dieses regul�arenGebiets ist der Phasenraum chaotisch. Trajektorien, die im chaotischen Gebiet starten, f�uhrenfr�uher oder sp�ater zur Ionisation, bei der das �au�ere Elektron ins Unendliche entschwindet.Dar�uber hinaus existieren innerhalb des regul�aren Gebiets Substrukturen, die auf nichtlineareResonanzen zwischen dem treibenden Feld und der Oszillation des �au�eren Elektrons zur�uck-zuf�uhren sind. In der N�ahe dieser Resonanzen ist die feldinduzierte Deformation der Phasen-raumstruktur besonders ausgepr�agt. Aufgrund der Konstanz der Phasenbeziehung zwischendem externen, resonanten Antrieb und der Oszillation im ungest�orten System kann sich der



4.2. Der Phasenraum der kollinearen, getriebenen Kon�guration 35E�ekt der kleinen externen St�orung �uber viele Perioden hinweg verst�arken bzw. aufschau-keln; bei nichtresonanter Bewegung hingegen (bei der zu gegebener Phase der ungest�ortenOszillation der Betrag bzw. das Vorzeichen der externen St�orung variiert) verschwindet derE�ekt der kleinen St�orung im Zeitmittel vieler Perioden.Die regul�are Substruktur bei z1 ' 12:6 entspricht der fundamentalen 1:1 Resonanz zwi-schen dem treibenden Feld und der Oszillation des �au�eren Elektrons. Diese Resonanz weistim getriebenen System zwei periodische Orbits auf: einen stabilen periodischen Orbit, derdadurch gekennzeichnet ist, da� sich das �au�ere Elektron zur Phase !t = 0 am �au�eren Um-kehrpunkt der Oszillation um die Gleichgewichtslage be�ndet, und einen instabilen periodi-schen Orbit, f�ur welchen das �au�ere Elektron sich zur Phase !t = 0 am inneren Umkehrpunktbe�ndet. (Streng genommen handelt es sich hier nicht um periodische, sondern um quasipe-riodische Zwei-Elektronen-Trajektorien, da die Kepler-Bewegung des inneren Elektrons nichtresonant mit dem treibenden Feld ist; um jedoch die Nomenklatur nicht �uberm�a�ig zu kom-plizieren, behalten wir die Bezeichnung "periodischer Orbit\.)In der Umgebung des stabilen periodischen Orbits ist die Dynamik regul�ar: Be�ndet sichdie atomare Kon�guration auf einer Trajektorie, die in der N�ahe des stabilen periodischenOrbits liegt, so wird sie durch das externe Feld derart beschleunigt bzw. gebremst, da� sie qua-siperiodische Oszillationen um den stabilen periodischen Orbit vollf�uhrt. Im Phasenraum istder stabile periodische Orbit demnach von einer eigenst�andigen Torusstruktur umgeben, diesich im Poincar�e-Schnitt in Form von konzentrischen, Ellipsen �ahnelnden Strukturen abzeich-net. In der Umgebung des instabilen periodischen Orbits hingegen ist die Dynamik chaotisch:Be�ndet sich das System anfangs in der N�ahe des instabilen periodischen Orbits, so wird esdurch das externe Feld von diesem Orbit wegbewegt und vollf�uhrt chaotische Bewegung inder Umgebung der 1:1 Resonanz. Der instabile periodische Orbit erzeugt eine d�unne chao-tische Schicht, die die regul�are Struktur des stabilen periodischen Orbits der feldinduzierten1:1 Resonanz von den noch unzerst�orten Tori der Frozen-Planet-Dynamik trennt.Am Rande des regul�aren Gebiets in Abb. 4.3b existieren weitere Substrukturen, die aufResonanzen h�oherer Ordnung zur�uckzuf�uhren sind. Bei z1 ' 18 und pz1 ' �0:12 etwa erken-nen wir die der 2:1 Resonanz entsprechenden Strukturen, bei der eine Periode des �au�erenElektrons innerhalb von zwei Feldzyklen durchlaufen wird (und der stabile bzw. der instabileperiodische Orbit sich demnach jeweils zweimal im Poincar�e-Schnitt abzeichnen).Mit zunehmender Feldamplitude F nimmt die Ausdehnung des regul�aren Gebiets derFrozen-Planet-Dynamik immer mehr ab, w�ahrend die vom externen Feld erzeugte Substruk-tur der 1:1 Resonanz immer gr�o�er wird. F�ur F ' 0:0005 � 0:1FI sind s�amtliche Torider intrinsischen Frozen-Planet-Dynamik, die die regul�are Struktur der feldinduzierten 1:1Resonanz von dem chaotischen Gebiet abschirmen, aufgebrochen (Abb. 4.3c). Wir erhaltendamit zwei separate regul�are "Inseln\, die von der chaotischen "See\ umschlossen sind: Die
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Abb. 4.3: Entwicklung des Phasenraums der kollinearen Dynamik der periodisch getriebenen Frozen-Planet-Kon�guration in Abh�angigkeit der Feldamplitude F . Die Feldfrequenz betr�agt ! = 0:05 undist so gew�ahlt, da� die 1:1 Resonanzstruktur im Phasenraum gut ausgepr�agt ist. (a) F = 0, Pha-senraumstruktur der ungest�orten Frozen-Planet-Kon�guration (vgl. Abb. 2 in [17]); (b) F = 0:0002;(c) F = 0:0005; (d) F = 0:001; (e) F = 0:002; (f) F = 0:003. Mit zunehmender Feldamplitu-de F = 0 : : :0:0005 w�achst die Substruktur der 1:1 Resonanz immer st�arker an (a { c), bis sie beiF ' 0:0005 vom intrinsischen regul�aren Gebiet der ungest�orten Frozen-Planet-Dynamik getrennt wird(c). Wir erhalten oberhalb F = 0:0005 zwei separate regul�are Inseln: die "intrinsische Insel\ (zentriertum z1 ' 5:7) und die feldinduzierte 1:1 Resonanzinsel (zentriert um z1 ' 13). Mit weiter zunehmenderFeldamplitude schrumpfen beide Inseln immer weiter zusammen (d { f), bis der Phasenraum oberhalbF ' 0:003 ' FI=2 vollst�andig chaotisch wird.



4.2. Der Phasenraum der kollinearen, getriebenen Kon�guration 37"intrinsische\ Insel, die diejenigen Tori der ungest�orten Frozen-Planet-Dynamik umfa�t, diedurch das externe Feld noch nicht zerst�ort worden sind, sowie die Insel der feldinduzierten 1:1Resonanz. Mit weiter zunehmender Feldamplitude werden die beiden Inseln immer st�arkervoneinander getrennt und �uberdecken stetig abnehmende Phasenraumvolumina, bis sie f�urF ! FI verschwinden und der Phasenraum vollst�andig chaotisch wird (Abb. 4.3f).Betrachten wir nun den Phasenraum f�ur variierende Frequenz bei fester FeldamplitudeF = 0:001, bei der f�ur ! = 0:05 die Separation zwischen der intrinsischen Insel und der1:1 Resonanzinsel besonders ausgepr�agt ist. Die Entwicklung des Phasenraums in Abh�angig-keit der Frequenz ist in Abb. 4.4 dargestellt. Sie l�a�t sich unmittelbar anhand des e�ektivenPotentials (Abb. 2.4) verstehen, das die langsame Bewegung des �au�eren Elektrons um dieGleichgewichtslage beschreibt. Da die Oszillationsperiode mit zunehmender Anregung im ef-fektiven Potential zunimmt, werden zum resonanten Antrieb h�oherenergetischer Trajektorienzunehmend niederfrequente Felder ben�otigt. Umgekehrt verschiebt sich bei einer Zunahme derAntriebsfrequenz die Resonanz zu niedrigeren Energien innerhalb des e�ektiven Potentials.Die zeigt sich in der Tat in Abb. 4.4: Mit zunehmender Frequenz verschiebt sich die 1:1Resonanzinsel immer mehr zum intrinsischen Gleichgewichtspunkt und wird dabei immergr�o�er, auf Kosten der intrinsischen Insel. Bei ! = 0:08 schlie�lich dominiert die 1:1 Reso-nanzinsel den regul�aren Bereich des Phasenraums; die intrinsische Insel hingegen �uberdecktnur noch ein sehr kleines Phasenraumvolumen (Abb. 4.4d). F�ur ! > !I ' 0:091 ist ein re-sonanter Antrieb der Kon�guration in Form einer 1:1 Resonanz nicht m�oglich. Tats�achlich�nden wir, da� die 1:1 Resonanzinsel f�ur ! < !I kontinuierlich �ubergeht in die intrinsischeInsel f�ur ! > !I (Abb. 4.4d{f).Im Frequenzbereich ! = 0:08:::0:1 treten im Phasenraum verst�arkt Resonanzen h�ohererOrdnung auf. Bei ! = 0:1 (Abb. 4.4f) etwa erkennen wir die zwei Inseln der 2:1 Resonanz (beiz1 ' 10:5, pz1 ' �0:15), die drei Inseln der 3:1 Resonanz (bei z1 ' 11:5, pz1 ' �0:2, sowiebei z1 ' 17:5, pz1 = 0), sowie die Inselketten der 3:2 und der 5:3 Resonanz. n:m Resonanzenmit n < m treten f�ur niedrigere Frequenzen ! < !I auf. F�ur ! = 0:04 (Abb. 4.4a) etwa�nden wir die regul�are Substruktur der 1:2 Resonanz innerhalb der intrinsischen Insel (beiz1 ' 4:5). Mit zunehmender Frequenz verschieben sich die n:m Resonanzen zum intrinsischenGleichgewicht und gehen dort f�ur ! = n=m � !I in die intrinsische Insel �uber.Der wesentliche Unterschied zwischen der intrinsischen Insel und der feldinduzierten Re-sonanz besteht darin, da� innerhalb der intrinsischen Insel die Dynamik im wesentlichendurch die feldfreien atomaren Wechselwirkungen der Frozen-Planet-Kon�guration gepr�agtwird, w�ahrend die Dynamik der feldinduzierten Resonanz aus der Kopplung der atomarenFreiheitsgrade und des externen Antriebs resultiert. Dementsprechend zeichnet sich der fun-damentale periodische Orbit der intrinsischen Insel durch eine nahezu station�are Trajekto-rie des �au�eren Elektrons aus (die dem fundamentalen periodischen Orbit der ungest�orten
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Abb. 4.4: Entwicklung des Phasenraums in Abh�angigkeit der Frequenz bei fester FeldamplitudeF = 0:001. (a) ! = 0:04; (b) ! = 0:06; (c) ! = 0:07; (d) ! = 0:08; (e) ! = 0:09; (f) ! = 0:1. Mitzunehmender Frequenz verschiebt sich die 1:1 Resonanzinsel immer mehr zum intrinsischen Gleichge-wichtsabstand bei z1 ' 5:7 und wird dabei immer gr�o�er (a - d) { auf Kosten der intrinsischen Insel,die bei ! = 0:08 ein sehr kleines Phasenraumvolumen �uberdeckt (bei z1 ' 5:7) (d). Bei ! ' !I ' 0:091�ndet ein kontinuierlicher �Ubergang von der 1:1 Resonanzinsel f�ur ! < !I in die intrinsische Inself�ur ! > !I statt (d - f). Dar�uber hinaus treten im Phasenraum auch regul�are Gebiete auf, die Re-sonanzen h�oherer Ordnung entsprechen: bei ! = 0:04 (a) die regul�are Substruktur der 1:2 Resonanzinnerhalb der intrinsischen Insel (bei z1 ' 4:5), sowie bei ! ' !I (d{f) die Inseln der 3:2 Resonanz,der 5:3 Resonanz, der 2:1 Resonanz (bei z1 ' 10:5, pz1 ' �0:15 in (f)), sowie der 3:1 Resonanz (beiz1 ' 11:5, pz1 ' �0:2, sowie bei z1 ' 17:5, pz1 = 0 in (f)).



4.2. Der Phasenraum der kollinearen, getriebenen Kon�guration 39Frozen-Planet-Kon�guration sehr �ahnlich ist, siehe Abb. 2.1d), w�ahrend beim fundamenta-len periodischen Orbit der feldinduzierten Resonanzinsel das �au�ere Elektron in Resonanzmit dem treibenden Feld um die Gleichgewichtslage oszilliert (Abb. 4.5). Die entsprechendeZeitentwicklung der Inseln im Phasenraum l�a�t sich visualisieren, indem wir doppelte Poin-car�e-Schnitte f�ur verschiedene Werte von '0 erstellen, den Phasenraum also zu verschiedenenZeiten bzw. Phasen !t des treibenden Feldes abbilden. Wir sehen in Abb. 4.6, da� die in-trinsische Insel innerhalb einer Feldperiode im wesentlichen station�ar bleibt, w�ahrend diefeldinduzierten Resonanzen in der Poincar�e-Schnittebene um die intrinsische Insel entlangder periodisch getriebenen Trajektorie propagieren.
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Abb. 4.5: Fundamentaler periodischer Orbit der intrinsischen Insel (a) bzw. der feldinduzierten 1:1Resonanz (b) f�ur ! = 0:05, F = 0:001. Aufgetragen sind die Koordinaten der Elektronen als Funktionder Zeit. W�ahrend der fundamentale periodische Orbit der intrinsischen Insel einer im wesentlichenstation�aren Trajektorie des �au�eren Elektrons entspricht, oszilliert beim fundamentalen periodischenOrbit der 1:1 Resonanz das �au�ere Elektron in Resonanz mit dem treibenden Feld um die Gleichge-wichtslage.Mit zunehmender Frequenz ! ! !K l�a�t sich die Separation zwischen den Bewegun-gen der Elektronen immer weniger gut realisieren, da das innere Elektron durch das externeFeld zunehmend resonant getrieben wird. W�ahrend sich f�ur ! < !I die gemischt regul�ar-chaotische Dynamik im wesentlichen in der Bewegung des �au�eren Elektrons manifestiertund das innere Elektron im Feldamplitudenbereich F < FI , in dem der Phasenraum ge-mischt regul�ar-chaotisch ist, durch das externe Feld nur sehr schwach beein
u�t wird, l�a�tsich f�ur ! > !I die gemischt regul�ar-chaotische Dynamik nicht mehr vollst�andig anhandder Bewegung des �au�eren Elektrons im e�ektiven adiabatischen Potential beschreiben. Be-reits f�ur ! = 0:3 ' 0:2!K wird bei den h�ochsten Feldamplituden F ' 0:2, bei denen derPhasenraum noch ein regul�ares Gebiet aufweist, das innere Elektron durch das externe Feldunmittelbar getrieben (Abb. 4.7). F�ur ! ! !K sowie f�ur ! > !K werden beide Elektronendurch das externe Feld in vergleichbarem Ma�e angeregt. Eine detaillierte Analyse der ge-
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Abb. 4.6: Zeitentwicklung der Phasenraumstruktur w�ahrend einer Feldperiode 2�=!, dargestellt f�urdie Feldparameter ! = 0:05 < !I , F = 0:001 (a, c, e), bei denen die 1:1 Resonanzinsel im Phasen-raum auftritt, sowie f�ur ! = 0:1 > !I , F = 0:001 (b, d, f), bei denen die 2:1 Resonanzinseln sowieResonanzinseln h�oherer Ordnung im Phasenraum auftreten. Die Phasenraumportraits wurden mit derMethode des doppelten Poincar�e-Schnitts f�ur verschiedene Werte der Phase !t = '0 des treibendenFeldes erstellt: (a, b) '0 = 0; (c, d) '0 = �=2; (e, f) '0 = �. Auf diese Weise l�a�t sich die Entwicklungder regul�aren Inseln im Verlauf einer Feldperiode visualisieren. Wir sehen, da� die intrinsische Inselinnerhalb einer Feldperiode im wesentlichen station�ar bleibt, w�ahrend die feldinduzierten Resonanzenentlang der resonant getriebenen Trajektorie die intrinsische Insel umlaufen.



4.2. Der Phasenraum der kollinearen, getriebenen Kon�guration 41mischt regul�ar-chaotischen Dynamik in diesem Frequenzbereich erfordert die Visualisierungeines f�unfdimensionalen Phasenraums, bei dem sich keine Dimension durch die approxima-tive Separation einer Mode bzw. durch die Existenz einer approximativen Konstanten derBewegung eliminieren l�a�t, und wurde im Rahmen dieser Arbeit nicht durchgef�uhrt.
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Abb. 4.7: Stabile Trajektorie, aufgetragen als Funktion der Zeit, f�ur ! = 0:3 ' 0:2!K, F = 0:2. Beidiesen Feldparametern wird das innere Elektron durch das externe Feld derart ma�geblich beein
u�t,da� die Zeitentwicklung des Systems nicht mehr durch die Bewegung im e�ektiven adiabatischenPotential beschrieben werden kann. W�ahrend f�ur ! < !I bzw. f�ur niedrigere Feldamplituden dieModulation des Kepler-Orbits des inneren Elektrons im wesentlichen allein durch die Bewegung des�au�eren Elektrons verursacht wird (das seinerseits wiederum durch das externe Feld angetrieben wird),liegt hier ein unmittelbar nahresonanter Antrieb des inneren Elektrons durch das externe Feld vor.Dies l�a�t sich daran erkennen, da� die Oszillation der Amplitude des Kepler-Orbits im Gegensatz zurBewegung f�ur ! < !I bzw. f�ur niedrigere Feldamplituden (siehe Abb. 2.3 bzw. Abb. 4.5) gegenphasigzur Bewegung des �au�eren Elektrons erfolgt, also das Maximumerreicht, wenn das �au�ere Elektron aminneren Umkehrpunkt ist. In der Tat l�a�t sich der Figur entnehmen, da� das innere Elektron in Formeiner 1:5 Resonanz angetrieben wird, bei der innerhalb einer Feldperiode 5 Keplerzyklen durchlaufenwerden.



Kapitel 5Abweichungen von der Kollinearit�atUnsere vorangehende Analyse des Phasenraums der kollinearen, getriebenen Frozen-Planet-Kon�guration hat die Existenz regul�arer Inseln gezeigt, die von der chaotischen See um-schlossen sind. Dieses Ergebnis mag zu der naiven, vorschnellen Annahme verleiten, da�diese Inseln auch regul�are Inseln im Phasenraum der dreidimensionalen Bewegung darstellenund somit langlebigen Quantenzust�anden des dreidimensionalen getriebenen Helium-Atomsentsprechen, die vollst�andig entlang der diesen Inseln entsprechenden Orbits lokalisiert sind(siehe Kap. 6 zur Diskussion der quantenmechanischen Entsprechung regul�arer Inseln desklassischen Phasenraums). Unterst�utzt wird diese Annahme durch die transversale Stabi-lit�at der ungest�orten Frozen-Planet-Kon�guration sowie durch die Tatsache, da� analogeregul�are Inseln des eindimensionalen, getriebenen Wassersto�-Atoms (also des getriebenenZwei-K�orper-Coulombproblems) in regul�are Gebiete im Phasenraum der dreidimensionalenBewegung eingebettet sind [83, 84].Bei der getriebenen Frozen-Planet-Kon�guration l�a�t sich die Regularit�at des kollinearenPhasenraums jedoch im allgemeinen nicht auf das dreidimensionale System �ubertragen: Eszeigt sich, da� die regul�aren Gebiete des Phasenraums der kollinearen, getriebenen Kon�-guration �uberwiegend durch Instabilit�at bez�uglich Abweichungen von der Kollinearit�at ge-kennzeichnet sind. Lediglich in der Umgebung von Teilgebieten der intrinsischen Insel sowieentlang einiger Resonanzen hoher Ordnung ist die Dynamik der nichtkollinearen Kon�gura-tion regul�ar.Betrachten wir als typisches Beispiel f�ur die Dynamik in der Umgebung eines durch trans-versale Instabilit�at gekennzeichneten Gebiets des kollinearen Phasenraums eine Trajektorie,deren Anfangsbedingung in der unmittelbaren N�ahe des fundamentalen periodischen Orbitsder 1:1 Resonanz f�ur ! = 0:08, F = 0:001 (Abb. 4.4d) liegt und eine kleine transversale Kom-ponente y1(t = 0) = 0:01 in der Position des �au�eren Elektrons aufweist. Wir wir in Abb. 5.1sehen, wird die anfangs kleine Abweichung der Kon�guration von der z-Achse, entlang derdas elektromagnetische Feld polarisiert ist, im Lauf der Zeit verst�arkt; beide Elektronen wer-42
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Abb. 5.1: Zeitentwicklung einer Trajektorie, die in der transversalen Umgebung der 1:1 Resonanzdes kollinearen Phasenraums f�ur ! = 0:08, F = 0:001 startet. Aufgetragen sind Ausschnitte derTrajektorie in den Zeitintervallen (a) t = 0 : : :6 Feldzyklen, (b) t = 6 : : :15 Feldzyklen, (c) t =15 : : :30 Feldzyklen, (d) t = 95 : : :110 Feldzyklen. Die Anfangswerte betragen z1(t = 0) = 8, y1(t =0) = 0:01, y2(t = 0) = 0, p1(t = 0) = p2(t = 0) = 0; z2(t = 0) ist so gew�ahlt, da� die feldfreieGesamtenergie anfangs E = �1 betr�agt (der Index 1 bezeichnet das �au�ere, der Index 2 das innereElektron; das elektrische Wechselfeld ist entlang der z-Achse polarisiert). Wir sehen, da� die anf�anglichkleine Abweichung der Kon�guration von der z-Achse im Lauf der Zeit verst�arkt wird (a), bis dieKon�guration nach etwa 15 Feldzyklen auf die andere Seite des Kerns kippt (b). Die Kon�gurationvollf�uhrt anschlie�end chaotische Rotationen um den Kern (c), bis sie nach etwa 100 Feldzyklenionisiert (d).



44 Kapitel 5. Abweichungen von der Kollinearit�atden von der z-Achse weggetrieben und gelangen, nach etwa 15 Feldzyklen, auf die andereSeite des Kerns. Die Kon�guration vollf�uhrt nun chaotische Rotationen um den Kern. Nachetwa 100 Feldzyklen bricht die die Frozen-Planet-Kon�guration charakterisierende Korrela-tion der Elektronen zusammen; es kommt zum Zusammensto� zwischen den Elektronen unddas System ionisiert.In diesem Kapitel wird nun das Stabilit�atsverhalten der Kon�guration in der Umgebungdes kollinearen Phasenraums untersucht. Wir beschreiben zun�achst in Abschnitt 5.1, mitwelcher Methode die Regularit�at bzw. Irregularit�at der Dynamik in der Umgebung des kol-linearen Phasenraums bestimmt wird. In Abschnitt 5.2 wird die nichtkollineare Dynamikentlang transversal stabiler und instabiler Resonanzen untersucht. Es wird gezeigt, da� dieInstabilit�at der Dynamik in der Umgebung der Resonanzen durch das Drehmoment verur-sacht wird, das das externe Feld auf die Kon�guration in der N�ahe der Feldpolarisationsachseaus�ubt. Anschlie�end werden in Abschnitt 5.3 wesentliche Charakteristika der Dynamik derchaotisch rotierenden Kon�guration aufgezeigt.Die Dynamik der nichtkollinearen Kon�guration wird im folgenden anhand von Trajekto-rien untersucht, die innerhalb des Phasenraums der zweidimensionalen Bewegung des externgetriebenen Helium-Atoms verlaufen. Aufgrund der Rotationssymmetrie der Kon�gurationbez�uglich der z-Achse lassen sich die in diesen Untersuchungen erzielten Ergebnisse (insbe-sondere zum Phasenraumvolumen transversal stabiler Resonanzen, siehe Kap. 6) auch aufdas dreidimensionale, getriebene Helium-Atom �ubertragen. Dies wurde in Stichproben an-hand von Trajektorien, die nicht auf den zweidimensionalen Kon�gurationsraum beschr�anktsind (etwa aufgrund nichtverschwindender Anfangswerte von y1 und x2), explizit �uberpr�uft.5.1 Bestimmung der transversalen Stabilit�atseigenschaftenDa die Trajektorie der von der Kollinearit�at abweichenden Kon�guration in Anwesenheit ei-nes �au�eren Antriebs selbst bei Beschr�ankung auf den zweidimensionalen Kon�gurationsrauminnerhalb eines neundimensionalen Phasenraums verl�auft (aufgespannt durch die Koordina-ten und Impulse der Elektronen zi; yi; pzi; pyi sowie durch die Zeit t), ist es nicht m�oglich, dietransversalen Stabilit�atseigenschaften der getriebenen Frozen-Planet-Kon�guration anhandvon Poincar�e-Schnitten zu untersuchen. Um zu bestimmen, ob regul�are Gebiete innerhalbdes kollinearen Phasenraums durch Stabilit�at oder Instabilit�at bez�uglich Abweichungen vonder Kollinearit�at gekennzeichnet sind, betrachten wir daher einzelne, nichtkollineare Anfangs-bedingungen in der N�ahe des kollinearen Phasenraums und �uberpr�ufen, ob diese Anfangsbe-dingungen zu regul�aren oder chaotischen Trajektorien f�uhren. Als quantitatives Kriterium f�urRegularit�at bzw. Chaos verwenden wir die Ionisation des Systems. Ionisiert das System inner-halb einer vorgegebenen, hinreichend gro� gew�ahlten Zeitspanne, so liegt chaotische Dynamikvor. Bleibt das System hingegen innerhalb dieser Zeitspanne f�ur ein endliches Phasenraum-



5.1. Bestimmung der transversalen Stabilit�atseigenschaften 45volumen von Anfangsbedingungen gebunden, so werten wir dies als Anzeichen f�ur regul�areDynamik innerhalb dieses Phasenraumvolumens.Konkret betrachten wir das System als ionisiert, wenn der Abstand eines der Elektronenvom Kern einen vorgegebenen Maximalwert Rion �ubersteigt (der in unseren RechnungenRion = 100 gesetzt ist) und dieses Elektron dabei einen so gro�en Impuls aufweist, da� es indem durch den Kern und das innere Elektron erzeugten Potential nicht gebunden bleibt. DieIonisationszeit ist damit de�niert durch den Zeitpunkt, zu dem erstmalsri > Rion (5.1)und �EB = 12 (pi �A(t))2 � Zri + 1jr1 � r2j > 0 (5.2)f�ur i = 1 oder 2 gilt, wobei A(t) = �F! ez sin!t (5.3)dem ponderomotiven Impuls des Elektrons im elektromagnetischen Feld entspricht (ez be-zeichnet den Einheitsvektor entlang der z-Achse). �EB gibt somit die negative e�ektiveBindungsenergie des �au�eren Elektrons an.Zus�atzlich zur Ionisationszeit berechnen wir, eingedenk des in Abb. 5.1 gezeigten Verhal-tens instabiler Trajektorien in der Umgebung des kollinearen Phasenraums, die Kippzeit, dieangibt, zu welcher Zeit die Kon�guration auf die andere Seite des Kerns "kippt\, und kon-kret durch den Zeitpunkt de�niert ist, zu dem f�ur das �au�ere Elektron erstmals z1 < 0 gilt.Die Kenntnis der Kippzeit erlaubt wesentliche R�uckschl�usse �uber die Art der regul�aren bzw.chaotischen Bewegung, die die aus der Ionisationszeit gewonnenen Informationen erg�anzen.Abb. 5.2a zeigt die Kipp- und Ionisationszeiten f�ur Anfangsbedingungen entlang der durchpz1 = 0 gekennzeichneten Achse des Phasenraums der kollinearen Kon�guration (Abb. 5.2b)f�ur F = 0:0005, ! = 0:05. Die Kipp- und Ionisationszeiten sind in Abh�angigkeit der z-Komponente des Anfangsorts des �au�eren Elektrons aufgetragen, die in �aquidistanten Schrit-ten der L�ange �z = 0:01 von z1 = 3:5 bis z1 = 20 variiert wurde. Die Abweichung derKon�guration von der Kollinearit�at wird durch einen kleinen nichtverschwindenden Anfangs-wert der y-Komponente des Orts des �au�eren Elektrons erzeugt: y1(t = 0) = 0:01. F�urjede dieser Anfangsbedingungen ist die Trajektorie bis zum Ionisationszeitpunkt berechnetworden. Ist das Atom nach 500 Feldzyklen noch nicht ionisiert, so wird in der Abbildung dieIonisationszeit (und ebenso die Kippzeit, falls die Kon�guration noch nicht gekippt ist) diesermaximalen Zeit gleichgesetzt.Wir sehen in Abb. 5.2a, da� die in der transversalen Umgebung der intrinsischen Inselbzw. der 1:1 Resonanzinsel des kollinearen Phasenraums startende Trajektorie relativ schnell,n�amlich bereits nach 10 - 20 Feldzyklen, zum Kippen der Kon�guration f�uhrt. Anhand der
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Abb. 5.2: Kipp- und Ionisationsverhalten von Trajektorien, die in der Umgebung des kollinearenKon�gurationsraums starten. Aufgetragen sind in (a) und (b) die Kippzeiten (dunkle Linie) und dieIonisationszeiten (helle Linie) in Abh�angigkeit des Anfangsorts z1 des �au�eren Elektrons f�ur die Feld-parameter ! = 0:05, F = 0:0005. Der Anfangswert von z1 wurde in �aquidistanten Schritten der L�ange�z = 0:01 von z1 = 3:5 bis z1 = 20 variiert (zur Hervorhebung regul�aren und chaotischen Ver-haltens sind die Kipp- und Ionisationszeiten benachbarter Werte von z1 durch gerade Streckenz�ugemiteinander verbunden). Die Abweichung von der Kollinearit�at wird durch einen nichtverschwinden-den Anfangswert y1(t = 0) = 0:01 erzeugt. Die �ubrigen Anfangswerte betragen y2 = 0, p1 = p2 = 0;z2(t = 0) ist so gew�ahlt, da� die feldfreie Gesamtenergie anfangs E = �1 betr�agt. (b) Poincar�e-Schnittdes entsprechenden klassischen Phasenraums. Da die Anfangsbedingungen von (a) in der unmittelba-ren transversalen Umgebung des durch pz1 = 0 gekennzeichneten Unterraums des kollinearen Phasen-raums liegen, l�a�t sich das Kipp- und Ionisationsverhalten der Kon�guration in eindeutiger Weise denStrukturen des klassischen Phasenraums zuordnen, die die pz1 = 0 Achse des Phasenraumabbilds in(b) schneiden. Die regul�aren Gebiete etwa, in denen die Kon�guration weder kippt noch ionisiert (undbei denen Kipp- und Ionisationszeit der maximalen Propagationszeit von 500 Feldzyklen gleichgesetztsind), entsprechen den Tori der intrinsischen Insel, die zwischen z1 ' 3:9 und z1 ' 4:2 bzw. zwischenz1 ' 8:5 und z1 ' 9:5 die pz1 = 0{Achse schneiden.



5.2. Transversal stabile und instabile Gebiete 47Tatsache, da� in der Umgebung dieser regul�aren Inseln die Kippzeit eine relativ glatte Funk-tion des Anfangswertes von z1 ist, erkennen wir, da� der Kippvorgang, also die Bewegung derKon�guration bis zum Kippzeitpunkt, ein im wesentlichen regul�arer Proze� ist. Nach demKippen wird die Dynamik jedoch chaotisch, was daran zu erkennen ist, da� die Ionisations-zeit in extrem sensitiver Weise von z1(t = 0) abh�angt. In der Umgebung von chaotischenGebieten des kollinearen Phasenraums hingegen (etwa bei z1 >� 16 in Abb. 5.2) ist die Kon�-guration relativ stabil gegen Kippen und ionisiert gelegentlich, ohne auf die andere Seite desKerns gekippt zu sein (in diesem Fall ist in der Abbildung die Kippzeit der Ionisationszeitgleichgesetzt). Des weiteren existieren in der transversalen Umgebung des Randbereichs derintrinsischen Insel Gebiete, in denen die Kon�guration weder kippt noch ionisiert. Tats�achlichzeigt es sich, da� in diesen Gebieten die Dynamik regul�ar ist.Das Kipp- und Ionisationsverhalten in der Umgebung des kollinearen Phasenraums istim wesentlichen unabh�angig von der Gr�o�e des Anfangswerts von y1 (sofern y1 nicht zu gro�gew�ahlt wird; f�ur y1(t = 0) > 0:1 wird entlang des Randbereichs der intrinsischen Insel inAbb. 5.2b die Dynamik instabil). Ebensowenig �andert sich das qualitative Kipp- und Ionisa-tionsverhalten, wenn die anf�angliche Abweichung der Kon�guration von der Kollinearit�at aufeine andere Art, etwa durch einen nichtverschwindenden Anfangswert von py1, y2 oder py2,erzeugt wird.5.2 Transversal stabile und instabile GebieteMit der im vorigen Abschnitt beschriebenen Methode wurden die regul�aren Inseln des kol-linearen Phasenraums im Hinblick auf transversale Stabilit�at untersucht. Dabei hat sich er-wiesen, da� die �uberwiegende Mehrzahl der feldinduzierten Resonanzinseln durch Instabilit�atbez�uglich Abweichungen von der Kollinearit�at gekennzeichnet sind. Insbesondere zeichnet sichauch die 1:1 Resonanz, unabh�angig von F und !, durch transversale Instabilit�at aus. Stabilist die Dynamik lediglich entlang Resonanzen hoher Ordnung, die im kollinearen Phasenraumf�ur ! ' !I auftreten.Auch entlang des Zentrums der intrinsischen Insel ist die Dynamik instabil. Lediglich derRandbereich der intrinsischen Insel, dessen Tori die pz1 = 0 Achse des kollinearen Phasen-raums oberhalb z1 ' 9 schneiden, zeichnet sich durch transversale Stabilit�at aus (abgesehenvon der eingebetteten 1:1 Resonanz). Dies ist in Abb. 5.3 gezeigt, in der wir die Kipp- undIonisationszeiten entlang des kollinearen Phasenraums f�ur verschiedene Feldamplituden beifester Frequenz ! = 0:05 auftragen. Wie wir in Abb. 5.3 sehen, nimmt mit zunehmendemF die Ausdehnung des stabilen Randbereichs ab, bis dieser oberhalb F = 0:0005 vollst�andigverschwindet.Bemerkenswert ist in Abb. 5.3, da� selbst f�ur sehr niedrige Feldamplituden die Dyna-mik entlang der durch die 1:1 Resonanz erzeugten regul�aren Substruktur instabil bez�uglich



48 Kapitel 5. Abweichungen von der Kollinearit�at

0 10 20
z1

-0.4

0.0

0.4

pz1

0

200

t [
2π

/ω
]

0 10 20
z1

-0.4

0.0

0.4

pz1

0

200

t [
2π

/ω
]

0 10 20
z1

0 10 20
z1

a1

a2

b1

b2

c1

c2

d1

d2

Abb. 5.3: Kipp- und Ionisationsverhalten in der Umgebung der intrinsischen Insel und der 1:1 Resonanzf�ur ! = 0:05 und variierende Feldamplitude: (a1, a2) F = 0:0001; (b1, b2) F = 0:0002; (c1, c2)F = 0:0005; (d1, d2) F = 0:001. (a1, b1, c1, d1) Kippzeiten (dunkle Linie) und Ionisationszeiten(helle Linie) als Funktion des Anfangswerts von z1, der in �aquidistanten Schritten der L�ange �z = 0:1von z1 = 3:5 bis z1 = 20 variiert ist (die �ubrigen Anfangswerte sind y1 = 0:01, y2 = 0, p1 = p2 = 0,E = �1). (a2, b2, c2, d2) Poincar�e-Schnitt des entsprechenden kollinearen Phasenraums. Wir sehen,da� sowohl das Zentrum der intrinsischen Insel als auch die regul�are Struktur der 1:1 Resonanz durchtransversale Instabilit�at gekennzeichnet sind. Stabil ist die Dynamik lediglich entlang des Randbereichsder intrinsischen Insel, dessen Tori die pz1 = 0 Achse imPoincar�e-Schnitt bei z1 >� 9 schneiden. Wie wirsehen, nimmt die Gr�o�e dieses stabilen Randbereichs mit zunehmender Feldamplitude ab. OberhalbF = 0:0005 (c, d) ist der kollineare Phasenraum vollst�andig durch Instabilit�at bez�uglich Abweichungenvon der Kollinearit�at gekennzeichnet (abgesehen von einem kleinen stabilen Gebiet in (d) entlang derTori, die die pz1 = 0 Achse bei z1 ' 5 bzw. z1 ' 6:2 schneiden).



5.2. Transversal stabile und instabile Gebiete 49Abweichungen von der Kollinearit�at ist. Abb. 5.4 zeigt eine Trajektorie, die in der unmit-telbaren transversalen Umgebung des periodischen Orbits der 1:1 Resonanz von Abb. 5.3astartet. Wir sehen, da� die Kon�guration im Lauf der Zeit von der z-Achse, entlang der daselektromagnetische Feld polarisiert ist, immer weiter entfernt wird, bis sie schlie�lich, nachetwa 35 Feldzyklen, auf die andere Seite des Kerns kippt.Diese Instabilit�at ist auf das Drehmoment zur�uckzuf�uhren, das das externe Feld auf dieKon�guration aus�ubt (die aufgrund der starken Winkelkorrelation zwischen den Elektronenn�aherungsweise als quasistarrer K�orper betrachtet werden kann). Dieses Drehmoment ist de-sto gr�o�er, je weiter das �au�ere Elektron vom Kern entfernt ist, je gr�o�er also der "Hebelarm\der Kon�guration ist. Wird nun die nahezu kollinear entlang der Feldpolarisation ausgerich-tete Kon�guration resonant angetrieben, so �uberwiegt innerhalb einer Feldperiode dasjenigeDrehmoment, das am �au�eren Umkehrpunkt der Oszillation des �au�eren Elektrons vorliegt.Da beim stabilen periodischen Orbit der kollinearen 1:1 Resonanz die Kraft auf die Elektro-nen am �au�eren Umkehrpunkt nach innen gerichtet ist, erf�ahrt die um einen kleinen Winkelvon der Feldpolarisationsachse weggedrehte Kon�guration am �au�eren Umkehrpunkt einesenkrecht zur Symmetrieachse der Kon�guration gerichtete Kraftkomponente, die diese vonder Feldpolarisationsachse wegbewegt. Das �uber eine Feldperiode gemittelte Drehmoment aufdie Kon�guration ist damit so gerichtet, da� es eine kleine Abweichung der Kon�guration vonder Polarisationsachse verst�arkt.Auch n:1 Resonanzen h�oherer Ordnung, etwa die 2:1 und die 3:1 Resonanz, zeichnen sichdurch transversale Instabilit�at aus. Tats�achlich ist auch in der transversalen Umgebung dieserResonanzen das �uber n Feldperioden gemittelte Drehmoment auf die Kon�guration so ge-richtet, da� es diese von der Polarisationsachse wegtreibt. Etwas komplizierter stellt sich dieSituation f�ur die 1:n Resonanzen dar, etwa die 1:2 Resonanz (Abb. 4.4a). In der Umgebungdieser Resonanz ist das �uber eine Feldperiode gemittelte Drehmoment auf die Kon�gurationso gerichtet, da� es diese zur Polarisationsachse zur�ucktreibt. Jedoch ist das r�ucktreibendeDrehmoment so gro�, da� eine anf�anglich in Richtung positiver y-Werte ausgelenkte Kon�-guration durch das externe Feld in die Halbebene negativer y-Werte getrieben wird und dorteine gr�o�ere Auslenkung von der y-Achse erf�ahrt, als sie urspr�unglich auf der Seite positi-ver y-Werte aufwies (Abb. 5.5). Durch ein derartiges, die Abweichung von der Kollinearit�atverst�arkendes "Hin- und Herschaukeln\ der Kon�guration entfernt sich diese immer weitervon der z-Achse und kippt schlie�lich auf die andere Seite des Kerns (Abb. 5.5c).Neben den transversal instabilen n:1 und 1:n Resonanzen existieren auch n:m Resonanzenhoher Ordnung, in deren Umgebung die Dynamik stabil ist. Diese n:m Resonanzen zeichnensich durch n < m < 2n aus (etwa die 3:2 Resonanz, die 4:3 Resonanz, die 5:3 Resonanzetc.) und treten bei Frequenzen ! ' !I im Phasenraum auf. Abb. 5.6 zeigt die Kipp- undIonisationszeiten in der Umgebung des kollinearen Phasenraums f�ur ! = 0:09 und F = 0:001.
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Abb. 5.4: Instabile Trajektorie in der Umgebung der 1:1 Resonanz des kollinearen Phasenraums f�ur! = 0:05 und die relativ niedrige Feldamplitude F = 0:0001. Die anf�angliche Versetzung des �au�erenElektrons von der z-Achse betr�agt y1 = 0:001; die �ubrigen Anfangswerte lauten z1 = 12:6, y2 = 0,p1 = p2 = 0; z2(t = 0) ist so gew�ahlt, da� die feldfreie Gesamtenergie anfangs E = �1 betr�agt.Aufgetragen sind Ausschnitte der Trajektorie in den Zeitintervallen (a) t = 0 : : :9 Feldzyklen, (b)t = 9 : : :20 Feldzyklen, (c) t = 20 : : :35 Feldzyklen. Aufgrund des Drehmoments, das das externe Feldauf die Kon�guration aus�ubt, wird die Abweichung der Kon�guration von der z-Achse im Lauf derZeit immer gr�o�er, bis die Kon�guration schlie�lich nach etwa 35 Feldzyklen auf die andere Seite desKerns kippt.
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Abb. 5.5: Instabile Trajektorie in der Umgebung der 1:2 Resonanz des kollinearen Phasenraums f�ur! = 0:04 und F = 0:001 (s. Abb. 4.4a). Die anf�angliche Versetzung des �au�eren Elektrons von der z-Achse betr�agt y1 = 0:001; die �ubrigen Anfangswerte betragen z1 = 4:5, y2 = 0, p1 = p2 = 0; z2(t = 0)ist so gew�ahlt, da� die feldfreie Gesamtenergie anfangs E = �1 betr�agt. Aufgetragen sind Ausschnitteder Trajektorie in den Zeitintervallen (a) t = 0 : : :3 Feldzyklen, (b) t = 3 : : :5 Feldzyklen, (c) t = 5 : : :9Feldzyklen. ImGegensatz zur 1:1 Resonanz (bzw. zu n:1 Resonanzen h�oherer Ordnung) �ubt das externeFeld auf die Kon�guration ein Drehmoment aus, das diese im Zeitmittel einer Feldperiode zur z-Achsezur�ucktreibt. Wie man sieht, ist dieses r�ucktreibendes Drehmoment jedoch so gro�, da� sich im Laufder Zeit die Abweichung der Kon�guration von der z-Achse vergr�o�ert. Nach etwa 9 Feldzyklen kipptdie Kon�guration schlie�lich auf die andere Seite des Kerns.
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Abb. 5.6: Kipp- und Ionisationsverhalten in der Umgebung der 3:2 und der 5:3 Resonanzinseln f�ur! = 0:09 ' !I und F = 0:001. (a) Kippzeiten (dunkle Linie) und Ionisationszeiten (helle Linie) alsFunktion des Anfangswerts von z1, der in �aquidistanten Schritten der L�ange �z = 0:1 von z1 = 3:5 bisz1 = 20 variiert ist (y1(t = 0) = 0:01; alle �ubrigen Anfangswerte sind wie in Abb. 5.2). (b) Poincar�e-Schnitt des entsprechenden kollinearen Phasenraums, mit den 3:2 Resonanzinseln bei z1 ' 4, pz1 = 0und bei z1 ' 10, pz1 ' �0:1, sowie den 5:3 Resonanzinseln bei z1 ' 12:5, pz1 = 0, bei z1 ' 10:5,pz1 ' �0:1 und bei z1 ' 5, pz1 ' �0:25. Wie wir in (a) sehen, ist die Dynamik in der transversalenUmgebung dieser Inseln regul�ar: Sowohl entlang der 3:2 Resonanzinsel (bei z1 ' 4) als auch entlangder 5:3 Resonanzinsel (bei z1 ' 12:5) f�uhrt eine kleine Abweichung von der Kollinearit�at weder zumKippen noch zur Ionisation der Kon�guration. Stabil bez�uglich Abweichungen von der Kollinearit�atist die Dynamik ebenfalls entlang Tori im Randbereich der intrinsischen Insel, die zwischen z1 ' 4:1und z1 ' 4:6 sowie zwischen z1 ' 9:4 und z1 ' 11 die pz1 = 0 Achse in der Poincar�e-Schnittebeneschneiden.



5.2. Transversal stabile und instabile Gebiete 53Wir sehen, da� sowohl in der Umgebung der 3:2 Resonanz (deren Insel bei z1 ' 4 die z-Achse der Poincar�e-Schnitt
�ache schneidet) als auch in der Umgebung der 5:3 Resonanz (beiz1 ' 12:5) die Kon�guration weder kippt noch ionisiert.Die Regularit�at der nichtkollinearen Dynamik wird durch das Studium von Trajektorienbest�atigt, die in der transversalen Umgebung dieser Inseln starten. Betrachten wir als Bei-spiel eine Trajektorie in der Umgebung der 3:2 Resonanzinseln von Abb. 5.6b. Abb. 5.7 zeigtdie Zeitentwicklung der y-Komponente des Orts des �au�eren Elektrons, deren Anfangswerty1(t = 0) = 0:01 betr�agt. Wir erkennen eine regul�are Bewegung mit quasiperiodischen Oszil-lationen, die aus verschiedenen Oszillationsmoden zusammengesetzt sind: Neben der radialenOszillation des �au�eren Elektrons entlang der 3:2 Resonanz des kollinearen Phasenraumsidenti�zieren wir eine transversale Komponente, die der in Abb. 5.8 dargestellten, auf einerZeitskala von ca. 50 Feldzyklen statt�ndenden Schwingung der Kon�guration um die z-Achseentspricht. Dar�uber hinaus treten auch noch langsame Schwankungen der Amplitude dieserSchwingung auf, die auf einer Zeitskala von ca. 600 Feldzyklen statt�nden.In �ahnlicher Weise verl�auft die Bewegung in der Umgebung anderer transversal stabi-ler Resonanzinseln sowie in der Umgebung des Randbereichs der intrinsischen Insel: DieZeitentwicklung der Trajektorie weist in diesen Gebieten ebenfalls quasiperiodische Oszilla-tionen auf, die aus radialen und transversalen Moden zusammengesetzt sind. Der maximaleAnfangswert von y1, f�ur den die Kon�guration stabil bleibt, betr�agt f�ur diese Gebiete ca.y1(t = 0) � 0:1 : : :0:5 (f�ur F � 0:0005 : : :0:001). Bei diesem Anfangswert oszilliert y1 un-gef�ahr zwischen �1 und +1.Es ist zu bemerken, da� die regul�aren Gebiete im Phasenraum des zweidimensionalen, ge-triebenen Helium-Atoms von der diese Gebiete umgebenden chaotischen See prinzipiell nichtscharf abgegrenzt werden k�onnen. Da in einem 2n-dimensionalen Phasenraum die invariantenTori n-dimensionalen Mannigfaltigkeiten entsprechen und damit f�ur n > 2 keine topologischeSeparation verschiedener Phasenraumgebiete erzeugen, sind innerhalb eines hochdimensiona-len, gemischt regul�ar-chaotischen Phasenraums Trajektorien, die in einem regul�aren Gebietinnerhalb dieses Phasenraums starten, stets in der Lage, die regul�aren Tori dieses Gebiets zuumgehen. Als Folge davon tritt in diesen Systemen "Arnold-Di�usion\ auf [78, 85], d.h. eineprinzipiell irregul�are, typischerweise auf einer sehr langen Zeitskala statt�ndende Di�usiondurch das regul�are Gebiet, die es der Trajektorie erlaubt, jedes Phasenraumvolumen innerhalbund au�erhalb des regul�aren Gebiets zu erreichen. Durch diesen Di�usionsproze� k�onnen ins-besondere Trajektorien, die am Rand des regul�aren Gebiets starten, dieses innerhalb relativkurzer Zeit verlassen. Eine konzeptionell scharfe Unterscheidung zwischen gebundener Bewe-gung innerhalb des regul�aren Gebiets und ungebundener, chaotischer Bewegung au�erhalbdavon ist damit nicht m�oglich (formal gilt dies auch f�ur den f�unfdimensionalen Phasenraumder kollinearen getriebenen Kon�guration; dort sorgt jedoch die Separation der Zeitskalen
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Abb. 5.7: Stabile Trajektorie in der transversalen Umgebung der 3:2 Resonanz f�ur ! = 0:09, F =0:001 (s. Abb. 5.6). Aufgetragen ist die y-Komponente des Orts des �au�eren Elektrons als Funktionder Zeit innerhalb von (a) 0 : : :60 Feldzyklen, (b) 0 : : :600 Feldzyklen, (c) 0 : : :6000 Feldzyklen. DieAnfangswerte betragen z1 = 3:98, y1 = 0:01, y2 = 0, p1 = p2 = 0; z2(t = 0) ist so gew�ahlt, da�die feldfreie Gesamtenergie anfangs E = �1 betr�agt. Wie wir sehen, entspricht die Trajektorie einerquasiperiodischen Oszillation, die aus verschiedenen Moden zusammengesetzt ist; wir erkennen dieradiale, der kollinearen 3:2 Resonanz entsprechende Oszillation, die auf der Zeitskala von 1.5 Feldzyklenabl�auft (a), eine transversale Schwingungsmode auf einer Zeitskala von ca. 50 Feldzyklen (b), sowielangsame Amplitudenschwankungen dieser Schwingung auf einer Zeitskala von ca. 600 Feldzyklen.
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Abb. 5.8: Transversale Schwingung in der Umgebung der 3:2 Resonanzinsel f�ur ! = 0:09, F = 0:001(s. Abb. 5.6). Aufgetragen sind die Trajektorien der Elektronen im Kon�gurationsraum in den Zei-tintervallen (a) t = 0 : : :8 Feldzyklen, (b) t = 8 : : :16 Feldzyklen, (c) t = 16 : : :24 Feldzyklen, (d)t = 24 : : :32 Feldzyklen, (e) t = 32 : : :40 Feldzyklen, (f) t = 40 : : :48 Feldzyklen. Die Anfangsbedin-gung ist wie f�ur Abb. 5.7 gew�ahlt.
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Abb. 5.9: Stabile Trajektorie in der Umgebung des Randbereichs der 3:2 Resonanzinsel f�ur ! = 0:09,F = 0:001. Aufgetragen ist die y-Komponente des Orts des �au�eren Elektrons �uber einen Zeitraumvon 150000 Feldzyklen (a). Die Anfangswerte betragen z1(t = 0) = 4, y1(t = 0) = 0:1 (alle �ubri-gen Anfangsbedingungen sind wie in Abb. 5.7). Die Abbildungen (b { g) zeigen Ausschnitte dieserTrajektorie; in (f) und (g) ist die transversale Schwingungsmode der Kon�guration erkennbar (vgl.Abb. 5.7b). Wir sehen, da� die Amplitude dieser Schwingung einer langsamen Drift auf Zeitskalenvon 103 : : :104 Feldzyklen unterworfen ist.



5.3. Dynamik instabiler, gekippter Kon�gurationen 57der Bewegung der Elektronen daf�ur, da� Arnold-Di�usion innerhalb der regul�aren Gebieteextrem stark unterdr�uckt ist).Tats�achlich �nden wir am Rande der regul�aren Gebiete der getriebenen Frozen-Planet-Kon�guration Trajektorien, die Signaturen von Arnold-Di�usion auf sehr langen Zeitskalenaufweisen. Eine derartige Trajektorie, die am Randbereich der 3:2 Resonanzinsel startet, istin Abb. 5.9 dargestellt. Wir erkennen Schwankungen der Amplitude der Oszillation, die aufZeitskalen von 103 bis 104 Feldzyklen statt�nden. Im Zentrum der regul�aren Gebiete, insbe-sondere bei der in Abb. 5.7 gezeigten Trajektorie, sind jedoch keine Anzeichen f�ur Arnold-Di�usion festgestellt worden.5.3 Dynamik instabiler, gekippter Kon�gurationenDie Kippinstabilit�at der Kon�guration, also der Umstand, da� eine kleine Abweichung derFrozen-Planet-Kon�guration von der Feldpolarisationsachse im Lauf der Zeit verst�arkt wird,ist ein Ph�anomen, das bereits vom extern getriebenen Ein-Elektron-Atom bekannt ist [84].�Ahnlich wie bei der Frozen-Planet-Kon�guration von Helium ist der klassische Phasenraumdes eindimensionalen Wassersto�atoms im linear polarisierten elektromagnetischen Feld ge-mischt regul�ar-chaotisch und enth�alt regul�are Inseln, die nichtlinearen Resonanzen zwischendem treibenden Feld und der Kepler-Oszillation des Elektrons entsprechen [83, 84]. Be�n-det sich das System nun anfangs in der transversalen Umgebung einer solchen Resonanz,so wird das Elektron (bzw. genauer, dessen Runge-Lenz-Vektor) im Lauf der Zeit von derFeldpolarisationsachse weggetrieben und kippt schlie�lich auf die andere Seite des Kerns. DieBewegung nach dem Kippen ist jedoch regul�ar; das Elektron gelangt auf die andere Seitedes Kerns und vollf�uhrt dort, wie zum Anfangszeitpunkt, resonante Oszillationen entlang derFeldpolarisationsachse, um anschlie�end erneut auf die gegen�uberliegende Seite des Kerns zukippen [84, 18].Bei der Frozen-Planet-Kon�guration des Helium-Atoms hingegen ist die Dynamik dergekippten Kon�guration f�ur alle betrachteten Feldamplituden und Frequenzen irregul�ar undf�uhrt fr�uher oder sp�ater zur Ionisation. Die Zeitskala, innerhalb der typischerweise Ionisationstatt�ndet, ist dabei stark abh�angig von der Feldamplitude und der Frequenz des treibendenFeldes. F�ur sehr niedrige Feldamplituden bzw. f�ur hohe Frequenzen erweist sich die gekippteKon�guration als sehr langlebig; die Kon�guration vollf�uhrt, wie in Abb. 5.10 f�ur ! = 0:05und F = 0:0001 zu sehen ist, nach dem Kippen nahezu regul�are Rotationen um den Kern, diedurch das �au�ere Feld nur auf einer sehr langen Zeitskala gest�ort werden. F�ur hohe Feldam-plituden bzw. niedrige Frequenzen hingegen ist die Dynamik der gekippten Kon�gurationdeutlich chaotisch und f�uhrt bereits nach wenigen Rotationen zur Ionisation (Abb. 5.11).Bemerkenswert ist dabei, da� selbst f�ur relativ hohe Feldamplituden die die Frozen-Planet-Kon�guration charakterisierende Winkelkorrelation zwischen den Elektronen im Verlauf der
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Abb. 5.10: Langlebige Trajektorie in der Umgebung der 1:1 Resonanzinsel des kollinearen Phasenraumsf�ur ! = 0:05 und die relativ niedrige Feldamplitude F = 0:0001. Aufgetragen sind die z- und die y-Komponente des �au�eren Elektrons als Funktion der Zeit f�ur (a1, a2) t = 0 : : :210 Feldzyklen, (b1, b2)t = 210 : : :420 Feldzyklen, (c1, c2) t = 420 : : :630 Feldzyklen. Die Anfangswerte betragen z1 = 12:6,y1 = 0:01, y2 = 0, p1 = p2 = 0; z2(t = 0) ist so gew�ahlt, da� die anf�angliche Gesamtenergie E = �1betr�agt. Wir sehen, da� die Kon�guration nahezu regul�are Rotationen vollf�uhrt, die durch das externeFeld nur sehr schwach bzw. nur auf sehr langen Zeitskalen (t � 10 : : :100 Feldzyklen) gest�ort werden.Nach ca. 620 Feldzyklen ionisiert die Kon�guration.
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Abb. 5.11: Trajektorie in der Umgebung der 1:1 Resonanzinsel des kollinearen Phasenraums f�ur! = 0:05 und die relativ hohe FeldamplitudeF = 0:001. Aufgetragen sind die z- und die y-Komponentedes �au�eren Elektrons als Funktion der Zeit Die Anfangswerte betragen z1 = 12:8, y1 = 0:01 (y2 = 0,p1 = p2 = 0; E = �1). Wir erkennen, da� die Dynamik nach dem Kippen der Kon�guration imGegensatz zu Abb. 5.10 deutlich irregul�ar ist. Nach etwas mehr als 100 Feldzyklen kommt es zu einerkollisions�ahnlichen Wechselwirkung zwischen den Elektronen, die bewirkt, da� das �au�ere Elektronauf eine sehr weit vom Kern wegf�uhrende Kepler-Bahn ger�at, jedoch noch gebunden bleibt. Der ei-gentliche Ionisationsvorgang vollzieht sich knapp 100 Feldzyklen sp�ater, wenn das �au�ere Elektronzum Kerngebiet zur�uckkehrt und erneut mit dem inneren Elektron kollidiert.
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Abb. 5.12: Trajektorie in der Umgebung der 1:1 Resonanzinsel des kollinearen Phasenraums f�ur ! =0:08 und F = 0:001. Aufgetragen ist die Zeitentwicklung der z{Komponenten z1, z2 und der y{Komponenten y1, y2 des �au�eren bzw. des inneren Elektrons. Die Anfangswerte betragen z1(t = 0) = 8,y1(t = 0) = 0:01 (y2 = 0, p1 = p2 = 0; E = �1) (siehe Abb. 5.1). Zu beachten ist hier die ausgepr�agtstarke Winkelkorrelation zwischen den Elektronen: Wie wir durch Vergleich von (a) mit (b) bzw. von(c) mit (d) sehen, vollf�uhrt das innere Elektron die exzentrischen Kepler-Oszillationen stets auf derSeite des Kerns, auf der sich auch das �au�ere Elektron be�ndet. Sogar nach dem Ionisationsvorgang(nach ca. 105 Feldzyklen) bleibt diese Form der Winkelkorrelation aufrechterhalten.Rotationen erhalten bleibt. Wie man in Abb. 5.12 sieht, vollf�uhrt das innere Elektron Kepler-artige Oszillationen im wesentlichen stets auf der Seite des Kerns, auf der sich das �au�ereElektron be�ndet. Die daraus resultierende Abschirmung des �au�eren Elektrons vom Kern-bereich bewirkt, da� auch f�ur hohe Feldamplituden die Lebensdauer der gekippten Kon�-guration relativ hoch ist, verglichen mit der typischen Lebensdauer einer Kon�guration, beider sich beide Elektronen (bei gleicher Gesamtenergie) im wesentlichen auf entgegengesetztenSeiten des Kern be�nden (wie wir in Abb. 2.1c gesehen haben, betr�agt die Lebensdauer einerderartigen eZe-�ahnlichen Kon�guration typischerweise wenige Kepler-Zyklen).Wie bereits in Abschnitt 5.1 bemerkt wurde, f�uhrt die Tatsache, da� die Dynamik nachdem Kippen chaotisch ist, zu einer extrem sensitiven Abh�angigkeit der Ionisationszeit von



5.3. Dynamik instabiler, gekippter Kon�gurationen 61dem Anfangswert z1(t = 0). Dies ist in Abb. 5.13 verdeutlicht, in der die Ionisationszeiten inder Umgebung der 1:1 Resonanzinsel f�ur ! = 0:06, F = 0:001 (Abb. 4.4b) in Abh�angigkeitvom Anfangsort z1 aufgetragen sind, der in �aquidistanten Schritten der L�ange �z = 10�5zwischen z1 = 10:9 und z1 = 10:91 variiert ist (die anf�angliche Abweichung von der Kolli-nearit�at betr�agt y1 = 10�5). Wir erkennen eine fraktale Struktur, die typisch f�ur chaotischeStreuvorg�ange ist [86] (in der Tat entspricht die Ionisation aus einem irregul�aren Gebiet desklassischen Phasenraums einem "halben\ chaotischen Streuvorgang: durch Propagation desSystems in negativer Zeitrichtung, die ebenfalls zur Ionisation f�uhrt, l�a�t sich die chaotischeStreutrajektorie vervollst�andigen).Au��allig ist in Abb. 5.13 die Existenz vereinzelter Anfangsbedingungen, bei denen dieKon�guration extrem langlebig ist, d.h. nach einer extrem langen Zeitskala ionisiert. DasStudium der diesen Anfangsbedingungen entsprechenden Trajektorien l�a�t erkennen, da�diese Langlebigkeit auf das Auftreten von Kollisionen bzw. kollisions�ahnlichen Wechselwir-kungen zwischen den Elektronen zur�uckzuf�uhren ist, bei denen eines der Elektronen einenderart hohen Energie�ubertrag erh�alt, da� dessen kinetische Energie (abz�uglich des feldindu-zierten Anteils) knapp unterhalb derjenigen Energie liegt, die n�otig w�are, um dem durch denKern und das innere Elektron erzeugten Potential zu entkommen. In diesem Fall vollf�uhrt das�au�ere Elektron eine extrem weit vom Kern wegf�uhrende Kepler-Bewegung, um nach einerZeitspanne von � / j�EBj�3=2; (5.4)wobei j�EBj die e�ektive Bindungsenergie (5.2) dieses Elektrons bezeichnet, zum Kerngebietzur�uckzukehren und erneut mit dem inneren Elektron zu kollidieren, worauf dann schlie�lichdie Ionisation erfolgt (siehe Abb. 5.11).Unter der Annahme, da� nach derartigen Kollisionen s�amtliche Bindungsenergien des�au�eren Elektrons innerhalb eines sehr kleinen Intervalls unterhalb �EB = 0 mit gleicherWahrscheinlichkeit auftreten (diese Annahme sollte gerechtfertigt sein, da der Energie�uber-trag bei einer Kollision a priori nicht davon abh�angt, wie weit nach dieser Kollision diekinetische Energie des �au�eren Elektrons von der zur Ionisation n�otigen Energie entferntist), ergibt sich aus (5.4), da� die Wahrscheinlichkeit daf�ur, da� das �au�ere Elektron nachder Zeitspanne � noch nicht zum Kerngebiet zur�uckgekehrt ist, proportional ��2=3 abnimmt.Auf diese Weise erhalten wir, da� die "�Uberlebenswahrscheinlichkeit\ der getriebenen Frozen-Planet-Kon�guration (d.h. die Wahrscheinlichkeit, da� die Kon�guration nach der Zeit t nochnicht ionisiert ist) f�ur gro�e Zeiten t sehr langsam, n�amlich proportional t�2=3 abf�allt.Tats�achlich �nden wir eine derartige algebraische Abnahme der �Uberlebenswahrschein-lichkeit in der Umgebung der transversal instabilen Gebiete des kollinearen Phasenraums. InAbb. 5.14 ist als Funktion der Zeit der Anteil derjenigen in der Umgebung der 1:1 Resonanzin-sel f�ur ! = 0:06, F = 0:001 startenden Trajektorien aufgetragen, bei denen die Kon�guration
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Abb. 5.13: Ionisationszeiten in der Umgebung des Zentrums der kollinearen 1:1 Resonanz f�ur ! = 0:06,F = 0:001. Aufgetragen sind die Ionisationszeiten von jeweils 500 Anfangsbedinungen, die �aquidistantzwischen (a) z1 = 10:9 und z1 = 10:95 bzw. (b) z1 = 10:92 und z1 = 10:925 verteilt sind. Die�ubrigen Anfangswerte betragen y1 = 10�5, y2 = 0, p1 = p2 = 0, E = �1. Die Vergr�o�erung (b) zeigtdeutlich die fraktale Abh�angigkeit der Ionisationszeit vom Anfangsort z1(t = 0). Au�allend ist dieExistenz vereinzelter Anfangsbedingungen, bei denen die Kon�guration extrem langlebig ist. DieseAnfangsbedinungen entsprechen Trajektorien, bei denen eines der Elektronen nach einer Kollisionbzw. kollisions�ahnlichen Wechselwirkung mit dem anderen Elektron auf eine extrem hochangeregte(jedoch noch gebundene) Kepler-Trajektorie bef�ordert wird (s. Abb. 5.11) und somit erst nach sehrlanger Zeit zum Kerngebiet zur�uckkehrt und erneut mit dem inneren Elektron wechselwirkt.



5.3. Dynamik instabiler, gekippter Kon�gurationen 63nach dieser Zeit noch nicht ionisiert ist (dabei wurden insgesamt 5000 Trajektorien ber�uck-sichtigt, deren Anfangsbedingungen �aquidistant zwischen z1 = 10:9 und z1 = 10:95 liegen).Wir erkennen, da� der Anteil der nichtionisierten Trajektorien f�ur gro�e Zeiten proportionalt�z abnimmt. Der Zerfallsexponent betr�agt dabei ca. z ' 0:9 und liegt damit in der N�aheder Vorhersage z = 2=3. Auch bei anderen Feldparametern bzw. in der Umgebung andererGebiete des kollinearen Phasenraums �nden wir f�ur gro�e Zeiten eine algebraische Abnahmeder �Uberlebenswahrscheinlichkeit, die durch Zerfallsexponenten in der N�ahe von z = 2=3gekennzeichnet ist.Eine algebraische Abnahme der �Uberlebenswahrscheinlichkeit proportional t�2=3 konnteauch f�ur das eindimensionale Wassersto�atom im externen elektrischen Wechselfeld gezeigtwerden [87] (und ist dort ebenfalls auf das Auftreten hochangeregter Kepler-Trajektorienzur�uckzuf�uhren). Andere Studien zum algebraischen Zerfall im eindimensionalen getriebenenWassersto�atom [88] haben jedoch gezeigt, da� in diesem System auch andere algebraischeZerfallskomponenten mit Exponenten im Bereich z ' 1 : : :2 existieren (siehe auch [89]). DieseZerfallskomponenten sind auf die Existenz regul�arer Gebiete im gemischt regul�ar-chaotischenPhasenraum zur�uckzuf�uhren, in deren unmittelbarer Umgebung aufgrund der Anwesenheitvon Cantori [90] (d.h. von aufgebrochenen Tori im chaotischen Bereich des Phasenraums) derchaotische Transport stark unterdr�uckt ist [90, 91, 92]. Es ist daher im allgemeinen davonauszugehen, da� die Zeitentwicklung der �Uberlebenswahrscheinlichkeit durch eine Vielzahlunterschiedlicher Zerfallskomponenten gepr�agt ist, die unterschiedliche Zerfallsexponentenaufweisen und auf verschiedenen Zeitskalen bedeutsam werden (siehe auch [93]).



64 Kapitel 5. Abweichungen von der Kollinearit�at
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Abb. 5.14: Zeitentwicklung der �Uberlebenswahrscheinlichkeit der Kon�guration in der Umgebung desZentrums der kollinearen 1:1 Resonanzinsel f�ur ! = 0:06, F = 0:001. Aufgetragen ist der Anteil dernach der Zeit t noch nicht ionisierten Trajektorien, die in der transversalen Umgebung der 1:1 Reso-nanz starten. Dabei wurden insgesamt 5000 Trajektorien ber�ucksichtigt, deren Anfangsbedingungen�aquidistant zwischen z1 = 10:9 und z1 = 10:95 verteilt sind (die �ubrigen Anfangswerte betrageny1 = 10�5, y2 = 0, p1 = p2 = 0, E = �1). Wir sehen, da� die zeitliche Abnahme der �Uberlebens-wahrscheinlichkeit in guter N�aherung durch eine algebraische Funktion P / t�z beschrieben wird.Der Zerfallsexponent liegt f�ur gro�e Zeiten bei z ' 0:9 (helle Linie) und liegt damit in der N�ahe derVorhersage z = 2=3, die sich aus der Betrachtung hochangeregter Kepler-Trajektorien der Elektronenergibt.



Kapitel 6Konsequenzen f�ur dasquantenmechanische SystemIn diesem Kapitel wird nun er�ortert, welche Konsequenzen sich aus der Existenz der regul�arenInseln im klassischen Phasenraum der extern getriebenen Frozen-Planet-Kon�guration f�urdas reale, quantenmechanische Helium-Atom ergeben. Speziell interessieren wir uns f�ur dasAuftreten quantenmechanischer Eigenzust�ande, die vollst�andig entlang der regul�aren Inselndes klassischen Phasenraums lokalisiert sind. In Abschnitt 6.1 werden zun�achst die allge-meinen Eigenschaften derartiger Zust�ande er�ortert. Anschlie�end wird in Abschnitt 6.2 und6.3 unter Verwendung der semiklassischen Einstein-Brillouin-Keller (EBK) Quantisierungs-vorschrift abgesch�atzt, ab welcher Anregung des Systems (d.h. ab welcher Hauptquantenzahldes inneren Elektrons) quantenmechanische Zust�ande, die entlang der regul�aren Inseln der ge-triebenen Frozen-Planet-Kon�guration lokalisiert sind, im Floquet-Spektrum des getriebenenHelium-Atoms zu erwarten sind.6.1 Quantenmechanische Entsprechung regul�arer InselnGenerell impliziert das Vorhandensein eines regul�aren Gebiets innerhalb eines gemischt re-gul�ar-chaotischen Phasenraums die Existenz einer Serie von Zust�anden im entsprechendenQuantensystem, die im Phasenraum auf diesem regul�aren Gebiet lokalisiert sind. Diese Zu-st�ande ergeben sich im wesentlichen aus der semiklassischen Quantisierung der Bewegungs-moden, die die Dynamik innerhalb dieses Gebiets charakterisieren. Aufgrund der lokalen Inte-grabilit�at der klassischen Mechanik, die bewirkt, da� klassisch kein Transport vom regul�arenGebiet in die dieses Gebiet umgebende chaotische See erfolgt (abgesehen von Arnold-Di�usionin hochdimensionalen Systemen), ist die Aufenthaltswahrscheinlichkeit eines derartigen Zu-stands im Phasenraum vollst�andig auf das regul�are Gebiet konzentriert. Eine Kopplung dieserZust�ande an die chaotische See ist quantenmechanisch nur �uber "dynamisches Tunneln\ durch65



66 Kapitel 6. Konsequenzen f�ur das quantenmechanische Systemdie mehrdimensionalen regul�aren Phasenraumbarrieren m�oglich [94, 95]. In einem atomarenSystem entspricht eine regul�are Insel des gemischt regul�ar-chaotischen klassischen Phasen-raums einer Serie von entweder gebundenen Zust�anden (etwa bei Wassersto� im Magnetfeld[96]) oder autoionisierenden Zust�anden, die sich aufgrund dieser Tunnelkopplung durch sehrkleine Zerfallsbreiten auszeichnen. Ein Beispiel f�ur derart langlebige Zust�ande sind die bereitsin Kap. 2.2 erw�ahnten Frozen-Planet-Zust�ande in Helium, die sich durch eine scharf entlangdes klassischen Frozen-Planet-Orbits konzentrierte Aufenthaltswahrscheinlichkeit auszeich-nen (siehe Abb. 12 in [17]).Eine im Prinzip analoge Situation liegt bei periodisch getriebenen Systemen vor. Auf-grund der expliziten Zeitabh�angigkeit der externen St�orung wird die quantenmechanischeDynamik dieser Systeme jedoch nicht durch station�are Eigenzust�ande, sondern durch zeitlichperiodische Quasienergie-Zust�ande des entsprechenden Floquet-Operators (siehe Abschnitt8.2) beschrieben. Eine regul�are Insel des klassischen Phasenraums entspricht im getriebenenatomaren System damit einer Serie von zeitlich periodischen, autoionisierenden Zust�andendes Floquet-Systems, deren Wellenfunktionen entlang dieser regul�aren Insel lokalisiert sindund der Zeitentwicklung dieser Insel im Verlauf einer Periode des treibenden Feldes folgen.Besonders ausgepr�agt ist die Zeitabh�angigkeit der Wellenfunktion auf regul�aren Inseln,die durch nichtlineare Resonanzen zwischen dem externen Antrieb und der Dynamik desungest�orten Systems erzeugt werden [97, 98]. Ein auf einer derartigen Resonanzinsel lokali-sierter Floquet-Zustand entspricht im Kon�gurationsraum einem Wellenpaket, das der Os-zillation der Insel entlang der resonant getriebenen Mode des ungest�orten Systems folgt undaufgrund seiner periodischen Zeitabh�angigkeit im Gegensatz zu "konventionellen\ Wellenpa-keten, die durch koh�arente �Uberlagerungen von Eigenfunktionen im ungest�orten System ge-bildet werden, keiner Dispersion unterliegt [18]. Unter einem anderen Blickwinkel betrachtet,wird dasjenige Wellenpaket, das durch die diesem Floquet-Zustand entsprechende koh�arente�Uberlagerung von Eigenfunktionen des ungest�orten Systems erzeugt wird, durch die An-wesenheit des externen Feldes derart in Form gehalten, da� es, ohne zu dispergieren, derklassischen Oszillationsmode folgt und nur aufgrund der nichtverschwindenden Ionisations-breite des Floquet-Zustands auf der dieser Breite entsprechenden Zeitskala zerf�allt. Derartigenichtdispergierende Wellenpakete { mit Lebensdauern bis zu 106 Feldzyklen { wurden zu-erst in Wassersto� im linear polarisierten elektromagnetischen Feld entlang der 1:1 Resonanzdes kollinearen Phasenraums gefunden [18, 19, 99], sp�ater auch in Wassersto� im zirkularpolarisierten [20, 21, 100, 101, 102] bzw. elliptisch polarisierten Feld [103] entlang analogerResonanzinseln des klassischen Phasenraums nachgewiesen.Die Existenz feldinduzierter Resonanzinseln im Phasenraum der getriebenen Frozen-Planet-Kon�guration deutet darauf hin, da� im quantenmechanischen, getriebenen Helium-Atomnichtdispergierende Zwei-Elektronen-Wellenpakete erzeugt werden k�onnen, also nichtdisper-



6.2. Quantisierung der Inseln des kollinearen Phasenraums 67gierende Wellenpakete, deren zeitlich periodischer Charakter sich in den Koordinaten beiderElektronen manifestiert (wie wir bereits in Abb. 2.3 gesehen haben, manifestiert sich dielangsame Oszillation um die Gleichgewichtslage, die vom externen Feld resonant getriebenwird, sowohl in der Bewegung des �au�eren als auch in der des inneren Elektrons). Diesenichtdispergierenden Wellenpakete sind entlang feldinduzierter Resonanzen lokalisiert, dieregul�aren Gebieten im Phasenraum der dreidimensionalen Bewegung entsprechen, sich alsodurch Stabilit�at bez�uglich Abweichungen von der Kollinearit�at auszeichnen. Wir erwarten alsof�ur die extern getriebene Frozen-Planet-Kon�guration nichtdispergierende Zwei-Elektronen-Wellenpakete entlang der transversal stabilen Resonanzen des kollinearen Phasenraums (etwader 3:2 Resonanz). Entlang des transversal stabilen Bereichs der intrinsischen Insel hingegensind Floquet-Zust�ande zu erwarten, die im wesentlichen station�ar sind.6.2 Quantisierung der Inseln des kollinearen PhasenraumsVon besonderem Interesse ist die Frage, ab welchen Quantenzahlen mit der Existenz von aufregul�aren Inseln des klassischen Phasenraums lokalisierten Eigenzust�anden des quantenme-chanischen Systems zu rechnen ist. Eine Absch�atzung dieser Mindestquantenzahl l�a�t sichmittels des semiklassischen Einstein-Brillouin-Keller (EBK) Quantisierungskriteriums gewin-nen [29, 31, 104]. Das EBK-Kriterium besagt, da� der zu quantisierende Torus f�ur jede ge-schlossene Kurve C im Phasenraum, die auf der Hyper
�ache des Torus verl�auft (und diesenim gleichen Umlaufsinn wie die klassische Trajektorie umrundet), die BedingungIC p dq = 2� �h�n + �4� (6.1)f�ur eine nichtnegative, ganze Zahl n erf�ullen mu� (�h = 1 im folgenden). Dabei bezeichnen q, pdie kanonisch konjugierten Koordinaten und Impulse des Systems. � steht f�ur den "Maslov-Index\ [105], der die Anzahl der Umkehrpunkte der klassischen Bewegung entlang dieserKurve angibt [106].Damit gem�a� 6.1 zumindest ein Quantenzustand auf einer regul�aren Insel des klassischenPhasenraums existiert, mu� die Insel mindestens so gro� sein, da� der �au�erste Torus die-ser Insel (d.h. derjenige invariante Torus, der sich durch die h�ochsten Wirkungen in dendie regul�are Dynamik in dieser Insel charakterisierenden Bewegungsmoden auszeichnet) dieQuantisierungsbedingung (6.1) f�ur n = 0 erf�ullt:IC p dq � � �2 (6.2)Typischerweise �uberpr�uft man diese Bedingung anhand von topologisch unabh�angigen Kur-ven Ci , von denen jede innerhalb der durch ein Paar kanonisch konjugierte Variablen qi,pi aufgespannten Phasenraumebene verl�auft [53, 107] und innerhalb dieser Ebene den Torus



68 Kapitel 6. Konsequenzen f�ur das quantenmechanische Systemgenau einmal umrundet. Das Wirkungsintegral (6.2) entlang einer solchen Kurve ist damitdurch die Querschnitts
�ache des Torus in der entsprechenden Phasenraumebene gegeben.Innerhalb des Phasenraums der kollinearen getriebenen Kon�guration l�a�t sich eine solchesemiklassische Absch�atzung relativ leicht durchf�uhren. Da die Bewegungen der Elektronen imkollinearen Kon�gurationsraum approximativ separieren, ist es naheliegend, das Wirkungs-integral (6.2) f�ur diejenigen Kurven C1, C2 zu betrachten, die die regul�are Insel innerhalb derdurch z1 und pz1 bzw. durch z2 und pz2 aufgespannten Phasenraumebenen, bei festen Wertender jeweils anderen Phasenraumvariablen sowie der Phase !t des treibenden Feldes, genaueinmal umrunden. W�ahrend das Integral entlang der Kurve C2, die im wesentlichen der Pha-senraumtrajektorie der Kepler-Oszillation entspricht, durch die Wirkung N der Kepler-Modegegeben ist (analog (2.5)) und somit (6.2) f�ur E = �1 erf�ullt, liefert das Integral entlangC1 die Querschnitts
�ache A der regul�aren Insel innerhalb der Poincar�e-Schnittebene. (DerMaslov-Index ist bei beiden Kurven � = 2.) Die kritische Bedingung f�ur die Existenz einesQuantenzustands auf dieser regul�aren Insel lautet damitA � �: (6.3)F�ur die regul�aren Inseln des kollinearen Phasenraums ist diese Bedingung bei der Gesamt-energie E = �1 bzw. bei der Wirkung N = 1:5 im allgemeinen nicht erf�ullt. Anhand derQuerschnitts
�ache A l�a�t sich jedoch unmittelbar bestimmen, wie das System gem�a� (3.5 {3.10) skaliert werden mu�, um (6.3) zu erf�ullen: der dazu n�otige Skalierungsparameter � mu�so gro� sein, da� die transformierte Querschnitts
�acheA0 = A�1=2 � � (6.4)gen�ugt. Da N unter der Skalierungstransformation in der gleichen Weise wie A transformiertwird, ergibt sich damit der Mindestwert von N , f�ur den die Quantisierungsbedingung (6.2)erf�ullt ist, zu Nmin ' 1:5�1=2min = 1:5 �=A: (6.5)Dieser Wert entspricht also der Mindesthauptquantenzahl des inneren Elektrons, ab der imkollinearen System Quantenzust�ande auf der regul�aren Insel des klassischen Phasenraumslokalisiert sind. Konkret erhalten wir f�ur die kollineare 1:1 Resonanzinsel bei ! = 0:05, F =0:001 (Abb. 4.3d): Nmin ' 13.Genau genommen mu� ebenfalls das Wirkungsintegral innerhalb der Ebene betrachtetwerden, die durch die Zeit (bzw. die Phase des treibenden Feldes) und deren kanonisch kon-jugierte Variable, die Energie, aufgespannt wird. Da die dem Torus folgende Kurve innerhalbdieser Ebene jedoch keine Umkehrpunkte aufweist (die Zeit verl�auft nie "r�uckw�arts\) ist derMaslov-Index dieser Kurve � = 0; die Bedingung (6.2) ist f�ur diese Kurve damit stets erf�ullt.Wie Breuer und Holthaus gezeigt haben [108], liefert die Quantisierung des Torus entlangdieser Kurve im wesentlichen die !{Periodizit�at der Quasienergien im Floquet-Spektrum.



6.3. Quantenzust�ande auf Inseln im nichtkollinearen Phasenraum 696.3 Quantenzust�ande auf Inseln im nichtkollinearen Phasen-raumDas Verfahren zur Quantisierung der kollinearen Inseln l�a�t sich im Prinzip auch auf die In-seln im Phasenraum der dreidimensionalen Bewegung �ubertragen. �Ahnlich wie im kollinearenSystem betrachten wir Integrationspfade innerhalb der Phasenraumebenen, die durch kano-nisch konjugierte Variablen der transversalen Dynamik aufgespannt sind. Das Integral (6.2)liefert damit die Querschnitts
�ache der Insel innerhalb der jeweiligen Phasenraumebene. Auf-grund der Hochdimensionalit�at des Phasenraums lassen sich diese Querschnitts
�achen jedochnicht (bzw. nur unter hohem Aufwand [53]) anhand von Poincar�e-Schnitten bestimmen.Eine Absch�atzung des Phasenraumvolumens regul�arer Bewegung in den transversalen Va-riablen ergibt sich aus der Ausdehnung des regul�aren Gebiets entlang der Koordinatenachsen,die den transversalen Phasenraum aufspannen. Dazu verwenden wir als kanonisch konjugierteVariablen der transversalen Dynamik die Winkeldi�erenz '12 zwischen den Elektronen unddie halbe Di�erenz l12 deren Drehimpulse,'12 := '1 � '2; (6.6)l12 := 12 (l1 � l2); (6.7)sowie den mittleren Winkel �' der Elektronen und den Gesamtdrehimpuls L,�' := 12 ('1 + '2); (6.8)L := l1 + l2: (6.9)Dabei bezeichnet '1 = arctan (y1=z1) (6.10)den Winkel, den das �au�ere Elektron mit der z-Achse einschlie�t, '2 den entsprechendenWinkel des Runge-Lenz-Vektors des inneren ElektronsA = � 1q 2Zjr2j � p22 �p2 � (r2 � p2)� Z r2jr2j� (6.11)und li = zi pyi � yi pzi (6.12)den Drehimpuls des Elektrons i um den Kern. Wie aus der adiabatischen Theorie der Frozen-Planet-Kon�guration von Ostrovsky und Prudov hervorgeht [59] (siehe Abschnitt 2.3), sinddiese Phasenraumvariablen speziell f�ur die Beschreibung von transversalen Schwingungen derungest�orten Frozen-Planet-Kon�guration geeignet.Die maximale Ausdehnung der regul�aren Insel entlang einer der transversalen Variablenbestimmen wir anhand der Kipp- und Ionisationszeiten. Diese berechnen wir in einem Intervall



70 Kapitel 6. Konsequenzen f�ur das quantenmechanische Systementlang der z-Achse, in dem die betrachtete regul�are Insel die pz1 = 0 Achse des kollinearenPhasenraums schneidet. Die Abweichung von der Kollinearit�at wird durch einen nichtver-schwindenden Anfangswert einer der transversalen Variablen (6.6 { 6.9) erzeugt, wobei dieAnfangswerte aller anderen transversalen Phasenraumvariablen gleich Null gesetzt sind. An-hand der Kipp- und Ionisationszeiten werden so die Maximalwerte ('12)max, (l12)max, ( �')max,(L)max der Variablen (6.6 { 6.9) bestimmt, f�ur die die transversale Dynamik stabil ist.Unter der Annahme eines ellipsenf�ormigen Querschnitts der regul�aren Insel in den von denkanonisch konjugierten Variablen aufgespannten Phasenraumebenen (diese Annahme wurdein Stichproben best�atigt), ergibt sich der Fl�acheninhalt dieses Querschnitts in der von '12und l12 aufgespannten Ebene zu A1 ' � ('12)max (l12)max; (6.13)sowie in der von �' und L aufgespannten Ebene zuA2 ' � ( �')max (L)max: (6.14)Aus der Skalierungstransformation (3.5 { 3.10), die n�otig ist, um die Quantisierungsbedin-gungen (6.4) A1 � � und A2 � � zu erf�ullen, erhalten wir damit, zus�atzlich zu (6.5), dieBedingungen N >� 1:5('12)max (l12)max (6.15)sowie N >� 1:5( �')max (L)max (6.16)f�ur das Auftreten eines Quantenzustands, der auf einem regul�aren Gebiet des klassischenPhasenraums der dreidimensionalen Bewegung lokalisiert ist.F�ur die 3:2 Resonanzinsel bei ! = 0:09, F = 0:001 (Abb. 5.6) liefert diese Absch�atzungN >� 750. Es ist daher zu erwarten, da� Quantenzust�ande, die auf dieser Insel lokalisiert sind,ab Hauptquantenzahlen dieser Gr�o�enordnung N ' 750 � 500 : : :1000 im Spektrum desgetriebenen Helium-Atoms auftreten. Generell h�ohere Mindestquantenzahlen ergeben sichf�ur n:m Resonanzinseln h�oherer Ordnung (f�ur die 5:3 Resonanzinsel bei ! = 0:09, F =0:001 etwa N >� 3000). Etwas niedrigere Mindestquantenzahlen hingegen errechnen wir f�urden Randbereich der intrinsischen Insel. F�ur ! = 0:09, F = 0:001 etwa erhalten wir, da�entsprechende Quantenzust�ande ab Quantenzahlen der Gr�o�enordnung N ' 200 zu erwartensind.Die hier errechneten Quantenzahlen liegen au�erhalb der gegenw�artigen experimentellenReichweite. Mit Hilfe von mehrstu�gen \isolated core" Anregungsprozessen [109] lassen sichin Atomen mit zwei Valenzelektronen wie etwa Barium autoionisierende Zust�ande mit Quan-tenzahlen maximal bis zu N ' 100 selektiv bev�olkern [71]. F�ur das Helium-Atom liegen die



6.3. Quantenzust�ande auf Inseln im nichtkollinearen Phasenraum 71h�ochstangeregten Zust�ande, die, unter Verwendung von monochromatisierter Synchrotron-strahlung, photospektroskopisch untersucht werden k�onnen, bei N ' 10 [110]. Es ist daher imallgemeinen nicht davon auszugehen, da� nichtdispergierende Zwei-Elektronen-Wellenpakete,die auf Resonanzinseln hoher Ordnung der getriebenen Frozen-Planet-Kon�guration lokali-siert sind, experimentell realisiert werden k�onnen.Bei aller Skepsis ist jedoch zu bemerken, da� die semiklassische Absch�atzung anhand desEBK-Kriteriums mit erheblichen Unsicherheiten verbunden ist. Zum einen l�a�t sich das Pha-senraumvolumen regul�arer Bewegung in den transversalen Variablen nur ungef�ahr bestimmen.Des weiteren hat sich in anderen atomaren Systemen gezeigt, da� das EBK-Kriterium generelldazu neigt, die Mindestquantenzahl f�ur das Auftreten eines auf einer regul�aren Insel des klas-sischen Phasenraums lokalisierten Quantenzustands zu �ubersch�atzen. So hat die von M�uller,Burgd�orfer und Noid durchgef�uhrte semiklassische Quantisierung des Langmuir-Orbits vonHelium ergeben, da� Quantenzust�ande, die auf dem regul�aren Gebiet des Langmuir-Orbits lo-kalisiert sind, erst ab Quantenzahlen der Gr�o�enordnung N � 500 zu erwarten sind [53]. Einequantenmechanische Rechnung hat jedoch gezeigt, da� bereits bei N ' 10 quantenmechani-sche Zust�ande im Spektrum von Helium auftreten, die eine erh�ohte Aufenthaltswahrschein-lichkeit entlang des Langmuir-Orbits aufweisen [63]. Wir erwarten daher, da� sich bereits f�urQuantenzahlen, die weit unterhalb N � 500 liegen, Signaturen der klassischen 3:2 Resonanzim Spektrum abzeichnen.



Kapitel 7Stabilisierung durch ein statischeselektrisches FeldDie Analyse der transversalen Stabilit�atseigenschaften der getriebenen Frozen-Planet-Kon-�guration hat gezeigt, da� die regul�aren Inseln des kollinearen Phasenraums �uberwiegenddurch Instabilit�at bez�uglich Abweichungen von der Kollinearit�at gekennzeichnet sind. Re-gul�are Gebiete innerhalb des Phasenraums der dreidimensionalen Bewegung existieren ledig-lich am Randbereich der intrinsischen Insel sowie entlang von feldinduzierten Resonanzenhoher Ordnung. Wie die Absch�atzung in Kap. 6 gezeigt hat, ist die transversale Ausdehnungdieser regul�aren Inseln so klein, da� quantenmechanische Zust�ande, die auf diesen Inseln loka-lisiert sind, nur f�ur sehr hohe Quantenzahlen N � 100 : : :1000 des inneren Elektrons erwartetwerden. Dies impliziert insbesondere, da� nichtdispergierende Zwei-Elektronen-Wellenpakete,die auf den feldinduzierten Resonanzinseln der getriebenen Frozen-Planet-Kon�guration loka-lisiert sind, im Spektrum des extern getriebenen Helium-Atoms f�ur experimentell realistischeAnregungen nicht auftreten.Im Hinblick auf die Erzeugung derartiger hochkorrelierter Zwei-Elektronen-Zust�ande stelltsich nun die Frage, ob mit Hilfe eines zus�atzlichen �au�eren Eingri�s die getriebene Frozen-Planet-Kon�guration bez�uglich Abweichungen von der Kollinearit�at stabilisiert werden kann.Wie wir in Kap. 5 gesehen haben, wird der Destabilisierungsproze� der Kon�guration in derUmgebung der regul�aren Inseln des kollinearen Phasenraums durch das Kippen der Kon�gu-ration auf die andere Seite des Kerns eingeleitet. Es liegt also nahe, ein zus�atzliches, statischeselektrisches Feld parallel zur Polarisation des oszillierenden Feldes an die Kon�guration an-zulegen, das so gerichtet ist, da� es diesem Kippvorgang entgegenwirkt.Tats�achlich ist es mit Hilfe eines derartigen statischen Feldes m�oglich, das Kippen derKon�guration in der Umgebung der regul�aren Inseln des kollinearen Phasenraums zu ver-hindern und die Kon�guration auf ein Gebiet in der Umgebung der Feldpolarisationsachsezu beschr�anken. F�ur geeignete Parameter des oszillierenden und des statischen Feldes ist das72



7.1. Stabilisierung der Kon�guration gegen Kippen und Ionisation 73Phasenraumvolumen der auf diese Weise entstehenden regul�aren Inseln im Phasenraum derdreidimensionalen Bewegung so gro�, da� Quantenzust�ande, die auf diesen Inseln lokalisiertsind, f�ur experimentell zug�angliche Quantenzahlen zu erwarten sind.In diesem Kapitel wird nun dieses Stabilisierungsph�anomen n�aher untersucht. Wir konzen-trieren uns dabei auf Resonanzen niedriger Ordnung, deren Stabilisierung im Hinblick auf dieErzeugung nichtdispergierender Zwei-Elektronen-Wellenpakete interessant ist. In Abschnitt7.1 werden zun�achst wesentliche Charakteristika der Dynamik der stabilisierten Kon�gurati-on erl�autert. Es wird gezeigt, da� zwei verschiedene Formen der Bewegung der stabilisiertenKon�guration auftreten { eine kollineare bzw. quasikollineare und eine nichtkollineare Bewe-gungsform { die im Phasenraum durch eine Bifurkation ineinander �ubergehen. Anschlie�endsch�atzen wir in Abschnitt 7.2 anhand des EBK-Quantisierungskriteriums ab, ab welchen An-regungen quantenmechanische Zust�ande existieren, die auf diesen Inseln lokalisiert sind.7.1 Stabilisierung der Kon�guration gegen Kippen und Ioni-sationDie Idee, ein statisches elektrisches Feld zur Stabilisierung der getriebenen Frozen-Planet-Kon�guration zu verwenden, geht auf die Arbeit von Leopold und Richards zur�uck, die dieklassische Dynamik von Wassersto� im linear polarisierten Mikrowellenfeld, dem ein zus�atz-liches, statisches elektrisches Feld �uberlagert ist, untersucht haben [111]. In dieser Arbeitkonnte gezeigt werden, da� die Bewegung des Elektrons in der Umgebung der 1:1 Reso-nanz des kollinearen Phasenraums durch das Anlegen eines statischen elektrischen FeldesFst parallel zur Polarisation des Mikrowellenfeldes F mit 0:22F <� Fst <� F auf die unmit-telbare Umgebung der Feldpolarisationsachse beschr�ankt werden kann. Auf diese Weise istes m�oglich, nichtdispergierende Wellenpakete im extern getriebenen Wassersto�atom zu er-zeugen, die vollst�andig entlang des 1:1 Resonanz-Orbits des kollinearen Kon�gurationsraumslokalisiert sind [112].In der Tat l�a�t sich dieses Verfahren auf die getriebene Frozen-Planet-Kon�guration vonHelium �ubertragen und ist geeignet, die Resonanzinseln des kollinearen Phasenraums, eben-so wie die intrinsische Insel, bez�uglich Abweichungen von der Kollinearit�at zu stabilisieren.Sofern die Amplitude F des oszillierenden elektrischen Feldes nicht zu gro� ist, wird durchdas Anlegen eines statischen elektrischen Feldes mit geeigneter St�arke Fst, also durch eineModi�kation von (3.4) gem�a� F(t) = (F cos!t� Fst) ez; (7.1)die Kon�guration in der transversalen Umgebung der regul�aren Insel des kollinearen Pha-senraums am Kippen gehindert und vollf�uhrt quasiperiodische Oszillationen, die auf denHalbraum mit z > 0 beschr�ankt bleiben (Abb. 7.1).
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Abb. 7.1: Stabilisierung der Dynamik in der Umgebung der 1:1 Resonanz des kollinearen Phasenraumsf�ur ! = 0:05, F = 0:0005. (a) Instabile Trajektorie f�ur Fst = 0. (b) Trajektorie der stabilisiertenKon�guration bei der statischen Feldst�arke Fst = 0:0001. Die Anfangsbedingung ist in (a) und (b)durch z1 = 12:6, y1 = 0:01 gegeben (y2 = 0, p1 = p2 = 0, E = �1). Die Zeitentwicklung dieserTrajektorie ist in den Abbildungen (c) und (d) dargestellt, in denen die y-Komponenten des Orts des�au�eren und des inneren Elektrons aufgetragen sind. Wir sehen, da� die Bewegung der Kon�gurationnicht auf die unmittelbare Umgebung der Feldpolarisationsachse beschr�ankt bleibt (man beachte, da�die maximale Abweichung des �au�eren Elektrons von der z-Achse, y1;max ' �1, wesentlich gr�o�er istals die anf�angliche Abweichung y1 = 0:01), sondern um einen fundamentalen Orbit oszilliert, der nichtinnerhalb des kollinearen Phasenraums liegt.



7.1. Stabilisierung der Kon�guration gegen Kippen und Ionisation 75W�ahrend der Phasenraum der kollinearen getriebenen Kon�guration durch die Anwe-senheit eines statischen Feldes, dessen Feldst�arke kleiner als die Amplitude des oszillieren-den Feldes F ist, nur unwesentlich ge�andert wird { die Resonanzstrukturen des kollinearenPhasenraums werden mit zunehmendem Fst lediglich etwas in Richtung des intrinsischenGleichgewichts verschoben {, ist das transversale Stabilisierungsph�anomen bei der getriebe-nen Frozen-Planet-Kon�guration von Helium insgesamt weitaus komplizierter als im Fall vongetriebenem Wassersto�. So zeigt es sich, da� entlang einer regul�aren Insel des kollinearenPhasenraums die Kon�guration nur stabilisiert werden kann, wenn die Amplitude des oszil-lierenden Feldes nicht zu gro� ist. F�ur die 1:1 Resonanzinsel bei ! = 0:05 etwa betr�agt diemaximale Feldamplitude, unterhalb der Stabilisierung m�oglich ist, ca. F ' 0:0006 und liegtdamit nur knapp oberhalb der Feldamplitude F ' 0:0005, bei der im kollinearen Phasenraumdie 1:1 Resonanz vom intrinsischen regul�aren Gebiet getrennt wird (siehe Abb. 4.3c). Des wei-teren ist das Stabilit�atsverhalten im allgemeinen uneinheitlich entlang einer regul�aren Inseldes kollinearen Phasenraums: so l�a�t sich etwa f�ur ! = 0:05, F = 0:0005 bei Fst = 0:0001(Abb. 7.1) das Zentrum der 1:1 Resonanzinsel in ein stabiles Gebiet innerhalb des Pha-senraums der dreidimensionalen Bewegung eingebetten, w�ahrend der Randbereich der 1:1Resonanzinsel instabil bez�uglich Abweichungen von der Kollinearit�at bleibt. Dar�uber hinaustreten bei der getriebenen Frozen-Planet-Kon�guration von Helium zwei verschiedene For-men der stabilisierten Bewegung auf: eine kollineare bzw. quasikollineare Bewegungsform, beider die Kon�guration auf die unmittelbare Umgebung der Feldpolarisationsachse beschr�anktwird (d.h. bei der die maximale Entfernung der Kon�guration von der Feldpolarisations-achse direkt proportional zur anf�anglichen Abweichung von dieser Achse ist { analog derBewegung in der Umgebung der stabilen 3:2 Resonanz ohne statisches Feld, siehe Abb. 5.8),sowie eine nichtkollineare Bewegungsform, bei der die Kon�guration um einen fundamentalenperiodischen Orbit oszilliert, der nicht innerhalb des kollinearen Kon�gurationsraums liegt(Abb. 7.1).Das Auftreten dieser beiden Bewegungsformen wird am Beispiel der Stabilisierung der 1:1Resonanz bei ! = 0:05 und F = 0:0002 (siehe Abb. 5.3b) erl�autert. Bei diesen Feldparame-tern l�a�t sich die Bewegung in der der transversalen Umgebung der 1:1 Resonanz mit einemstatischen Feld der St�arke Fst >� 4 � 10�5 stabilisieren: eine kleine Abweichung der Kon�gura-tion von der Kollinearit�at f�uhrt zu quasiperiodischen Oszillationen der Kon�guration um denOrbit der kollinearen 1:1 Resonanz. Dies l�a�t sich anhand von stroboskopischen Bildern vonTrajektorien in der Umgebung des kollinearen Phasenraums zeigen, bei denen wir die halbeDrehimpulsdi�erenz l12 der Elektronen (6.7) gegen deren Winkeldi�erenz '12 (6.6) zu denZeiten !t = 0 mod 2� auftragen. Obwohl ein derartiges stroboskopisches Bild der Trajektoriekeinen Poincar�e-Schnitt des Phasenraums darstellt (pro erhaltenen Punkt im '12{l12 Dia-gramm sind lediglich zwei der vier transversalen Phasenraumvariablen sowie n�aherungweise
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Abb. 7.2: Stroboskopische Bilder von Trajektorien der stabilisierten 1:1 Resonanz f�ur ! = 0:05,F = 0:0002 und (a) Fst = 0:00015, (b) Fst = 0:00017, (c) Fst = 0:0002, (d) Fst = 0:00025. Auf-getragen sind die halbe Drehimpulsdi�erenz l12 = 12(l1 � l2) gegen die Winkeldi�erenz '12 = '1 � '2der Elektronen zu den Zeiten !t = 0 mod 2�. Trajektorien zu verschiedenen Anfangsbedingungen sinddurch unterschiedliche Symbole gekennzeichnet; in (b) etwa betragen die Anfangsbedingungen (voninnen nach au�en) y1 = 0:01 (Punkte), 0:1 (Kreuze), 0:2 (Kreise), 0:3 (Kreuze), 0:4 (Kreise) (z1 = 12:6,y2 = 0, p1 = p2 = 0, E = �1). Wir erkennen f�ur Fst = 0:00015 ellipsen�ahnliche Strukturen, die umden kollinearen Orbit bei '12 = l12 = 0 zentriert sind. Bei Fst ' 0:00016 �ndet eine Bifurkation imPhasenraum statt. Der kollineare Orbit ist oberhalb Fst ' 0:00016 in eine Separatrixstruktur einge-bettet, die mit zunehmendem Fst gr�o�er wird. Der fundamentale Orbit der Resonanzinsel entsprichtnun dem Zentrum des von der Separatrix umschlossenen Gebiets oberhalb bzw. unterhalb der l12 = 0Achse. (e) und (f) zeigen die (durch Kreise gekennzeichneten) Separatrixtrajektorien von (c) und (d)im Kon�gurationsraum (y1(t = 0) = 0:01).



7.1. Stabilisierung der Kon�guration gegen Kippen und Ionisation 77die kollinearen Phasenraumvariablen festgelegt) liefert es hinreichend konsistente Strukturen,die R�uckschl�usse auf die transversale Phasenraumstruktur des regul�aren Gebiets erlauben.F�ur 4 � 10�5 <� Fst <� 0:00016 liegen die Punkte des stroboskopischen Bildes der Trajektorienentlang von ellipsen�ahnlichen Strukturen, die um den kollinearen periodischen Orbit der 1:1Resonanz zentriert sind (Abb. 7.2a).Oberhalb einer Feldst�arke von Fst ' 0:00016 wird die Kon�guration nicht mehr auf dieunmittelbare Umgebung des kollinearen Phasenraums beschr�ankt: die Kon�guration entferntsich von dem Orbit der kollinearen 1:1 Resonanz, bleibt jedoch nach wie vor in ein regul�aresGebiet eingebunden, das die Bewegung des �au�eren Elektrons auf den Halbraum positiverz-Werte beschr�ankt. Entsprechend erkennen wir in Abb. 7.2b, da� bei Fst ' 0:00016 im Pha-senraum ein Bifurkation auftritt. Der kollineare Orbit stellt oberhalb Fst ' 0:00016 nichtmehr das Zentrum eines elliptischen Gebiets dar, sondern bildet eine d�unne, in das regul�areGebiet der stabilisierten 1:1 Resonanz eingebettete chaotische Schicht aus, die sich im strobo-skopischen Bild in Form einer Separatrixstruktur abzeichnet. Der fundamentale periodischeOrbit dieser Kon�guration liegt nun im Zentrum des Gebiets, das im stroboskopischen Bildvon der Separatrix oberhalb bzw. unterhalb der durch l12 = 0 de�nierten Achse umschlossenwird; er entspricht, wie wir in Abb. 7.3 sehen, einer nichtkollinearen, resonanten Oszillationder Kon�guration, deren Periodendauer doppelt so gro� ist wie die Periode des treibendenFeldes.Mit zunehmender statischer Feldst�arke Fst nimmt die Abweichung der Separatrix bzw.des fundamentalen periodischen Orbits von der Kollinearit�at immer mehr zu (Abb. 7.2c{d).Die die Separatrix umgebende Schicht regul�arer Strukturen wird dabei immer d�unner, bissie schlie�lich bei Fst ' 0:0003 vollst�andig verschwindet. Oberhalb dieser Feldst�arke ist dieDynamik in der Umgebung der kollinearen 1:1 Resonanz instabil.In �ahnlicher Weise wird durch ein statisches Feld auch die Bewegung entlang n:1 Reso-nanzen h�oherer Ordnung stabilisiert. Dabei zeigt es sich, da� bei Feldparametern, bei denendiese Resonanzen von der intrinisischen Insel getrennt sind, die Bewegung der stabilisiertenKon�guration in der Regel nichtkollinear ist, d.h. nicht auf die unmittelbare Umgebung derFeldpolarisationsachse beschr�ankt ist. Auch in der Umgebung des Zentrums der intrinsischenInsel l�a�t sich die Dynamik durch ein statisches Feld stabilisieren. Der maximale Wert vonF , f�ur den eine Stabilisierung m�oglich ist, liegt f�ur die intrinsische Insel im allgemeinen h�oherals f�ur die Resonanzinseln.Wie bereits in Abschnitt 5.2 erw�ahnt wurde, l�a�t sich in hochdimensionalen Systemenaufgrund von Arnold-Di�usion eine regul�are Insel nicht scharf von der sie umgebenden chao-tischen See abgrenzen: Da die invarianten Tori dieser Insel keine topologisch un�uberwindbarenPhasenraumbarrieren darstellen, kann eine Trajektorie, die innerhalb dieser Insel startet, die-se Tori umgehen und in das chaotische Gebiet des Phasenraums gelangen. Tats�achlich l�a�t
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Abb. 7.3: Fundamentaler periodischer Orbit der stabilisierten 1:1 Resonanz f�ur ! = 0:08, F = 0:001,Fst = 0:0003 (s. Abb. 4.4d). (a) Trajektorie, die in der unmittelbaren Umgebung der z-Achse startet(mit der Anfangsbedingung z1 = 8, y1 = 0:01, y2 = 0, p1 = p2 = 0, E = �1). (b) Trajektorie des fun-damentalen periodischen Orbits. Die Anfangswerte betragen z1 = 8:092, py1 = 0:07871, y1 = y2 = 0,pz1 = pz2 = 0; z2 und py2 sind so gew�ahlt, da� die Gesamtenergie E = �1 und der GesamtdrehimpulsL = 0:04704 betr�agt (diese Anfangswerte wurden mit Hilfe eines Minimierungsverfahrens gefunden).Die Bewegung der Elektronen im fundamentalen Orbit ist in (c) und (d) aufgetragen. Wir sehen, da�sowohl das �au�ere (c) als auch das innere Elektron (d) periodische (bzw. quasiperiodische) Oszillatio-nen vollf�uhrt, deren Periodendauer doppelt so gro� ist wie die Periode der kollinearen 1:1 Resonanz.
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Abb. 7.4: Langfristig instabile Trajektorie, die innerhalb des regul�aren Gebiets der stabilisierten 1:1Resonanz f�ur ! = 0:08, F = 0:001, Fst = 0:0003 startet. Aufgetragen ist in (a) die Zeitentwicklungder y-Komponente des �au�eren Elektrons �uber einen Zeitraum von 10000 Feldzyklen; (b{g) zeigenAusschnitte von (a). Die Anfangswerte betragen z1 = 8:1, py1 = 0:02, y1 = y2 = 0, pz1 = pz2 = 0; py2und z2 sind so gew�ahlt, da� die Gesamtenergie E = �1 und der Gesamtdrehimpuls L = 0:0125 betra-gen (im Phasenraum liegt der Anfangspunkt damit zwischen dem kollinearen und dem fundamentalenOrbit der stabilisierten 1:1 Resonanz, wobei die Entfernung zum fundamentalen Orbit etwa dreimal sogro� ist wie die zum kollinearen Orbit). Wir erkennen langfristige, auf Arnold-Di�usion hinweisendeSchwankungen der Amplitude der transversalen Oszillation auf Zeitskalen von ca. 100 Feldzyklen (vgl.Abb. 5.9). Nach ca. 9000 Feldzyklen wird die Dynamik instabil (c,e,g); die Kon�guration verl�a�t dasregul�are Gebiet und ionisiert.



80 Kapitel 7. Stabilisierung durch ein statisches elektrisches Feldsich diese Auswirkung der Hochdimensionalit�at des Phasenraums bei Kon�gurationen, diemit einem statischen Feld in Form einer nichtkollinearen Bewegung stabilisiert sind, deutlichbemerken. So �nden wir insbesondere in der N�ahe der Separatrix, entlang der die Dynamikgenerell durch Irregularit�at gekennzeichnet ist, Trajektorien, die das Gebiet gebundener Be-wegung nach einer sehr langen aber endlichen Zeitspanne verlassen und zur Ionisation f�uhren.Ein Beispiel f�ur eine solche Trajektorie ist in Abb. 7.4 dargestellt. Wir sehen, da� die Trajek-torie langfristigen, auf Arnold-Di�usion hinweisenden Schwankungen in der Amplitude dertransversalen Schwingung unterworfen ist und schlie�lich, nach etwa 104 Feldzyklen, instabilwird und ionisiert.7.2 Konsequenzen f�ur das quantenmechanische SystemGem�a� der in Abschnitt 6.1 angestellten �Uberlegungen entsprechen die regul�aren Inseln derstabilisierten Kon�guration im quantenmechanischen, getriebenen Helium-Atom langlebigenZust�anden, die im klassischen Phasenraum entlang dieser Inseln lokalisiert sind. W�ahrendQuantenzust�ande, die entlang der intrinsischen Insel lokalisiert sind, im wesentlichen stati-on�ar sind, sind entlang der stabilisierten Resonanzinseln nichtdispergierende Zwei-Elektronen-Wellenpakete zu erwarten. Um die Mindestquantenzahl N abzusch�atzen, ab der derartigeZust�ande im Spektrum des getriebenen Helium-Atoms auftreten, gehen wir wie in Kap. 6vor. Wir bestimmen zun�achst die maximale Ausdehnung der regul�aren Insel entlang derPhasenraumvariablen der transversalen Dynamik und sch�atzen daraus, unter Annahme einesellipsenf�ormigen Querschnitts, die Querschnitts
�achen der Insel innerhalb der von kanonischkonjugierten Phasenraumvariablen aufgespannten Ebenen ab. Daraus ergibt sich die gesuchteMindestquantenzahl durch die Bedingungen (6.15) und (6.16).F�ur die stabilisierte 1:1 Resonanz liegen die Mindestquantenzahlen, ab denen Quanten-zust�ande auf der klassischen Insel lokalisiert sind, au�erhalb der experimentellen Reichweite.Konkret erhalten wir f�ur ! = 0:05, F = 0:0005, Fst = 0:0001 (Abb. 7.1): Nmin ' 750.Vergleichbare bzw. h�ohere Mindestquantenzahlen erhalten wir f�ur andere Feldparameter, beidenen die 1:1 Resonanz im kollinearen Phasenraum von der intrinsischen Insel getrennt ist.G�unstigere Bedingungen f�ur die Erzeugung nichtdispergierender Zwei-Elektronen-Wellen-pakete liegen bei Resonanzen h�oherer Ordnung vor. So erhalten wir f�ur ! = 0:15, F = 0:002bei einem statischen Feld von Fst = 0:0001 (Abb. 7.5) eine Mindestquantenzahl von Nmin '60 � 50 : : :100 f�ur die Existenz eines Quantenzustands, der auf einer der 2:1 Resonanzinselnlokalisiert ist. Diese Quantenzahl liegt bereits im Bereich experimentell zug�anglicher Anre-gungen in Zwei-Elektronen-Atomen wie Barium [71]. Auch f�ur die 3:1 Resonanz, etwa bei! = 0:2, F = 0:002, Fst = 0:0002, erhalten wir Mindestquantenzahlen der Gr�o�enordnungNmin � 50 : : :100 f�ur die Existenz eines entsprechenden Quantenzustands. F�ur die intrinsischeInsel �nden wir, bei gleichen Feldparametern, typischerweise niedrigere Mindestquantenzah-
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d eAbb. 7.5: Stabilisierte 2:1 Resonanz f�ur ! = 0:1, F = 0:0015, Fst = 0:0001. (a{c) Poincar�e-Schnitt deskollinearen Phasenraums f�ur !t = 0 (a), !t = �=2 (b), !t = � (c). (d) Trajektorie, die in der Umgebungder z-Achse startet (mit der Anfangsbedingung z1 = 8:5, y1 = 0:01, y2 = 0, p1 = p2 = 0, E = �1).(e) Fundamentaler periodischer Orbit der stabilisierten 2:1 Resonanz (mit der Anfangsbedingungz1 = 8:499, py1 = 0:03767, L = 0:001961, y1 = y2 = 0, pz1 = pz2 = 0, E = �1). Bei diesenFeldparametern ist die transversale Ausdehnung der stabilisierten 2:1 Resonanzinsel im Phasenraumder dreidimensionalen Bewegung so gro�, da� Quantenzust�ande auf dieser Insel f�ur Quantenzahlender Gr�o�enordnung N � 50 : : :100 erwartet werden.len als f�ur die Resonanzinseln. Bei ! = 0:15, F = 0:002, Fst = 0:0001 etwa (Abb. 7.5) sindstation�are Quantenzust�ande auf der intrinsischen Insel ab Nmin � 20 : : :50 zu erwarten.Insgesamt l�a�t sich feststellen, da� sowohl f�ur die intrinsische Insel als auch f�ur feldindu-zierte Resonanzinseln (n�amlich die 2:1 und die 3:1 Resonanzinseln) bei geeignet gew�ahltenFeldparametern !, F , Fst quantenmechanische Zust�ande, die vollst�andig auf diesen Inselnlokalisiert sind, f�ur experimentell zug�angliche Quantenzahlen existieren sollten. Insbesondereerwarten wir, da� nichtdispergierende Zwei-Elektronen-Wellenpakete, die entlang der 2:1 undder 3:1 Resonanzinseln lokalisiert sind, ab Quantenzahlen der Gr�o�enordnung N � 50 : : :100im Spektrum des getriebenen Helium-Atoms auftreten. Bei einer Quantenzahl von N = 50betragen die Laborwerte der zur Erzeugung dieser Resonanzinseln gew�ahlten Feldparameter,etwa ! = 0:15, F = 0:002, Fst = 0:0001 bei der 2:1 Resonanz, gem�a� den Skalierungsgesetzen(3.5 { 3.10) ungef�ahr !=(2�) ' 30 GHz; (7.2)F ' 8 V=cm; (7.3)



82 Kapitel 7. Stabilisierung durch ein statisches elektrisches FeldFst ' 0:4 V=cm (7.4)und liegen damit in der Gr�o�enordnung jener Feldparameter, die in Mikrowellen-Ionisations-experimenten in Ein-Elektron-Atomen typischerweise verwendet werden [77]. Eine experimen-telle Realisierung von nichtdispergierenden Zwei-Elektronen-Wellenpaketen im Mikrowellen-getriebenen Helium-Atom ist damit prinzipiell m�oglich.Wie schon in Abschnitt 6.3 ist anzumerken, da� die Absch�atzung anhand des EBK-Kriteriums mit erheblichen Unsicherheiten verbunden ist und insbesondere dazu tendiert,die Mindestquantenzahl, ab der Quantenzust�ande auf regul�aren Inseln des klassischen Pha-senraums lokalisiert sind, zu �ubersch�atzen [53, 63]. Es ist daher davon auszugehen, da�N � 50 : : :100 eine eher pessimistische Absch�atzung f�ur das Auftreten nichtdispergierenderZwei-Elektronen-Wellenpakete darstellt. Zu erwarten ist, da� bereits f�ur niedrigere Quanten-zahlen Quantenzust�ande im Spektrum des getriebenen Helium-Atoms auftreten, die auf denfeldinduzierten Resonanzinseln der stabilisierten Kon�guration lokalisiert sind.
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Kapitel 8Formulierung und numerischeL�osung des EigenwertproblemsIn bezug auf konkrete quantitative Eigenschaften der Zust�ande, die mit regul�aren Inseln desklassischen Phasenraums assoziiert sind, l�a�t die klassische Analyse einige Fragen o�en. Sol�a�t sich zwar anhand des EBK-Quantisierungskriteriums die Gr�o�enordnung der Anregungbzw. Quantenzahl absch�atzen, ab der diese Zust�ande im quantenmechanischen Spektrumauftreten. Keine Informationen hingegen liegen zur Ionisationsrate bzw. Lebensdauer die-ser Zust�ande vor (die insbesondere zur Charakterisierung nichtdispergierender Wellenpake-te wichtig ist). Diese Lebensdauer ist einer klassischen Analyse des Systems generell nichtzug�anglich, da auf den regul�aren Inseln, auf denen diese Zust�ande lokalisiert sind, die quanten-mechanische Ionisation nur �uber dynamisches Tunneln (also durch einen klassisch verbotenenProze�) erfolgt. Um also quantitativ zu ermitteln, ab welcher Quantenzahl hochkorrelierteZwei-Elektronen-Wellenpakete im getriebenen System existieren, die der Oszillation der klas-sischen Insel auf einer hinreichend langen Zeitskala ohne Dispersion folgen, ist daher in jedemFall eine exakte quantenmechanische Rechnung erforderlich. Derartige quantenmechanischeRechnungen sind in dem uns interessierenden Anregungsbereich beim gegenw�artigen Standder numerischen Technik jedoch nicht m�oglich. Konkret lassen sich im ungest�orten Helium-Atom ab initio Quantenrechnungen derzeit bis zur Hauptquantenzahl N ' 10 durchf�uhren[113].Um einen Einblick in die quantenmechanische Entsprechung der regul�aren Inseln des klas-sischen Phasenraums zu gewinnen, wird in den nun folgenden Kapiteln die Quantendynamikdes eindimensionalen, der kollinearen Frozen-Planet-Kon�guration entsprechenden Helium-Atoms unter externem Antrieb untersucht. Dabei interessieren wir uns f�ur das Auftretenvon Quantenzust�anden, die mit regul�aren Inseln des klassischen Phasenraums der kollinearenKon�guration assoziiert sind. Zu untersuchen ist, wie die charakteristischen Eigenschaftendieser Zust�ande, also deren Lokalisierung im klassischen Phasenraum, deren Lebensdauern,85



86 Kapitel 8. Formulierung und numerische L�osung des Eigenwertproblemssowie deren Zusammensetzung aus Eigenzust�anden des ungest�orten Systems, durch die ge-mischt regul�ar-chaotische Struktur des klassischen Phasenraums beein
u�t werden bzw. wiesich diese Eigenschaften mit zunehmender Anregung des Systems bzw. abnehmender Gr�o�edes e�ektiven Wirkungsquantums verhalten.Neben einem tiefgehenden Einblick in die Quantenmechanik nichtdispergierender Zwei-Elektronen-Wellenpakete liefert diese eindimensionale Rechnung auch konkrete Informatio-nen �uber die entsprechenden Quantenzust�ande des dreidimensionalen Systems. Wie wir inKap. 7 gesehen haben, wird durch das statische Feld die Kon�guration auf die Umgebungder Feldpolarisationsachse beschr�ankt. Die durch das statische Feld stabilisierten Resonanzenentsprechen damit quasi kollinearen Quantenzust�anden, deren Wahrscheinlichkeitsdichte aufdie unmittelbare Umgebung des kollinearen Phasenraums konzentriert ist. Folglich sollten we-sentliche Eigenschaften dieser Zust�ande, insbesondere deren Lokalisierung auf Strukturen deskollinearen Phasenraums, durch eine eindimensionale Rechnung korrekt reproduziert werden.In diesem Kapitel werden zun�achst formale Aspekte zur numerischen L�osung des eindi-mensionalen Quantensystems beschrieben. Wir f�uhren in Abschnitt 8.1 die Koordinaten ein,die sich f�ur die numerische Behandlung des Systems eignen. Die Floquet-Theorie, mit der dasperiodisch getriebene System in ein zeitunabh�angiges Eigenwertproblem transformiert wird,wird in Abschnitt 8.2 beschrieben. Um im Floquet-Spektrum die autoionisierenden Resonan-zen vom Kontinuum zu isolieren, wenden wir die Methode der komplexen Skalierung an, derenwesentliche Eigenschaften in Abschnitt 8.3 dargelegt werden. Die Entwicklung des komplexskalierten Floquet-Hamiltonoperators nach Sturmschen Basisfunktionen wird in Abschnitt8.4 behandelt. Dabei wird auch die Methode beschrieben, mit der die numerische Diagonali-sierung konkret durchgef�uhrt wird. Schlie�lich wird in Abschnitt 8.5 dargelegt, wie aus denEigenvektoren des komplex skalierten Systems die Dichteverteilung der Floquet-Zust�ande imKon�gurationsraum bzw. im Phasenraum berechnet wird.8.1 Der Hamiltonoperator der kollinearen Zee-Kon�gurationDie Quantenmechanik des eindimensionalen Helium-Atoms zeichnet sich durch grunds�atzlichekonzeptionelle Besonderheiten gegen�uber dem dreidimensionalen Helium-Atom aus, die damitzusammenh�angen, da� die beteiligten Teilchen, der Atomkern und die beiden Elektronen,aufgrund der Coulomb-Singularit�at der Wechselwirkung nicht in der Lage sind, aneinandervorbei zu gelangen: Zum einen mu�, wie in der klassischen Dynamik, prinzipiell unterschiedenwerden zwischen der eZe-Kon�guration, bei der die Elektronen auf unterschiedlichen Seitendes Kerns angeordnet sind, und der Zee-Kon�guration, bei der sich beide Elektronen aufder gleichen Seite des Kerns be�nden, zum anderen �ndet kein Austausch zwischen denElektronen statt, was dazu f�uhrt, da� in dem zu diagonalisierenden Hamiltonoperator dieElektronen e�ektiv als unterscheidbare Teilchen auftreten.



8.1. Der Hamiltonoperator der kollinearen Zee-Kon�guration 87Die Wellenfunktion  , die den Zustand der kollinearen, durch ein externes oszillierendeselektrisches Feld linearer Polarisation getriebenen Zee-Kon�guration beschreibt, ist de�niertauf f(z1; z2) : 0 < z1; z2 <1g. Die Zeitentwicklung der Wellenfunktion gem�a�i @@t = H (8.1)ist durch den auf den kollinearen Kon�gurationsraum beschr�ankten Hamiltonoperator desgetriebenen Helium-AtomsH = �12 @2@z21 � 12 @2@z22 � Zz1 � Zz2 + 1jz1 � z2j � F! sin!t�1i @@z1 + 1i @@z2� ; (8.2)gegeben, wobei das oszillierende elektrische Feld (der Amplitude F und Frequenz !) �uber dieGeschwindigkeitseichung eingekoppelt ist (um die Identi�zierung der die Wechselwirkung mitdem Kern beschreibenden Terme zu erleichtern, verwenden wir f�ur die formale Beschreibungdes Eigenwertproblems die allgemeine Kernladung Z, wobei nat�urlich die konkreten Rechnun-gen mit Z = 2 durchgef�uhrt wurden). Aufgrund der Coulomb-Singularit�at der Kernanziehungergeben sich die Randbedingungen der Wellenfunktion zu (z1; z2)! 0 f�ur z1 ! 0 oder z2 ! 0: (8.3)Eine weitere Bedingung ergibt sich aus der Coulomb-Singularit�at der Elektron-Elektron-Wechselwirkung:  (z1; z2)! 0 f�ur z1 ! z2: (8.4)Die Austauschsymmetrie, also die Tatsache, da� die Elektronen a priori ununterscheidbarsind, erfordert  (z1; z2) =  (z2; z1) (8.5)f�ur Singulett-Zust�ande, sowie  (z1; z2) = � (z2; z1) (8.6)f�ur Triplett-Zust�ande. Es bietet sich an, (z1; z2) =  >(z1; z2) �  >(z2; z1) (8.7)f�ur Singulett- bzw. f�ur Triplett-Zust�ande anzusetzen, wobei >(z1; z2) := 8<:  (z1; z2) : z1 > z20 : z1 < z2 (8.8)die Einschr�ankung der Wellenfunktion auf den Teilraum U> = f(z1; z2) : 0 < z2 < z1 <1g bezeichnet, in dem das zweite Elektron n�aher am Kern ist als das erste Elektron. DieAnwendung des Hamiltonoperators auf  ergibtH = (H> >)(z1; z2) � (H> >)(z2; z1) (8.9)



88 Kapitel 8. Formulierung und numerische L�osung des Eigenwertproblemsmit (H> >)(z1; z2) =  �12 @2@z21 � 12 @2@z22 � Zz1 � Zz2 + 1z1 � z2� F! sin!t�1i @@z1 + 1i @@z2�� >(z1; z2): (8.10)Da  >(z1; z2) und  >(z2; z1) auf disjunkten Teilr�aumen nichtverschwindende Werte an-nehmen, l�a�t sich die Schr�odinger-Gleichung separieren:i @@t >(z1; z2) = (H> >)(z1; z2) f�ur z1 > z2; (8.11)i @@t >(z2; z1) = (H> >)(z2; z1) f�ur z1 < z2: (8.12)Da  > aufgrund (8.3) und (8.4) am Rand des Gebiets U> verschwindet, stellt H> in (8.11)bzw. (8.12) e�ektiv einen hermiteschen Hamiltonoperator dar. Es gen�ugt also, das unit�areZeitentwicklungsproblem (8.11) f�ur unterscheidbare Elektronen mit z1 > z2 zu l�osen und dietats�achliche Wellenfunktion des Systems �uber (8.7) zu bestimmen.Anschaulich formuliert, �ndet im Lauf der Zeitentwicklung kein Austausch zwischen denElektronen statt; das innere Elektron bleibt stets "innen\ aufgrund der un�uberwindbarenCoulomb-Singularit�at der Elektron-Elektron-Wechselwirkung. Eine unmittelbare Konsequenzder Separation der Schr�odinger-Gleichung gem�a� (8.11, 8.12) ist die Tatsache, da� Singulett-und Triplett-Zust�ande (gem�a� (8.7)) entartet sind bzw. da� der Elektronenspin f�ur die kolli-neare Kon�guration nicht von Bedeutung ist.Im folgenden betrachten wir also, ohne Beschr�ankung der Allgemeinheit, den Hamilton-operatorH � H> = �12 @2@z21 � 12 @2@z22 � Zz1 � Zz2 + 1z1 � z2 � F! sin!t�1i @@z1 + 1i @@z2� ; (8.13)wobei z2 2 ] 0;1 [ und z1 2 ] z2;1 [ gilt. Um die gegenseitige Abh�angigkeit der Koordinatenzu beseitigen, bietet es sich an, neue Koordinaten gem�a�x := z1 � z2 (8.14)y := z2 (8.15)einzuf�uhren, die beide, unabh�angig voneinander, alle Werte aus ] 0;1 [ annehmen und denperimetrischen Koordinaten [114, 115], spezialisiert auf die kollineare Zee-Kon�guration, ent-sprechen. Mit @@z1 = @@x (8.16)@@z2 = @@y � @@x (8.17)erhalten wir f�ur den Hamiltonoperator, ausgedr�uckt in diesen Koordinaten,H = � @2@x2 � 12 @2@y2 + @2@x@y � Zx+ y � Zy + 1x � F! sin!t 1i @@y : (8.18)



8.2. Das Floquet-Theorem 898.2 Das Floquet-TheoremDie Tatsache, da� die Zeitabh�angigkeit des Hamiltonoperators (8.18) periodischer Natur ist,erlaubt die Anwendung des Floquet-Theorems [116, 117, 118]. Das Floquet-Theorem impli-ziert die Umformulierung des periodischen Zeitentwicklungsproblems in ein zeitunabh�angigesEigenwertproblem und erm�oglicht damit eine konzeptionell "handliche\ Beschreibung des Sy-stems �uber zeitlich periodische Quasienergiefunktionen und deren zugeh�orige Quasienergien.Wir betrachten den HamiltonoperatorH = H0 + V e i!t + V y e� i!t; (8.19)wobei, in unserem Fall, H0 und V durchH0 = � @2@x2 � 12 @2@y2 + @2@x@y � Zx+ y � Zy + 1x (8.20)V = F2! @@y (8.21)gegeben sind. Aufgrund der periodischen Zeitabh�angigkeit des Hamiltonoperators ist es an-gebracht, die Schr�odinger-Gleichung (8.1) im Fourier-Raum zu betrachten. In Analogie zurEinf�uhrung der Brillouin-Zone im r�aumlich periodischen Potential liegt es nahe, ein Energie-intervall der Breite !, etwa [ 0; ! [, vorzugeben und in bezug auf diese "Floquet-Zone\ dieFourierkomponenten  ̂! der Wellenfunktion  t durch die "Quasienergie\ � 2 [ 0; ! [ sowiedurch einen ganzzahligen Index k gem�a� t = Z 1�1 d!0 e i!0t  ̂!0 � Z !0 d� 1Xk=�1 e i (k!��)t ̂(�)k (8.22)zu bezeichnen. Die Fourier-Transformation der Schr�odinger-Gleichung liefert damit(H0 + k!)  ̂(�)k + V  ̂(�)k�1 + V y  ̂(�)k+1 = �  ̂(�)k (8.23)f�ur alle k 2 ZZ, � 2 [ 0; ! [.Wie man sofort erkennt, handelt es sich bei (8.23) um ein System von Eigenwertglei-chungen zu dem Eigenwert � und der zugeh�origen, vektorwertigen Eigenfunktion � ̂(�)k �k2ZZ.Unter Annahme eines diskreten Spektrums von Eigenwerten �n 2 [ 0; ! [ mit den zugeh�origenEigenvektoren � ̂(n)k �k2ZZ ergibt sich die Wellenfunktion �uber (8.22) zu t = Xn Cn �n(t) e� i �nt (8.24)mit �n(t) = 1Xk=�1  ̂(n)k e ik!t: (8.25)



90 Kapitel 8. Formulierung und numerische L�osung des Eigenwertproblems t l�a�t sich also, �ahnlich wie im zeitunabh�angigen Quantensystem, als Linearkombination vonzeitlich periodischen "Quasienergiefunktionen\ bzw. "Floquet-Eigenfunktionen\ �n darstel-len. Die Kenntnis s�amtlicher Floquet-Eigenfunktionen �n sowie deren "Quasienergien\ bzw."Floquet-Energien\ �n erm�oglicht somit eine vollst�andige Charakterisierung der Dynamikdes periodisch getriebenen Systems. Formal spielt die genaue Lage der Floquet-Zone auf derEnergieachse keine Rolle: Wie man sofort sieht, ist zum Eigenwert �n auch �n + ! Eigenwertdes Gleichungssystems (8.23) mit der Eigenfunktion � = e i!t�n. Das gesamte Eigenspektrumvon (8.23) ist also periodisch mit der Frequenz !, und jede beliebig gew�ahlte Floquet-Zoneliefert den vollst�andigen Satz von Floquet-Eigenfunktionen und -Eigenwerten.Die Annahme eines diskreten Spektrums von Floquet-Eigenwerten ist f�ur atomare Syste-me in aller Regel falsch. Dies liegt an der Existenz von Kontinua im ungest�orten Atom, andie, bei eingeschaltetem Antrieb, jeder gebundene Zustand durch Multiphotonen-Anregungmit einer hinreichend hohen Anzahl von Photonen koppelt. Das Floquet-Spektrum des getrie-benen atomaren Systems ist damit vollst�andig kontinuierlich. Die im st�orungsfreien Limesgebundenen atomaren Zust�ande manifestieren sich im Kontinuumsspektrum in Form vonResonanzen, deren Breiten den Photoionisationsraten dieser Zust�ande entsprechen.8.3 Komplexe SkalierungUm die Resonanzstrukturen im Floquet-Spektrum aufzul�osen, wenden wir die Methode der"komplexen Skalierung\ (auch "komplexe Rotation\ bzw. "komplexe Dilatation\ genannt)an. Die Methode erm�oglicht einen konzeptionell eleganten Zugang zu ins Kontinuum ein-gebetteten autoionisierenden (bzw., im Floquet-Problem, photoionisierenden) Zust�anden.In diesem Abschnitt sollen die grundlegenden Eigenschaften der Methode kurz beschrie-ben werden; weitergehende und ausf�uhrlichere Informationen �nden sich in der Literatur[119, 120, 121, 122, 123, 124].Die Grundidee der komplexen Skalierung besteht darin, die Transformationr 7�! r e i� (8.26)@@r 7�! @@r e� i� (8.27)mit reellem � 2 [ 0; �=4 [ [119] an dem zu untersuchenden Hamiltonoperator durchzuf�uhren(r bezeichnet hier die Gesamtheit aller Ortskoordinaten), was durchH 7�! H� = R(�)HR(��) (8.28)mit R(�) = exp���2 �r @@r + @@r r�� (8.29)



8.3. Komplexe Skalierung 91geleistet wird. Der resultierende Hamiltonoperator H� ist komplex symmetrisch (nicht her-mitesch!) und besitzt damit komplexe Eigenwerte sowie komplexe Eigenvektoren, die (sofernH rein reell ist) bez�uglich des Skalarproduktsh j�i = Z dfr  (r)�(r) (8.30)(wobei in dem Integral  nicht komplex konjugiert wird) orthogonal sind.Das Eigenspektrum des komplex skalierten Hamiltonoperators eines atomaren Systemsgliedert sich im allgemeinen in reell-diskrete Eigenwerte, komplex-diskrete Eigenwerte mit ne-gativem Imagin�arteil, sowie komplex-kontinuierliche Eigenwerte. Die reell-diskreten Eigenwer-te entsprechen den gebundenen Zust�anden des unskalierten Hamiltonoperators; sie stimmenmit deren Energien �uberein. Diskrete Eigenwerte mit negativem Imagin�arteil existieren ener-getisch oberhalb der niedrigsten Ionisationsschwelle des atomaren Systems und entsprechenden autoionisierenden Resonanzzust�anden des unskalierten Systems; die Realteile der Eigen-werte stimmen mit den Energielagen, die Imagin�arteile mit den halben Ionisationsbreiten derResonanzzust�ande �uberein. Daneben existiert zu jeder Ionisationsschwelle E0 des Atoms einnahezu strukturloses Kontinuum von Eigenwerten entlang der Halbgeraden E0 + � e�2i� mit� > 0. Diese Kontinua entsprechen im wesentlichen den Kontinuumskan�alen des unskaliertenHamiltonoperators, die sich an die jeweiligen Ionisationsschwellen anschlie�en.Grob gesprochen, separiert die komplexe Skalierung die autoionisierenden Zust�ande desbetrachteten Systems von den einzelnen Kontinuumskan�alen, in die diese Zust�ande einge-bettet sind. Sofern der Skalierungswinkel � so gro� ist, da� die Breite der autoionisierendenResonanz kleiner ist als die negativen Imagin�arteile der Kontinua, in die sie im unskalier-ten System eingebettet ist, { sofern also durch die Rotation dieser Kontinua die betrachte-te Resonanz "aufgedeckt\ wird, { ist diese Resonanz im Spektrum des komplex skaliertenHamiltonoperators als diskreter Zustand vertreten, dessen Eigenschaften unabh�angig vomSkalierungswinkel � sind. Die Methode erlaubt daher, die Struktur des Kontinuums, etwa imZusammenhang mit einem Photoionisationsproze� [23, 125], allein anhand einzelner, diskreterResonanzzust�ande quantitativ korrekt zu reproduzieren.Der Zusammenhang zwischen dem Spektrum des unskalierten Hamiltonoperators undjenem des komplex skalierten Hamiltonoperators l�a�t sich formal �uber die Greens-FunktionG+(E) des unskalierten Systems herleiten, die sich durch die Greens-Funktion des komplexskalierten Systems gem�a�G+(E) = lim�! 0+ 1E �H + i� = R(��) 1E �H� R(�) (8.31)ausdr�ucken l�a�t [123]. Die komplexe Skalierung liefert also den Zugang zu der analytischenFortsetzung der Greens-Funktion in die negative komplexe Halbebene, deren Polstellen denautoionisierenden Zust�anden des Systems entsprechen. F�ur den Projektor auf den Kontinu-umszustand zur Energie E des unskalierten Systems erh�alt man damit unter der Annahme



92 Kapitel 8. Formulierung und numerische L�osung des Eigenwertproblemsnichtentarteter KontinuajEihEj = � 1� Im �G+(E)� = 1� ImX� R(��) j�i� �h�jR(�)E�� � E ; (8.32)wobei �uber s�amtliche Eigenfunktionen j�i� mit den zugeh�origen Eigenenergien E�� des kom-plex skalierten Systems summiert (bzw., bei kontinuierlichen j�i�, integriert) wird [124]. DieStrukturierung des Kontinuums jEi wird bestimmt durch die diskreten, den autoionisie-renden Resonanzen entsprechenden Zust�ande, w�ahrend die kontinuierlichen Zust�ande einen
achen Hintergrund liefern. Liegt E in der N�ahe eines autoionisierenden Zustands j�i�, sodominiert dessen Beitrag die Summe (8.32):jEihEj ' 1� Im R(��) j�i� �h�jR(�)E�� �E ; : (8.33)�Uber diesen Projektor lassen sich �Uberlappmatrixelemente zwischen (normierbaren) Wel-lenfunktionen des unskalierten Systems und autoionisierenden Eigenzust�anden des komplexskalierten Systems in wohlde�nierter Weise berechnen. Konkret wird der �Uberlapp einer Wel-lenfunktion j�i des unskalierten Systems mit einem autoionisierenden Zustand j�i� �uberjh� j �ij2 �! h� jEi hE j�ijE=ReE��= 1� jImE��j Re�Z dfr �(r) �(r) Z dfr ��(r) �(r)� (8.34)berechnet, wobei  �(r) = hrjR(��) j�i� (8.35)als Wellenfunktion des autoionisierenden Zustands im unskalierten System interpretiert wer-den kann.Die �Aquivalenz zwischen dem unskalierten und dem komplex skalierten System konnte f�ureine Reihe von "dilatationsanalytischen\ Systemen gezeigt werden, unter anderem f�ur Atomeim externen statischen elektrischen Feld [126, 127, 128, 129] sowie f�ur das Floquet-Problematomarer Systeme im externen elektromagnetischen Feld [130, 131]. In Analogie zum unge-triebenen System erhalten wir im Spektrum des komplex skalierten Floquet-Operators Kon-tinuumszust�ande, die den um ein ganzzahliges Vielfaches der treibenden Frequenz verschobe-nen Ionisationsschwellen angeh�oren. Neben diesen Kontinua treten auch diskrete Eigenwertemit negativem Imagin�arteil im Spektrum auf, die den im ungest�orten System gebundenenen(bzw., im Mehr-Elektronen-System, autoionisierenden) Zust�anden entsprechen, die durch dastreibende Feld an die atomaren Kontinua gekoppelt sind. Die Imagin�arteile dieser diskretenEigenwerte geben die Photoionisationsbreiten (bzw., im Mehr-Elektronen-System, die kom-binierten Autoionisations- und Photoionisationsbreiten) dieser Zust�ande an.



8.4. Entwicklung nach Sturmschen Basisfunktionen 938.4 Entwicklung nach Sturmschen BasisfunktionenF�ur die numerische Diagonalisierung des Hamiltonoperators wird die Eigenfunktion in bei-den Koordinaten x und y nach den Sturmschen Funktionen des eindimensionalen Coulomb-Potentials [132] entwickelt. Diese sind de�niert durchS(�)n (r) = 1pn (�1)n 2r� exp�� r�� L(l=1)n�1 �2r� � f�ur n � 1; (8.36)wobei L(l)n die zugeordneten Laguerre-Polynome bezeichnen [133] und � > 0 einen belie-bigen reellen Parameter, den "Sturmschen Skalierungsparameter\, darstellt. Sie eignen sichspeziell f�ur die Modellierung wassersto��ahnlicher Eigenfunktionen: die Sturmsche FunktionS(�=n)n stimmt mit dem Radialteil der gebundenen Wassersto�eigenfunktion zur Hauptquan-tenzahl n (und zur Drehimpulsquantenzahl l = 0) �uberein. Im Gegensatz zu den gebundenenWassersto�eigenfunktionen sind die Sturmschen Funktionen vollst�andig; in bezug auf dasSkalarprodukt ghf jgi = Z 10 1r f(r) g(r) dr (8.37)bildet fS(�)n : n � 1g einen vollst�andigen orthonormierten Basissatz auf dem Raum der auf[ 0;1 [ de�nierten Funktionen, die f�ur r! 0 proportional O(r) gegen Null gehen.�Uber die Rekursionsformel sowie die Di�erentialgleichungen der zugeordneten Laguerre-Polynome [133] gewinnt man die OperatorenŜ� := �2 r @2@r2 � r @@r + r2�; (8.38)Ŝ3 := ��2 r @2@r2 + r2�; (8.39)die die fundamentalen AbbildungenŜ� S(�)n = qn(n� 1)S(�)n�1; (8.40)Ŝ3 S(�)n = nS(�)n (8.41)de�nieren. Anhand Ŝ�, Ŝ3 l�a�t sich die Anwendung der Operatorenr = ��12 (Ŝ+ + Ŝ�) + Ŝ3� (8.42)r @@r = 12 (Ŝ� � Ŝ+) (8.43)r @2@r2 = 1� �12 (Ŝ+ + Ŝ�)� Ŝ3� (8.44)sowie s�amtlicher Kombinationen dieser Operatoren auf S(�)n bestimmen.Da der Hamiltonoperator (8.20, 8.21) in bezug auf das Skalarprodukt (8.37), das wireinf�uhren wollen, um die Orthogonalit�at der Sturmschen Funktionen ausn�utzen zu k�onnen,



94 Kapitel 8. Formulierung und numerische L�osung des Eigenwertproblemsnicht hermitesch ist (bzw. nach Durchf�uhrung der komplexen Skalierung nicht komplex sym-metrisch ist), ist es erforderlich, statt (H �E) = 0 das bez�uglich (8.37) hermitesche (bzw.komplex symmetrische) Eigenwertproblemx y (H � E) = 0 (8.45)zu studieren. Um bez�uglich des e�ektiven Hamiltonoperators strenge Auswahlregeln zu gew�ahr-leisten (und damit die Bandbreite der zu diagonalisierenden Matrix so niedrig wie m�oglichzu halten) { mit Ausnahme des Terms xy=(x+ y) sind bereits s�amtliche, den Operator xyHkonstituierenden Terme als Kombination der elementaren Operatoren (8.42 { 8.44) darstell-bar und weisen somit strenge Auswahlregeln in der Sturmschen Basis auf { emp�ehlt sich dieTransformation  (x; y) =: (x+ y)�(x; y): (8.46)Entwickeln wir � nach Sturmschen Funktionen, so skaliert die Wellenfunktion  proportionalxy (x + y) f�ur x ! 0 und y ! 0. Diese Skalierung stellt im Prinzip eine Beschr�ankungder Allgemeinheit dar, da (aufgrund der Coulomb-Wechselwirkung zwischen den geladenenTeilchen) formal lediglich  / x f�ur x ! 0 bzw.  / y f�ur y ! 0 gilt und somit dieWellenfunktion f�ur x ! 0 und y ! 0 formal nur proportional xy skaliert. Zu beachtenist jedoch, da� der Fall x ! 0 und y ! 0 einer Dreifachkollision der Elektronen und desKerns entspricht, die in der Zee-Kon�guration grunds�atzlich vermieden wird. Da folglichdie Wahrscheinlichkeitsdichte der Zee-Wellenfunktion f�ur x ! 0 und y ! 0 extrem starkabnimmt, ist die Ausfaktorisierung eines zus�atzlichen Terms der Form (x+ y) gerechtfertigt.Die Formulierung des Eigenwertproblems des komplex skalierten Floquet-Hamiltonopera-tors lautet damit (x+ y) x y (H0� + k! � E) (x+ y)�k(x; y) +(x+ y) x y V� (x+ y) (�k�1(x; y)� �k+1(x; y)) = 0 (8.47)wobei H0� und V� durch die komplex skalierten OperatorenH0� =  � @2@x2 � 12 @2@y2 + @2@x@y! e�2i� + �� Zx+ y � Zy + 1x� e� i� (8.48)V� = F2! @@y e� i� (8.49)gegeben sind und die Floquet-Komponenten �k nach Sturmschen Funktionen entwickelt wer-den: �k(x; y) = 1Xnx;ny=1C(k)nxny S(�x)nx (x)S(�y)ny (y): (8.50)Die in das unskalierte System zur�ucktransformierte Floquet-Eigenfunktion ist als Funktionder Ortskoordinaten z1, z2 der Elektronen f�ur Singulett- bzw. Triplett-Zust�ande durch t(z1; z2) = 8<: �t(z1 � z2; z2) : z1 > z2��t(z2 � z1; z1) : z1 < z2 (8.51)



8.4. Entwicklung nach Sturmschen Basisfunktionen 95mit �t(x; y) = 1Xk=�1(x+ y) e�2i� �k �x e� i� ; y e� i�� e ik!t (8.52)gegeben. Die Berechnung der Matrixelemente von (8.48, 8.49) wird in Anhang A.2 skizziert.Wie dort gezeigt wird, verf�ugen der e�ektive Hamiltonoperator sowie die darstellende Matrixdes Skalarprodukts xy (x+ y)2 innerhalb der Sturmschen Basis �uber die Auswahlregelnj�nxj � 3; j�ny j � 3; (8.53)wobei nx; ny die in der Entwicklung (8.50) verwendeten Indizes bezeichnen.Die zur numerischen L�osung unvermeidliche N�aherung besteht nun darin, die Gr�o�e derBasis sowie die Anzahl der Floquet-Komponenten zu begrenzen. Konkret beschr�anken wiruns auf die ersten Nx Basisfunktionen in der x-Variable, die ersten Ny Basisfunktionen in dery-Variable, sowie auf Nk Floquet-Komponenten. Aus (8.50) wird damit�k(x; y) = NxXnx=1 NyXny=1C(k)nxny S(�x)nx (x)S(�y)ny (y) (8.54)f�ur k = �k0 : : :k0 mit Nk = 2k0 + 1. In dieser Basis sind der e�ektive Hamiltonoperatorund die darstellende Matrix des Skalarprodukts durch Bandmatrizen gegeben, die sehr d�unnbesetzt sind.Zur Bestimmung der Eigenwerte und Eigenvektoren wird eine e�ziente Implementierungdes Lanczos-Algorithmus mit inverser Iteration verwendet [134, 135]. Bei diesem Verfahrenwird durch iterative Multiplikation der Inversen der zu diagonalisierenden Matrix, ausgehendvon einem beliebigen Startvektor, ein "Krylov\-Unterraum von vergleichsweise handlicherGr�o�e erzeugt, der vorwiegend Eigenvektoren zu Eigenwerten nahe Null enth�alt und inner-halb dessen die betrachtete Matrix e�zient diagonalisiert wird. Durch geeignete Wahl desNullpunkts im Spektrum (der durch Subtraktion von Vielfachen der Einheitsmatrix beliebigverschoben werden kann) gelingt es damit, mit vergleichsweise geringem Aufwand die Eigen-vektoren zu den Eigenwerten in der N�ahe eines beliebig vorgegebenen Referenzwertes bis aufMaschinengenauigkeit zu berechnen.Zur Berechnung der Inversen der komplex symmetrischen Bandmatrix wird diese durcheine Cholesky-Zerlegung [136] als Produkt zweier Dreiecksmatrizen dargestellt. Diese weisendie gleiche Bandstruktur wie die zu diagonalisierende Matrix auf, sind jedoch im Gegensatz zudieser innerhalb des Bandes im allgemeinen voll besetzt. Der gesamte Speicherplatzbedarf istdamit dem Produkt aus L�ange und Bandbreite der zu diagonalisierenden Matrix proportional,skaliert also in unserem Fall quadratisch mit zwei und linear mit einer der drei DimensionenNx, Ny, Nk (was bei der Wahl der Hierarchie der Indizes im Hinblick auf einen m�oglichstgeringen Gesamtspeicherplatzbedarf zu beachten ist).Auf Details zu Fragen der numerischen Konvergenz der Rechnungen wird in Anhang A.3eingegangen.



96 Kapitel 8. Formulierung und numerische L�osung des Eigenwertproblems8.5 Visualisierung der WellenfunktionDa die Wellenfunktion der kollinearen Kon�guration nur von zwei Koordinaten abh�angt,ist es m�oglich, deren Dynamik in nahezu vollst�andiger Weise auf einer zweidimensionalenFl�ache zu visualisieren: Es bietet sich an, die Wahrscheinlichkeitsdichte der Wellenfunkti-on j (z1; z2)j2 als Funktion der Koordinaten z1; z2 der Elektronen aufzutragen. Allerdingserlaubt diese Wahrscheinlichkeitsdichte nur sehr eingeschr�ankte Aussagen in bezug auf dieLokalisierung der Zust�ande auf Strukturen des zugrunde liegenden klassischen Phasenraums.Es ist daher angebracht, neben der Wahrscheinlichkeitsdichte im Kon�gurationsraum auchdie "Husimi-Verteilung\ [99, 137, 138, 139] dieser Zust�ande aufzutragen, die als Projektionder Wellenfunktion auf den Phasenraum interpretiert werden kann.Die Husimi-Dichte einer Wellenfunktion l�a�t sich de�nieren als das Betragsquadrat des�Uberlapps dieser Wellenfunktion mit einem koh�arenten Zustand, der um einen gegebenen Ortq und einen gegebenen Impuls p (bzw. um eine gegebene Wirkung I und einen gegebenenWinkel �) mit minimaler Unsch�arfe zentriert ist. Konkret de�nieren wirQ(q; p) := jh�q;p j ij2 (8.55)mit �q;p(r) = exp��12 !s(r� q)2 � ip r� : (8.56)Q(q; p) gibt ein Ma� f�ur die Wahrscheinlichkeit an, unter Ber�ucksichtigung der Unsch�arferela-tion das System in der N�ahe des Ortes q und des Impulses p zu �nden, und l�a�t sich damit alsDichte der Wellenfunktion  innerhalb des klassischen Phasenraums interpretieren. �Uber den"Squeezing\-Parameter !s, der der Frequenz desjenigen harmonischen Oszillators entspricht,dessen Grundzustandseigenfunktion durch �q=0;p=0 gegeben ist, l�a�t sich die Au
�osung inder Orts- bzw. in der Impulskoordinate einstellen: maximale Ortsau
�osung (bzw. minimaleImpulsau
�osung) erh�alt man f�ur !s ! 1 mit Q(q; p)! j (q)j2, maximale Impulsau
�osung(bzw. minimale Ortsau
�osung) erh�alt man f�ur !s ! 0, mit Q(q; p)! j R dr e ipr (r)j2.F�ur Wellenfunktionen der Zee-Kon�guration mu� die De�nition (8.56) der Husimi-Vertei-lung in Anpassung an die klassische Phasenraumvisualisierung modi�ziert werden. Der klassi-sche Phasenraum wird gem�a� der in Abschnitt 4.1 besprochenen Methode visualisiert, wobeiwir hier, im Gegensatz zu Kap. 4{7, statt der Gesamtenergie die Wirkung bzw. Hauptquan-tenzahl N des inneren Elektrons �xieren. Letztere stellt approximativ eine gute Quantenzahldar (siehe auch Abschnitt 2.3), da Zust�ande zu verschiedenen Quantenzahlen N durch dasexterne Feld nur sehr schwach gemischt werden. Wir tragen also f�ur feste Wirkung N undfesten Ort z2 = 0 des inneren Elektrons bei fester Phase !t des treibenden Feldes den Im-puls gegen den Ort des �au�eren Elektrons auf. Die quantenmechanische Entsprechung dieserPhasenraumvisualisierung ist durch die Husimi-Verteilung der Floquet-Eigenfunktion in den



8.5. Visualisierung der Wellenfunktion 97Koordinaten des �au�eren Elektrons gegeben, wobei das innere Elektron auf z2 � 0 �xiertwird. Wir betrachten also den �Uberlapp der Floquet-Eigenfunktion mit�q;p(z1; z2) = exp��12 !s(z1 � q)2 � ip z1� �(z2 � z02); (8.57)wobei z02 nahe bei Null liegt (die Wahl z02 = 0 ist nicht sinnvoll, da dort die Wellenfunktionverschwindet). F�ur den Squeezing-Parameter !s verwenden wir die intrinsische Frequenzskala!I = 0:3N�3 (2.7) der Frozen-Planet-Kon�guration.F�ur die Berechnung der Wahrscheinlichkeitsdichte sowie der Husimi-Verteilung des mitder Methode der komplexen Skalierung berechneten Floquet-Eigenzustands ist zu beachten,da� das Betragsquadrat der Matrixelemente durch einen (8.34) analogen Ausdruck zu ersetzenist. Bezeichnet j it = 1Xk=�1 e ik!tR(��) j�ki� (8.58)die in das unskalierte System zur�ucktransformierte Floquet-Eigenfunktion zu dem im kom-plex skalierten System berechneten Eigenvektor ( j�ki�)k2ZZ, so ist der �Uberlapp mit einerbeliebigen normierbaren Wellenfunktion j�i unter Auslassung der Vorfaktoren gem�a�jh� j itj2 �! Re�Z dfr ��(r) t(r) Z dfr �(r) �t(r)� (8.59)zu berechnen.  �t l�a�t sich hier als die zu (8.58) adjungierte Wellenfunktion interpretie-ren, bei der aufgrund der De�nition der Adjunktion gem�a� (8.30) die Eigenvektoren deskomplex skalierten Systems j�ki� unver�andert bleiben, die zeitabh�angigen Vorfaktoren die-ser Eigenvektoren hingegen komplex konjugiert werden. Konkret erhalten wir damit f�ur dieWahrscheinlichkeitsdichte der Floquet-Eigenfunktion  t(z1; z2) (8.51) im Kon�gurationsraumj t(z1; z2)j2 �! 8<: Re�t(z1 � z2; z2)��t(z1 � z2; z2) : z1 > z2Re�t(z2 � z1; z1)��t(z2 � z1; z1) : z1 < z2 ; (8.60)sowie f�ur deren �uber (8.55) und (8.57) de�nierte Husimi-Dichtejh�q;p j itj2 �! Re��Z 10 dz1 Z 10 dz2 ��q;p(z1; z2)�t(z1 � z2; z2)�� �Z 10 dz1 Z 10 dz2 �q;p(z1; z2)��t(z1 � z2; z2)��= Re��Z 10 dz1 exp��12 !s(z1 � q)2 + ip z1��t(z1 � z02 ; z02)�� �Z 10 dz1 exp��12 !s(z1 � q)2 � ip z1���t(z1 � z02 ; z02)�� ;(8.61)wobei �t durch (8.52) gegeben ist.F�ur die Berechnung von �t(x; y) gem�a� (8.52) und (8.50) ist zu beachten, da� die Auswer-tung der Sturmschen Funktionen bei komplexen Argumenten im allgemeinen zu numerischen



98 Kapitel 8. Formulierung und numerische L�osung des EigenwertproblemsInstabilit�aten neigt. Es emp�ehlt sich daher [124], die "komplex skalierten\ Sturmschen Funk-tionen Sn(xe� i�) als komplexe Linearkombinationen der "unskalierten\ Sturmschen Funktio-nen Sn(x) darzustellen, was sich mit der Kenntnis der Darstellung des SkalierungsoperatorsR(�) in der Sturmschen Basis analytisch durchf�uhren l�a�t [124], und diese Linearkombinationf�ur die Auswertung von (8.50) zu verwenden.



Kapitel 9Das Spektrum des kollinearenZee-Helium-AtomsBevor wir das Verhalten der kollinearen Frozen-Planet-Kon�guration von Helium im externenelektromagnetischen Feld studieren, sollen in diesem Kapitel zun�achst einmal die wesentlichenEigenschaften der ungest�orten kollinearen Kon�guration er�ortert werden. Im Mittelpunkt un-seres Interesses steht dabei die Frage, inwieweit die regul�are Struktur des dieser Kon�gurationzugrunde liegenden klassischen Phasenraums das quantenmechanische System beein
u�t. InAbschnitt 9.1 und 9.2 werden zun�achst die Energien und Ionisationsbreiten der autoioni-sierenden Zust�ande dieses Systems analysiert. Es wird gezeigt, da� diese Ionisationsbreitenoberhalb der Quantenzahl N = 4 des inneren Elektrons exponentiell mit N abnehmen. Dieseexponentielle Abnahme wird darauf zur�uckgef�uhrt, da� die entsprechenden Quantenzust�andeinnerhalb des Gebiets gebundener regul�arer Bewegung im klassischen Phasenraum lokalisiertsind und nur �uber dynamisches Tunneln an das Ionisationskontinuum gekoppelt sind. DieLokalisierung dieser Zust�ande wird in Abschnitt 9.3 anhand der Phasenraumprojektion bzw.Husimi-Verteilung der entsprechenden Wellenfunktionen explizit dargestellt.9.1 Energien der autoionisierenden Zust�andeAbgesehen von Arbeiten, in denen die Coulomb-Wechselwirkung zwischen den geladenen Teil-chen durch ein \soft core" Potential ersetzt wurde (etwa [140]), wurde die Quantenmechanikdes eindimensionalen Helium-Atoms bislang nur von Bl�umel und Reinhardt untersucht, diesich auf die eZe-Kon�guration (bei der beide Elektronen auf entgegengesetzten Seiten desKerns angeordnet sind) konzentrierten [141, 142]. In diesen Untersuchungen wurde gezeigt,da� das Spektrum des kollinearen Helium-Atoms in der eZe-Kon�guration sich durch typi-sche Signaturen klassisch chaotischer Systeme auszeichnet. So tritt bereits ab der Quanten-zahl N ' 5 ein energetischer �Uberlapp von verschiedenen Zustandsserien auf, der zu einer99



100 Kapitel 9. Das Spektrum des kollinearen Zee-Helium-Atomsbetr�achtlichen Mischung der entsprechenden Zust�ande f�uhrt. Des weiteren wurde ermittelt,da� oberhalb N � 30 ein "Ericson-Regime\ �uberlappender Resonanzen vorliegt [143], in demdie Breiten der autoionisierenden Zust�ande von vergleichbarer Gr�o�e bzw. gr�o�er sind als diemittleren Abst�ande benachbarter Niveaus.Im Gegensatz zu eZe-Helium ist die klassische Dynamik der kollinearen Zee-Kon�gurationvon Helium nahezu vollst�andig regul�ar. Konsequenterweise ergibt sich f�ur dieses System ein"regul�ares\ Quantenspektrum, in dem die autoionisierenden Zust�ande durch nahezu gu-te Quantenzahlen charakterisiert sind: die Quantenzahl N , die der Wirkung der Kepler-Oszillation des inneren Elektrons entspricht, sowie die Quantenzahl n, die sich aus der Quan-tisierung der langsamen Oszillation des �au�eren Elektrons um die Gleichgewichtslage ergibt.Abb. 9.1 zeigt die Energien und Ionisationsbreiten der autoionisierenden Zust�ande f�urN � 10.Wir sehen, da� Zustandsserien zu verschiedenen Quantenzahlen N des inneren Elektrons indiesem Bereich von N deutlich voneinander getrennt sind (und somit eine eindeutige Identi-�zierung der Quantenzahlen der Zust�ande innerhalb dieser Serien erlauben).In der Tat zeigt sich, da� ein energetischer �Uberlapp von Zustandsserien zu verschiedenenQuantenzahlen N erst ab N = 20 auftritt. Dies ergibt sich bereits aus dem e�ektiven Po-tential (2.6), das die langsame Oszillation des �au�eren Elektrons um die Gleichgewichtslagebeschreibt. Wie man Abb. 2.4 entnehmen kann, betr�agt der Wert des e�ektiven Potentialsim Minimum Vmin ' �0:22N�2. Eine untere Grenze f�ur die Energie des niedrigsten Zustandsder Serie zur Quantenzahl N ist damit durchEN;min = � Z22N2 + Vmin Z=2' �2:22N2 (9.1)gegeben. Aus der Forderung, da� diese Energie unterhalb der Ionisationsschwelle zur Quan-tenzahl N � 1 liegen soll, EN;min � E(thr)N�1 = � 2(N � 1)2 ; (9.2)ergibt sich damit die Mindestquantenzahl, ab der Serien zu verschiedenen Quantenzahlen�uberlappen, zu N = 20.Tab. 9.1 vergleicht die Energien der jeweils niedrigsten Zust�ande (n = 1) der Serien zu denQuantenzahlen N = 3 : : :10 mit den Energien der von Richter, Wintgen und Mitarbeitern[17] im dreidimensionalen Helium-Atom berechneten Frozen-Planet-Zust�ande, die sich durchverschwindende Anregungen bez�uglich transversaler Freiheitsgrade auszeichnen und damitdie dreidimensionalen Entsprechungen der Zust�ande des eindimensionalen Systems darstellen.Wir sehen, da� die Energien der eindimensionalen und der dreidimensionalen Frozen-Planet-Zust�ande gut �ubereinstimmen, wobei der relative Unterschied zwischen diesen Energien mitzunehmendem N kleiner wird. Da die Elektronen im dreidimensionalen Kon�gurationsraumeinander in transversaler Richtung ausweichen k�onnen, liegen die Energien der Zust�ande imdreidimensionalen Helium-Atom etwas niedriger als im kollinearen Zee-Helium.
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Abb. 9.1: Spektrum des kollinearen Zee Helium-Atoms. Aufgetragen sind die Energien und Ionisati-onsbreiten der (durch Kreuze gekennzeichneten) autoionisierenden Zust�ande, die den Serien zu denQuantenzahlen (a) N = 2, (b) N = 3, (c) N = 4, (d) N = 5, (e) N = 6, (f) N = 7, (g) N = 8,(h) N = 9 angeh�oren (�=2 bezeichnet die halbe Breite bei halbem Maximum der autoionisieren-den Resonanz (HWHM)). Wir sehen, da� Zustandsserien zu verschiedenen Quantenzahlen N deutlichvoneinander getrennt sind. Die regul�are Abfolge der Zust�ande im Spektrum ist die unmittelbare Mani-festation der Regularit�at der zugrunde liegenden klassischen Dynamik. Zu beachten ist insbesondere,wie die Ionisationsbreiten f�ur N � 4 mit zunehmendem N zunehmen (a{c), oberhalb N = 4 jedochstark abfallen (c{h). Dieses Verhalten der Ionisationsbreiten deutet an, da� ab N ' 4 die autoionisie-renden Zust�ande vollst�andig innerhalb des Gebiets gebundener klassischer Bewegung lokalisiert sind.



102 Kapitel 9. Das Spektrum des kollinearen Zee-Helium-AtomsTab. 9.1: Energien der kollinearen und der dreidimensionalen Frozen-Planet-Zust�ande. E(1D) bezeich-net die Energie des niedrigsten Zustands (n = 1) der Serie zur Quantenzahl N des inneren Elektronsim kollinearen System. E(3D)(1S) und E(3D)(3S) bezeichnen die aus Tab. 1 in [17] entnommenen Ener-gien der Singulett- und Triplett-Zust�ande der dreidimensionalen Frozen-Planet-Kon�guration, die sichdurch verschwindende Anregungen in den kollinearen und transversalen Freiheitsgraden auszeichnen,zur Hauptquantenzahl N des inneren Elektrons. Die Energien sind in atomaren Einheiten gegeben.N E(1D) E(3D)(1S) E(3D)(3S)3 �0:2420 �0:2574 �0:25004 �0:1368 �0:1411 �0:14015 �0:08783 �0:08957 �0:089476 �0:06112 �0:06205 �0:062047 �0:04497 �0:04554 �0:045548 �0:03447 �0:03484 �0:034849 �0:02726 �0:02752 �0:0275210 �0:02210 �0:02228 �0:022289.2 IonisationsbreitenDer Ein
u� der regul�aren Struktur des zugrunde liegenden klassischen Phasenraums ma-nifestiert sich bereits ab der Quantenzahl N = 4 des inneren Elektrons. Dies ergibt sichunmittelbar aus dem Verhalten der Ionisationsbreiten der autoionisierenden Zust�ande alsFunktion von N . Wir sehen in Abb. 9.1, da� diese Breiten f�ur N � 4 mit zunehmendem Nanwachsen, oberhalb dieser Quantenzahl jedoch stark abnehmen.Die Abnahme der Ionisationsbreiten als Funktion von N ist ein unmittelbarer Hinweisdarauf, da� die entsprechenden Zust�ande auf Gebieten gebundener regul�arer Bewegung imklassischen Phasenraum lokalisiert sind. In einem derartigen Gebiet ist eine Kopplung an dasKontinuum nur �uber "dynamisches Tunneln\ [94] durch die regul�aren Phasenraumbarrierender klassischen Dynamik m�oglich (im Fall der kollinearen Frozen-Planet-Kon�guration istdieser Tunnelvorgang mit der Brechung der adiabatischen Invarianz der Wirkung des innerenElektrons assoziiert [17]). �Ahnlich wie bei Systemen mit einem Freiheitsgrad ist die Rate diesesTunnelprozesses proportional exp(�SN), wobei SN die klassische Wirkung darstellt, die dieH�ohe der Barrieren im "verbotenen\ Bereich des klassischen Phasenraums bei der Wirkung Ncharakterisiert. Da diese Wirkung unter einer Skalierungstransformation in gleicher Weise wieN transformiert wird, also SN = NS1 gilt, erhalten wir f�ur die Tunnel- bzw. Ionisationsratedes Quantenzustands, der auf dem gebundenen Gebiet des klassischen Phasenraums lokalisiert
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Abb. 9.2: Ionisationsbreiten (HWHM) der jeweils vier niedrigsten autoionisierenden Zust�ande einerSerie { also der Zust�ande zu den Quantenzahlen (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4 { inAbh�angigkeit der Quantenzahl N . Wir sehen, da� diese Breiten unterhalb N = 4 mit zunehmendemN zunehmen, oberhalb N = 4 jedoch exponentiell abfallen. Diese exponentielle Abnahme ist eineunmittelbare Manifestation der Tatsache, da� die zugeh�origen Eigenfunktionen auf einem Gebiet ge-bundener Bewegung im regul�aren klassischen Phasenraum lokalisiert sind. Eine Kopplung aus diesemGebiet an das Ionisationskontinuum ist nur �uber dynamisches Tunneln durch die regul�aren Barrierendes Phasenraums m�oglich. Die Rate dieses Tunnelprozesses nimmt mit der klassischen Wirkung, diedie H�ohe der Barrieren im verbotenen Bereich des Phasenraums charakterisiert, exponentiell ab undist damit aufgrund des Skalierungsverhaltens der Wirkung (3.11) proportional exp(�NS1). Aus derAbnahme der Ionisationsbreiten oberhalb N = 4 l�a�t sich die skalierte Wirkung S1, die die H�ohe derBarrieren f�ur N = 1 charakterisiert, numerisch bestimmen. Wir erhalten konkret (a) S1 ' 0:90 f�urn = 1, (b) S1 ' 0:80 f�ur n = 2, (c) S1 ' 0:71 f�ur n = 3, (d) S1 ' 0:64 f�ur n = 4.



104 Kapitel 9. Das Spektrum des kollinearen Zee-Helium-AtomsTab. 9.2: Ionisationsbreiten der kollinearen und der dreidimensionalen Frozen-Planet-Zust�ande.�(1D)=2 bezeichnet die halbe Breite bei halbem Maximum der autoionisierenden Resonanz (HWHM)des niedrigsten Zustands (n = 1) der Serie zur Quantenzahl N des inneren Elektrons im kollinea-ren System. (�(3D)=2)(1S) und (�(3D)=2)(3S) bezeichnen die aus Tab. 5 in [17] entnommenen Ioni-sationsbreiten (HWHM) der Singulett- und Triplett-Zust�ande der dreidimensionalen Frozen-Planet-Kon�guration, die sich durch verschwindende Anregungen in den kollinearen und transversalen Frei-heitsgraden auszeichnen, zur Hauptquantenzahl N des inneren Elektrons. Die Ionisationsbreiten sindin atomaren Einheiten gegeben.N �(1D)=2 (�(3D)=2)(1S) (�(3D)=2)(3S)3 1:4 � 10�12 1:1 � 10�5 6:8 � 10�64 4:4 � 10�12 1:2 � 10�5 4:4 � 10�65 2:5 � 10�12 2:0 � 10�6 1:8 � 10�76 1:0 � 10�12 5:6 � 10�7 3:3 � 10�87 3:9 � 10�13 2:0 � 10�7 3:8 � 10�78 1:5 � 10�13 3:7 � 10�7 1:4 � 10�79 6:4 � 10�14 1:2 � 10�6 2:2 � 10�810 2:8 � 10�14 5:3 � 10�7 3:5 � 10�8ist, eine exponentielle Abnahme mit N :� / exp(�NS1): (9.3)Tats�achlich �nden wir eine derartige exponentielle Abnahme der Ionisationsbreiten f�ur dieZust�ande des kollinearen Zee-Helium-Atoms. Dies ist in Abb. 9.2 gezeigt, in der die Breitender niedrigsten vier Zust�ande einer Serie (also der Zust�ande zu n = 1, n = 2, n = 3 undn = 4) in Abh�angigkeit von N aufgetragen sind. Wir erkennen, da� die Abnahme der Breitenoberhalb N = 4 sehr gut durch eine Exponentialfunktion der obigen Form (9.3) beschriebenwerden kann. Aus dieser exponentiellen Abnahme l�a�t sich unmittelbar die skalierte WirkungS1 bestimmen, die die H�ohe der Tunnelbarrieren im Phasenraum f�ur N = 1 charakterisiert.Aus den Breiten des Zustands zu n = 1 erhalten wir konkret S1 ' 0:9.Tab. 9.2 vergleicht die Ionisationsbreiten der jeweils niedrigsten Zust�ande (n = 1) der Se-rien zu den Quantenzahlen N = 3 : : :10 mit den Ionisationsbreiten der entsprechenden drei-dimensionalen Frozen-Planet-Zust�ande [17]. Wir sehen, da� sich die Ionisationsbreiten dereindimensionalen und der dreidimensionalen Zust�ande um etliche Gr�o�enordnungen vonein-ander unterscheiden: W�ahrend die Breiten der Zust�ande des kollinearen Systems im BereichN = 5 : : :10 von 10�12 auf 10�14 a.u. abfallen, liegen die Breiten der entsprechenden Zust�andeim dreidimensionalen Atom f�ur N = 5 : : :10 im Bereich von 10�6 : : :10�8 a.u. (und weisen



9.3. Wellenfunktionen 105dar�uber hinaus starke Fluktuationen auf, die auf die gemischt regul�ar-chaotische Struktur desklassischen Phasenraums der dreidimensionalen Bewegung zur�uckzuf�uhren sind; siehe dazuAbschnitt 10.3). Wir schlie�en daraus, da� im dreidimensionalen System e�ziente Zerfalls-kan�ale existieren, die mit den transversalen Freiheitsgraden der Frozen-Planet-Kon�gurationassoziiert sind { also etwa mit dynamischem Tunneln durch die transversalen Phasenraum-barrieren oder einem im kollinearen System verbotenen �Ubergang des inneren Elektrons aufdie andere Seite des Kerns (der einen Wechsel von einer stabilen Zee-Anordnung zu einerinstabilen eZe-Anordnung induziert; siehe hierzu auch [60]). Die Ionisation der dreidimen-sionalen Frozen-Planet-Zust�ande erfolgt damit o�enbar dominant �uber derartige transversaleFreiheitsgrade.9.3 WellenfunktionenEin genauer Aufschlu� �uber die Lokalisierungseigenschaften der autoionisierenden Zust�andeergibt sich aus dem Studium der Wellenfunktionen dieser Zust�ande. Da das auf den kol-linearen Kon�gurationsraum eingeschr�ankte atomare System nur �uber zwei Freiheitsgradeverf�ugt, lassen sich diese Wellenfunktionen, wie bereits in Abschnitt 8.5 erw�ahnt wurde, innahezu vollst�andiger Weise auf einer zweidimensionalen Fl�ache visualisieren. Abb. 9.3 zeigtdie Wahrscheinlichkeitsdichte der drei niedrigsten Zust�ande der Serie zur Quantenzahl N = 8als Funktion der Koordinaten der Elektronen. Entsprechend der Tatsache, da� die Bewe-gungen der Elektronen in der klassischen Dynamik approximativ separieren, l�a�t sich dieseDichteverteilung in guter N�aherung als Produkt zweier unabh�angiger Ein-Elektron-Dichtendarstellen. Entlang der Koordinate des inneren Elektrons erhalten wir die Struktur einerwassersto�artigen Eigenfunktion zur Knotenzahl nr = N � 1 = 7. In der Koordinate des�au�eren Elektrons ist die Wellenfunktion durch die Form des e�ektiven adiabatischen Poten-tials (Abb. 9.3d) gepr�agt; die Zust�ande mit n = 1, n = 2 und n = 3 in Abb. 9.3a{c entsprechendem Grundzustand, dem ersten angeregten Zustand, sowie dem zweiten angeregten Zustanddes e�ektiven Potentials zur Wirkung N = 8 des inneren Elektrons.Der unmittelbare Zusammenhang zwischen der quantenmechanischen Wellenfunktion unddem zugrunde liegenden klassischen Phasenraum l�a�t sich anhand der in Abschnitt 8.5 be-schriebenen Phasenraumprojektion bzw. Husimi-Verteilung dieser Wellenfunktion herstellen.Dazu berechnen wir den �Uberlapp dieser Wellenfunktion mit einem um einen gegebenen Ortz und einen gegebenen Impuls pz zentrierten Gau�schen Wellenpaket in der Koordinate des�au�eren Elektrons, wobei die Koordinate des inneren Elektrons auf einen festen Wert na-he z2 = 0 �xiert ist. Auf diese Weise erhalten wir das quantenmechanische Analogon zurVisualisierung des klassischen Phasenraums; diese wird gem�a� der in Abschnitt 4.1 beschrie-benen Methode des doppelten Poincar�e-Schnitts durchgef�uhrt, wobei wir hier, im Gegensatzzu Kap. 4{7, die Wirkung N des inneren Elektrons �xieren. Abb. 9.4 zeigt die Phasenraum-
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Abb. 9.3: Wahrscheinlichkeitsdichte der drei niedrigsten Zust�ande zur Quantenzahl N = 8 im Kon-�gurationsraum. Die Abbildungen (a { c) zeigen Konturplots der Wahrscheinlichkeitsdichte (mit 15�aquidistanten Niveaus) in Abh�angigkeit der Koordinaten der Elektronen f�ur die Zust�ande (a) n = 1,(b) n = 2, (c) n = 3. Wir sehen, da� die Dichteverteilung in guter N�aherung als Produkt zweierunabh�angiger Ein-Elektron-Dichten dargestellt werden kann. W�ahrend in der Koordinate des innerenElektrons die Wahrscheinlichkeitsdichte n�aherungsweise durch die Struktur einer wassersto�artigenEigenfunktion zur Knotenzahl nr = N �1 = 7 gegeben ist, entsprechen in der Koordinate des �au�erenElektrons die Zust�ande verschiedenen Anregungen innerhalb des e�ektiven adiabatischen Potentials,das in (d) gezeigt ist: n�amlich dem Grundzustand (a), dem ersten (b) und dem zweiten angeregtenZustand (c) des e�ektiven Potentials zur Quantenzahl N = 8.
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Abb. 9.4: (a { c) Husimi-Verteilungen der drei niedrigsten Zust�ande der Serie zur Quantenzahl N = 8.Die Abbildungen (a { c) zeigen Konturplots der Husimi-Verteilung (mit 15 �aquidistanten Niveaus) inAbh�angigkeit der Phasenraumvariablen des �au�eren Elektrons f�ur die Zust�ande (a) n = 1, (b) n = 2,(c) n = 3. Das Quadrat unten links in (a) markiert die Gr�o�e von 2��h. (d) Poincar�e-Schnitt des klas-sischen Phasenraums. Man beachte die ausgepr�agte Lokalisierung der quantenmechanischen Zust�andeentlang von regul�aren Tori der klassischen Dynamik, die unterschiedlichen Anregungen innerhalb dese�ektiven Potentials entsprechen. W�ahrend der Zustand zu n = 1 im Zentrum des regul�aren Ge-biets (bzw. im Minimum des e�ektiven Potentials) lokalisiert ist, sind die Zust�ande zu n = 2 undn = 3 auf Tori lokalisiert, die bei z1 ' 4 (n = 2) bzw. z1 ' 5 (n = 3) die pz1 = 0 Achse in derPoincar�e-Schnitt
�ache schneiden.



108 Kapitel 9. Das Spektrum des kollinearen Zee-Helium-Atomsprojektionen der drei niedrigsten Zust�ande der Serie zur Quantenzahl N = 8. Deutlich l�a�tsich erkennen, da� die quantenmechanischen Eigenfunktionen entlang regul�arer Tori der ge-bundenen klassischen Dynamik der Frozen-Planet-Kon�guration lokalisiert sind.Das Verhalten der Ionisationsbreiten als Funktion von N (Abb. 9.2) deutet an, da� ei-ne derartige Lokalisierung auf den gebundenen Strukturen des klassischen Phasenraums f�urZust�ande mit Quantenzahlen N � 4 vorliegt. Dies zeigt sich tats�achlich in Abb. 9.5, in der wirdie Husimi-Dichten der jeweils zwei niedrigsten Zust�ande der Serien zu den QuantenzahlenN = 2, N = 3, N = 4 auftragen. F�ur N = 2 (Abb. 9.2a, b) weisen die Zust�ande zwar eineerh�ohte Aufenthaltswahrscheinlichkeit innerhalb des Phasenraumgebiets gebundener Bewe-gung auf, sind jedoch nicht vollst�andig auf dieses Gebiet beschr�ankt. Insbesondere h�oherange-regte Zust�ande dieser Serie weisen einen erheblichen �Uberlapp mit dem Gebiet ungebundenerBewegung auf (Abb. 9.2b). Eine vollst�andige Lokalisierung der Zust�ande entlang der Tori dergebundenen klassischen Dynamik liegt erst bei bzw. oberhalb N = 4 vor. Wie man durchVergleich von Abb. 9.5 und Abb. 9.4 erkennt, wird diese Lokalisierung mit zunehmendemN immer ausgepr�agter. Dies entspricht der Tatsache, da� die e�ektive, auf die Struktur desklassischen Phasenraums bezogene Gr�o�e des Wirkungsquantums �h mit zunehmendem Nproportional 1=N abnimmt, wodurch, entsprechend der semiklassischen Quantisierungsregel(6.1), die Zahl der Quantenzust�ande innerhalb eines gegebenen Phasenraumgebiets zunimmtbzw. die Ausdehnung eines einzelnen Quantenzustands bezogen auf dieses Phasenraumgebietkleiner wird.Bei der Interpretation der Husimi-Verteilung als Dichte des Zustands im klassischen Pha-senraum ist generell Vorsicht geboten. So scheint die Phasenraumprojektion des Zustandsmit den Quantenzahlen N = 8, n = 3 zu suggerieren, da� dieser vollst�andig in der Umgebungdes �au�eren Umkehrpunkts des �au�eren Elektrons lokalisiert ist (Abb. 9.4c). Wie man derDichteverteilung im Kon�gurationsraum entnehmen kann (Abb. 9.3c), ist die Wellenfunk-tion dieses Zustands tats�achlich auf den gesamten Bereich des klassischen Orbits verteilt.Da jedoch das Maximum der Dichte am inneren Umkehrpunkt relativ schmal ist { was dar-auf zur�uckzuf�uhren ist, da� die klassische Dynamik in der Umgebung dieses Umkehrpunktsdurch eine relativ gro�e Variation des Impulses gekennzeichnet ist { ist der �Uberlapp derWellenfunktion mit einem um diesen Umkehrpunkt zentrierten Gau�schen Wellenpaket, des-sen Squeezing-Parameter !s der Dynamik in der Umgebung des Minimums des e�ektivenPotentials angepa�t ist (und dessen Breite im Ortsraum in etwa der Breite des niedrigstenZustands dieser Serie entspricht), sehr klein im Gegensatz zum �Uberlapp mit dem um den�au�eren Umkehrpunkt zentrierten Wellenpaket und liefert damit praktisch keinen Beitragzur Husimi-Verteilung dieser Wellenfunktion. Tats�achlich l�a�t sich durch eine Erh�ohung derSqueezing-Frequenz !s (also durch den �Uberlapp der Wellenfunktion mit einem im Ortsraumschmaleren Wellenpaket) die Verteilung der Wellenfunktion in der Umgebung des inneren
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Abb. 9.5: Husimi-Verteilungen der zwei niedrigsten Zust�ande n = 1 (a, c, e) und n = 2 (b, d, f) zuden Quantenzahlen N = 2 (a, b), N = 3 (c, d) und N = 4 (e, f). Die gestrichelte Linie markiertdie Separatrix zwischen der gebundenen und der ungebundenen Dynamik im klassischen Phasenraum.Die Quadrate unten links in (a, c, e) markieren die Gr�o�e von 2��h. Wir sehen, da� f�ur N = 2die Dichteverteilungen der autoionisierenden Zust�ande nicht vollst�andig auf das Gebiet gebundenerklassischer Bewegung beschr�ankt ist. Insbesondere h�oherangeregte Zust�ande dieser Serie weisen einenerheblichen �Uberlapp mit demGebiet ungebundener Bewegung auf (b). Eine vollst�andige Lokalisierungder Zust�ande innerhalb des Gebiets gebundener Bewegung setzt erst oberhalbN = 3 ein. Entsprechendder Tatsache, da� die e�ektive, auf die Struktur des klassischen Phasenraums bezogene Gr�o�e desWirkungsquantums mit zunehmendem N proportional zu 1=N abnimmt, wird diese Lokalisierungzunehmend ausgepr�agter mit zunehmendemN (vgl. hierzu auch die Husimi-Verteilungen der Zust�andezu N = 8 in Abb.9.4).



110 Kapitel 9. Das Spektrum des kollinearen Zee-Helium-AtomsUmkehrpunkts besser hervorheben. Dies zeigt Abb. 9.6, in der die Phasenraumprojektiondes Zustands mit den Quantenzahlen N = 8, n = 3 f�ur verschiedene Werte der Squeezing-Frequenz !s aufgetragen sind.
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Abb. 9.6: Husimi-Verteilungen des Zustands zu N = 8 und n = 3 f�ur verschiedene Werte der Squeezing-Frequenz !s (gem�a� (8.56)). (a) !s = 0:05N�3; (b) !s = 0:1N�3; (c) !s = 0:2N�3; (d) !s = 0:5N�3;(e) !s = 1N�3; (f) !s = 2N�3. Wie wir sehen, bestimmt die Wahl von !s die Unsch�arfe der Husimi-Verteilung in Ort und Impuls: Maximale Au
�osung in der Impulskoordinate p bei minimaler Au
�osungin der Ortskoordinate x erhalten wir f�ur kleine !s (a,b), maximale Ortsau
�osung bei minimaler Impul-sau
�osung erhalten wir f�ur gro�e !s (e,f). Der �Ubergang von einer "impulsaufgel�osten\ zu einer "orts-aufgel�osten\ Husimi-Verteilung �ndet in der Umgebung der intrinsischen Frequenzskala !I ' 0:3N�3statt (c, d). In der Umgebung dieser Frequenz l�a�t sich die Lokalisierung des Zustands auf Strukturendes zugrunde liegenden klassischen Phasenraums besonders gut visualisieren.



Kapitel 10Das kollineare Helium-Atom unterexternem AntriebNachdem in den vorangegangenen Kapitel die wesentlichen Eigenschaften der Eigenzust�andedes ungest�orten kollinearen Systems aufgezeigt wurden, ist in diesem Kapitel zu untersuchen,wie sich die kollineare Kon�guration unter Ein
u� eines periodischen Antriebs verh�alt. Da-bei interessieren wir uns insbesondere f�ur die Charakteristika von Eigenzust�anden, die mitregul�aren Inseln des klassischen Phasenraums der getriebenen Kon�guration assoziiert sind.Um einen direkten Vergleich zwischen station�aren Zust�anden, die auf der intrinsischen Insellokalisiert sind, und nichtdispergierenden Zwei-Elektronen-Wellenpaketen, die auf der feldin-duzierten Resonanzinsel lokalisiert sind, zu erm�oglichen, w�ahlen wir die Feldparameter F und! so, da� im klassischen Phasenraum sowohl die intrinsische Insel als auch die feldinduzierte1:1 Resonanzinsel in gut ausgepr�agter Weise vertreten sind. Dies ist, wie Abb. 10.1 zeigt, bei! = 0:2 und F = 0:005 f�ur N = 1 der Fall. Bei diesen Feldparametern sind beide Inselnso gro�, da� Quantenzust�ande, die auf ihnen lokalisiert sind, f�ur Quantenzahlen N < 10 imSpektrum auftreten. Konkret erhalten wir aus den Querschnitts
�achen dieser Inseln �uber dasEBK-Kriterium (Abschnitt 6.2) die Mindestquantenzahlen N ' 6 f�ur Quantenzust�ande aufder intrinsischen Insel sowie N ' 7 f�ur Quantenzust�ande auf der 1:1 Resonanzinsel.Damit die klassische Phasenraumstruktur f�ur alle betrachteten Quantenzahlen N gleichbleibt, ist es erforderlich, die Feldparameter entsprechend der Skalierungsgesetze (3.5 { 3.10)gem�a� ! = 0:2N�3; (10.1)F = 0:005N�4 (10.2)zu skalieren. Es emp�ehlt sich, "skalierte\ Feldparameter gem�a�!0 := !N3; (10.3)F0 := F N4 (10.4)112
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Abb. 10.1: Poincar�e-Schnitt des klassischen, kollinearen Phasenraums f�ur ! = 0:2, F = 0:005 zu denFeldphasen (a) !t = 0, (b) !t = �=2, (c) !t = �. Im Gegensatz zu den Poincar�e-Schnitten in Kap. 4{7wird hier statt der Gesamtenergie die Wirkung des inneren Elektrons gem�a� N = 1 �xiert. Bei diesenFeldparametern sind sowohl die intrinsische Insel als auch die feldinduzierte 1:1 Resonanzinsel so gro�,da� im Spektrum ab Quantenzahlen N = 5 des inneren Elektrons sowohl station�are Quantenzust�andeauf der intrinsischen Insel als auch nichtdispergierende Wellenpakete auf der 1:1 Resonanzinsel auf-treten (in guter �Ubereinstimmung mit dem EBK-Kriterium, das die Mindestquantenzahlen Nmin ' 6f�ur die intrinsische und Nmin ' 7 f�ur die 1:1 Resonanzinsel vorhersagt).



114 Kapitel 10. Das kollineare Helium-Atom unter externem Antriebeinzuf�uhren, die, in Abh�angigkeit der Quantenzahl N , die Feldparameter !, F auf die zu-grunde liegende klassische Phasenraumstruktur beziehen. F�ur jede Serie zur QuantenzahlN betrachten wir damit einen externen Antrieb der skalierten Frequenz !0 = 0:2 und derskalierten Feldamplitude F0 = 0:005.Um zu untersuchen, inwieweit station�are Zust�ande auf der intrinsischen Insel und nicht-dispergierende Wellenpakete auf der 1:1 Resonanzinsel durch die feldinduzierte Kopplungvon Zust�anden innerhalb einer Serie des ungest�orten Systems erzeugt werden (es zeigt sich,da� die Kopplungen zwischen Zust�anden verschiedener Serien bei den betrachteten Feldpa-rametern und Quantenzahlen keine Rolle spielen), betrachten wir in Abschnitt 10.1 zun�achstdie Entwicklung dieser Floquet-Zust�ande in Abh�angigkeit der Feldamplitude. Im Anschlu�daran analysieren wir die Lokalisierungseigenschaften (Abschnitt 10.2) und Lebensdauern(Abschnitt 10.3) der mit den regul�aren Inseln assoziierten Zust�ande. Schlie�lich untersuchenwir in Abschnitt 10.4, inwieweit durch das Anlegen eines zus�atzlichen, statischen elektrischenFeldes, dessen Feldst�arke Fst in dem f�ur die Stabilisierung der dreidimensionalen Kon�gura-tion relevanten Bereich 0 < Fst < F=2 liegt (siehe Kap. 7), die Eigenschaften der auf denregul�aren Inseln lokalisierten Zust�ande modi�ziert werden.10.1 Floquet-Zust�ande in Abh�angigkeit der FeldamplitudeBei der Untersuchung der Entwicklung station�arer Zust�ande und nichtdispergierender Wel-lenpakete aus Eigenzust�anden des ungest�orte Systems konzentrieren wir uns auf das Floquet-Spektrum der Serie zur Quantenzahl N = 8. Abb. 10.2 zeigt dieses Floquet-Spektrum f�ur! = 0:2N�3 = 0:0003906 innerhalb der Floquet-Zone zwischen E = �0:0323906 undE = �0:032 im Grenzfall verschwindender Feldamplitude. Bei F = 0 entsprechen die Floquet-Zust�ande den Eigenzust�anden des ungest�orten atomaren Systems, deren Energien durch Ad-dition bzw. Subtraktion eines ganzzahligen Vielfachen der Frequenz ! in die Floquet-Zoneverschoben sind. Wird die externe St�orung eingeschaltet, so tritt eine starke feldinduzierteWechselwirkung vor allem zwischen denjenigen Zust�anden auf, die innerhalb der Floquet-Zonerelativ nahe nebeneinander liegen (also nahezu resonant gekoppelt sind) und im Phasenraumstark �uberlappende Dichteverteilungen aufweisen (also durch relativ nahe benachbarte Quan-tenzahlen gekennzeichnet sind). Dies tri�t insbesondere auf die Zust�ande zu den Quantenzah-len n = 2 und n = 3 zu, die durch das externe Feld in Form eines Ein-Photonen-�Ubergangsnahezu resonant gekoppelt sind. Es ist zu erwarten, da� aus der Mischung dieser beidenZust�ande das nichtdispergierende Wellenpaket hervorgeht, das auf der 1:1 Resonanzinsel lo-kalisiert ist. Entsprechend erkennt man durch Vergleich von Abb. 9.4 und Abb. 10.1a, da�die Zust�ande zu n = 2 und n = 3 entlang regul�arer Tori in dem Phasenraumgebiet lokalisiertsind, in dem sich bei nichtverschwindender St�orung die 1:1 Resonanzinsel be�ndet. F�ur denZustand zu n = 1 hingegen ist zu erwarten, da� er bei Einschalten des Feldes in einen auf



10.1. Floquet-Zust�ande in Abh�angigkeit der Feldamplitude 115der intrinsischen Insel lokalisierten, station�aren Zustand �ubergeht.
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Abb. 10.2: Energien und Ionisationsbreiten (HWHM) der Floquet-Zust�ande zur Quantenzahl N = 8im Grenzfall verschwindender Feldamplitude F = 0. Die Zust�ande entsprechen den autoionisierendenZust�anden des ungest�orten Systems zu N = 8, die durch Addition bzw. Subtraktion ganzzahliger Viel-facher von ! = 0:0003906 in die Floquet-Zone zwischen E = �0:0323906 und E = �0:032 verschobensind (vgl. Abb. 9.1g). Die ersten zehn Zust�ande dieser Serie sind durch Nummern gekennzeichnet. BeiEinschalten des externen Feldes tritt eine starke Kopplung vor allem zwischen denjenigen Zust�andenauf, die in der Floquet-Zone energetisch nahe nebeneinander liegen (also nahezu resonant gekoppeltsind) und deren Dichteverteilungen im Phasenraum stark �uberlappen (die also durch relativ nahebenachbarte Quantenzahlen n gekennzeichnet sind). Wie wir sehen, tri�t dies insbesondere auf dieZust�ande zu n = 2 und n = 3 zu. In der Tat ergibt sich aus der feldinduzierten Kopplung dieserZust�ande das mit der 1:1 Resonanz assoziierte nichtdispergierende Zwei-Elektronen-Wellenpaket.Abb. 10.3 zeigt die Entwicklung des Floquet-Spektrums zur Quantenzahl N = 8 alsFunktion der Feldamplitude, die in �aquidistanten Schritten der L�ange �F0 = 0:0005 vonF0 = 0 bis F0 = 0:01 variiert ist. Aufgetragen sind in Abb. 10.3a2{d2 die Energieniveausin der Umgebung derjenigen (durch Kreise gekennzeichneten) Floquet-Zust�ande, die aus denungest�orten Zust�anden zu den Quantenzahlen n = 1 (Abb. 10.3a2), n = 2 (Abb. 10.3b2),n = 3 (Abb. 10.3c2) und n = 4 (Abb. 10.3d2) hervorgehen. Zus�atzlich zeigen Abb 10.3a1{d1die Ionisationsbreiten dieser Floquet-Zust�ande. Um die �Ubersichtlichkeit der Abbildung zugew�ahrleisten, sind im Floquet-Spektrum lediglich diejenigen Niveaus dargestellt, die autoio-nisierenden Resonanzzust�anden entsprechen (d.h. nicht dem Kontinuum angeh�oren).Wir sehen, da� unter dem Ein
u� des �au�eren Feldes eine dynamische Verschiebung der
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Abb. 10.3: Entwicklung der Floquet-Zust�ande n = 1, n = 2, n = 3, n = 4 zur Quantenzahl N = 8.Gezeigt sind in (a2, b2, c2, d2) Ausschnitte des Floquet-Spektrums, zentriert um die (durch Kreisegekennzeichneten) Floquet-Zust�ande, die die diabatische Fortsetzung der Zust�ande zu n = 1 (a), n = 2(b), n = 3 (c) und n = 4 (d) darstellen. Aufgetragen sind jeweils die Quasienergien � in Abh�angigkeitder Feldamplitude F bei der Frequenz !0 = 0:2. Die Ionisationsbreiten (HWHM) dieser Floquet-Zust�ande sind entsprechend in (a1, b1, c1, d1) aufgetragen. Wir sehen, da� diese Ionisationsbreiteninsbesondere bei vermiedenen Kreuzungen zunehmen, bei denen diese Zust�ande mit h�oherangeregtenZust�anden der gleichen Serie resonant gekoppelt sind. Au�allend ist dar�uber hinaus die starke Ni-veauverschiebung des Zustands zu n = 2 (b). In der Tat entspricht dieser Zustand dem auf der 1:1Resonanzinsel lokalisierten, nichtdispergierenden Wellenpaket.



10.1. Floquet-Zust�ande in Abh�angigkeit der Feldamplitude 117Niveaus im Floquet-Spektrum statt�ndet. Besonders ausgepr�agt ist diese Niveauverschiebungbei dem Floquet-Zustand, der aus dem Eigenzustand zur Quantenzahl n = 2 des ungest�ortenSystems hervorgeht. Da die �Anderung der Energie mit der Amplitude des treibenden Feldesdem dynamischen Dipolmoment der atomaren Kon�guration entspricht, eine starke �Anderungder Energie mit F also auf ein ausgepr�agtes Oszillationsverhalten der Wellenfunktion imKon�gurationsraum hinweist, ist daraus bereits zu erkennen, da� dieser Floquet-Zustanddem nichtdispergierenden Wellenpaket entspricht, das auf der 1:1 Resonanzinsel lokalisiertist. Dies ergibt sich auch aus der Tatsache, da� die Energie dieses Zustands, im Gegensatzzu den Energien der Zust�ande zu n = 1, n = 3 und n = 4, mit zunehmendem F zunimmt:Wie wir in Abb. 4.3 gesehen haben (bzw. in Abb. 10.11 sehen werden), verschiebt sich die 1:1Resonanzinsel mit zunehmender Feldamplitude ein wenig zu h�oheren Energien im e�ektivenPotential. Die Energie eines auf dieser Insel lokalisierten Zustands sollte daher ebenfalls mitzunehmendem F anwachsen.Die Zuordnung der Floquet-Zust�ande zu Quantenzahlen des ungest�orten Systems ergibtsich zum einen unmittelbar aus der Entwicklung der Energieniveaus als Funktion von F ,zum anderen l�a�t sie sich anhand der �Uberlappmatrixelemente dieser Floquet-Zust�ande mitZust�anden des ungest�orten Systems rechtfertigen. Die Betragsquadrate dieser �Uberlappma-trixelemente sind f�ur die Floquet-Zust�ande zu den Quantenzahlen n = 1, n = 2, n = 3 undn = 4 in Abb. 10.4 dargestellt. Wir sehen, da� f�ur niedrige Feldamplituden F0 < 0:005 dieseFloquet-Zust�ande einen wesentlichen �Uberlapp haupts�achlich mit denjenigen Eigenzust�andendes ungest�orten Systems aufweisen, aus denen sie im Grenzfall verschwindender Feldampli-tude hervorgehen.Eine starke Beimischung anderer Komponenten des ungest�orten Systems liegt vor allemin der Umgebung "vermiedener Kreuzungen\ (\avoided crossings") vor [144, 145, 146]. DieseKreuzungen treten stets dann auf, wenn zwei atomare Zust�ande durch das externe Feldresonant gekoppelt werden. Da eine nichtverschwindende, wenn auch kleine Wechselwirkungzwischen diesen Zust�anden deren energetische Entartung verhindert, kommt es bei derartigenresonanten Kopplungen zu einer "Absto�ung\ der Niveaus, die bewirkt, da� diese beidenZust�ande an der Kreuzung kontinuierlich ineinander �ubergehen. Dies ist in Abb. 10.5 gezeigt,in der die vermiedene Kreuzung zwischen dem Zustand zu n = 4 und dem Floquet-Zustand,der den Zustand zu n = 19 des ungest�orten Systems fortsetzt, bei F0 ' 0:006 vergr�o�ertdargestellt ist. Wir sehen, da� der Zustand zu n = 4 bei Erh�ohung von F0 kontinuierlichin den Zweig �ubergeht, der der geradlinigen Fortsetzung des Niveaus zu n = 19 entspricht,w�ahrend der Zustand zu n = 19 kontinuierlich in die geradlinige Fortsetzung des Zustandszu n = 4 �ubergeht. Durch eine adiabatische Variation der Feldamplitude { d.h. durch eineVariation von F , die im Vergleich zu der Zeitskala, die dem inversen Niveauabstand dervermiedenen Kreuzung entspricht, langsam abl�auft { l�a�t sich also der Floquet-Zustand zu
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Abb. 10.4: �Uberlapp P der Floquet-Zust�ande zu n = 1 (a), n = 2 (b), n = 3 (c) und n = 4 (d)mit Zust�anden des ungest�orten Systems zur Quantenzahl N = 8 (s. Abb. 10.3). Aufgetragen sind inAbh�angigkeit der Feldamplitude F die Betragsquadrate der �Uberlappmatrixelemente dieser Floquet-Zust�ande mit den Zust�anden zu n = 1(
), n = 2(2), n = 3(3), n = 4(4), n = 5(�), n = 6(5), n =7(�), n = 8(�), n = 9(+), n = 10(?) des ungest�orten Systems. (Betragsquadrate, die kleiner als 0:01sind, wurden nicht aufgetragen.) Wir sehen, da� diese Floquet-Zust�ande f�ur niedrige FeldamplitudenF0 < 0:005 einen wesentlichen �Uberlapp haupts�achlich mit den Zust�anden des ungest�orten Systemsaufweisen, die sie im Spektrum diabatisch fortsetzen. Eine starke Beimischung anderer Komponentendes ungest�orten Systems liegt vor allem in der Umgebung vermiedener Kreuzungen vor (in (a) beiF0 ' 0:0095 sowie in (d) bei F0 ' 0:006, vgl. dazu Abb. 10.3a und d). Dar�uber hinaus tritt eine relativstarke Mischung auch zwischen den nahezu resonant gekoppelten Zust�anden n = 2 und n = 3 auf (bund c), die sich bereits bei relativ niedrigen Feldamplituden bemerkbar macht.
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Abb. 10.5: Vergr�o�erte Darstellung der vermiedenen Kreuzung zwischen dem Zustand n = 4 unddem Zustand n = 19 aus Abb. 10.3d. Wir sehen, da� der Zustand zu n = 4 (oberer linker bzw.unterer rechter Zweig der Kreuzung) bei adiabatischer Variation von F kontinuierlich in den Zustandzu n = 19 (unterer linker bzw. oberer rechter Zweig der Kreuzung) �ubergeht.Die von uns gew�ahlte Notation entspricht einem diabatischen Einschalten des Feldes, d.h.einem Einschaltvorgang, der langsam abl�auft im Vergleich zur Zeitskala, die dem inversenmittleren Abstand benachbarter Niveaus entspricht, jedoch schnell ist im Vergleich zum in-versen Niveauabstand bei vermiedenen Kreuzungen. Ein derartiger Einschaltvorgang sorgtdaf�ur, da� das System der Entwicklung des Floquet-Niveaus zwischen vermiedenen Kreuzun-gen folgt, die Kreuzungen selbst jedoch "�uberspringt\, d.h. in den Zweig �ubergeht, der dasNiveau jenseits der Kreuzung geradlinig fortsetzt. Wie wir anhand der �Uberlappmatrixele-mente in Abb. 10.4 sehen, setzt eine derartige Notation die Floquet-Zust�ande in sinnvollerWeise zu den Eigenzust�anden des ungest�orten Systems in Beziehung. In der unmittelbarenUmgebung der vermiedenen Kreuzungen ist diese Notation jedoch uneindeutig, da nicht ge-nau festgelegt werden kann, bei welcher Feldamplitude die Zuordnung des Floquet-Zustandszu einer Quantenzahl n vom unteren in den oberen Zweig der Kreuzung (bzw. umgekehrt)wechselt.Das Auftreten vermiedener Kreuzungen manifestiert sich auch in den Ionisationsbrei-ten. Wie wir in Abb. 10.3a1{d1 sehen, nehmen f�ur die Zust�ande zu den Quantenzahlenn = 1; 2; 3; 4 die Ionisationsbreiten generell zu mit zunehmendem F . Lokale, signi�kanteErh�ohungen der Breiten treten in der Umgebung von vermiedenen Kreuzungen mit Zust�anden



120 Kapitel 10. Das kollineare Helium-Atom unter externem Antriebauf, die h�oheren Quantenzahlen innerhalb der Serie zu N = 8 entsprechen und daher im all-gemeinen durch h�ohere Ionisationsbreiten gekennzeichnet sind. Im atomaren System l�a�tsich eine derartige lokale Erh�ohung der Ionisationsrate als Verst�arkung der Ionisation durchresonante Multiphotonenkopplung (REMPI) interpretieren (siehe etwa [147]).Eine starke Mischung zwischen Zust�anden des ungest�orten Systems tritt nicht nur auf,wenn die entsprechenden Floquet-Niveaus energetisch nahezu entartet sind, sondern vor al-lem auch dann, wenn diese Zust�ande durch Dichteverteilungen gekennzeichnet sind, die imPhasenraum einen relativ gro�en gemeinsamen �Uberlapp aufweisen (was auf Zust�ande be-nachbarter Quantenzahlen n zutri�t), bzw. wenn diese Zust�ande durch eine geringe Zahl vonPhotonen aneinander gekoppelt sind (was auf die Zust�ande zu niedrigen n zutri�t). Dement-sprechend �nden wir, da� die Floquet-Zust�ande zu n = 1; 2; 3; 4 au�erhalb von vermiedenenKreuzungen haupts�achlich aus der Mischung derjenigen Komponenten gebildet werden, dieden niedrigsten Zust�anden der Serie des ungest�orten Systems entsprechen. Besonders ausge-pr�agt ist die Mischung zwischen den nahezu resonant gekoppelten Zust�anden zu n = 2 undn = 3, die sich bereits bei relativ niedrigen Feldamplituden bemerkbar macht (Abb. 10.4b,c).Eine prinzipiell �ahnliche Situation liegt auch bei Serien zu anderen Quantenzahlen N vor.Die Abbildungen 10.6, 10.7 zeigen die Entwicklung der Energien und Breiten der Floquet-Zust�ande zu n = 1; 2; 3; 4 f�ur die Serien zu den Quantenzahlen N = 9 (Abb. 10.6) und N = 10(Abb. 10.7) (die Frequenz betr�agt jeweils !0 = 0:2). Wir sehen, da� f�ur jede dieser Quanten-zahlen ein Floquet-Zustand existiert, der sich durch ein starkes Anwachsen der Energie alsFunktion der Feldamplitude auszeichnet. Dieser Zustand entspricht dem nichtdispergierendenWellenpaket, das auf der 1:1 Resonanzinsel lokalisiert ist.Die �Uberlappmatrixelemente dieser Wellenpaketzust�ande mit den Eigenzust�anden desungest�orten Systems sind in Abb. 10.8 dargestellt. Wie f�ur N = 8 wird dieser Zustandauch f�ur N = 7, N = 9 und N = 10 durch Mischungen verschiedener Komponenten desungest�orten Systems gebildet, insbesondere der Komponenten zu n = 2 und n = 3 sowie, f�urN = 10, auch der zu n = 4. Dabei wird mit zunehmendem N , entsprechend der zunehmendenAu
�osung der klassischen Phasenraumstruktur durch die Quantendynamik, die Quantenzahlder dominierenden Komponente immer gr�o�er. W�ahrend f�ur N = 7 der Wellenpaketzustandhaupts�achlich durch den Zustand n = 2 gebildet wird, setzt er sich f�ur N = 9 zu nahezugleichen Teilen aus den Zust�anden zu n = 2 und n = 3 zusammen. F�ur N = 10 dominiertdie Komponente n = 3; das nichtdispergierende Wellenpaket entspricht hier der diabatischenFortsetzung des Zustands n = 3 des ungest�orten Systems.
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Abb. 10.6: Entwicklung der Floquet-Zust�ande n = 1, n = 2, n = 3, n = 4 zur Quantenzahl N = 9.Gezeigt sind in (a2, b2, c2, d2) Ausschnitte des Floquet-Spektrums, zentriert um die (durch Krei-se gekennzeichneten) Floquet-Zust�ande, die die diabatische Fortsetzung der Zust�ande zu n = 1 (a),n = 2 (b), n = 3 (c) und n = 4 (d) darstellen. Aufgetragen sind jeweils die Quasienergien � inAbh�angigkeit der Feldamplitude F bei der Frequenz !0 = 0:2. Die Ionisationsbreiten (HWHM) dieserFloquet-Zust�ande sind in (a1, b1, c1, d1) aufgetragen. Wie auch bei N = 8 (Abb. 10.3) entspricht derFloquet-Zustand zu n = 2 dem auf der 1:1 Resonanzinsel lokalisierten, nichtdispergierenden Wellen-paket, w�ahrend der Zustand zu n = 1 den auf der intrinischen Insel lokalisierten, station�aren Zustanddarstellt. Man beachte die im Vergleich zu N = 8 gestiegene Zahl vermiedener Kreuzungen, die der sta-tion�are Zustand und das nichtdispergierende Wellenpaket im Bereich 0 < F < 0:01N�4 durchlaufen.
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Abb. 10.7: Entwicklung der Floquet-Zust�ande n = 1, n = 2, n = 3, n = 4 zur Quantenzahl N = 10.Gezeigt sind in (a2, b2, c2, d2) Ausschnitte des Floquet-Spektrums, zentriert um die (durch Kreisegekennzeichneten) Floquet-Zust�ande, die die diabatische Fortsetzung der Zust�ande zu n = 1 (a),n = 2 (b), n = 3 (c) und n = 4 (d) darstellen. Aufgetragen sind jeweils die Quasienergien � inAbh�angigkeit der Feldamplitude F bei der Frequenz !0 = 0:2. Die Ionisationsbreiten (HWHM) dieserFloquet-Zust�ande sind in (a1, b1, c1, d1) aufgetragen. Im Gegensatz zu N = 8; 9 entspricht dasnichtdispergierende Wellenpaket hier der diabatischen Fortsetzung des Zustands n = 3 (c). Dies istan dem starken Anstieg dessen Energie mit F zu erkennen (c2).
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Abb. 10.8: �Uberlapp P der nichtdispergierenden Wellenpakete mit Zust�anden des ungest�orten Sy-stems zur Quantenzahl (a) N = 7, (b) N = 8 (Abb. 10.3b), (c) N = 9 (Abb. 10.6b) und (d) N = 10(Abb. 10.7c). Aufgetragen sind in Abh�angigkeit der Feldamplitude F die Betragsquadrate der �Uber-lappmatrixelemente der entsprechenden Floquet-Zust�ande mit den Zust�anden zu n = 1(
), n = 2(2),n = 3(3), n = 4(4), n = 5(�), n = 6(5), n = 7(�), n = 8(�), n = 9(+), n = 10(?) des ungest�ortenSystems (Betragsquadrate, die kleiner als 0:01 sind, wurden nicht aufgetragen). Wir sehen, da� sichmit zunehmendem N die dominierende Komponente zu h�oheren Quantenzahlen verschiebt. W�ahrendf�ur N = 7 das Wellenpaket einen wesentlichen �Uberlapp haupts�achlich mit dem Zustand n = 2 auf-weist (a), setzt es sich f�ur N = 9 zu nahezu gleichen Teilen aus den Zust�anden zu n = 2 und n = 3zusammen (c). F�ur N = 10 dominiert die Komponente n = 3 (d); das nichtdispergierende Wellenpaketentspricht hier der diabatischen Fortsetzung des Zustands n = 3 des ungest�orten Systems.



124 Kapitel 10. Das kollineare Helium-Atom unter externem Antrieb10.2 Station�are Zust�ande und nichtdispergierende Wellenpa-keteWie im vorigen Abschnitt erw�ahnt wurde, l�a�t sich bereits aus dem starken Anstieg seinerEnergie mit F erkennen, da� derjenige Floquet-Zustand, der die diabatische Fortsetzungdes Zustands zu n = 2 (bzw. zu n = 3 f�ur N = 10) darstellt, mit der 1:1 Resonanzinseldes klassischen Phasenraums assoziiert ist. Vom Floquet-Zustand zur Quantenzahl n = 1hingegen ist zu erwarten, da� er im Phasenraum auf der intrinsischen Insel lokalisiert ist. Diesl�a�t sich anhand der Husimi-Verteilungen der Floquet-Zust�ande veri�zieren, die in Abb. 10.9f�ur N = 8 und f�ur die Feldparameter !0 = 0:2, F0 = 0:005 zu den Zeiten !t = 0, �=2 und� dargestellt sind. Wir sehen, da� der Zustand zu n = 1 einen im wesentlichen station�arenZustand darstellt, w�ahrend der Zustand zu n = 2 einem nichtdispergierenden Wellenpaketentspricht, das der Oszillation der 1:1 Resonanzinsel folgt.Abb. 10.10 zeigt die Wahrscheinlichkeitsdichte des station�aren Zustands und des nichtdi-spergierenden Wellenpakets im Kon�gurationsraum. Wir sehen, da� der station�are Zustandim wesentlichen mit dem ungest�orten Zustand n = 1 der Serie N = 8 �ubereinstimmt. Dasnichtdispergierende Wellenpaket hingegen l�a�t sich nicht unmittelbar einem Eigenzustanddes ungest�orten Systems zuordnen, sondern entspricht vielmehr einer zeitabh�angigen Linear-kombination mehrerer Eigenzust�ande, insbesondere der Zust�ande zu n = 2 und n = 3 (wiewir anhand der Wahrscheinlichkeitsdichten dieser Zust�ande im Kon�gurationsraum erken-nen, siehe Abb. 9.3). W�ahrend es in der Koordinate des inneren Elektrons im wesentlichendurch eine Wassersto�-Eigenfunktion zur Knotenzahl N � 1 = 7 gegeben ist, folgt es in derKoordinate des �au�eren Elektrons der klassischen Trajektorie der 1:1 Resonanz. Wie wir ander klassischen Trajektorie in Abb. 4.5b gesehen haben, manifestiert sich der Wellenpaket-charakter auch in der Koordinate des inneren Elektrons, n�amlich in Form von periodischenModulationen der Ausdehnung der Dichteverteilung in z2. Diese Modulationen sind jedochbei der hier betrachteten Quantenzahl N = 8 kaum erkennbar.Die Entwicklung des nichtdispergierenden Wellenpakets aus der Wellenfunktion des Zu-stands n = 2 des ungest�orten Systems ist in Abb. 10.11 f�ur !t = 0 und in Abb. 10.12 f�ur!t = � dargestellt. Wir sehen, da� der Eigenzustand zu n = 2 mit zunehmendem F0 < 0:005kontinuierlich der Entwicklung der 1:1 Resonanzstruktur folgt. Dabei verlagert sich die Wahr-scheinlichkeitsdichte immer mehr zum �au�eren Umkehrpunkt f�ur !t = 0 (Abb. 10.11) sowiezum inneren Umkehrpunkt f�ur !t = � (Abb. 10.12). F�ur F0 > 0:005 verschlechtert sich dieLokalisierung des nichtdispergierenden Wellenpakets: Bei F0 = 0:01 (Abb. 10.11e) �uberdecktdas Wellenpaket einen deutlich gr�o�eren Bereich im Phasenraum als bei F0 = 0:005, was dar-auf zur�uckzuf�uhren ist, da� sich durch die Verkleinerung der 1:1 Resonanzinsel die Kopplungdes Wellenpaketzustands an die diese Insel umgebende chaotische See vergr�o�ert.



10.2. Station�are Zust�ande und nichtdispergierende Wellenpakete 125

0 5
-0.6

0.0

0.6

-0.6

0.0

0.6

p z1
 / 

N
-1

-0.6

0.0

0.6

0 5
z1 / N

2

a b

c d

e f

Abb. 10.9: Station�arer Zustand und nichtdispergierendes Wellenpaket im Phasenraum. Aufgetragensind die Husimi-Verteilungen der Floquet-Zust�ande zu n = 1 (a, c, e) und zu n = 2 (b, d, f) f�urN = 8, !0 = 0:2, F0 = 0:005 (siehe Abb. 10.3a und Abb. 10.3b) zu verschiedenen Zeiten bzw. Phasendes treibenden Feldes: (a, b) !t = 0, (c, d) !t = �=2, (e, f) !t = �. Durch Vergleich mit demPoincar�e-Schnitt der klassischen Dynamik in Abb. 10.1 erkennen wir, da� diese Floquet-Zust�andevollst�andig auf den entsprechenden regul�aren Inseln des klassischen Phasenraums lokalisiert sind.W�ahrend der Zustand zu n = 1 (a, c, e) auf der intrinsischen Insel lokalisiert ist und somit einen imwesentlichen station�aren Zustand darstellt, entspricht der Zustand zu n = 2 einem nichtdispergierendenWellenpaket, das der Zeitentwicklung der 1:1 Resonanzinsel im Verlauf der Feldperiode folgt.
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Abb. 10.10: Station�arer Zustand und nichtdispergierendes Wellenpaket im Kon�gurationsraum. Auf-getragen sind die Wahrscheinlichkeitsdichten der Floquet-Zust�ande zu n = 1 (a, c, e) und zu n = 2 (b,d, f), f�ur N = 8, !0 = 0:2, F0 = 0:005 und die Feldphasen (a, b) !t = 0, (c, d) !t = �=2, (e, f) !t = �.Wir sehen, da� der station�are Zustand (a, c, e) im wesentlichen mit dem ungest�orten Zustand n = 1der Serie zur Quantenzahl N = 8 �ubereinstimmt (s. Abb. 9.3a). Das nichtdispergierende Wellenpakethingegen (b, d, f) konstituiert sich aus der (periodisch) zeitabh�angigen Linearkombination verschiede-ner Eigenzust�ande des ungest�orten Systems, insbesondere der Zust�ande zu n = 2 und n = 3 (vgl. dazuauch die Wahrscheinlichkeitsdichte dieser Zust�ande im Kon�gurationsraum in Abb. 9.3b, c). W�ahrendes in der Koordinate des inneren Elektrons im wesentlichen durch eine Wassersto�-Eigenfunktion zurKnotenzahl 7 gegeben ist, folgt es in der Koordinate des �au�eren Elektrons der klassischen Trajektorieder 1:1 Resonanz.
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Abb. 10.11: Entwicklung des nichtdispergierenden Wellenpakets in Abh�angigkeit der Feldamplitudezur Phase !t = 0. Aufgetragen sind in (a, c, e) die Husimi-Verteilungen des Floquet-Zustands zun = 2 f�ur N = 8, !0 = 0:2 und (a) F0 = 0:001, (b) F0 = 0:005, (c) F0 = 0:01. (b, d, f) zeigen diePoincar�e-Schnitte des entsprechenden klassischen Phasenraums. Wir sehen, da� der Floquet-Zustandkontinuierlich von dem station�aren, ungest�orten Zustand n = 2 (vgl. Abb. 9.4b) in den nichtstation�arenWellenpaketzustand auf der 1:1 Resonanz �ubergeht (a, c) (vgl. hierzu auch Abb. 10.12). F�ur F0 >0:005 verschlechtert sich die Lokalisierung des Wellenpakets: Wie wir in (e) sehen, �uberdeckt derWellenpaketzustand bei F0 = 0:01 einen deutlich gr�o�eren Bereich im Phasenraum als bei F0 = 0:005(c). Dies ist auf die Verkleinerung der 1:1 Resonanzinsel (f) zur�uckzuf�uhren, die bewirkt, da� sich dieKopplung des auf ihr lokalisierten Zustands an die chaotische See vergr�o�ert.
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Abb. 10.12: Entwicklung des nichtdispergierenden Wellenpakets in Abh�angigkeit der Feldamplitudezur Phase !t = �. Aufgetragen sind in (a, c, e) die Husimi-Verteilungen des Floquet-Zustands zun = 2, f�ur N = 8, !0 = 0:2 und (a) F0 = 0:001, (b) F0 = 0:005, (c) F0 = 0:01. (b, d, f) zeigen diePoincar�e-Schnitte des entsprechenden klassischen Phasenraums. Der Vergleich mit Abb. 10.11 sowiemit der Husimi-Verteilung des ungest�orten Zustands n = 2 in Abb. 9.4b l�a�t erkennen, wie sich mitzunehmendem F0 < 0:005 der zeitabh�angige Charakter des Wellenpakets immer st�arker herausbildet.



10.3. Lebensdauern der Wellenpaketzust�ande 129Floquet-Zust�ande zu h�oheren Quantenzahlen n > 2 sind bei F0 = 0:005 ausschlie�lichmit dem chaotischen Bereich des klassischen Phasenraums assoziiert. Abb. 10.13 zeigt dieHusimi-Dichte der Zust�ande zu n = 3 und n = 4 f�ur !t = 0, �=2 und �. Wir sehen, da�diese Floquet-Zust�ande Minima in der Phasenraumdichte auf den regul�aren Inseln des klas-sischen Phasenraums aufweisen (vgl. Abb. 10.1). Der Zustand n = 3 (a, c, e) ist mit derSeparatrixstruktur der 1:1 Resonanz assoziiert: Wir erkennen eine erh�ohte Aufenthaltswahr-scheinlichkeit sowohl in dem die 1:1 Resonanzinsel umgebenden chaotischen Phasenraum-gebiet (Abb. 10.13a) als auch entlang des instabilen periodischen Orbits der 1:1 Resonanz(Abb. 10.13e).W�ahrend das EBK-Quantisierungskriterium die Existenz von Zust�anden auf der intrinsi-schen Insel abN ' 6 und auf der 1:1 Resonanzinsel abN ' 7 vorhersagt, �nden wir bereits abN = 5 Zust�ande im Floquet-Spektrum, die auf der intrinsischen Insel bzw. der 1:1 Resonan-zinsel lokalisiert sind. Wie f�ur N = 8 geht auch f�ur N = 5; 6; 7 der auf der intrinsischen Insellokalisierte Zustand aus dem Eigenzustand n = 1 des ungest�orten Systems hervor, w�ahrendder mit der 1:1 Resonanzinsel assoziierte Zustand der diabatischen Fortsetzung des Zustandsn = 2 entspricht. Abb. 10.14 zeigt die Husimi-Verteilungen der station�aren Zust�ande bzw.der nichtdispergierenden Wellenpakete f�ur N = 6, N = 8 und N = 10. Wir sehen, da�die Lokalisierung dieser Zust�ande mit zunehmendem N sch�arfer wird, entsprechend der Tat-sache, da� die auf die Struktur des klassischen Phasenraums bezogene, e�ektive Gr�o�e desWirkungsquantums �h abnimmt.10.3 Lebensdauern der Wellenpaketzust�andeDie in Abschnitt 10.2 gezeigten Abbildungen sowie der Begri� "nichtdispergierendes Wellen-paket\ suggerieren, da� den mit der 1:1 Resonanzinsel assoziierten Zust�anden Wellenfunk-tionen entsprechen, die der Zeitentwicklung dieser Insel in exakt periodischer Weise folgenund damit auf unbestimmte Zeit ihre Form wahren. Eine obere Grenze f�ur diese periodischeZeitentwicklung ergibt sich jedoch aus der Tatsache, da� es sich bei diesen Zust�anden umautoionisierende Zust�ande des Floquet-Systems handelt, die durch nichtverschwindende Ioni-sationsbreiten gekennzeichnet sind. Jene �Uberlagerung von Eigenzust�anden des ungest�ortenSystems, die dem Floquet-Zustand auf der 1:1 Resonanzinsel entspricht, folgt daher im ex-ternen Antrieb der Oszillation dieser Insel nur auf einer Zeitskala, die der inversen Ionisati-onsbreite dieses Floquet-Zustands entspricht (danach ist die Population auf das Kontinuumverteilt). Um also quantitativ zu charakterisieren, inwieweit ein auf einer feldinduziertenResonanzinsel lokalisierter Zustand im Kon�gurationsraum tats�achlich einem nichtdisper-gierenden Wellenpaket entspricht (d.h. auf einer im Vergleich zur Feldperiode sehr langenZeitskala der resonant getriebenen, klassischen Trajektorie folgt, ohne zu dispergieren), ist eserforderlich, die Ionisationsbreiten dieser Zust�ande zu untersuchen.
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Abb. 10.13: Floquet-Zust�ande, die mit dem chaotischen Bereich des Phasenraums assoziiert sind. Auf-getragen ist die Husimi-Verteilung der Zust�ande n = 3 (a, c, e) und n = 4 (b, d, f) zur QuantenzahlN = 8 bei den Feldphasen (a, b) !t = 0, (c, d) !t = �=2, (e, f) ! = �. Die Feldparameter betragen!0 = 0:2 und F0 = 0:005. Wir erkennen, da� diese Floquet-Zust�ande Minima in der Aufenthaltswahr-scheinlichkeit auf den regul�aren Inseln des klassischen Phasenraums aufweisen (vgl. Abb. 10.1). DerZustand n = 3 (a, c, e) ist mit der Separatrixstruktur der 1:1 Resonanz assoziiert: Wir erkennen eineerh�ohte Aufenthaltswahrscheinlichkeit sowohl in dem die 1:1 Resonanzinsel umgebenden chaotischenPhasenraumgebiet (a) als auch entlang des instabilen periodischen Orbits der 1:1 Resonanz (e).
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Abb. 10.14: Station�are Zust�ande und nichtdispergierende Wellenpakete f�ur verschiedene Quantenzah-len N . Aufgetragen sind die Husimi-Verteilungen der Floquet-Zust�ande zu n = 1 (a, d, e) und zun = 2 (b, d, f) zu den Quantenzahlen (a, b) N = 6, (c, d) N = 8, (e, f) N = 10 (die Gr�o�e von 2��hist durch Quadrate unten links in (a, c, e) markiert). Die Feldparameter betragen jeweils ! = 0:2N�3und F = 0:005N�4. Der klassische Phasenraum entspricht damit f�ur jede dieser Quantenzahlen derin Abb. 10.1 gezeigten Struktur. Wir sehen, da� mit zunehmender Quantenzahl N die Lokalisierungdes Quantenzustands auf der regul�aren Insel immer sch�arfer wird, entsprechend der Tatsache, da�die e�ektive, auf die Struktur des klassischen Phasenraums bezogene Gr�o�e des Wirkungsquantums�h proportional 1=N abnimmt.



132 Kapitel 10. Das kollineare Helium-Atom unter externem AntriebTats�achlich zeichnen sich nichtdispergierende Wellenpakete auf feldinduzierten Resonanz-inseln typischerweise durch sehr hohe Lebensdauern aus: in Wassersto� im linear polarisiertenMikrowellenfeld etwa von der Gr�o�enordnung von 106 Kepler-Zyklen [18, 19]. Diese Langle-bigkeit ist darauf zur�uckzuf�uhren, da� die entsprechenden Floquet-Zust�ande auf regul�arenInseln im klassischen Phasenraum lokalisiert sind, auf denen eine Kopplung an das Kontinu-um nur �uber dynamisches Tunneln durch klassisch impenetrable Tori erfolgen kann. In der Taterhalten wir ebenfalls sehr lange Lebensdauern f�ur die nichtdispergierenden Zwei-Elektronen-Wellenpakete im kollinearen, getriebenen Helium-Atom. Tab. 10.1 zeigt die Ionisationsbreitenund Lebensdauern der den station�aren Zust�anden und den nichtdispergierenden Wellenpake-ten entsprechenden Floquet-Zust�ande f�ur ! = 0:2N�3 und F = 0:005N�4 in Abh�angigkeitder Quantenzahl N . Wir sehen, da� die Lebensdauern der station�aren Zust�ande und dernichtdispergierenden Wellenpakete im Bereich von 104 : : :107 Feldzyklen liegen.Tab. 10.1: Ionisationsbreiten und Lebensdauern der station�aren Zust�ande und der nichtdispergieren-den Wellenpakete bei der Frequenz ! = 0:2N�3 und der Feldamplitude F = 0:005N�4. �(s)=2 und�(w)=2 bezeichnen die Ionisationsbreiten (HWHM) des station�aren Zustands (Index s) und des nicht-dispergierenden Wellenpakets (Index w) zur Quantenzahl N des inneren Elektrons. � (s) = 1=�(s) und� (w) = 1=�(w) bezeichnen die entsprechenden Lebensdauern.N �(s)=2 [a.u.] � (s) [2�=!] �(w)=2 [a.u.] � (w) [2�=!]5 4:48 � 10�12 2:8 � 107 5:53 � 10�12 2:3 � 1076 8:43 � 10�12 8:7 � 106 1:09 � 10�10 6:8 � 1057 9:35 � 10�11 5:0 � 105 5:99 � 10�9 7:7 � 1038 3:36 � 10�12 9:3 � 106 1:77 � 10�11 1:8 � 1069 1:14 � 10�13 1:9 � 108 1:35 � 10�12 1:6 � 10710 2:22 � 10�10 7:2 � 104 1:35 � 10�12 1:2 � 107�Ahnlich wie bei den Eigenzust�anden des ungest�orten kollinearen Systems, die im Pha-senraumgebiet gebundener Bewegung lokalisiert sind (siehe Abschnitt 9.2), ist zu erwarten,da� die Lebensdauern der mit den regul�aren Inseln assoziierten Zust�ande exponentiell mitN abnehmen. Im Gegensatz zum ungest�orten System l�a�t sich eine derartige exponentielleAbnahme im Bereich N = 5 : : :10 jedoch nicht feststellen: Sowohl die station�aren Zust�andeals auch die nichtdispergierenden Wellenpakete sind durch Ionisationsbreiten gekennzeichnet,die �uber mehrere Gr�o�enordnungen hinweg 
uktuieren und keinem eindeutigen Trend folgen.Dies l�a�t sich zum einen dadurch erkl�aren, da� in dem hier untersuchten Bereich von Quan-tenzahlen N = 5 : : :10 die regul�aren Inseln zu klein sind, um eine hinreichende Lokalisierungzu gew�ahrleisten; die Ionisation der mit diesen Inseln assoziierten Zust�ande erfolgt damit nichtnur durch dynamisches Tunneln, sondern auch durch direkten �Uberlapp der Wellenfunktion



10.3. Lebensdauern der Wellenpaketzust�ande 133mit dem chaotischen Bereich des Phasenraums.Aufgrund der gemischt regul�ar-chaotischen Struktur des Phasenraums ist ein nichtmo-notones Verhalten der Ionisationsbreite als Funktion von N jedoch auch bei hohen Quan-tenzahlen zu erwarten, bei denen die Zust�ande vollst�andig im Zentrum der regul�aren Insellokalisiert sind. Im Gegensatz zum ungest�orten kollinearen Helium-Atom, in dem die klas-sische Dynamik sowohl innerhalb als auch au�erhalb des Gebiets gebundener Bewegung re-gul�ar ist, ist im getriebenen System die Kopplung der auf den regul�aren Inseln lokalisiertenZust�ande an das Kontinuum nicht durch einen "reinen\ Tunnelproze� gegeben; sie enth�alt,neben einer regul�aren Komponente, die dem Tunneln durch die Phasenraumbarrieren dieserInsel entspricht, auch eine irregul�are Komponente, die den sich diesem Tunnelproze� anschlie-�enden Transport durch den chaotischen Bereich des Phasenraums kennzeichnet. �Ahnlichwie bei "Chaos-assistiertem Tunneln\ zwischen auf unterschiedlichen regul�aren Inseln loka-lisierten Zust�anden, deren Niveauaufspaltungen durch die diese Inseln trennende chaotischeSchicht stochastisch moduliert werden [148, 149], f�uhrt dieser chaotische Transport zu sto-chastischen Fluktuationen in der Ionisationsbreite (man k�onnte also von "Chaos-assistierterTunnel-Ionisation\ sprechen). Tats�achlich wurden derartige Fluktuationen in der Ionisations-breite f�ur die nichtdispergierenden Wellenpakete in Wassersto� im externen Mikrowellenfeldnachgewiesen [21, 150].Konkret lassen sich die Fluktuationen der Ionisationsbreite durch nahresonante Kopp-lungen mit Zust�anden erkl�aren, die mit dem chaotischen Bereich des Phasenraums assoziiertsind. Wie wir in Abschnitt 10.1 gesehen haben, f�uhrt eine derartige Kopplung im Floquet-Spektrum zu einer vermiedenen Kreuzung, in deren Umgebung sich die Ionisationsbreitender mit regul�aren Inseln assoziierten Zust�ande signi�kant erh�ohen. Die Ionisationsbreite desregul�aren Zustands bei F = 0:005N�4 wird damit wesentlich durch das Auftreten vermiede-ner Kreuzungen in der Umgebung dieser Feldamplitude beein
u�t. Da die Lage und Gr�o�edieser vermiedenen Kreuzungen in der Umgebung von F = 0:005N�4 von N zu N variie-ren (vgl. Abb. 10.3, 10.6, 10.7), ist die Beein
ussung der Ionisationsbreite durch chaotischeKomponenten bei F = 0:005N�4 unterschiedlich gro� f�ur verschiedene N . Folglich nimmtdie Ionisationsbreite der auf regul�aren Inseln lokalisierten Zust�ande nicht monoton ab mit N ,sondern ist unregelm�a�igen Fluktuationen unterworfen.Um im Fall der kollinearen, getriebenen Frozen-Planet-Kon�guration zu bestimmen, inwelcher Weise die Ionisationsbreiten der auf regul�aren Inseln lokalisierten Zust�ande 
uktuie-ren bzw. mit welcher Rate diese Ionisationsbreiten im Mittel exponentiell mit N abnehmen,ist es erforderlich, die Floquet-Zust�ande in einem Bereich von Quantenzahlen zu berech-nen, der den bisher untersuchten Bereich N = 5 : : :10 weit �ubersteigt. Wie wir jedoch inTab. 10.1 sehen, liegen bereits bei N ' 10 die Ionisationsbreiten dieser Zust�ande im Bereichvon 10�12 : : :10�13 a.u. und damit nur wenige Gr�o�enordnungen oberhalb des Rundungsfeh-



134 Kapitel 10. Das kollineare Helium-Atom unter externem Antrieblers der numerischen Diagonalisierung � 10�15. Eine konvergente Berechnung der Breitendieser Zust�ande ist damit weit oberhalb von N = 10 nicht m�oglich.10.4 Ein
u� eines zus�atzlichen, statischen elektrischen FeldesWie wir in Kap. 7 gezeigt haben, wird ein zus�atzliches, statisches elektrisches Feld ben�otigt,um die Kon�guration gegen Kippen und Ionisation zu stabilisieren und auf die Umgebung deskollinearen Phasenraums zu beschr�anken. Es stellt sich daher die Frage, welche Auswirkungendie Anwendung dieses statischen Feldes auf die eindimensionale getriebene Frozen-Planet-Kon�guration hat. Speziell interessiert uns dabei, ob bzw. inwieweit die auf regul�aren Inselnlokalisierten Zust�ande durch die Anwesenheit eines statischen Feldes, dessen Feldst�arke Fstin dem f�ur die Stabilisierung der dreidimensionalen Kon�guration relevanten Bereich 0 �Fst < F=2 liegt (siehe Abschnitt 7.2), in ihren Lokalisierungseigenschaften sowie in ihrenLebensdauern wesentlich modi�ziert werden.F�ur eine quantenmechanische Beschreibung der einem zus�atzlichem, statischen Feld aus-gesetzten Kon�guration sind zun�achst einige Modi�kationen in der Formulierung des Eigen-wertproblems n�otig (Kap. 8). Gem�a� der klassischen Analyse von Kap. 7 ist das zur Stabi-lisierung der Kon�guration erforderliche statische Feld entlang der z-Achse polarisiert unddabei so gerichtet, da� es auf die Elektronen eine Kraft in Richtung zunehmender z-Werteaus�ubt. Der das kollineare System beschreibende Hamiltonoperator (8.2) ist daher um denTerm Hst = �Fst (z1 + z2) (10.5)zu erg�anzen, der der Energie der Elektronen im statischen Feld der St�arke Fst entspricht(Fst > 0). Ausgedr�uckt in den perimetrischen Koordinaten x; y (8.14, 8.15) lautet diesezus�atzliche Komponente des HamiltonoperatorsHst = �Fst (x+ 2y): (10.6)Wie bereits in Abschnitt 8.3 erw�ahnt wurde, ist die �Aquivalenz zwischen dem unskaliertenund dem komplex skalierten System auch bei Anwesenheit eines externen statischen Feldesgew�ahrleistet [126, 127, 128, 129]. Unter Anwendung der komplexen Skalierung erh�alt diezus�atzliche Komponente im Hamiltonoperator den Phasenfaktor ei� . Insgesamt erhalten wirdamit, da� die formale Beschreibung des komplex skalierten Floquet-Systems (8.47 { 8.52)durch das statische Feld gem�a�H0� �! H0� � Fst (x+ 2y) ei� (10.7)modi�ziert wird. Unter Ber�ucksichtigung der zus�atzlichen Faktoren, die sich aus der Entwick-lung der Wellenfunktion nach Sturmschen Basisfunktionen ergeben, erhalten wir damit einen



10.4. Ein
u� eines zus�atzlichen, statischen elektrischen Feldes 135zus�atzlichen Term der Form (x+y)2 x y (x+2y) in dem e�ektiv zu diagonalisierenden Hamil-tonoperator. Wie alle anderen Terme dieses Hamiltonoperators weist auch dieser zus�atzlicheTerm strenge Auswahlregeln in der Sturmschen Basis auf; das Auftreten von vierten Potenzenvon x und y vergr�o�ert lediglich die Bandbreite der Auswahlregeln (8.53) zuj�nxj � 4; j�ny j � 4: (10.8)Abb. 10.15 zeigt die Entwicklung des nichtdispergierenden Wellenpakets mit F zur Quan-tenzahl N = 8 f�ur die statischen Feldst�arken Fst = 0:0005N�4, Fst = 0:001N�4, Fst =0:0015N�4 und Fst = 0:002N�4. Wir sehen, da� sich das Verhalten des Niveaus in Abh�angig-keit der Amplitude F des oszillierenden Feldes qualitativ nicht �andert: f�ur s�amtliche dieserstatischen Feldst�arken �nden wir einen signi�kanten, von Fst nahezu unabh�angigen Anstiegdes Floquet-Niveaus mit zunehmendem F .Au�allend ist die mit zunehmendem Fst abnehmende Anzahl vermiedener Kreuzungen.Diese Abnahme ist darauf zur�uckzuf�uhren, da� das statische Feld die e�ektive Potential-barriere, die die Bindung des �au�eren Elektrons bewirkt, absenkt. Auf diese Weise existiertbereits im ungest�orten System zu einer gegebenen Quantenzahl N nur eine endliche, mit zu-nehmendem Fst geringer werdende Anzahl autoionisierender Zust�ande. Folglich wird auch imperiodisch getriebenen System die Anzahl der Zust�ande, mit denen der Floquet-Zustand zun = 2 resonant koppelt, verringert. Die Abnahme der vermiedenen Kreuzungen mit zuneh-mendem Fst l�a�t sich auch als Manifestation der zunehmenden Regularit�at des klassischenIonisationsprozesses interpretieren { verursacht dadurch, da� durch das statische Feld die Be-wegung im chaotischen Bereich des Phasenraums relativ schnell zu Ionisation f�uhrt und somitdie Bedeutung der chaotischen Komponente der Chaos-assistierten Tunnelionisation verrin-gert wird (in �ahnlicher Weise induziert auch die Einbeziehung eines zus�atzlichen, regul�arenZerfallskanals, etwa spontane �Uberg�ange zu niedrigen atomaren Zust�anden, eine Regularisie-rung des Zerfallsprozesses nichtdispergierender Wellenpakete [151]).Auch die Abnahme der Energien mit zunehmendem Fst bei festem F ist auf die Ab-senkung des e�ektiven Potentials zur�uckzuf�uhren. Entsprechend verschieben sich auch dieregul�aren Inseln im klassischen Phasenraum mit zunehmendem Fst zu niedrigeren Anregun-gen innerhalb des e�ektiven Potentials. Dies ist in Abb. 10.16 gezeigt, in der wir die klassischePhasenraumstruktur f�ur ! = 0:2, F = 0:005 und f�ur variierende statische Feldst�arke Fst = 0,0:001, 0:002 darstellen.Eine bedeutsame �Anderung �ndet vor allem bei den Ionisationsbreiten der auf regul�arenInseln lokalisierten Zust�ande statt. Wie wir in Abb. 10.15 sehen, erh�oht sich die Ionisations-breite des nichtdispergierenden Wellenpakets f�ur F0 = 0:005 um 2 bis 3 Gr�o�enordnungenvon ca. 10�11 bei Fst = 0 auf ca. 10�8 bei Fst = 0:002N�4. Auch bei dem auf der int-rinsischen Insel lokalisierten, station�aren Zustand �nden wir einen deutlichen Anstieg derIonisationsbreite mit zunehmendem Fst. Diese erh�oht sich f�ur F0 = 0:005 ebenfalls von ca.
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Abb. 10.15: Entwicklung des nichtdispergierenden Wellenpakets zur Quantenzahl N = 8 f�ur verschie-dene statische Feldst�arken: (a) Fst = 0:0005N�4, (b) Fst = 0:001N�4, (c) Fst = 0:0015N�4, (d)Fst = 0:002N�4. Aufgetragen sind in (a2, b2, c2, d2) die um den Wellenpaketzustand zur Quanten-zahl n = 2 zentrierten Ausschnitte des Floquet-Spektrums in Abh�angigkeit der Feldamplitude F beider Frequenz !0 = 0:2. Die Ionisationsbreiten der Wellenpakete sind in (a1, b1, c1, d1) aufgetragen.Wir sehen, da� sich die Entwicklung der Energieniveaus mit F bei Einschalten eines statischen Feldesnicht wesentlich �andert (siehe Abb. 10.3b f�ur Fst = 0). Aufgrund der Absenkung der Potentialbar-riere verschieben sich die Niveaus mit zunehmendem Fst zu niedrigeren Energien. Das Absenken derPotentialbarriere bewirkt auch einen R�uckgang der Anzahl vermiedener Kreuzungen (vgl. (a) bzw.Abb. 10.3b mit (d)), der sich als Manifestation der zunehmenden Regularit�at des Ionisationsprozes-ses interpretieren l�a�t. Eine bedeutende �Anderung beobachten wir in den Ionisationsbreiten. Dieseerh�ohen sich f�ur F0 = 0:005 von ca. 10�11 bei Fst = 0 auf ca. 10�8 bei Fst = 0:002N�4.
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Abb. 10.16: Poincar�e-Schnitt des klassischen, kollinearen Phasenraums f�ur ! = 0:2, F = 0:005 undf�ur die statischen Feldst�arken (a) Fst = 0, (b) Fst = 0:001N�4, (c) Fst = 0:002N�4. Wir sehen,da� ein statisches Feld in diesem Feldst�arkebereich die klassische Phasenraumstruktur nur geringf�ugigmodi�ziert. Lediglich die Ausdehnung der regul�aren Inseln verringert sich etwas mit zunehmendemFst.



138 Kapitel 10. Das kollineare Helium-Atom unter externem Antrieb10�11 bei Fst = 0 auf ca. 10�9 bei Fst = 0:002N�4. Die zugeh�orige Floquet-Energie verh�altsich f�ur Fst > 0 qualitativ �ahnlich wie f�ur Fst = 0, verschiebt sich also, wie in Abb. 10.3a,mit zunehmendem F zu niedrigeren Energien.Abb. 10.17 zeigt die Husimi-Dichten der Zust�ande zu n = 1 und n = 2 f�ur verschie-dene statische Feldst�arken Fst = 0, Fst = 0:001N�4 und Fst = 0:002N�4. Die Amplitudedes treibenden Feldes betr�agt F0 = 0:005. Wir sehen, da� die Phasenprojektionen des sta-tion�aren Zustands und des nichtdispergierenden Wellenpakets mit zunehmendem Fst keinemerklichen �Anderungen erfahren. Insbesondere sind beide Zust�ande bei Fst = 0:002N�4 innahezu der gleichen Weise auf den entsprechenden regul�aren Inseln lokalisiert wie bei Fst = 0.Wir schlie�en daraus, da� die signi�kante Erh�ohung der Ionisationsbreiten nicht mit einemerh�ohten direkten �Uberlapp der Wellenfunktion mit dem chaotischen Bereich des Phasen-raums zu assoziieren ist, sondern in erster Linie auf die durch das statische Feld erh�ohteTunnelwahrscheinlichkeit aus der regul�aren Insel zur�uckzuf�uhren ist (bzw. auf die Tatsache,da� bei Anwesenheit eines statischen Feldes die chaotische Dynamik relativ schnell zur Ioni-sation f�uhrt).Analog verhalten sich die auf der intrinsischen Insel bzw. der 1:1 Resonanzinsel lokalisier-ten Zust�ande bei Variation von Fst auch f�ur andere Quantenzahlen N 6= 8. Es l�a�t sich daherzusammenfassend feststellen, da� durch das Anlegen eines zus�atzlichen, statischen Feldesdie Energien und Lokalisierungseigenschaften der mit regul�aren Inseln assoziierten Zust�andenur marginal modi�ziert werden. Die Ionisationsbreiten hingegen werden durch das statischeFeld erheblich ge�andert und steigen um einige Gr�o�enordnungen an. Wir sehen daraus ins-besondere, da� allein aus der Lokalisierung der Zust�ande auf regul�aren Inseln im klassischenPhasenraums im allgemeinen nicht entnommen werden kann, durch welche Lebensdauerndiese Zust�ande gekennzeichnet sind (siehe dazu auch [99]).



10.4. Ein
u� eines zus�atzlichen, statischen elektrischen Feldes 139

0 5
-0.6

0.0

0.6

-0.6

0.0

0.6

p z1
 / 

N
-1

-0.6

0.0

0.6

0 5
z1 / N

2

a b

c d

e f

Abb. 10.17: Entwicklung des station�aren Zustands und des nichtdispergierenden Wellenpakets inAbh�angigkeit der statischen Feldst�arke. Aufgetragen sind die Husimi-Verteilungen der Floquet-Zust�ande zu n = 1 (a, c, e) und zu n = 2 (b, d, f) der Serie zur Quantenzahl N = 8, f�ur! = 0:2N�3, F = 0:005N�4 und die statische Feldst�arke (a, b) Fst = 0, (c, d) Fst = 0:001N�4,(e, f) Fst = 0:002N�4. Wir sehen, da� sich die Lokalisierungseigenschaften dieser Zust�ande mitzunehmendem Fst < 0:002N�4 nicht wesentlich �andern. Selbst bei Fst = 0:4F sind sowohl der intrin-sische Zustand als auch das nichtdispergierende Wellenpaket noch vollst�andig auf den entsprechendenregul�aren Inseln des (in Abb. 10.16 dargestellten) klassischen Phasenraums lokalisiert (abgesehen voneiner kleinen Beimischung einer mit der 1:1 Resonanz assoziierten Komponente beim station�aren Zu-stand in (e)).



Kapitel 11Zusammenfassung und Ausblick11.1 Zusammenfassung der ArbeitIn dieser Arbeit wurde die klassische und quantenmechanische Dynamik der Frozen-Planet-Kon�guration von Helium im externen elektromagnetischen Feld untersucht. Im Mittelpunktunseres Interesses stand dabei die Frage, inwieweit durch die Kombination des externen nicht-linearen Antriebs und der intrinsischen Nichtlinearit�at der hochkorrelierten Kon�gurationGebiete regul�arer Bewegung im klassischen Phasenraum induziert werden, die einer durchdas externe Feld resonant getriebenen Kon�guration entsprechen, sowie welche Konsequen-zen sich aus der Existenz dieser regul�aren Gebiete f�ur das entsprechende quantenmechanischeSystem ergeben.In der Tat hat die Analyse der klassischen Dynamik der kollinearen, getriebenen Kon-�guration gezeigt, da� der Phasenraum dieser Kon�guration im allgemeinen gemischt re-gul�ar-chaotisch ist. Neben der intrinsischen Insel, die die durch das externe Feld noch nichtzerst�orten Tori der Frozen-Planet-Kon�guration umfa�t, treten auch feldinduzierte regul�areInseln auf, die durch nichtlineare Resonanzen zwischen dem externen Antrieb und der un-gest�orten Frozen-Planet-Dynamik entstehen. Die Erfahrungen in extern getriebenen Ein-Elektronen-Atomen suggerieren, da� diese Resonanzinseln im quantenmechanischen SystemZwei-Elektronen-Wellenpaketen entsprechen, die der klassischen Trajektorie dieser Resonanzauf sehr langer Zeitskala ohne Dispersion folgen.Die Regularit�at der Dynamik entlang der kollinearen Resonanzen l�a�t sich jedoch imallgemeinen nicht auf das dreidimensionale System �ubertragen. Wie die Analyse der trans-versalen Stabilit�atseigenschaften der getriebenen Kon�guration gezeigt hat, zeichnen sich diefeldinduzierten Resonanzen im allgemeinen durch Instabilit�at bez�uglich Abweichungen vonder Kollinearit�at aus: Eine anf�anglich kleine Abweichung der Kon�guration von der Feld-polarisationsachse verst�arkt sich im Lauf der Zeit und f�uhrt zu chaotischer Bewegung derKon�guration im zwei- bzw. dreidimensionalen Kon�gurationsraum, die schlie�lich zur Ioni-140



11.1. Zusammenfassung der Arbeit 141sation f�uhrt. Lediglich in der Umgebung von Resonanzen hoher Ordnung �nden wir regul�are,quasiperiodische Bewegung.Im Hinblick auf die Erzeugung nichtdispergierender Zwei-Elektronen-Wellenpakete ent-lang der Resonanzen der kollinearen Dynamik wurde der Ein
u� eines zus�atzlichen, statischenelektrischen Feldes auf die getriebene Kon�guration untersucht. Tats�achlich konnte gezeigtwerden, da� durch ein derartiges statisches Feld die Kon�guration bez�uglich Abweichungenvon der Kollinearit�at stabilisiert wird. Auf diese Weise ergibt sich eine Einbettung der kolli-nearen Resonanzen in regul�are Inseln der dreidimensionalen Dynamik, die einer auf die Umge-bung des kollinearen Phasenraums beschr�ankten Bewegung entsprechen. Entlang dieser Inselnwerden, gem�a� der Absch�atzung anhand des semiklassischen EBK-Quantisierungskriteriums,nichtdispergierende Zwei-Elektronen-Wellenpakete f�ur experimentell zug�angliche Quanten-zahlen der Gr�o�enordnung N � 50 : : :100 erwartet.Um einen Einblick in die quantenmechanische Entsprechung der regul�aren Inseln der ex-tern getriebenen Frozen-Planet-Kon�guration zu gewinnen, wurde im zweiten Teil der Arbeitdie Quantenmechanik des eindimensionalen getriebenen Helium-Atoms betrachtet. Die Ana-lyse des ungest�orten kollinearen Quantensystems ergab ein regul�ares Quantenspektrum, dasunmittelbar auf die Regularit�at der zugrunde liegenden klassischen Dynamik zur�uckzuf�uhrenist. Insbesondere wurde eine exponentielle Abnahme der Ionisationsbreiten der autoionisie-renden Zust�ande gefunden, die auf deren Lokalisierung auf Phasenraumgebieten gebundenerklassischer Bewegung zur�uckzuf�uhren ist. Ein Vergleich dieser Ionisationsbreiten mit den Io-nisationsbreiten der entsprechenden dreidimensionalen Frozen-Planet-Zust�ande ergab Unter-schiede um etliche Gr�o�enordnungen, woraus sich schlie�en l�a�t, da� die quantenmechanischeIonisation der dreidimensionalen Zust�ande im wesentlichen �uber Zerfallskan�ale verl�auft, diemit den transversalen Freiheitsgraden der Kon�guration assoziiert sind.Die Analyse des extern getriebenen, kollinearen Systems konnte die Existenz nichtdi-spergierender Zwei-Elektronen-Wellenpakete best�atigen: Floquet-Rechnungen im Bereich derQuantenzahlen N � 10 des inneren Elektrons konnten zeigen, da� ab Quantenzahlen N � 5sowohl station�are Zust�ande, die auf der intrinsischen Insel lokalisiert sind, als auch nicht-dispergierende Zwei-Elektronen-Wellenpakete, die mit der 1:1 Resonanz assoziiert sind, imquantenmechanischen Spektrum auftreten. Es wurde aufgezeigt, wie sich diese Zust�ande durchVariation der Feldamplitude aus Eigenzust�anden des ungest�orten Systems entwickeln. Desweiteren wurden die Lebensdauern dieser Zust�ande diskutiert. Diese liegen im Bereich von104 : : :107 Feldzyklen und weisen starke Fluktuationen auf, die auf die gemischt regul�ar-chaotische Struktur des klassischen Phasenraums zur�uckzuf�uhren sind. Es wurde abschlie�enduntersucht, inwieweit durch das Anlegen eines zus�atzlichen, statischen elektrischen Feldes dieEigenschaften der regul�aren Zust�ande modi�ziert werden. Floquet-Rechnungen unter Einbe-ziehung dieses statischen Feldes ergaben einen mit zunehmender statischer Feldst�arke signi�-



142 Kapitel 11. Zusammenfassung und Ausblickkanten Anstieg der Ionisationsbreiten der Zust�ande (bei gleichbleibender Lokalisierung), dermit der zunehmenden Regularit�at des klassischen Ionisationsprozesses erkl�art wird.11.2 PerspektivenAls wesentliches Ergebnis hat unsere Arbeit gezeigt, da� im extern getriebenen Helium-Atomnichtdispergierende Zwei-Elektronen-Wellenpakete existieren, die auf feldinduzierten Reso-nanzinseln der Frozen-Planet-Kon�guration lokalisiert sind. Viele Aspekte, die sich im Zu-sammenhang mit dem Auftreten dieser nichtdispergierenden Wellenpakete ergeben, konntenim Rahmen dieser Arbeit jedoch nicht behandelt werden. So wurde der Ein
u� eines externenelektromagnetischen Feldes im klassischen Helium-Atom bislang nur an der Frozen-Planet-Kon�guration untersucht. Weitere Kon�gurationen, die aufgrund ihrer Symmetrie im Zusam-menhang mit der Erzeugung regul�arer Inseln durch ein externes Feld linearer Polarisationprinzipiell interessant sind, sind die kollineare eZe-Kon�guration, bei der sich die Elektronenauf entgegengesetzten Seiten des Kerns be�nden, sowie der Langmuir-Orbit. Vorl�au�ge Rech-nungen zur extern getriebenen eZe-Kon�guration scheinen allerdings anzudeuten, da� eineStabilisierung der (im ungest�orten System instabilen) Orbits der eZe-Kon�guration, insbe-sondere des Asymmetric-Stretch-Orbits, durch ein linear polarisiertes elektrisches Wechselfeldnicht m�oglich ist.Auch die extern getriebene Frozen-Planet-Kon�guration wurde bisher nur unter einge-schr�anktem Blickwinkel untersucht. So wurde die Analyse des Phasenraums der kollinearengetriebenen Kon�guration bisher nur im Bereich von Frequenzen ! durchgef�uhrt, die wesent-lich kleiner als die Kepler-Frequenz !K des inneren Elektrons sind, f�ur die also durch denexternen Antrieb nur das �au�ere Elektron ma�geblich beein
u�t wird. Eine qualitativ unter-schiedliche Dynamik wird im Frequenzbereich ! ' !K bzw. ! > !K erwartet, in dem durchdas externe Feld beide Elektronen in vergleichbarem Ma�e angeregt werden. Zun�achst ist esplausibel, hier mit gro�er Wahrscheinlichkeit auch Doppelionisationsprozesse zu beobachten,d.h. die Ionisation beider Elektronen nach einer durch das Feld induzierten Kollision (derar-tige Prozesse wurden bei den in der vorliegenden Arbeit betrachteten niedrigen Frequenzenlediglich f�ur sehr hohe Feldamplituden verzeichnet). Weiter stellt sich die Frage, welche Kon-sequenzen sich aus einem resonanten Antrieb des inneren Elektrons, der bei Frequenzen derGr�o�enordnung ! ' !K realisiert wird, ergeben. Sofern ein derartiger resonanter Antriebzu einer regul�aren klassischen Bewegung f�uhrt, ist in der Tat zu erwarten, da� auch entlangder in dieser Form resonant getriebenen Kepler-Mode nichtdispergierende Zwei-Elektronen-Wellenpakete im entsprechenden Quantensystem lokalisiert sind.Weitere Fragen schlie�en sich an unsere Untersuchungen zur transversalen Stabilit�at bzw.Instabilit�at der getriebenenen Kon�guration an. Im Rahmen dieser Arbeit konnten wir we-sentliche Aspekte der transversalen Dynamik nur aufzeigen, jedoch nicht zur G�anze kl�aren. In-



11.2. Perspektiven 143teressante Fragestellungen ergeben sich hinsichtlich des Mechanismus der Destabilisierung derresonant getriebenen Kon�guration (insbesondere bei extrem niedrigen Feldamplituden), hin-sichtlich der Langzeitdynamik in der Umgebung transversal stabiler bzw. durch ein statischesFeld stabilisierter Resonanzen (insbesondere im Hinblick auf die Rolle von Arnold-Di�usion),sowie hinsichtlich der Dynamik der chaotisch rotierenden Kon�guration. Auch quantenmecha-nische Aspekte zur transversal instabilen Kon�guration sind bislang noch nicht betrachtetworden. Zu erwarten ist in der Tat, da� sich auch die transversal instabilen Resonanzender getriebenen Kon�guration im quantenmechanischen Spektrum in Form von Zust�andenmanifestieren, die eine erh�ohte Aufenthaltswahrscheinlichkeit entlang des kollinearen Orbitsaufweisen.Als wichtige Erkenntnis hat unsere Arbeit wesentliche qualitative Unterschiede hinsicht-lich der Stabilit�at der Kon�guration zwischen der dimensionsreduzierten, kollinearen Dyna-mik und der uneingeschr�ankten Dynamik im dreidimensionalen Kon�gurationsraum gezeigt.Dies gilt nicht nur f�ur die Regularit�at der resonant getriebenen Frozen-Planet-Bewegung inder klassischen Mechanik, sondern tri�t auch auf die Stabilit�at bzw. Langlebigkeit entspre-chender quantenmechanischer Zust�ande zu. Die enormen Unterschiede zwischen den Ionisa-tionsraten der kollinearen und der dreidimensionalen Frozen-Planet-Zust�ande im ungest�ortenHelium-Atom lassen in der Tat den Schlu� zu, da� auch im extern getriebenen System langle-bige, mit regul�arer klassischer Dynamik der Frozen-Planet-Kon�guration assoziierte Quanten-zust�ande im dreidimensionalen atomaren System auf einer wesentlich k�urzeren Zeitskala zer-fallen als in einer kollinearen Beschreibung. Insbesondere ist zu erwarten, da� nichtdispergie-rende Zwei-Elektronen-Wellenpakete des dreidimensionalen getriebenen Helium-Atoms, diemit transversal stabilen (bzw. stabilisierten) Resonanzen der Frozen-Planet-Kon�gurationassoziiert sind, bei gleichen Quantenzahlen N durch weitaus niedrigere Lebensdauern ge-kennzeichnet sind als die entsprechenden kollinearen Wellenpaketzust�ande. Zu kl�aren ist da-bei jedoch noch, wie sich der Ein
u� der (im ungest�orten System e�zienten) transversa-len Zerfallskan�ale der Frozen-Planet-Kon�guration in Anwesenheit der zeitlich periodischenbzw. statischen St�orung verh�alt. Derartige Fragen lassen sich jedoch nur durch exakte Quan-tenrechnungen zum dreidimensionalen, getriebenen Helium-Atom beantworten, die beim ge-genw�artigen Stand der numerischen Technik in dem im Hinblick auf das Auftreten nicht-dispergierender Zwei-Elektronen-Wellenpakete interessanten Bereich von Doppelanregungennicht m�oglich sind.Einen approximativen Zugang zu Quantenzahlen der Gr�o�enordnung N � 50 : : :100 lie-fert unter Umst�anden das von Richter, Wintgen und Mitarbeitern entwickelte, auf dem Prin-zip der Born-Oppenheimer-N�aherung basierende Verfahren, das sich die approximative Sepa-ration der Zeitskalen der Bewegung der Elektronen zunutze macht [17]. Bei diesem Verfahrenwird, �ahnlich wie bei der Born-Oppenheimer-Beschreibung von Molek�ulen, die quantenmecha-



144 Kapitel 11. Zusammenfassung und Ausblicknische Dynamik der Frozen-Planet-Kon�guration durch die Dynamik des �au�eren Elektronsin dem e�ektiven adiabatischen Potential gen�ahert, das sich aus der L�osung der Schr�odinger-Gleichung des inneren Elektrons bei festem Ort des �au�eren Elektrons ergibt. Wie Richterund Mitarbeiter gezeigt haben, lassen sich die Energien der Frozen-Planet-Zust�ande durchdieses Verfahren gut reproduzieren [17]. Obwohl die Verallgemeinerung dieses Verfahrensauf das periodisch getriebene System mit Komplikationen verbunden ist, die eine numerischeAnwendung im Vergleich zum ungest�orten System erheblich erschweren (so m�ussen im getrie-benen System verschiedene Werte des Gesamtdrehimpulses, der keine Erhaltungsgr�o�e mehrdarstellt, ber�ucksichtigt werden), ist anzunehmen, da� es dieses Verfahren erheblich leich-ter erlaubt, doppelt hochangeregte Frozen-Planet-Zust�ande im externen elektromagnetischenFeld zu beschreiben, als ab initio Methoden.Neben der numerischen Berechnung nichtdispergierender Zwei-Elektronen-Wellenpaketeim dreidimensionalen, getriebenen Helium-Atom stellt auch die Visualisierung dieser Wellen-pakete eine gro�e Herausforderung dar (siehe zu diesem Thema auch [152]). Im Gegensatzzur kollinearen Dynamik ist es im dreidimensionalen Kon�gurationsraum aufgrund der hohenZahl der Freiheitsgrade nicht m�oglich, die Wahrscheinlichkeitsdichte des Zwei-Elektronen-Zustands in Abh�angigkeit s�amtlicher Koordinaten des Systems aufzutragen. Zu pr�ufen istdaher, auf welche Koordinaten- bzw. Phasenraumebenen die Wellenfunktion sinnvollerweisezu projizieren ist, um die kollineare und transversale Lokalisierung der Wellenpakete entlangder feldinduzierten Resonanzen anhand von Dichteverteilungen unzweideutig darzustellen.



AnhangA.1 Numerische Integration der BewegungsgleichungenDie numerische Integration der klassischen Bewegungsgleichungen (3.46 { 3.51) wurde mitder Routine D02CJF der NAG-Library [153] durchgef�uhrt, die eine Adams-Methode variablerOrdnung und Schrittweite verwendet. Diese Routine hat sich als e�zienter gegen�uber Runge-Kutta-Methoden erwiesen. Verglichen mit dieser Routine wurde au�erdem eine auf dem vonMeyer [154] entwickelten Verfahren basierende Integrationsroutine, bei dem neben der erstenZeitableitung auch h�ohere Zeitableitungen der Variablen berechnet werden, was die Wahlrelativ gro�er Zeitschritte erm�oglicht und damit den Ein
u� von Rundungsfehlern geringh�alt. W�ahrend bei Wassersto�systemen dieses Verfahren eine sehr e�ziente Integration derBewegungsgleichungen erlaubt [155], hat es sich f�ur die Integration von (3.46 { 3.51) alsvergleichsweise ine�zient erwiesen, da die Berechnung h�oherer Ableitungen der in (3.50) und(3.51) auftretenden Terme mit erheblichem numerischen Rechenaufwand verbunden ist.Aufgrund der endlichen numerischen Rechengenauigkeit l�a�t sich die Konvergenz der nu-merischen Integration nicht �uber einen beliebig langen Integrationszeitraum gew�ahrleisten.Insbesondere im chaotischen Bereich des Phasenraums, in dem kleine Abweichungen von ei-ner gegebenen Trajektorie sich im Lauf der Zeit exponentiell verst�arken, ist eine konvergenteIntegration der Bewegungsgleichungen nur innerhalb eines begrenzten Zeitraums m�oglich.So sind die in Kap. 5 und Kap. 7 gezeigten Trajektorien, die sich durch chaotische Dynamik(etwa Abb. 5.1) bzw. durch Irregularit�aten auf sehr langer Zeitskala (etwa Abb. 5.9) auszeich-nen, im allgemeinen nicht �uber den in den entsprechenden Abbildungen betrachteten Zeitramkonvergent berechnet worden. Dies spielt jedoch keine Rolle, da zur Charakterisierung derchaotischen Dynamik die quantitativ genaue Zeitentwicklung einzelner Trajektorien nichtrelevant ist. Von Belang hingegen sind statistische Merkmale der betrachteten chaotischenDynamik (etwa die Zeitentwicklung der �Uberlebenswahrscheinlichkeit, siehe Abb. 5.14), die,wie durch Variation der Integrationsgenauigkeit �uberpr�uft wurde, in den numerischen Rech-nungen korrekt reproduziert wurden. 145



146 Anhang A. Zusammenfassung und AusblickA.2 Berechnung der Matrixelemente in der Sturmschen BasisIn diesem Anhang wird die Berechnung der Matrixelemente des e�ektiven Hamiltonoperatorsund des e�ektiven Identit�atsoperators aus (8.47) in der Sturmschen Basis skizziert. Ausge-schrieben in ihren elementaren Komponenten lauten die in (8.47) auftretenden Operatoren(x+ y) x yH0� (x+ y) =  �x2 @2@x2 x y �  x @2@x2 x+ x2 @2@x2! y2 � x @2@x2 y3� 12  x y2 @2@y2 y + x2 y @2@y2 y + y2 @2@y2! + x3 y @2@y2!+ x2 @@x x y @@y + x2 @@x y @@y y + x @@x x y2 @@y y� e�2i�+ �x2 y + 2x y2 + y3 � Z (x3 + 3x2y + 2x y2)� e� i� (A.1)(x+ y) x y V� (x+ y) = F2! �x y2 @@y y + x2�y2 @@y + y @@y y� + x3 y @@y� e� i� (A.2)(x+ y) x y (x+ y) = x3 y + 2 x2 y2 + x y3 (A.3)Jede dieser hier auftretenden Komponenten l�a�t sich als Produkt der Operatoren (8.42 {8.44) darstellen und damit durch die Operatoren Ŝ�, Ŝ3 (8.38, 8.39) unter Ber�ucksichtigungder Regeln Ŝ3 Ŝ� = Ŝ� (Ŝ3 � 1) (A.4)Ŝ� Ŝ� = Ŝ3 (Ŝ3 � 1) (A.5)ausdr�ucken:x2 = �2�14 Ŝ2+ + 12 Ŝ+ (2 Ŝ3 + 1) + 32 Ŝ23 + 12 Ŝ� (2 Ŝ3 � 1) + 14 Ŝ2�� (A.6)x3 = �3�18 Ŝ3+ + 34 Ŝ2+ (Ŝ3 + 1) + 38 Ŝ+ (5 Ŝ23 + 5 Ŝ3 + 2) + 12 Ŝ3 (5 Ŝ23 + 1)+ 38 Ŝ� (5 Ŝ23 � 5 Ŝ3 + 2) + 34 Ŝ2� (Ŝ3 � 1) + 18 Ŝ3�� (A.7)x2 @@x = ���14 Ŝ2+ � 12 Ŝ+ (Ŝ3 + 1) � 12 Ŝ3 + 12 Ŝ� (Ŝ3 � 1) + 14 Ŝ2�� (A.8)x @@x x = ���14 Ŝ2+ � 12 Ŝ+ Ŝ3 + 12 Ŝ3 + 12 Ŝ� Ŝ3 + 14 Ŝ2�� (A.9)x2 @@x x = �2��18 Ŝ3+ � 12 Ŝ2+ (Ŝ3 + 1) � 18 Ŝ+ (5 Ŝ23 + 5 Ŝ3 + 2)+ 18 Ŝ� (5 Ŝ23 � 5 Ŝ3 + 2) + 12 Ŝ2� (Ŝ3 � 1) + 18 Ŝ3�� (A.10)x2 @2@x2 = 14 Ŝ2+ + 12 Ŝ+ � 12 Ŝ23 � 12 Ŝ� + 14 Ŝ2� (A.11)x @2@x2 x = 14 Ŝ2+ � 12 Ŝ+ � 12 Ŝ23 + 12 Ŝ� + 14 Ŝ2� (A.12)x2 @2@x2 x = ��18 Ŝ3+ + 14 Ŝ2+ (Ŝ3 + 1) � 18 Ŝ+ (Ŝ23 + Ŝ3 + 2) � 12 Ŝ3 (Ŝ23 + 1)



A.3. Konvergenz der quantenmechanischen Rechnungen 147� 18 Ŝ� (Ŝ23 � Ŝ3 + 2) + 14 Ŝ2� (Ŝ3 � 1) + 18 Ŝ3�� : (A.13)Die Anwendung auf eine Sturmsche Basisfunktion S(�)n ergibt sich damit umittelbar aus (8.40,8.41). F�ur (A.8) etwa erhalten wirx2 @@x S(�)n = ���14 (n+ 1)qn (n+ 2)S(�)n+2 � 12 (n+ 1)qn (n+ 1)S(�)n+1 � 12 nS(�)n+ 12 (n� 1)qn (n� 1)S(�)n�1 + 14 (n� 1)qn (n� 2)S(�)n�2� : (A.14)Da der Index n der Sturmschen Funktionen durch die Operatoren (A.6{A.13) maximal um�n = �3 ge�andert wird, lassen sich die Anwendungen der Operatoren (A.1{A.3) auf dasProdukt S(�x)nx (x)S(�y)ny (y) als Linearkombintationen der Produkte S(�x)n0x (x)S(�y)n0y (y) mit jnx�n0xj � 3 und jny � n0y j � 3 darstellen. Innerhalb der Sturmschen Basis (8.50) verf�ugen dieOperatoren (A.6{A.13) damit �uber die Auswahlregeln j�nxj � 3 und j�nyj � 3.A.3 Konvergenz der quantenmechanischen RechnungenWie bereits in Abschnitt 8.4 erw�ahnt wurde, besteht die f�ur eine numerische L�osung des Ei-genwertproblems unvermeidliche N�aherung darin, die Anzahl der Basisfunktionen sowie dieZahl Nk der Floquet-Bl�ocke zu beschr�anken. Es ist daher zu untersuchen, ab welchen Ba-sisl�angen Nx, Ny in der x- und y-Variablen, sowie ab welchen Werten von Nk das Ergebnisder numerischen Rechnung konvergiert ist, d.h. sich f�ur gr�o�ere Werte von Nx, Ny und Nknicht mehr �andert. Dabei ist zu beachten, da� in dem uns interessierenden Eigenwertproblemfrei w�ahlbare Parameter existieren, von deren Werten die Konvergenzgeschwindigkeit im all-gemeinen abh�angt: die Sturmschen Skalierungsparameter �x, �y , die im wesentlichen dieOrtsau
�osung der Sturmschen Basis in den Koordinaten x und y charakterisieren, sowie derWinkel � der komplexen Skalierung. Im Hinblick auf einen m�oglichst geringen Gesamtspei-cherplatz f�ur die numerische Diagonalisierung ist daher zu untersuchen, bei welcher Wahldieser Parameter die f�ur eine konvergente Rechnung erforderlichen Mindestwerte von Nx, Nyund Nk minimal werden.Konkret sind wir daran interessiert, die Eigenschaften von autoionisierenden Zust�andenzu bestimmen, die mit den regul�aren Strukturen des klassischen Phasenraums der kollinearen,getriebenen Frozen-Planet-Kon�guration assoziiert sind. Neben den Energien dieser Zust�andeund deren �Uberlappmatrixelementen mit Zust�anden des ungest�orten Systems geht es uns ins-besondere auch um deren Ionisationsbreiten, die in der Regel sehr hohe Anforderungen andie numerische Konvergenz stellen, da sie eine sehr gute Beschreibung der Wellenfunktionim gesamten Phasenraum (insbesondere auch in den mit klassischer Ionisation assoziierten,"verbotenen\ Gebieten) erfordert. Da wir die Ionisationsbreiten dieser Zust�ande insbesonde-re auch bei Feldparametern bestimmen wollen, bei denen diese Zust�ande stark mit anderen



148 Anhang A. Zusammenfassung und AusblickZust�anden der gleichen Serie mischen (bei vermiedenen Kreuzungen also), ist eine konvergen-te Berechnung der Ionisationsbreiten s�amtlicher autoionisierender Zust�ande der betrachtetenSerie w�unschenswert. Konkret fordern wir, da� die Ionisationsbreiten niedrig liegender au-toionisierender Zust�ande (d.h. mit niedrigen Quantenzahlen n) bis auf einen Absolutfehlervon 10�14 a.u. konvergiert sind.Aufgrund der Tatsache, da� die Wahrscheinlichkeitsdichte der autoionisierenden Zust�andein den Koordinaten der Elektronen approximativ separiert (siehe Abb. 9.3), bestimmen wirdie Kombination der Basisl�angen Nx, Ny und Parameter �x, �y , bei denen eine derartigeKonvergenz unter relativ guten Bedingungen (d.h. bei relativ geringem Gesamtspeicherplatz-bedarf) vorliegt, separat in den Variablen x und y. Dazu w�ahlen wir eine relativ kleine Basis,die die grundlegende Struktur des betrachteten Floquet-Spektrums im wesentlichen korrektreproduziert. In dieser Basis werden zun�achst der Parameter �x und die Basisl�ange Nx vari-iert; es wird eine geeignete Kombination von �x und Nx gesucht, bei der Nx relativ niedrig istund die uns interessierenden Ionisationsbreiten konvergiert sind (d.h. sich bei VerdopplungvonNx um weniger als 10�14 a.u. �andern). Analog bestimmen wir eine geeignete Kombinationvon �y und Ny durch separate Variation dieser beiden Gr�o�en.Eine Teilbedingung f�ur die optimale Kombination von Nx und �x bzw. von Ny und �yergibt sich aus der Ausdehnung der Dichteverteilung der Zust�ande im Kon�gurationsraum.Zu beachten ist dabei, da� die n-te Sturmsche Funktion S(�)n (r) maximal wird bei ca. r ' 2n�und oberhalb davon exponentiell abf�allt (�ahnlich wie die Wassersto�eigenfunktion zur Dre-himpulsquantenzahl l = 0), im wesentlichen also den Bereich r = 0 : : :2n� �uberdeckt. Folglichwird eine Wellenfunktion, deren Wahrscheinlichkeitsdichte auf den Bereich r = 0 : : :rmax kon-zentriert ist und au�erhalb dieses Bereichs nahezu verschwindet, optimal durch die SturmscheBasis fS(�)1 ; : : : ; S(�)N g beschrieben, bei der das Produkt von N und � etwas oberhalb rmax=2liegt, die Basis den Bereich r = 0 : : :rmax also gut beschreibt.Da die Wellenfunktionen s�amtlicher Zust�ande der Serie zu einer gegebenen QuantenzahlN in der Koordinate des inneren Elektrons n�aherungsweise durch die Wassersto�eigenfunk-tion zur Knotenzahl N � 1 bei der Kernladung Z = 2 gegeben sind (siehe Abb. 9.3), derenmaximale Ausdehnung in z2 ca. z2;max ' N2 betr�agt, ist es f�ur eine konvergente Beschreibungdieser Zust�ande erforderlich, die Sturmsche Basis in der Variable y so zu w�ahlen, da� Ny�ygr�o�er als N2=2 ist (konkret �nden wir gute Konvergenz bei Ny�y � N2). Typischerweiseergeben sich in der Variable x h�ohere Werte f�ur die Basisl�ange und den Skalierungsparameterals in y. Zum einen zeichnen sich, wie wir in Abb. 9.3 sehen, die Wellenfunktionen in der Ko-ordinate z1 durch Variationen auf viel gr�o�eren Ortsskalen aus als in z2 (und erfordern dahereine geringere Ortsau
�osung in x als in y), zum anderen mu� in der Koordinate des �au�erenElektrons insgesamt ein viel gr�o�erer Bereich �uberdeckt werden als in der des inneren Elek-trons, da die Zust�ande einer Serie durch unterschiedliche Ausdehnungen in z1 gekennzeichnet



A.3. Konvergenz der quantenmechanischen Rechnungen 149sind.Auch die optimale Anzahl Nk der Floquet-Komponenten wird durch separate Variati-on von Nk bestimmt. Bei der Wahl von Nk ist zu beachten, da� neben s�amtlichen autoio-nisierenden Zust�ande der betrachteten Serie auch die niedrigsten Kontinuumszust�ande indie Rechnung miteinbezogen werden m�ussen, die um ein bis zwei Vielfache der treibendenFrequenz von der Ionisationsschwelle entfernt sind [156]. Es zeigt sich, da� Kopplungen zuautoionisierenden Zust�anden, die Serien zu anderen Quantenzahlen angeh�oren, keine Rollespielen (d.h. die Ionisationsbreiten der uns interessierenden Zust�ande um weniger als 10�14a.u. ver�andern). Typischerweise legen wir die Floquet-Zone genau in die Mitte zwischen derEnergie des niedrigsten Zustands der Serie und der Kontinuumsschwelle. Die Summe (8.52)erstreckt sich dann von �k0 bis k0, wobei das Produkt aus Nk = 2k0+ 1 und ! etwas gr�o�erist als der Abstand des niedrigsten Zustands der Serie von der Kontinuumsschwelle.Der Parameter � wurde zur Optimierung der Konvergenzgeschwindigkeit nicht variiert.Als gute Wahl hat sich � = 0:1 erwiesen.Die auf diese Weise bestimmten Basisl�angen und Parameter werden dann zur eigentlichenBerechnung des Floquet-Spektrums kombiniert. Die numerische Konvergenz der Rechnungwird durch Variation von �x, �y und � �uberpr�uft. Dabei hat sich gezeigt, da� die uns interes-sierenden Ionisationsbreiten bez�uglich Variation dieser Parameter stabil sind. Wir erwartendaher, da� die Ionisationsbreiten in Tab. 9.2 und Tab. 10.1 bis auf einen Absolutfehler von10�14 konvergiert sind.
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