Evaluation of endocrine disruption in sea bass (Dicentrarchus labrax): Effects of persistent organic pollutants on their thyroid function

Joseph Schnitzler
Many aspects of thyroid endocrinology are very well conserved across vertebrate taxa.

These aspects include thyroid hormone chemistry, synthesis, transport, regulation.

Same proteins involved in these processes
- **Special functional anatomy:** Thyroid epithelial cells are arranged in spheres called **thyroid follicles**. Follicles are filled with **colloid**, a proteinaceous depot of thyroid hormone precursor.
Secrete a prohormone: which has to be metabolized by specific enzymes deiodinases.
Thyroid hormones play a crucial role in:

- Metabolism
- Growth
- Protein synthesis
- Cardiovascular effects
- Development

Thyroxine (T4) and Triiodothyronine (T3)
Regulation

T4 → Centrally controlled hypothalamus-pituitary-thyroid axis

TH conjugation

T3 → Peripheral control in extra-thyroidal tissues
Endocrine disruptors:
- synthetic chemicals
- mimic or block hormones
- disrupt hormone function

Sea as “final sink” for pollution contains high concentrations of endocrine disruption chemicals
Organochlorinated pollutants

- Polychlorobiphenyls (PCBs)
- similar structures as thyroid hormones
- may generate an endocrine disruption
Sea bass (*Dicentrarchus labrax*)

- easily accessible, large distribution and relatively abundant
- optimal size
- long lived animals at the top of the food web
- sedentary habits

Perfect for sentinel species
Aims of this study

- Evaluate the potential effect of environmental pollutants on the thyroid function using simultaneously different thyroid parameters
- Study the underlying mechanisms and effects of such an endocrine disruption
5 tanks containing each 15 sea bass

Experimental part

Day 0: 15g et 11cm
Day 120: 30g et 15cm

Contamination levels of [7 ICES PCBs] in preys of D. labrax

In order to examine all facets of fish thyroid function, we propose to study simultaneously different endpoints.
Thyroid Histology

- Follicles dispersed on connective tissue near the pharyngeal region located next to the ventral aorta.
- Irregular or oval follicular lumen
- Surrounded by flattened, cuboidal epithelial cells
- Measure follicle size, cell heights, roundness, form factor and aspect ratio.
Histomorphometry

- No clear relationship to pollutant levels
Thyroid Histology

- Heterogeneity of follicle size

![Control vs 1 ppm](image.png)
Metabolic activity

- 115% increase in mean deiodinase activity
- 50% decrease in mean sulfation activity

Towards more conversion of T4 to T3 and less elimination of thyroid hormones
Thyroid status

- Thyroid hormone levels preserved in environmental relevant exposure
- Important depression @ 10 ppm!
Environmental relevant concentrations

T4 → Centrally controlled brain-pituitary-thyroid axis

T4 + T3

TH conjugation

T3 → Peripheral control in extra-thyroidal tissues

Organs/tissue
In sea bass exposed to environmental relevant concentrations of PCBs, we observe:

- Preserved thyroid hormone status
- Changes in activity of metabolic pathways
- Changes in synthesis/secretion activity

→ Compensation by extensive autoregulatory feedback

We see at higher contamination levels:

- Depression of thyroid hormone status
- lower number of follicles and disorganized tissue
- lymphoid cell infiltration, enlargement of interstitial tissue, degenerated colloid
- might have caused hypothyroidism in 10ppm fish!!!
@ 10 ppm

T4 → Centrally controled brain-pituitary-thyroid axis

T3 → Peripheral control in extra-thyroidal tissues
Conclusions

- In sea bass exposed to environmental relevant concentrations of PCBs, we observe:
 - Preserved thyroid hormone status
 - Changes in activity of metabolic pathways
 - Trend of a raise of synthesis/secretion activity

 → Compensation by extensive autoregulatory feedback

- We see at higher contamination levels:
 - Depression of thyroid hormone status

 → Altered thyroid hormone synthesis!
Thank you for your attention!!!

- Please come and have a look on my poster:

 WE373

- A field study on sea bass in European coastal waters