UNIVERSITE DE LIEGE
Faculté des Sciences Appliquées

Z

Symbolic Methods for Exploring
Infinite State Spaces

These présentée par
Bernard Boigelot

en vue de 'obtention du titre
de Docteur en Sciences Appliquées

Année Académique 1997-1998

Abstract

In this thesis, we introduce a general method for computing the set of reachable
states of an infinite-state system. The basic idea, inspired by well-known state-
space exploration methods for finite-state systems, is to propagate reachability from
the initial state of the system in order to determine exactly which are the reachable
states. Of course, the problem being in general undecidable, our goal is not to obtain
an algorithm which is guaranteed to produce results, but one that often produces
results on practically relevant cases.

Our approach is based on the concept of meta-transition, which is a mathematical
object that can be associated to the model, and whose purpose is to make it possible
to compute in a finite amount of time an infinite set of reachable states. Different
methods for creating meta-transitions are studied. We also study the properties
that can be verified by state-space exploration, in particular linear-time temporal
properties.

The state-space exploration technique that we introduce relies on a symbolic
representation system for the sets of data values manipulated during exploration.
This representation system has to satisfy a number of conditions. We give a generic
way of obtaining a suitable representation system, which consists of encoding each
data value as a string of symbols over some finite alphabet, and to represent a set
of values by a finite-state automaton accepting the language of the encodings of the
values in the set. Finally, we particularize the general representation technique to
two important domains: unbounded FIFO buffers, and unbounded integer variables.
For each of those domains, we give detailed algorithms for performing the required
operations on represented sets of values.

11

v

Acknowledgments

I would first like to thank my thesis advisor, Pierre Wolper, for getting me started
in the field of verification, and sharing with me his contagious enthusiasm about
finite automata. His insightful comments contributed significantly to the content
and the presentation of this thesis. Thanks also to the other members of my jury,
Daniel Ribbens, Pascal Gribomont, Véronique Bruyere, Pierre-Yves Schobbens,
Alain Finkel and Bengt Jonsson, who have accepted to read and evaluate this thesis.

It has been a great pleasure for me to work in collaboration with several other
people during these last four years. I wish to thank Patrice Godefroid, who signifi-
cantly influenced much of the work contained in this thesis. Patrice also contributed
to some of the results presented in Chapters 3 to 7, and made possible two exciting
stays at Bell Laboratories in 1995 and 1996. Thanks to Bernard Willems, who in-
troduced me to some areas of mathematics and most willingly helped me to tackle
various problems. The results exposed in Chapter 8 would not be in the present
form without the help of Bernard. Thanks also to Louis Bronne and to Stéphane
Rassart, who contributed substantially to some of the results presented in Chap-
ter 8 and provided me with valuable comments and suggestions. I am also grateful
to Gérard Cécé and Philippe Louis for their careful reading of Chapter 7.

Thanks to all the people that shared with me their insightful ideas about sym-
bolic verification at various conferences and meetings. In particular, I thank Pascal
Gribomont, Ahmed Bouajjani, Alain Finkel, Yassine Lakhnech, Hubert Comon, and
Véronique Bruyere.

[am grateful to the National Fund for Scientific Research of Belgium (FNRS),
which supported me as research assistant (“aspirant”) and research associate (“char-
gé de recherches”).

Finally, thanks to my colleagues Philippe Lejoly, Didier Rossetto, Ulrich Nitsche,
Didier Pirottin and Diana Tourko which provided me with an enjoyable work envi-
ronment. Thanks also to Edie and Gary, to all my good friends for their support,
and — last but not least — to Murielle for her ... infinite love.

vi

Contents

Abstract
Acknowledgments
Contents

Figures

1 Introduction
1.1 Overview of the Thesis

2 Structured-Memory Automata
2.1 Modeling Programs
2.2 Semantics
2.3 Example
2.4 Discussion

3 Reachability Analysis
3.1 Finite-State Systems 0L
3.2 Infinite-State Systemso Lo
3.2.1 Exploring Infinite Sets of Reachable States
3.2.2 Representing Infinite Sets
3.3 Symbolic State-Space Exploration
3.4 Creating Meta-Transitions
3.4.1 Cycle Meta-Transitions
3.4.2 Multicycle Meta-Transitions
3.5 Dynamic Creation of Meta-Transitions
3.6 Example
3.7 Discussion

4 Properties
4.1 Reachability Properties 0oL
4.2 Deadlock Detectiono

vii

iii

vii

xi

13
13
15
16
17
19
23
23
29
31
37
38

viil

4.3 Temporal Properties
4.3.1
4.3.2 Biichi Automata

4.3.3 Exampleo
4.4 Model Checking

4.4.1
4.4.2 Infinite-State Systems
4.5 Testing the Emptiness of SMBAs
4.5.1

Finite-State Systems

Termination

5.1 Undecidability of Termination

5.2 Sufficient Conditions
5.3 Machines with Only Cycle Meta-Transitions

5.3.1 Transition Segments
5.3.2 Meta-Transition Segments
5.3.3 Number of Segments
5.3.4 Summary of Conditions
5.3.5 Implementation
5.4 Machines with Only Multicycle Meta-Transitions
5.4.1 Transition Segments

5.4.2 Meta-Transition Segments
5.4.3 Number of Segments
5.4.4 Summary of Conditions

5.5 LTL Model Checking

5.5.1
5.5.2 Summary of Conditions
5.5.3 Systems with Only Multicycle Meta-Transitions
5.5.4 Summary of Conditions

5.6 Control Graph Optimization

5.6.1 Introduction
5.6.2 Loop Optimization
5.6.3 Implementation

Finite-State Representation Systems
6.1 Finite-State Automata

6.2 Operations on Automata

6.2.1
6.2.2 Minimization

Linear-Time Temporal Logic

Expressiveness of Memory Domains

4.5.2 Undecidability of the Emptiness Problem
4.5.3 Semi-Decision Procedure

Systems with Only Cycle Meta-Transitions

Determinization

CONTENTS

CONTENTS

6.3
6.4

6.2.3
6.2.4

Closure and Concatenation
Set-Theory Operators

Automata as Representations of Sets

Operations on Representable Sets

Systems Using FIFO Channels

7.1 Basic Notions

7.2

7.3

7.4

7.5
7.6

7.7

7.8

7.9

7.1.1
7.1.2
7.1.3
7.1.4

Queue SMAs
Turing Expressiveness
Queue Decision Diagrams
Notations

Elementary Queue Operations

7.2.1
7.2.2
7.2.3

Systems with One Queue
Systems with Any Number of Queues
Sequence of Elementary Operations

Creation of Cycle Meta-Transitions

7.3.1
7.3.2

Systems with One Queue
Systems with Any Number of Queues

Creation of Multicycle Meta-Transitions

74.1
7.4.2

Systems with One Queue
Systems with Any Number of Queues

Creation of Other Meta-Transitions
Model Checking with Cycle Meta-Transitions

7.6.1
7.6.2

Systems with One Queue
Systems with Any Number of Queues

Model Checking with Multicycle Meta-Transitions
7.7.1 Systems with One Queue
7.7.2 Systems with Any Number of Queues
Termination
7.8.1 Finiteness of Sets of Queue-Set Contents
7.8.2 Precedence Relation

Loop Optimization

Systems Using Integer Variables

8.1 Basic Notions

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6

Integer SMAs
Turing Expressiveness
Number Decision Diagrams
Representable Sets of Vector Values
Sets that are Representable in Any Basis
Other Encoding Schemes

X

109
114
120
122

125
125
125
126
128
132
132
133
134
140
140
141
154
162
164
173
176
180
180
183
184
184
185
188
188
188
192

8.2 Linear Operations
8.3 Creation of Cycle Meta-Transitions
8.3.1 Overview
8.3.2 Algebra and Combinatorics Basics
8.3.3 Recognizability of Sets of Complex Vector Values
8.3.4 Necessary Conditions
8.3.5 Sufficient Conditions
8.3.6 Algorithms
8.3.7 Linear Operations with Guard
8.3.8 Proofs of Auxiliary Results
8.4 Creation of Multicycle Meta-Transitions
8.5 Model Checking
8.6 Termination
8.6.1 Finiteness of Sets of Vector Contents
8.6.2 Precedence Relation
8.7 Loop Optimization

Conclusions

9.1 Summary
9.2 Related Work
9.3 Future Work

Bibliography

CONTENTS

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12
3.13

4.1
4.2

5.1
5.2
9.3
5.4
9.5
5.6
5.7
0.8
5.9
5.10

Simple infinite-state system.o 4
Example of SMA. 10
State space of the example. 10
Breadth-first exploration of a finite state space. 14
Depth-first exploration of a finite state space. 15
Breadth-first exploration of an infinite state space. 20
Depth-first exploration of an infinite state space. 22
Creation of simple-cycle meta-transitions. 25
Computation of all the simple cycles in the control graph. 26
Control graph with 2N transitions and N2V simple cycles. 28
Creation of cycle meta-transitions from syntactic cycles. 29
Creation of multicycle meta-transitions. 32
State-space exploration by dynamic creation of meta-transitions. . . . 33
State-space exploration by dynamic creation of meta-transitions (con-

tinued). 34

Example of state-space exploration with simple-cycle meta-transitions. 39
Example of state-space exploration with multicycle meta-transitions. 40
Bichi automaton.o oo 48
Test of emptiness for SMBAs. 59
SMBA accepting a nonempty language. 84
Test of emptiness for safe SMBAs (with only cycle meta-transitions). 87
Test of emptiness for safe SMBAs (multicycle meta-transitions). . . . 91
Example of program with nested loops. 93
Control graph of program with nested cycles. 94
Cycle equivalent to nested loops. 95
Loop optimization for SMBAs. 96
Loop optimization for SMAs. 97
Mlustration of loop optimization. 98
Decision procedure for optimizability of a simple cycle. 101

x1

xii

5.11
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18

LIST OF FIGURES

Repeated loop optimizations for SMBAs. 103
Repeated loop optimizations for SMBAs (continued). 104
Repeated loop optimizations for SMAs. 104
Normalization of an automaton. 108
Determinization of an automaton. L. 110
Minimization of a deterministic automaton. 111
Minimization of a deterministic automaton (continued). 112
Computing the closure of an automaton. 113
Closure of an automaton. 113
Concatenating two automata. 114
Concatenation of two automata. 115
Synchronous product of two automata. 115
Intersection of two automata. 116
Computing the union of two automata. 117
Union of two automata. 117
Complement of an automaton. 118
Difference between two automata. L. 118
Test of emptiness of the language accepted by an automaton. 119
Test of inclusion between two languages accepted by automata. . . . 120
Application of an homomorphism to an automaton. 121
Receive operation for a single-queue QDD. 133
Send operation for a single-queue QDD. L. 134
Image of a single-queue QDD by a sequence of queue operations. . . . 135
Application of a QDD operation to a specified queue. 137
Send operation for an arbitrary QDD. 000 139
Receive operation for an arbitrary QDD. 139
Image of an arbitrary QDD by a sequence of queue operations. 139
Effect of repeated applications of APPLY-ONE. 142
Initial states that are provably robust (|oy| > |o2|). 145
Initial states that are provably robust (|o| < |o?|). 145
Initial states partitioning (|oy| > |o2|). oo 147
Initial states partitioning (|on] < |o7|).o 147
Automaton accepting U;s;, (L(A2) U LATY. oo 148
Automaton accepting U;s, L(AYY (with |oy] > |oo]). 149
Automaton accepting U;s;, L(AY) (with |on] > |oo]). 151
Right blocks. 152
Subroutine APPEND-LOOP. 154

Image of a single-queue QDD by the closure of a sequence of queue
operations. 155

LIST OF FIGURES xiii

7.19
7.20
7.21
7.22
7.23

7.24
7.25

7.26

7.27

7.28

7.29

7.30

7.31
7.32

7.33

7.34

7.35

7.36

7.37

7.38

7.39

7.40

7.41
7.42

8.1
8.2

Image of a single-queue QDD by the closure of a sequence of queue

operations (continued). 156
Image of a single-queue QDD by the closure of a sequence of queue
operations (continued). o 157
Implementation of META? for sequences of queue operations. 161
Image of a QDD by the closure of a sequence of queue operations. . . 163
Image of a single-queue QDD by a receive-deterministic multisequence
of queue operations.o 165
Effect of repeated applications of APPLY-MULTI-ONE. 167
Image of a single-queue QDD by repetitions of a receive-deterministic
multisequence of queue operations. 168
Subroutine APPEND-N-MULTI-LOOP. 169
Subroutine APPEND-MULTI-LOOP. 169
Image of a single-queue QDD by the closure of a send-synchronized
multisequence of queue operations. 170
Image of a single-queue QDD by the closure of a send-synchronized
multisequence of queue operations (continued). 171
Image of a single-queue QDD by the closure of a a send-synchronized
multisequence of queue operations (continued). 172
Image of an arbitrary QDD by multisequence of queue operations. . . 174
Image of an arbitrary QDD by repeated applications of a multise-
quence of queue operations. 174
Image of a QDD by the closure of a multisequence of queue operations
whose projections are send-synchronized. 177
Creation of multicycle meta-transitions. 178
Image of a QDD by the memory function modeling loss. 180
Set of queue contents to which a sequence can be applied infinitely
many times (one queue). 182
Set of queue-set contents to which a sequence can be applied infinitely
many times (any number of queues). 183
Set of queue contents to which a send-synchronized multisequence
can be applied infinitely many times (one queue). 186
Set of queue contents to which a send-synchronized multisequence
can be applied infinitely many times (one queue, continued). 187
Set of queue-set contents to which a multisequence can be applied
infinitely many times (any number of queues). 187
Test of finiteness of the language accepted by an automaton. 189
Precedence test for sequences of queue operations. 191
NDD representing U—. 0. 200

NDD representing U<. 201

X1v

8.3
8.4
8.5
8.6
8.7
8.8

8.9

8.10

8.11
8.12

8.13

8.14
8.15
8.16
8.17
8.18

8.19
8.20
8.21
8.22
8.23
8.24

8.25
8.26

LIST OF FIGURES

NDD representing U,. o 201
NDD representing Uy,. oo 202
Projection of an NDD with respect to a vector component. 204
Reordering of an NDD.00 205
Application of a linear operation to an NDD. 213

Decision procedure for the preservation of r-definability by the closure
of a guardless linear operation. 231
Decision procedure for the preservation of r-definability by the closure
of a guardless linear operation (continued). 232
Implementation of META? for guardless linear operations in a given

Implementation of META? for guardless linear operations in any basis.234
Image of an NDD by the closure of a guardless linear operation in a

given basis. 234
Image of an NDD by the closure of a guardless linear operation in

any basis. 235
Image of an NDD by the closure of a linear operation in a given basis. 239
Image of an NDD by the closure of a linear operation in any basis. . . 240
Creation of multicycle meta-transitions in a given basis. 266
Creation of multicycle meta-transitions in any basis. 266
Set of vector values to which a linear operation can be applied in-

finitely many times (in a given basis). L. 269
Set of vector values to which a linear operation can be applied in-

finitely many times (in any basis). 270
Set of vector values to which a finite set of linear operations can be

applied infinitely many times (in a given basis). 271
Set of vector values to which a finite set of linear operations can be

applied infinitely many times (in any basis). 271
Test of finiteness of a set represented as an NDD. 272
Precedence test for linear operations. 274
Computation of a linear operation equivalent to (61;60;;6). 278
Predicate EXISTS-LOOP-EQUIV? for linear operations. 279

Function LOOP-EQUIV-OP for linear operations. 279

Chapter 1

Introduction

Because of the rapid progress of computer technology over the last decades, com-
puters are now present in a large variety of devices, ranging from home appliances
driven by simple microcontrollers to phone switches controlled by massively paral-
lel units. Even an increasing number of life-critical systems rely on computers: in
modern fly-by-wire aircrafts, control surfaces are actuated by flight computers rather
than being mechanically linked to the pilot controls. The consequences of computer
system failures have thus become more and more severe. Over the last years, there
have been numerous cases of major disturbances and even fatalities caused by com-
puter problems [Neu96]. As a chilling example, there have been more than ten fatal
computer-related aircraft incidents over the last fifteen years [Neu97].

It is therefore crucial for developers of computer systems to have at their disposal
analysis techniques for detecting potential failures before those systems are used.
Even for systems which are not life-critical, it is always economically sound to detect
design flaws as early as possible in the development process.

A long promoted way of designing correct computer systems is to develop with
the system a formal proof of its correctness. This proof is traditionally based on
invariants, which are logic formulas whose truth value provably never changes dur-
ing the possible runs of the system. The correctness of the system is expressed as
a logical consequence of an invariant that is initially true. Invariants are written
in dedicated logics such as Hoare’s logic [Hoa69] or Dijkstra’s programming calcu-
lus [Dij76]. Even though this mathematically appealing approach has occasionally
been applied [vLS79, CE81, CM89, Gri93], it inherently suffers from major draw-
backs:

e [t is costly. Writing a formal proof, even with the assistance of a computerized
tool, is not straightforward and may require a significant amount of time,
ingenuity, and experience.

e [t is not practical. For instance, it is not possible to reuse already existing
code if this code was developed without a proof. Even if this does not seem to

2 CHAPTER 1. INTRODUCTION

be a major restriction for some specific applications, there are many domains
in which it is not economically feasible not to reuse parts of existing systems
(for instance, banking or phone switching software).

e [t is rigid. Even if a system is proved correct with respect to some properties,
obtaining a correction proof for other properties may require a complete new
study of the system.

An alternative approach is automated verification. Given a computer system,
one uses an automatic technique for checking that each execution of the system
satisfies some correctness criteria. In practice, this cannot be done while taking
into account all the details of the system; indeed, an analysis carried out up to the
greatest level of precision would have to deal with the electrical and even chemical
phenomena occurring inside the components of the computer. This is far beyond
our ambition. The solution is to define some level of abstraction, and write a model,
i.e., a formal description of the system at that level of abstraction. In addition,
one must also define properties expressing the correctness of the model at that level
of abstraction. Properties are often written in dedicated logic formalisms such as
temporal logics [Wol86, Wol83, Eme90, MP92]. The analysis simply consists of
checking if every execution of the model satisfies all the correctness properties.

The result of the analysis is either the detection of an error, or a guarantee that
the model is correct with respect to the properties. In practice, results of the former
type are the most interesting ones, because it is often easy to check whether an
error in the model corresponds or not to an error in the original system. On the
contrary, a guarantee of correctness for the model does not translate into a certainty
of correctness for the system, unless lots of hypotheses are assumed. (Nevertheless,
such a proof may increase the level of confidence in the system.)

In this thesis, we consider systems modeled as state machines. Intuitively, this
modeling scheme is based on the assumption that each run of the system can be
described by a (possibly infinite) sequence of discrete state changes. The model then
consists of a finite amount of information defining the initial state of the system, as
well as all the possible state changes.

A simple way of checking the correctness of such a model is to explore its state
space. Roughly speaking, the idea is to check systematically all the possible situ-
ations that can occur during the possible executions of the model. If an execution
violating a property is found, then a scenario proving that the model is erroneous is
produced. If no such execution is found after exploring all the possible situations,
then one can deduce that the model is “correct” [Hol88, Hol90]. The main drawback
of this approach is that a model can have a very large number of states (meaning
that there are a very large number of situations to check). This phenomenon is
known as the combinational explosion of the number of states with respect to the
size of the model. Tools have been developed for performing exhaustive state-space

exploration [HK90, Hol91, DDHY92, FGM*92], and have been successfully used to
detect unsuspected errors in industrial systems [BG96a]. However, their applicabil-
ity is still limited to small systems. Simple optimizations of the iterative state-space
exploration technique have been proposed in order to broaden the set of analyzable
systems [Mor68, WL93, PY97]. Despite some practical advantages inherent to those
optimizations, their use does not significantly increase the order of magnitude of the
size of the systems that can be handled.

On the other hand, techniques were developed for attacking directly the sources
of state-space explosion. A first example is partial-order methods [Val91, GW93,
God96], which attempt to limit the explosion caused by the modeling of concur-
rency by interleaving [Win84]. The idea consists of exploring only a part of the
state space, this part being sufficient for checking the validity of the properties of
interest. Another category of techniques tackling state-space explosion are symbolic
methods [BCM1T92, McM93]. There, the basic idea is to represent and manipulate
sets of states implicitly (with the help of specific data structures), rather than explic-
itly (as enumerations of their components). In this approach, the improvement does
not concern the number of states to be explored, but instead the total cost of this
exploration. Symbolic methods have been successfully applied to different domains
such as hardware circuits [KL93], real-time systems [ACD90, AHH93, HNSY94], and
hybrid systems [HH94, Hen96].

The most widely used representation system for symbolic exploration is the Bi-
nary Decision Diagram (BDD) [Bry92]. The idea consists of encoding the elements
of a set as fixed-length words of bits. The set is then represented by a canonical
decision diagram — isomorphic to a directed acyclic graph — that recognizes the en-
codings of all the elements of the set. This simple and elegant representation has
efficient implementations, and can easily be applied to a large class of domains. It
does however suffer from an important drawback: BDDs only allow the representa-
tion of finite sets. As a consequence, symbolic exploration with BDDs is limited to
the analysis of models with a finite state space.

It is however crucial to be able to analyze models with an infinite state space.
Indeed, even though all physically constructible systems are finite in some sense,
their size is often way larger than what can be handled by finite-state methods.
Modeling such systems as infinite-state systems is then more realistic than artificially
bounding their size well below reality. (For instance, a buffer with ten megabytes
of capacity is more accurately modeled by an unbounded buffer than by a two-byte
buffer.) Another reason is that verification methods can also be used to check the
correctness of abstract systems from which real systems can then be derived. It
is often more comfortable to reason independently from any limit than to impose
an arbitrary upper bound on the size of a system. Finally, it should be stressed
that techniques developed for infinite-state systems may remain very powerful for
analyzing systems for which the state space is finite but very large. For instance,

4 CHAPTER 1. INTRODUCTION

program COUNTER;

1: var ¢ : unbounded integer;
2 begin

3 1 = 0

4 repeat

5: 1 :=1+2

6 until i =0

7 end.

Figure 1.1: Simple infinite-state system.

there are systems whose state space is limited by an upper bound (such as the
capacity of a communication object), for which the cost of state-space exploration
appears to be independent of that bound.

Infinite-state models also have some disadvantages. The main one is that most
elementary properties are undecidable for sufficiently expressive classes of mod-
els [EN94, Fin94, HKPV95, CF196, ACJT96, AJ96, Esp97]. This implies that, in
general, it is not possible to analyze such systems rigorously, and hence that only
partial results can be obtained. Note however that this situation is not very differ-
ent in practice from what occurs for finite-state systems, for which the analysis is
often impossible due to excessive resource (time or memory) requirements, in spite
of a theoretical guarantee that an analysis can always be carried out. Our point of
view is that it is more useful to provide a partial solution to an important general
problem rather than isolate elegant but not very meaningful subclasses of systems
for which a complete analysis is theoretically always possible.

Another drawback of infinite-state models is that the result of their reachability
analysis cannot be expressed as the explicit enumeration of all their reachable states.
One has thus to resort to symbolic methods for representing implicitly sets of states,
as well as to specific techniques for computing infinitely many reachable states in a
finite amount of time. This is not very different from what is usually done during
program analyses carried out by hand, as illustrated with the Pascal-like program
given in Figure 1.1. Even though this program has an infinite state space, it is easily
inferred that:

e Each execution of the main loop at Lines 2-6 has the effect of adding 2 to the
value of 7;

e The values that ¢ can take just before executing Line 6 are exactly all the
strictly positive even numbers;

1.1. OVERVIEW OF THE THESIS 3

e The program does not terminate.

This approach can be generalized and automatized. In this thesis, we address
the problem of exploring infinite-state spaces with the help of symbolic methods.
The results presented here extend and unify those appearing in previous publica-

tions [BW94, WB95, BG96b, BGWWO7].

1.1 Overview of the Thesis

This thesis is organized as follows. In Chapter 2, we describe the formalism that
is used throughout this thesis for modeling systems. This formalism, a variant of
state machines, is based on the distinction between control and data, and assumes
that the control is finite. The data domain can be chosen freely, and is the source
of the infinite nature of the state space. After the presentation of the syntax and
semantics of the formalism, an example of its use is given.

In Chapter 3, a general technique for exploring the state space of an infinite-state
system modeled according to the principles introduced in Chapter 2 is described.
The basic idea, inspired by well-known state-space exploration methods for finite-
state systems, is to propagate reachability from the initial state of the model in order
to determine exactly which are the reachable states. For fundamental reasons, this
problem can not be fully solved in general, hence we provide only a partial solution.
This solution consists a semi-algorithm, i.e., an algorithm without guarantee of
termination. Our approach is based on the concept of meta-transition, which is a
mathematical object that can be associated to the model, and whose purpose is to
make it possible to compute in a finite amount of time an infinite set of reachable
states. Different methods for creating meta-transitions are studied. An example of
reachability analysis concludes the chapter.

In Chapter 4, we study the properties that can be verified by state-space explo-
ration. For instance, it is possible to use the method discussed in Chapter 3 to verify
some properties of infinite execution sequences. In particular, we show how to check
w-regular properties, and therefore properties expressed as Linear-time Temporal
Logic formulas. Once again, due to the undecidability of the underlying problem,
only a partial solution can be obtained.

In Chapter 5, we study the termination of the semi-algorithms proposed in Chap-
ters 3 and 4. After proving that it is impossible to define syntactically the exact
class of systems for which the reachability problem can be solved, we propose a lower
approximation of this class. In other words, we give a sufficient syntactic criterion
(on models) that guarantees the termination of the reachability analysis. We also
show that model checking w-regular properties is decidable for the class of systems
satisfying the criterion.

6 CHAPTER 1. INTRODUCTION

The symbolic state-space exploration technique introduced in Chapter 3 relies
on a symbolic representation system for sets of data values manipulated during
exploration. This representation system has to satisfy a number of conditions. In
Chapter 6, we give a generic way of obtaining a suitable representation system.
The main idea is to encode each data value as a string of symbols over some finite
alphabet, and to represent a set of values by a finite-state automaton accepting the
language of the encodings of the values in the set.

In Chapters 7 and 8, we particularize the notions introduced in Chapter 6 to two
important domains: unbounded FIFO buffers, and unbounded integer variables.
For each of those domains, we give detailed algorithms for performing the required
operations on represented sets of values. In particular, we introduce original decision
procedures for determining whether the closure of some sequences of data operations
preserves the representability of sets of data values.

In Chapter 9, we conclude this thesis by a comparison with related work, as well
as some ideas for future work.

Chapter 2

Structured-Memory Automata

This chapter presents the formalism that will be used for modeling programs. After
introducing its syntax and semantics, it discusses the motivations of the choice that
has been made.

2.1 Modeling Programs

We consider programs composed of a control part, which controls the order according
to which instructions are performed, and a data part, which defines the operations
carried out by instructions. The control part is modeled by a control graph, whose
edges are labeled by instructions. Each path in the control graph corresponds to a
sequence of instructions that can possibly be performed. The data part is modeled
by wariables whose values can influence, and be influenced by, the execution of
instructions. In this thesis, we require that programs have a finite control graph;
however, we do not impose any restriction on the domains of variables.

Formally, a program is modeled by a Structured-Memory Automaton (SMA),
defined as follows.

Definition 2.1 An SMA is a tuple (C, co, M, mg, Op,T), where

o (' is a finite set of control locations;
e ¢y s an initial control location;

e M = Dy x Dy x---xD, (n>0)is a memory domain, structured as the
Cartesian product of variable domains Dy, Dy, ..., D,, (which may be infinite).
The dimension n of M defines the number of variables of the SMA; those
variables are denoted x1,xs, ..., x,. Fach element m = (vy,va,...,v,) € M is
a memory content. For every i such that 1 < i < n, the component v; of m
corresponds to the value of x;;

o my = (V1,0,020,---,Unpo) € M is an initial memory content;

7

8 CHAPTER 2. STRUCTURED-MEMORY AUTOMATA

e Op is a (possibly infinite) set of memory operations. Fach operation 6 € Op
s a function M — M. This function may be partial, i.e., it does not need to
be defined for every memory content in M (the fact that 6 is undefined for the
memory content m € M is denoted (m) = L);

o I'C (' x OpxC 1isa finite set of transitions. FEach transition is a triple
(c,0,c"), where c is the origin, ¢’ the end, and 0 the label of the transition.

2.2 Semantics

The semantics of an SMA is defined in terms of a state-transition system. The
execution of an SMA consists of a possibly infinite sequence of discrete state changes,
starting from a distinguished initial state. At each step, the possible state changes
are determined by the outgoing transitions from the current state. SMAs can be
non-deterministic, i.e., there may be several possible state changes from any given
state.

Formally, the semantics of an SMA A = (C,co, M, mg, Op,T) is the state-
transition system (@, qo, R), where:

e () = C x M is the set of potential states. Each state ¢ = (¢,m) € @ is thus
composed of a control location ¢ € C' and a memory content m € M. Since
M may be infinite, () may be infinite as well;

e gy = (co,my) is the initial state;

o R C @QxQ isthe one-step reachability relation. A pair ((¢,m), (¢, m')) belongs
to R, which is denoted (¢, m) — g (¢/,m'), if there exists a transition (c, 0, ') €
T such that m’ = 6(m). The state (¢, m’) is then said to be reachable in one
step from the state (¢, m).

Let Ng denote the set of strictly positive integers. A state ¢’ € @ is reachable from a
state g € QQ if there exist &k € Ng and ¢1, ¢o, ... g1 € @ such that ¢ = ¢1, ¢ = ¢/, and
¢; —r ¢iy1 for all 0 < i < k. This is equivalent to stating that the pair (g, ¢’) belongs
to the transitive closure R* of R, which is the reachability relation of A. The fact
that (q,¢’) belongs to R* is denoted ¢ —7, ¢'. The fact that there exists ¢” € @ such
that ¢ —r ¢” and ¢" —% ¢ is denoted ¢ —% ¢’. As a particular case of the definition
of reachability, every state in () is reachable from itself. A state ¢ € @) is reachable if
it is reachable from the initial state ¢y. The set of all the reachable states is denoted
Qr. The state space (Qr, Rr) of A is the (possibly infinite) graph whose nodes are
the reachable states of A, and whose edges correspond to the one-step reachability
relation Rgr = RN (Qr X Qr) between those states. A computation of A is a finite or
infinite maximal sequence of states qi, ¢2, ... € @ such that ¢ = qo, and ¢; —r i1
for all 7 > 0.

2.3. EXAMPLE 9

2.3 Example

An example of an SMA A = (C, co, M, mg, Op,T) is given in Figure 2.1. It has the
following components:

o C = {cy, 2} (there are two control locations ¢; and ¢y, corresponding to the
nodes of the control graph of Figure 2.1);

e ¢y = c1 (cq is the initial control location);

M =17 (there are two integer variables x; and xs. A memory content is thus
a pair of integers);

mo = (0,0) (the initial value of both variables is 0);

Op = {x1++, x9++, even(zy) }, where

— 2144 22 — 7% : (v1,v9) — (v1 + 1,v9) (this operation increments the
value of the variable z1);

— Zory : 22 — Z? : (v1,v9) — (v, vy + 1) (this operation increments the
value of the variable z5);

(v1,v9) if vy is even

€ if v is odd
tests whether the value of the variable z; is even);

— even(zy) : Z2 — 7% : (vy,00) — { (this operation

o T ={(¢1,214+,¢1), (c1,even(xy), ca), (Co, Ta++,¢1)} (there are three transitions,
each of them corresponding to an edge of the control graph of Figure 2.1).

The SMA A is non-deterministic. Indeed, from a state such as ¢o = (¢4, (0,0))
(the initial state), one can follow either transition (c1,xq++,¢1) or transition (cg,
even(zy),cz). Since each of them leads to a different state, there are two different
states that are reachable in one step from gp.

The example also shows how memory contents can influence, and be influenced
by, the execution of instructions. It is always possible to follow the transition
(¢1,Z1++,¢1) from the control location ¢;, and doing so has the effect of adding
1 to the value of z1. On the other hand, it is only possible to follow (¢, even(zy), ¢z)
from ¢; if the value of z; is even, and doing so has the effect of turning the control
location from ¢; into ¢y without modifying the value of x; and x,.

A part of the (infinite) state space of A is depicted in Figure 2.2. Each state
of the form (¢y, (v1,v2)) with vy, vy € N (the control location is ¢; and the value of
each variable is an arbitrary positive integer) is reachable, for instance by following
from the initial state vy times the transitions (ci, even(zy), c2) and (¢, z3++, ¢1), and
then v; times the transition (c1,z1++,¢1). Each state of the form (co, (vq,v2)) with
v € 2N (the set of all the positive even numbers) and vy € N is reachable as well,

10 CHAPTER 2. STRUCTURED-MEMORY AUTOMATA

even(x1)

To++

Figure 2.1: Example of SMA.

(e1,(0,0))
(e1, (1,0)) (c2,(0,0))
(c1,(2,0)) (c1,(0,1))
(c1,(3,0)) (c2,(2,0)) (e1, (1,1)) (c2,(0,1))
(c1,(4,0)) (e1,(2,1)) (e1,(0,2))
L N L N L

Figure 2.2: State space of the example.

2.4. DISCUSSION 11

by following the transition (c;, even(zy), co) from the state (cq, (v1,v2)). There is no
other reachable state.

2.4 Discussion

SMAs are a simple yet powerful way of modeling programs. Expressing the control
part as a finite graph makes it possible to model non-determinism as well as arbi-
trarily intricate control structures (such as for instance nested loops with multiple
entry and exit points). There is no restriction on the data part of the program,
since the memory domain and operations may be freely chosen. That makes it pos-
sible to model as SMAs systems such as Petri Nets! [Pet62, Pet81, Rei85] or FIFO
nets [FR87], as well as programs expressed in imperative sequential programming
languages such as C [KR78| or Pascal [Wir71]. In the next chapters (3—6), we present
some results which hold independently from the memory domain and set of mem-
ory operations (provided that these satisfy some conditions which will be detailed).
Next, in Chapters 7 and 8, the results are particularized to two important classes of
SMAs, namely those using integer variables and linear operations, and those using
FIFO channels and send/receive operations.

Other classes of systems can be indirectly modeled as SMAs. This is the case for
concurrent systems based on the interleaving model of concurrency [Win84], pro-
vided that their control part is finite. There are simple algorithms for computing
the product of all the components of the system, which is a sequential program
equivalent to the whole system. Informally, this is done by grouping together the
states of all the components into global states, and by associating to the product
every transition corresponding to some transition of one of the components. Once
computed, the product can be converted into an SMA. Although the product opera-
tion is usually costly, it can be efficiently implemented by performing the operation
on-the-fly rather than globally. This consists of generating the set of outgoing tran-
sitions of a global state on demand rather than systematically, in order to avoid
computing and storing useless information. Another approach is to compute only
partly the product, the result being sufficient for verifying the property of interest.
For instance, partial-order methods [God96] attempt to reduce the size of the prod-
uct by not generating transitions for which it is known that they do not influence
the result of the analysis. Two different interleavings of the same computations
of the components will then correspond to one single computation of the product,

LA simple way of converting a Petri net into an SMA consists of building an SMA with only
one control location, and with one natural variable for each place of the Petri net (this variable
modeling the number of tokens at that place). Each transition of the Petri net is then converted
into a transition of the SMA. The initial memory content of the SMA corresponds to the initial
marking of the Petri net.

12 CHAPTER 2. STRUCTURED-MEMORY AUTOMATA

provided that they are shown to be equivalent with respect to the properties being
checked. Those issues are not addressed in this thesis.

Modeling an actual system as an SMA is not always straightforward, for the
distinction between control part and data part is somehow arbitrary. For instance,
the SMA of Figure 2.1 could easily be turned into one with a single control location
and an additional variable x3 of domain {c;,co}. Though a distinction between
control part and data part sometimes appears naturally, there are rules that must
be observed:

e The infinite character of the state space must be entirely contained in the data
part. In other words, the control graph must be finite.

o The set of memory operations should have a simple structure and have simple
algebraic properties. The purpose of this (informal) rule is to make easy the
computation of the necessary operations on memory values. The concept is
illustrated in the context of two particular memory domains with different

properties in Chapters 7 and 8.

Chapter 3

Reachability Analysis

This chapter addresses the problem of computing the set of reachable states of an
SMA. As it will be shown in Chapter 4, solving this problem makes it possible to
decide various properties of programs modeled as SMAs. We propose a solution
inspired by the algorithms developed for systems with a finite state space.

3.1 Finite-State Systems

Computing the set of reachable states of an SMA A is easy when this set is finite.
Indeed, a simple solution consists of starting with a set containing only the initial
state. Then, by following the one-step reachability relation R of A, one obtains new
reachable states which are added to the set. Since there are only a finite number of
reachable states, repeating this operation iteratively will eventually produce a stable
set, i.e., a set that can not be enlarged anymore by following R. At this point, the
set contains exactly all the reachable states of the SMA.

Recall that the state space of an SMA is a graph whose nodes correspond to
reachable states, and whose edges correspond to the one-step reachability relation
between those states. It follows that the method outlined above can be seen as an
exploration of the state-space graph, that is, a search visiting each node. There are
various strategies that can be adopted for the search, differing from each other by
the order according to which the nodes are visited. Figure 3.1 gives an algorithm
based on a breadth-first search, whose strategy is to visit nodes in increasing order
of depth (the depth of a node is the length of the shortest path from the initial
state to that node). Figure 3.2 gives an algorithm using a different search order, the
depth-first search. There, the strategy is to always follow an edge whose origin is
the most recently visited node that has an unvisited successor. The two algorithms
are equivalent, in the sense that they always yield the same result.

All the sets manipulated by the algorithms in Figures 3.1 and 3.2 are finite.
This means that the algorithms can actually be implemented by representing sets

13

14

CHAPTER 3. REACHABILITY ANALYSIS

function REACHABLE-FINITE-B(SMA (C, cg, M, mg, Op,T)) : set of states

e T s T
AT~ > sl

var wvisited-states, recent-states, new-states : sets of states;
begin
visited-states = {;
recent-states := {(co, mo)};
repeat
visited-states := wvisited-states U recent-states;
new-states := (J;
for each (c,m) € recent-states do
for each (¢/,0,c") € T such that ¢/ = ¢ do
if 0(m) # L and (¢”,0(m)) & visited-states then
new-states := new-states U {(c”,0(m))};
recent-states := new-states
until recent-states = (;
return wisited-states

end.

Figure 3.1: Breadth-first exploration of a finite state space.

3.2. INFINITE-STATE SYSTEMS 15

function REACHABLE-FINITE-D(SMA (C, ¢o, M, mg, Op,T)) : set of states

1: var wvisited-states : set of states;

2: procedure explore(state (¢, m))

3: begin

4: visited-states := wvisited-states U {(c,m)};
5: for each (c/,0,¢") € T such that ¢ = c do
6: if O(m) # L and (¢”,0(m)) & visited-states then
T explore((c”,0(m)))

8: end;

9: begin (x REACHABLE-FINITE-D x)
10: visited-states = {;
11: explore((co, mo));
12: return visited-states
13: end.

Figure 3.2: Depth-first exploration of a finite state space.

as finite lists of their elements. In practical applications, specific data structures
such as hash tables can be used in order to speed up set operations. If implemented
properly, both algorithms take O(N,) space and time, where N, is the number of
edges in the state space.

3.2 Infinite-State Systems

The main limit of the method presented in Section 3.1 is that it can only be applied
to systems with a finite state space. Indeed, since each reachable state is visited
individually, the exploration of an infinite state space by one of the algorithms of
Figures 3.1 and 3.2 would never terminate.

It is possible though to follow the same approach, which consists of spreading
the reachability information along the edges of the state-space graph, in order to
explore infinite state spaces. In order to be able to do so, two items are needed:

e A technique for going through an infinite number of transitions in a finite
amount of time;

e An algorithmically easy to handle finite representation of infinite sets of states.

16 CHAPTER 3. REACHABILITY ANALYSIS

3.2.1 Exploring Infinite Sets of Reachable States

In order to be able to explore infinite state spaces, one must be able to compute a
possibly infinite set of reachable states in a finite number of steps. An idea is to
generalize the basic operation for propagating reachability, so as to allow to deduce
the reachability of an infinite set from the reachability of a finite set. This is done
by introducing the concept of meta-transition.

Definition 3.1 Let A = (C,cy, M, mg, Op,T) be an SMA. A meta-transition ¢ for
A is a triple (c, f,c), where ¢,d € C and f : 2™ — 2M | that satisfies the following
property: for every set U C M of memory contents, it is such that

(vm' € f(U))3m € U)((c,m) =5 (d,m)),

where R is the one-step reachability relation of A. The function f is called the
memory function of t.

Meta-transitions generalize the concept of transition. If S C (@) is a set of states,
then following the meta-transition (c, f, ') from S leads to the set of states

S" = states(, f(values(S, c))),

where values(S,c) denotes the set {m’ € M | (¢,m’) € S} of all the memory
contents associated to ¢ in S, and for every U C M, states(c,U) denotes the set
{(¢,m) | m € U} of all the states associating a memory content in U to c¢. As
a consequence of Definition 3.1, the set S’ contains only reachable states provided
that S contains only reachable states. This means that meta-transitions propagate
reachability information. However, unlike transitions, they are able to generate
infinite sets of reachable states from finite sets of such states.

Exploring the state space of an SMA with the help of meta-transitions is done in
the following way. The first step is to add meta-transitions to the SMA, which be-
comes an Fztended Structured-Memory Automaton (ESMA). The resulting ESMA
has the same set of reachable states as the original SMA. The second step is to per-
form a state-space exploration of the ESMA, taking advantage of meta-transitions.
The meta-transitions that are added to the SMA can be arbitrarily chosen as far as
correctness is concerned. However, their choice clearly influences the termination of
the state-space exploration.

Formally, an ESMA is defined as follows.

Definition 3.2 An Extended Structured-Memory Automaton is a tuple (C,cy, M,
mo, Op, T, T), where

o (C,co, M, mg, Op,T) is a Structured-Memory Automaton;

3.2. INFINITE-STATE SYSTEMS 17

o T C C x Fy x C, where Fy; denotes the set of all the functions 2™ — 2M s
a finite set of meta-transitions. Each element t € T is a meta-transition for
the SMA (C, co, M, mq, Op,T).

The semantics of an ESMA A is derived from that of the underlying SMA. The
set of potential states @), the initial state gy, the one-step reachability relation R
and the state space (Qg, Rg) of an ESMA (C, ¢y, M, mg, Op, T, T) are identical to
those of the underlying SMA (C, co, M, mg, Op,T). If ¢ = (¢,m), ¢ = (d,m') € Q
are states and ¢ = (¢q,0,c) € T is a transition such that ¢’ is reachable from ¢
by following ¢ once, i.e., if ¢ = ¢; A ¢ = cg A m' = 0(m), then we write ¢ L q.
Likewise, we write ¢ L ¢ if ¢' is reachable from ¢ by following once the meta-
transition = (c1, f,c2) € T, ie., if c=c; A =co A m' € f({m}). Finally, we
write ¢ - ¢/ if either € T and ¢ 5 ¢/, or f € T and q = ¢

For every reachable state ¢ € Qg, there exist k € Ny, ¢1,¢2,...,q € Qrg,
and t1,%o,...,1,_1 € TUT such that ¢ = ¢y, ¢ = ¢, and ¢ b @i+ for every
i€{1,2,...,k—1}. The sequence 7 = qi,%1, ¢, ta, ..., tx_1, qx forms a path leading
to ¢. This path is a transition path (resp. meta-transition path) if all the t; belong
to T (resp. T). Any subsequence g;,,%;,,...,ti,—1,q, of m, with 1 < i) < iy < k,
is a subpath. The length of a path or subpath 7 is the number of transitions and
meta-transitions appearing in 7. Every reachable state has a depth, defined as the
length of the shortest path leading to that state. Finally, two paths or subpaths
T=q1,...,q and ™ =qy,...,q,, are said to be equivalent if ¢ = ¢} and qi, = qj,,.

An algorithm for carrying out the state-space exploration of an ESMA by taking
advantage of meta-transitions is presented in Section 3.3. Techniques for turning an
SMA into an ESMA i.e., for creating meta-transitions, are discussed in Section 3.4.

3.2.2 Representing Infinite Sets

An algorithm is only able to manipulate objects if their value can be encoded as a
finite string of bits. It follows that the exploration of infinite state spaces requires
a representation system for sets of states, that is, an encoding scheme transforming
a set into a finite amount of information describing it unambiguously. All represen-
tation systems have a limited expressiveness, in the sense that they do not define
an encoding for every possible infinite set. This is unavoidable, since there are un-
countably many subsets of an infinite set of states, but only countably many finite
strings of bits.

Since the infinite nature of the state space is a consequence of that of the data
part of the program, it is natural to define representation systems for infinite sets
of states in terms of representation systems for infinite sets of memory contents.
Actually, since there are only a finite number of control locations, one can repre-
sent a (possibly infinite) set of states by associating to each control location the

18 CHAPTER 3. REACHABILITY ANALYSIS

representation of a set of memory contents.

From now on, we assume that sets of states are represented this way, and hence
that a representation system for subsets of M is available. This system has to
satisfy some conditions; in particular, one must be able to perform some elementary
operations on represented sets of memory contents. The requirements are formalized
in the following definition.

Definition 3.3 Let A = (C,co, M, mg, Op, T, T) be an ESMA. A representation
system for subsets of M is well suited for A if:

e The following sets of memory contents are representable:
— The empty set ();
— The universal set M

— FEvery set {m}, where m € M, and

o All the following operations can be performed algorithmically on every repre-
sentable sets Uy, Uy C M :

— Computing the union Uy U Us, intersection Uy N Us, and difference Uy \
U2:'

Testing the inclusion Uy C Us;

Testing the emptiness of Uy;

— Computing the image O(Uy) = {0(m) | m € Uy} of Uy by any operation
0 € Op;

— Computing the image f(Uy) of Uy by any function f: 2™ — 2M [abeling

a meta-transition (c, f,c') € T.

By extension, a representation system for sets of states is said to be well suited
for an ESMA A if it represents sets of states as lists of pairs (control location,
set of memory contents), where the sets of memory contents are represented in
a representation system that is well suited for A. If S C @ is a set of states
and ¢ € C is a control location, then a representation of the set wvalues(S,c) is
trivially computed from a representation of S by simply locating the pair (control
location, representation of set of contents) corresponding to c. If ¢ € C' is a control
location and U C M is a set of memory contents, then a representation of the set
states(c,U) simply consists of the pair (¢, representation of U). Implementations
of elementary set-theory operations such as intersection, union, difference, test of
inclusion and test of emptiness on representable sets of states are easily deduced
from the corresponding operations on representable sets of memory contents.

A general method for obtaining representation systems well suited for some types
of ESMAs is described in Chapter 6. The method is particularized to two important
classes of ESMAs in Chapters 7 and 8.

3.3. SYMBOLIC STATE-SPACE EXPLORATION 19

3.3 Symbolic State-Space Exploration

The set of reachable states of an ESMA (or, more precisely, a finite and exact
representation of this set) can be computed by the same approach as for finite-state
SMAs. The idea is to propagate reachability information by following transitions,
but also meta-transitions.

An algorithm formalizing this idea is given in Figure 3.3. It can be seen as
a generalization of the breadth-first search of Figure 3.1. The main difference is
that several states, as opposed to a single state, are now visited at each step. We
assume that the sets of states manipulated by the algorithm are represented with
the help of a well suited representation system, hence the name “Symbolic State-
Space Ezxploration” of this technique, to highlight the fact that sets of states are not
simply manipulated as enumerations of their elements.

Despite the fact that following meta-transitions makes it possible to compute an
infinite number of reachable states in a finite amount of time, state-space exploration
algorithms are not guaranteed to terminate when the state space is infinite. Indeed,
there are classes of systems such as FIFO nets [FR87] that can be modeled as
ESMAs, but for which it is known that their set of reachable states can generally
not be computed. It follows that the algorithm of Figure 3.3 is actually a semi-
algorithm, i.e., a procedure that does not necessarily terminate. This semi-algorithm
is correct thanks to the following result.

Theorem 3.4 Let A be an ESMA such that the computation of REACHABLE(A)
terminates. The result of this computation contains exactly all the reachable states

of A.
Proof

e The result contains only reachable states. This is a direct consequence of the
fact that, at any time during the computation, the sets of states visited-states,
recent-states and new-states contain only reachable states. Indeed, executing
Lines 10-11 (resp. 12-13) adds to new-states states that are reachable by
following a transition (resp. a meta-transition) from states in recent-states.

e The result contains all the reachable states. At any time during the computa-
tion, let N denote the number of times Line 15 has been executed. Prior to
each execution of Line 15, the set recent-states contains exactly all the states
whose depth is N (this is easily shown be induction on N). If the computation
terminates, then the test recent-states = () at Line 16 succeeds for some value
of N. This means that all the reachable states of A have a depth less than N.
Therefore, all of them belong to the set wvisited-states returned at the end of
the computation.

20

CHAPTER 3. REACHABILITY ANALYSIS

function REACHABLE(ESMA (C, ¢y, M, mq, Op,T,T)) : set of states

1:
2:
3
4
5:
6
7
8
9

10:
11:

12:
13:

14:
15:
16:
17:
18:

var wvisited-states, recent-states, new-states : sets of states;

begin

visited-states 1= {;
recent-states := {(co, mo)};
repeat
visited-states = wvisited-states U recent-states;
new-states := (J;
for each ¢ € C such that values(recent-states,c) # () do
begin
for each (¢/,0,c") € T such that ¢ = c do
new-states := new-states U
states(c”, O(values(recent-states, ¢))) \ visited-states;
for each (¢, f,c¢") € T such that ¢/ = ¢ do
new-states := new-states U
states(c”, f(values(recent-states, c))) \ visited-states
end;
recent-states := new-states
until recent-states = (;

return visited-states

Figure 3.3: Breadth-first exploration of an infinite state space.

3.3. SYMBOLIC STATE-SPACE EXPLORATION 21

O

The arguments developed in the second part of the proof have an important
corollary.

Theorem 3.5 Let A be an ESMA. The computation of REACHABLE(A) termi-
nates if and only if there exists an upper bound on the depth of all the reachable
states of A.

Proof If the computation terminates, then the number N of times Line 15 has been
executed is a suitable upper bound. Reciprocally, if there exists an upper bound
Nyp € N on the depth of all the reachable states of A, then wvisited-states will
eventually contain all the reachable states for some value of N less or equal to Nyy.
At the next execution of Line 16, the condition recent-states = () is satisfied and the
computation terminates. O

There exist other semi-algorithms than the one given in Figure 3.3 for computing
the set of reachable states of an ESMA by following repeatedly transitions and meta-
transitions. Like for finite-state systems, they differ from each other by the order
according to which the states are visited. As an example, Figure 3.4 gives a semi-
algorithm analogous to the depth-first search of Figure 3.2.

Unlike for finite-state systems, the different search strategies for exploring infinite
state spaces are not equivalent. Although semi-algorithms based on different search
strategies always give out the same result when they terminate, the class of ESMAs
for which they terminate is generally different. In that context, Theorem 3.5 has an
interesting corollary.

Corollary 3.6 The breadth-first strateqy used by the semi-algorithm of Figure 3.3
always terminates whenever there is some other search strategy that terminates.

Proof If there exists a search strategy that terminates after a finite number of steps
for the ESMA A, then all the reachable states of A are reached from the initial state
after following a finite number of times individual transitions and meta-transitions.
Let N be this number. Since N is an upper bound on the depth of all the reachable
states of A, it follows from Theorem 3.5 that the state-space exploration of A by
the semi-algorithm of Figure 3.3 terminates. O

Even though Theorem 3.5 gives a necessary and sufficient condition of termina-
tion for the semi-algorithm of Figure 3.3, it does not provide an effective procedure
for deciding whether the state-space exploration of a given ESMA terminates or not.
In Chapter 5, which addresses termination issues, we show that there does not exist
such an effective procedure for most classes of ESMAs. It is nevertheless possible to
give sufficient static conditions on ESMAs for ensuring that the exploration of their
state space terminates; an example of such a condition is also given in Chapter 5.

22 CHAPTER 3. REACHABILITY ANALYSIS

function REACHABLE-D(ESMA (C, co, M, mg, Op,T,T)) : set of states

1: var wvisited-states : set of states;
2: procedure explore(set of states current-states)
3: begin
4: if current-states C visited-states then return;
5: visited-states := wvisited-states U current-states;
6: for each ¢ € C such that values(current-states, c) # () do
7 begin
8: for each (¢, f,c") € T such that ¢/ = c do
9: explore(states(c”, f(values(current-states, c))));
10: for each (¢/,0,c¢") € T such that ¢/ = ¢ do
11: explore(states(c”, O(values(current-states, c))))
12: end
13: end;
14: begin (+ REACHABLE-D)
15: visited-states = {;
16: explore({(co, mo)});
17: return wisited-states
18: end.

Figure 3.4: Depth-first exploration of an infinite state space.

3.4. CREATING META-TRANSITIONS 23

3.4 Creating Meta-Transitions

Meta-transitions are created during the transformation of an SMA into an ESMA.
Since the presence of meta-transitions has no influence over the set of reachable
states of an ESMA, meta-transitions can be arbitrarily chosen as far as the partial
correctness of the state-space exploration is concerned. However, termination of the
state-space exploration is usually influenced by the choice of meta-transitions.

For every SMA A = (C, ¢y, M, mg, Op, T) with an infinite state space, there are
infinitely many potential meta-transitions. Indeed, if A has an infinite set S of
reachable states, then there exists at least one control location ¢ € C' such that
values(S, ¢) is infinite. For every subset U of wvalues(S,c), one can create a meta-
transition (cg, fir, ¢), where fy is the function 2M — 2M such that for every U’ C M,
fu(U') =Uif mg e U', and fy(U') =0 if mg ¢ U".

Since an ESMA can only have a finite number of meta-transitions, a restriction
has to be imposed over the set of potential meta-transitions. There are various
methods for imposing such a restriction.

3.4.1 Cycle Meta-Transitions

When a meta-transition is followed, an infinite number of states may be reached
from a finite number of states. A natural idea is thus to associate meta-transitions
to elements of SMAs that are responsible for the infinite nature of their state space.

The only cause of state-space infinity for an SMA (C, ¢o, M, mg, Op,T) is the
presence of cycles in its control graph. A cycle is a sequence C = (¢4, 61,¢)), ..., (¢,
Ok, c;;) (k> 1) of transitions in 7" such that ¢, = ¢; and for every 0 < i < k, ¢, =
cirv1- The sequence o = 61,60,,...,60; of all the operations labeling the transitions
is the body of the cycle and is said to label C; this is denoted o = body(C). The
control location ¢; first visited by C is denoted first(C). The cycle C is simple if
it does not contain a subcycle, i.e., if there do not exist 1 < ¢ < j < k such
that (c;, 0;, ¢;), (Cit1, 0iv1, Ciy)s - -5 (¢4, 05, ¢5) is a cycle, and either i > 1 or j < k.
The cycle C has k rotations denoted rot(C,0), r0t(C,1),...,70t(C, k — 1), such that
rot(C,0) = C, and for every i € {1,...,k— 1},

TOt(Ca Z) = (Ci+17 0i+17 C;‘+1)7 (Ci+27 0i+27 C;J,-Q)a SR (Cka 01457 C;<;)7 (Cla 017 Cll)a SRR (Ci7 eia C;)

Let U C M be a set of memory contents. Following the cycle C from the set of
states states(cy,U) amounts to following successively all the transitions composing
C, yielding the set of states states(cy, U’), where U = o(U) = Ok (O _1(---01(U) - - -))
is the final set of memory contents and o = body(C). The set of contents obtained
after following the cycle [times (I > 0) from the set of contents U is denoted o'(U).
The set of all the contents that can be obtained by following the cycle any number

24 CHAPTER 3. REACHABILITY ANALYSIS

of times from the set of contents U is denoted ¢*(U), it can be seen as the result of
applying to U the function
o 2M = 2M U | dY(U).
leEN
If C is a cycle, then the cycle meta-transition associated to C is a meta-transition

whose effect is equivalent to following C any number of times. Formally, it is defined
as follows.

Definition 3.7 Let A = (C,cy, M, mg, Op,T) be an SMA, and C = (c1, 64, o), (o,
0r,¢3), ..., (ck, 0k, c1) (k> 1) be a cycle in its control graph (C,T). The cycle meta-
transition associated to C is the meta-transition (cy, f,c1), with f:2M — 2M . U s

body(C)*(U).

Cycle meta-transitions are valid meta-transitions, since their memory function
satisfies the conditions of Definition 3.1. Indeed, let (cq, f, ;1) be the cycle meta-
transition associated to some cycle C. If U C M is a set of memory contents,
and U' = f(U), then for every m’ € U’, there exist m € U and [€ N such that
(¢1,m’) is reached from (c;, m) by executing [times the body of C. Since this implies
(c1,m) —7% (c1,m'), the conditions of Definition 3.1 are fulfilled.

Not all potential cycle meta-transitions are interesting to consider. First, cycles
visiting control locations that are unreachable in the control graph of the SMA do
not have to be considered.

Second, recall that the purpose of adding meta-transitions to an SMA is to allow
the symbolic exploration of its state space, and that this exploration relies on a
representation system for sets of memory contents. One should avoid to create meta-
transitions such that the representation system will not be suited for the resulting
ESMA (this only happens when the memory function f of the meta-transition cannot
be computed on representable sets of memory contents). This rule is enforced as
follows. Each representation system for sets of memory contents must define a
predicate META? over the set of potential sequences of operations, whose purpose
is to decide whether the corresponding meta-transition can be created or not. The
predicate META? can be arbitrarily chosen, provided that it satisfies the following
conditions:

e META? is computable over the sequences of operations in Op*;

e There exists an algorithm for computing a representation of the set of memory
contents o*(U), given a sequence o of operations such that META? (o) is true
and a represented set of memory contents U.

The restriction to cycles for which META? is true might not be strong enough to
ensure that only a finite number of meta-transitions are created. There are different
ways of imposing additional restrictions.

3.4. CREATING META-TRANSITIONS 25

function META-SIMPLE(SMA A) : set of meta-transitions

1 var meta-transitions : set of meta-transitions;

2 begin

3 meta-transitions = 0;

4: for each (c,0) € SIMPLE-CYCLES(A) do

5 if META?(0) then meta-transitions := meta-transitions U {(c,0*,¢)};
6 return meta-transitions

7 end.

Figure 3.5: Creation of simple-cycle meta-transitions.

Restriction to Simple Cycles

Since the control graph of an SMA is finite, it can only have a finite number of simple
cycles. The idea is to create a meta-transition for every simple cycle in the control
graph that is reachable and satisfies META? (a cycle is reachable in the control graph
if it visits control locations for which there exists a sequence of transitions from the
initial control location to these locations). The advantage of this approach is that
there are classes of SMAs for which considering all the simple-cycle meta-transitions
is sufficient for ensuring that symbolic state-space exploration terminates. The issue
is discussed in detail in Chapter 5.

An algorithm for creating all the meta-transitions that can be derived from
reachable simple cycles is given in Figure 3.5. It relies on a function SIMPLE-
CYCLES that returns all the reachable simple cycles in the control graph of an SMA.
An algorithm for computing this function is given in Figure 3.6!. This algorithm
proceeds by performing a depth-first search in the control graph, without storing a
table of the control locations already visited. This means that paths in the control
graph are explored until they visit the same control location twice, rather than
until they visit a control location already visited by a (possibly different) path.
Whenever a control location occurs twice on the same path, the cycle corresponding
to the subpath located between the two occurrences is added to the set computed
so far, as well as are all the rotations of this cycle. The algorithm is correct thanks
to the following result.

Theorem 3.8 Let A be an SMA. SIMPLE-CYCLES(A) returns the set of all the
pairs (¢, o) such that o is the body of a simple cycle C that is reachable in the control
graph of A, and c is the first control location visited by C.

'In this algorithm, o1, 02 denotes the concatenation of the sequences of transitions o1 and os.

26

CHAPTER 3. REACHABILITY ANALYSIS

function SIMPLE-CYCLES(SMA (C, ¢o, M, mg, Op,T)) : set of (control location,

LW N NN NN NN N NN e R e

sequence of memory operations)

var cycles : set of (control location, sequence of memory operations);
node : array[0,1,...] of control locations;
edge : array[0,1,...] of memory operations;
procedure generate(integer depthl, depth2)
var i, j : integers;
o : sequence of memory operations;
begin
for ¢ := depthl to depth2 do
begin
o = edgeli];
for j := i+ 1 to depth2 do o := o, edge[j];
for j := depthl to i —1 do o := o, edge[j];
cycles == cycles U {(node[i], o)}
end
end;
procedure explore(control location ¢, integer depth)
begin
node[depth] := ¢;
for each (¢/,0,¢") € T such that ¢ = c do
begin
edgeldepth] := 6;
if (3,0 < i < depth) such that node[i] = ¢’ then
generate(i, depth)
else explore(c”, depth + 1)
end
end;
begin (¥ SIMPLE-CYCLES x)
cycles == (0
explore(cg, 0);
return cycles

end.

Figure 3.6: Computation of all the simple cycles in the control graph.

3.4. CREATING META-TRANSITIONS 27

Proof The proof is in three parts. First we establish termination. Then, we show
that the result of the computation contains all the simple cycles that are reachable
in the control graph. Finally, we prove that this result contains only such simple
cycles.

e The computation of SIMPLE-CYCLES(A) terminates. Since C' is finite, any
exploration path that does not visit the same control location twice has a
length bounded by the number of control locations in C'. It follows that the
number of recursive calls to Procedure exzplore is bounded, hence that the
computation terminates.

o [fC=(c1,01,¢0),...,(ck, 0k 1) is a simple cycle that is reachable in the control
graph of A, then the result of the computation of SIMPLE-CYCLE(A) contains
the pair (cy, body(C)). Since C is reachable in the control graph of A, there
exists a finite path 7 of transitions from the initial control location ¢y of A to
c1. Since occurrences of cycles may be removed from 7, we can assume that all
the control locations visited by 7 are distinct. Let [(1 <1 < k) be such that ¢
is the first control location of C visited by 7, and 7’ be the prefix of 7 leading
from ¢y to ¢;. Appending to 7’ the part of C between ¢; and ¢; followed by the
part of C between ¢; and ¢;_1 (or ¢ if | = 1) yields a path 7" from ¢j to ¢, that
visits only distinct control locations. By induction on the argument depth of
Procedure explore, we have that at some time, this procedure is called with the
value of depth equal to the length of 7", nodel0], node[l], ... node|depth — 1], c
are all the control locations visited by 7", and edge[0], edge[1], . . . edge[depth—1]
are the first depth operations labeling the transitions of #” (in the same order).
During this call to ezplore, the transition leading from ¢;_; (or ¢ if I = 1) to
¢; in C is explored at Line 19. Since, by construction of 7", we have ¢ €
{node|0], node[1], . .. node[depth — 1], c}, the condition at Line 22 is satisfied
and therefore generate is called. At this time, the arguments of generate are
such that

(node[depth1], ..., node[depth2]) = (c1,¢a1y---yChyC1,Coye ey Cl1)
(edge[depthl], ..., edge[depth2]) = (0,,0111,...,0k,01,02,...,0,1),

where for every 1 < p < k, 0, denotes the operation labeling the transition
outgoing from ¢, in C. After the loop at Line 8 reaches the value of 7 such that
Nodeli] = ¢1, the value of ¢ at Line 13 becomes equal to body(C). The pair
(c1,0) is thus added to the set cycles returned at the end of the computation.

o If (d,0') belongs to the result of the computation of SIMPLE-CYCLES(A),
then there exists a simple cycle C that is reachable in the control graph of A
such that ¢ = first(C) and o' = body(C). 1If (¢/,0’) belongs to the result of

28 CHAPTER 3. REACHABILITY ANALYSIS

Figure 3.7: Control graph with 2V transitions and N2V simple cycles.

the computation of SIMPLE-CYCLES(.A), then, by construction, there exists
a control location ¢ € C' and a path 7 of transitions leading from the initial
control location ¢y to ¢ that is such that:

— c occurs exactly twice in ;

— ¢’ is the body of some rotation C of the simple cycle C’ corresponding to
the subpath of 7 located between the two occurrences of ¢;

— = first(C).
It follows that C is a simple cycle that is reachable in the control graph of A.

O

Computing all the simple cycles in the control graph can be a very inefficient
strategy. This is illustrated in Figure 3.7 which shows how to build, for any N > 1,
a control graph with 2V transitions and N2% distinct simple cycles. Executing the
algorithm of Figure 3.6 on such a control graph would take O(N?2%) time, since
each cycle is of length N and is produced transition by transition. It follows that
this strategy can only be applied in practice if the control graph is small, or belongs
to a specific class of graphs for which the cycle-search algorithm is more efficient
than for arbitrary graphs.

Restriction to Syntactic Cycles

In some practical applications, SMAs are derived from specifications written in high-
level modeling languages. Turning a high-level program into an SMA simply consists

3.4. CREATING META-TRANSITIONS 29

function META-SYNTACTIC(SMA A) : set of meta-transitions

1 var meta-transitions : set of meta-transitions;

2 begin

3 meta-transitions = (;

4: for each (c,0) € SYNTACTIC-CYCLES(A) do

5 if META?(0) then meta-transitions := meta-transitions U {(c,0*,¢)};
6 return meta-transitions

7 end.

Figure 3.8: Creation of cycle meta-transitions from syntactic cycles.

of expressing its flow of control as a control graph, and converting its instructions into
transitions. If the syntax of the high-level language contains specific constructs for
defining loops, such as the “for”, “while” and “repeat” statements of Pascal [Wir71],
then cycles corresponding to loops defined that way can be identified with little
additional cost during the translation of the program into an SMA.

The strategy consists of associating a meta-transition to each syntactically iden-
tified cycle (or, in short, syntactic cycle) satisfying the predicate META?. The
procedure is formalized in Figure 3.8. In this program, SYNTACTIC-CYCLES(A)
denotes the set of all the pairs (¢, o) such that o is the sequence of operations labeling
a syntactic cycle in the control graph of A, and c¢ is the first control location visited
by that cycle. In actual implementations, SYNTACTIC-CYCLES is computed by
the syntactic analyzer of the compiler used to translate programs into SMAs.

3.4.2 Multicycle Meta-Transitions

The concept of cycle meta-transitions can be generalized. If several cycles are start-
ing from the same control location, then the multicycle meta-transition associated
to those cycles is a meta-transition whose effect is equivalent to following any of
them any number of times, in any order. Formally, it is defined as follows.

Definition 3.9 Let A= (C,co, M,mg, Op,T) be an SMA, and

Ci = (01,1, 91,1, 01,2), s (Cum 91,k1, 01,1)7
Co = (02,1, 92,1, 02,2), s (CQ,kQ, 92,k2, 02,1)7

Cl = (Cl,la 01,17 Cl,Z)a ceey (Cl,kla el,kla Cl,l) g T7

30 CHAPTER 3. REACHABILITY ANALYSIS

with | > 1, ki, ka,...kp > 1 and ¢1q = co1 = -+ = ¢1, be cycles in its control
graph. The multicycle meta-transition associated to the set {Ci,Cs,...,C} is the
meta-transition (cy 1, f,c11), with

f2" =2 U | g'(0),
€N
and
g: 2" =2 U — | J body(C;)(U).

1<j<1

Multicycle meta-transitions are valid meta-transitions, i.e., they satisfy the re-
quirements of Definition 3.1. Indeed, let (¢, f,¢) be the multicycle meta-transition
associated to the set of cycles {C1,Co,...,C}, with [> 1. If U C M is a set of
memory contents and U’ = f(U), then for every m’ € U’, there exist m € U and
p € N such that {m'} = ¢g?({m}). From the definition of g, it follows that there ex-
ist Iy, 1o, ..., 1, € {1,2,...,1} such that m’' = body(C;,)(body(Cy,_,)(- - - body(C,) (v))).
Since each cycle is a sequence of transitions starting and ending at the control loca-
tion ¢, we have (¢, m) —% (¢, m’). The conditions of Definition 3.1 are thus fulfilled.

Just as for cycle meta-transitions, not all possible multicycle meta-transitions
can generally be considered, and thus a restriction needs to be imposed. One can
use a similar strategy to the one proposed in Section 3.4.1 by considering only sets
of cycles that are reachable in the control graph and generating only multicycle
meta-transitions whose memory function is computable over representable sets of
memory contents. In addition, one can also apply here the restrictions to simple or
to syntactic cycles in order to obtain only a finite number of meta-transitions.

There is however a minor difference. Even if there are only a finite number
of cycles to consider at a given control location, it is not convenient to test every
subset of them in order to check if the corresponding multicycle meta-transition is
computable (there may be exponentially many of them). In this case, the solution is
not a predicate for testing whether a particular set of cycles leads to a computable
meta-transition, but instead a function MULTI-META-SET that takes as arguments
the sequences of operations labeling a set of cycles starting at the same control
location, and returns a finite number of memory functions defining multicycle meta-
transitions that can be associated to those cycles.

The function MULTI-META-SET may be arbitrarily chosen, provided that it
satisfies the following conditions:

e MULTI-META-SET is computable over the finite sets of sequences of opera-
tions defined by the representation system;

o Let C1,Co,...,C (I > 1) be cycles starting at the same control location ¢ € C.
MULTI-META-SET ({ body(Cy), body(Cs), . . ., body(C;)}) is finite;

3.5. DYNAMIC CREATION OF META-TRANSITIONS 31

e Every f € MULTI-META-SET ({body(C,), body(Cs), . .., body(C;) }) is the mem-
ory function of a multicycle meta-transition corresponding to the cycles Cy, Cs,

G

e There exists an algorithm for computing a representation of the set of memory
contents f(U), given a memory function f belonging to a set returned by
MULTI-META-SET and a representation of a set of memory contents U;

e MULTI-META-SET is monotonous over the finite sets of sequences of opera-
tions labeling cycles that start at the same control location. This means that
for every sets S, S, the inclusion S; C Sy implies MULTI-META-SET(S;) C
MULTI-META-SET(S,). Intuitively this condition expresses the fact that if
it is possible to obtain the set of meta-transitions 7" from the set of sequences
S1, then it should be possible to obtain at least all the elements of T from any
superset, of 7.

An algorithm for computing multicycle meta-transitions that can be added to
an SMA is given in Figure 3.9. This algorithm applies the simple-cycle restriction
strategy, but other strategies can be implemented by replacing SIMPLE-CYCLES
by the corresponding function at Line 5.

3.5 Dynamic Creation of Meta-Transitions

The state-space exploration technique presented in Section 3.3 proceeds by first
adding meta-transitions to an SMA, and then exploring the state space of the re-
sulting ESMA. Meta-transitions are created statically, i.e., without taking advantage
of the reachability information obtained during the state-space exploration.

It is however possible to create cycle (or, more generally, multicycle) meta-
transitions while the state-space exploration is being performed. This approach
has an advantage: the selection performed among the potential meta-transitions
guarantees that a finite set of multicycle meta-transitions for which the state-space
exploration terminates will always be obtained if such a set exists. The main draw-
back is that the technique is computationally expensive.

An algorithm for exploring the state space of an SMA by creating dynamically
multicycle meta-transitions is given in Figures 3.10 and 3.11%. This algorithm per-
forms a breadth-first search in the state-space graph, while simultaneously carrying
out cycle detection in order to create meta-transitions. The idea is to keep with
each explored state a path leading to that state, provided that this path is only
composed of transitions. Precisely, the algorithm maintains a list explored-paths of
triples (o, c¢,U) such that states(c,U) is the set of states reached at the end of an

2In this algorithm, suf(c) denotes the set of all the suffixes of the sequence of transitions o.

32

CHAPTER 3. REACHABILITY ANALYSIS

function MULTI-META-SMA (SMA (C, cg, M, mg, Op,T)) : set of meta-transitions

1:
2:

10:

11:
12:
13:

var meta-transitions : set of meta-transitions;

cycles, current-cycles : sets of (control location,

sequence of memory operations);

begin

meta-transitions = 0;

cycles := SIMPLE-CYCLES((C, ¢o, M, mq, Op, T));

for each c € C' do

if (3(¢, o) € cycles) such that ¢ = ¢ then

begin
current-cycles := {o | (¢,0) € cycles};
meta-transitions := meta-transitions U
{(¢, f,¢) | f € MULTI-META-SET(current-cycles)}
end;

)

return meta-transitions

end.

Figure 3.9: Creation of multicycle meta-transitions.

3.5. DYNAMIC CREATION OF META-TRANSITIONS

33

function REACHABLE-DYNAMIC(SMA (C, ¢y, M, mg, Op,T)) : set of states

1:
2:

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

var wvisited-states, recent-states : sets of states;
explored-paths, new-paths : sets of (sequence of transitions,
control locations, set of memory contents);
cycles : array|[C] of sequences of operations;
meta-transitions : set of meta-transitions;
procedure store-cycles(sequence of transitions o)
begin
for each C = (c1,6:,¢)),...,(c;,01,¢)) € suf(o) such that ¢; = ¢; do
cycleslc1] := cyclese1] U {body(C)}
end;
procedure explore-from(sequence of transitions o, control location ¢,
set of memory contents U)
begin
for each (¢, f, ") € meta-transitions such that ¢ = ¢ do
new-paths := new-paths U {(L,c”, f(U))};
for each (¢/,0,¢") € T such that ¢ = c do
if 0 = 1 then
new-paths := new-paths U {(L,c”,0(U))}
else
begin
o = o0,(c,0,d);
new-paths := new-paths U {(o’,",0(U))};
store-cycles(o”’)
end

end;

(...)

Figure 3.10: State-space exploration by dynamic creation of meta-transitions.

34

CHAPTER 3. REACHABILITY ANALYSIS

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37
38:
39:

40:
41:
42:

begin (x REACHABLE-DYNAMIC)
visited-states := ();
recent-states := {(co, mo)};

explored-paths := {(e,co,{mo})};
for each ¢ € C do cycles|c] := 0;
meta-transitions = {;
repeat
visited-states := visited-states U recent-states;
new-paths := {;
for each (o,c,U) € explored-paths do explore-from(o, ¢, U);
explored-paths := explored-paths U new-paths;
recent-states = ();
for each (o,c,U) € explored-paths do
recent-states := recent-states U states(c,U);
for each ¢ € C such that (3(o,c,U) € explored-paths)(c = ') do
meta-transitions := meta-transitions
U{(c, f,c) | f € MULTI-META-SET(cycles|c]) }
until recent-states C visited-states;
return wisited-states

end.

Figure 3.11: State-space exploration by dynamic creation of meta-transitions (con-

tinued).

3.5. DYNAMIC CREATION OF META-TRANSITIONS 35

exploration path 7, and o contains either the sequence of transitions corresponding
to m, or the special value L if 7w contains meta-transitions. Each time a control lo-
cation c is reached, the current exploration path is checked for occurrences of cycles
starting at ¢, and the possible meta-transitions corresponding to those cycles are
added to the system®. The breadth-first strategy followed here is different in two
points from the one implemented by the algorithm in Figure 3.3. First, reaching
a state that has previously been visited does not prevent the path leading to that
state from being further explored. Second, each iteration of the search attempts to
append a transition or a meta-transition to every exploration path obtained so far,
as opposed to only to the paths obtained as the result of the last iteration.

The motivation behind this modified strategy is twofold. First, since all the
existing transition paths are searched for cycles in increasing order of length, ev-
ery cycle whose detection is crucial for termination of state-space exploration will
eventually be detected. Second, since no exploration path is ever discarded, the
state-space exploration is guaranteed to terminate if there exists a finite set of mul-
ticycle meta-transition (not necessarily based on simple cycles) and a finite set of
exploration paths containing those meta-transitions that lead to all the reachable
states of the system (for those sufficient exploration paths will eventually be fol-
lowed). These arguments will be used in the sequel of this section in order to show
that dynamic state-space exploration is the most powerful strategy as far as ter-
mination is concerned. The algorithm of Figures 3.10 and 3.11, which is presented
here as a proof that a theoretical “best” strategy exists from the point of view of
termination, is however very inefficient and is thus not readily usable in practice.
Indeed, there may be a large number of explored paths leading to the same reachable
states. Some possible optimizations and approximations of this algorithm will be
discussed in Section 3.7.

The algorithm is correct thanks to the following result.

Theorem 3.10 Let A = (C,co, M, mg, Op,T) be an SMA such that the computation
of REACHABLE-DYNAMIC(A) terminates. The result of the computation contains
exactly all the reachable states of A.

Proof

o The result contains only reachable states. It is sufficient to show that at any
time during the computation, the variables visited-states and recent-states (if
defined) only contain reachable states. This is a consequence of the following
invariant:

3The meta-transitions are actually added at the end of each exploration step, in order to ensure
that for every k£ > 0, only a finite number of paths of length k are explored.

36 CHAPTER 3. REACHABILITY ANALYSIS

— The variables new-paths and explored-paths only contain triples (o, ¢, U)
such that states(c,U) is a set of reachable states, and o contains either a
path of transitions leading to these states or the special value “1”, and

— For every ¢ € C, the variable cycles[c] contains a set of sequence of
operations labeling cycles of (C,T') starting at ¢, and

— The variable meta-transitions only contains valid meta-transitions.

o The result contains all the reachable states. 1If the condition at Line 40 is
satisfied, then all the states visited by the call to Procedure explore-from at
Line 33 already belong to the set wvisited-states containing all the states visited
during the previous iterations of the main loop. This means that, at Line 41,
all the states that are reachable in one step from states in wvisited-states belong
to wisited-states. Since visited-states contains the initial state, it follows that
this set contains all the reachable states of A.

O

The main advantage of the dynamic approach, which is that the state-space
search does always terminate if there exists a finite set of multicycle meta-transitions
(not necessarily based on simple cycles) for which static state-space exploration
terminates, is a consequence of the following theorem:

Theorem 3.11 Let A = (C,co, M, mg, Op,T) be an SMA. The symbolic state-
space exploration performed by REACHABLE-DYNAMIC(A) terminates if and only
if there exists a finite set T of multicycle meta-transitions such that computing
REACHABLE(A') by the algorithm of Figure 3.3, where A’ is the ESMA (C, ¢y, M,
mg, Op, T, T), terminates.

Proof

o If the computation of REACHABLE-DYNAMIC(A) terminates, then there
exists a terminating set of multicycle meta-transitions T. Every reachable
state of A is reached during the computation of REACHABLE-DYNAMIC(.A)
by following a path of transitions and/or meta-transitions whose length is
bounded. Let T be the (finite) set containing all the meta-transitions fol-
lowed during the execution of REACHABLE-DYNAMIC. There exists an
upper bound on the depth of all the reachable states of the ESMA A" =
(C,co, M, mg, Op, T, T). From Theorem 3.5, it follows that the computation
of REACHABLE(A’) terminates.

o If there exists a terminating set of multicycle meta-transitions T, then the
computation of REACHABLE-DYNAMIC(A) terminates. Suppose that there
exists such a set 7. Without loss of generality, we may assume that it contains

3.6. EXAMPLE 37

only multicycle meta-transitions derived from reachable cycles (a cycle is reach-
able if there exists a reachable state from which the entire sequence of transi-
tions composing the cycle can be followed). Indeed, since unreachable cycles
are never followed during state-space exploration, ignoring them while creating
meta-transitions does not impact the computation of REACHABLE(A').

Since T contains a finite number of multicycle meta-transitions, each derived
from a finite number of reachable cycles, there exists an upper bound N on
the length of the shortest paths of transitions in the state space of A in which
the entire sequence of transitions composing the cycles is followed. If the
computation of REACHABLE-DYNAMIC(A) does not terminate, then all
such paths of transitions as well as all their prefixes can be found in the
first component of the triples belonging to explored-paths after Line 34 has
been executed N times. It follows that all the cycles that have been entirely
followed by those paths have been detected by Procedure store-cycles, and
that the sequences of operations labeling them belong to the variables cycles
(which are indexed with respect to the control location at which cycles start).
It follows that for each meta-transition ¢ € 7T, Line 39 will eventually be
executed with cycles|c] containing at least all the cycles from which ¢ can
be derived. As a consequence, the variable meta-transitions will eventually
contain all the meta-transitions in 7.

By Theorem 3.5, all the reachable states of A can be explored by following
from the initial state a path of transitions and/or meta-transitions in 7 of
bounded length (let N’ be an upper bound on this length). After Line 34
has been executed N times, the variable explored-path still contains the triple
(g, co,{mo}). It follows that after Line 34 has been executed N + N’ times, all
the paths of transitions and /or meta-transitions in 7" of length less or equal to
N’ have been explored. As a consequence, all the reachable states have been
explored, and the algorithm terminates at the next iteration of the main loop.

3.6 Example

The notions introduced in this chapter can be applied to the analysis of the example
described in Section 2.3. There are three simple cycles in the control graph of the
SMA depicted in Figure 2.1:

Ci = (c1, 214+, 01),
Cy = (017€Ven(1’1)702),(027372++701)7

Cs = (c2,22++,01),(c1,even(zy), ca).

38 CHAPTER 3. REACHABILITY ANALYSIS

Suppose that we have at our disposal a representation system for subsets of Z? for
which META?(body(C,)) = META?(body(Cy)) = T and META?(body(Cs)) = F.
This means that it is possible to create two simple-cycle meta-transitions ¢; =
(c1, f1,¢1) and &y = (e, fo, 1), with fi = (z144)* and fo = (even(z1), z2++)*. Pre-

cisely, we have

fi 2 22 527 L U {(v1 4 k)
f2 2Z*

| (01,1)2) eUANEkEe N},
— 2% . U {(v,v2+k) | (v,0) eUANkeEN
A (even(vy) V k= 0)}.

Let A be the ESMA obtained by adding to the system the set of meta-transitions
{t1,t2}. The details of the computation of REACHABLE(A) by the algorithm of
Figure 3.3 are given in Figure 3.12. For each iteration of the main loop (Lines 6-15),
the value of recent-states at the beginning of the loop is given, followed by the list
of transitions and meta-transitions that are explored at Lines 10-13, and then by
the sets of states obtained after following those transitions and meta-transitions.

Suppose now that the representation system allows to define a multicycle meta-
transition associated to the cycles C; and C. We then have MULTI-SET ({ body(C;),

body(Co)}) = {t3}, with t3 = (c1, f3,¢1), and

f3 0 22 527 . U U U {(v,vs+ k) | (v1,02) € U A even(vy) A ky € N}
U {(’Ul +k’1+1,’l}2+k32) | (1)1,'02) c U A k?l,k’g € N}

Let A’ be the ESMA obtained by adding the meta-transition #3 to the system
of Figure 2.1. The details of the computation of REACHABLE(A') are given in
Figure 3.13.

3.7 Discussion

In this chapter, we have studied cycle and multicycle meta-transitions. These aim at
capturing the infinite nature of the state-space resulting from the presence of cycles
in the control graph of the system.

Depending on the memory domain, there might be other types of meta-transi-
tions which could be of interest. An important example is the case of lossy systems,
which are systems whose memory contents may at any time undergo some change
(usually modeling loss of information over transmission channels). Translating a
non-lossy program into a lossy one can be done very simply by adding to each
control location a meta-transition expressing the possible losses at that location. As
an example, a technique for creating meta-transitions modeling the loss in systems
with lossy FIFO channels is presented in Chapter 7.

Using the techniques for creating meta-transitions proposed in this chapter in an
actual implementation is not straightforward. The main problem is efficiency, since

3.7. DISCUSSION

39

L (e1,{(0,0)})

) e {(1,00))
o) (0, {(0,0)})
L (c1,{(k1,0) | k1 € N})
N (c1,{(0, ks) | ks € N})

2. (c1, {(k1 +1,0) | k1 € N} U {(0,ks + 1) | k2 € N}), (c2,{(0,0)})
(Comdbe) (o ke +2,0) [k € N} U {(1ks +1) | k2 € N})
(2, {(2k1 +2,0) | k1 € N} U {(0, ks + 1) | ko € N})
N (cr, {(k1, k) | kiyko € NA (k1 £0 V ks 2 0)})
Lz, (c1, {(2k1, ko) | K ke € N A (k1 £ 0V ko # 0)}
U{(k1 +1,0) | ky € N})

(627Z2++,01)
- (Cla{(oal)})

(Cl 7even(ml),cz)
e

3. (Cl,N%), (CQ,{(2]€1 + 2,0) | ki € N} U {(O,kg + 1) | ko € N})
COmrre) () (b + 2,k + 1) | By by € N

(cveven@ea) (o {2k + 2,k + 1) | ki, ko € N})
N (c1,N2)
L (aNp)
(c22tpoet) (0 L2k +2,1) | k1 € N} U {(0, ks +2) | k2 € N})

4. (CQ, {(21{?1 + 2, ko + 1) | ki,ko € N})
(c2matte) (o {2k 42, ks +2) | by, ko € N})

Reachable states: (c1, N2), (co, {(2k1, k2) | k1, k2 € N}).

Figure 3.12: Example of state-space exploration with simple-cycle meta-transitions.

40 CHAPTER 3. REACHABILITY ANALYSIS

L. (Cla {(07 0)})

R e (L))
IR (e, {(0.0)))

ts

(Clv NQ)

2 (en (k1 ko) [ko € NOA (B £ 0V ki £ 0)}), (e2,{(0,0)})
(en,o1ten) (cr, {(k1 +1,k2) [ki ko € NA (ki # 0V k2 # 0)})

(Chevelilil)’w) (Cg,{(Qk/’l,k/’g) | k/’l,k/’g eN A (k/’l 75 0V ko 7é 0)})
AN (c1, {(k1, k2) | k1, ks € N A (k1 #0 V ky # 0)})
Y (e {0,.))

3. (CQ,{(le,kQ) | ki,ko e N A (kl 7é 0V ko 7é 0)})
Y (e (ks + 1) [i ks €NA (ki £0 Y Ey £0)))

Reachable states: (c1, N?), (ca, {(2k1, k2) | k1, k2 € N}).

Figure 3.13: Example of state-space exploration with multicycle meta-transitions.

it is probably more interesting in practice to obtain quickly a limited set of meta-
transitions than to wait essentially forever for a set that guarantees termination.
A positive point is that meta-transitions can be freely chosen, as far as they are
consistent with Definition 3.1. A pragmatic solution is to allow the user to define
some bounds, such as for instance a maximum number of cycle or multicycle meta-
transition allowed per strongly connected component of the control graph. Heuristics
could then be used to select between potential meta-transitions. Another solution
is to let the user interact with the creation of meta-transitions.

The problem has similarities with the case of optimizing compilers [AU72], for
which loop detection provides a way of optimizing code. In this context, efficiency
is unhesitatingly preferred to a guarantee that every potential optimization is per-
formed. Although a comparison of the two domains might yield interesting ideas
for creating meta-transitions, those issues extend well beyond the scope of this work
and are not further discussed here.

In the same way, the algorithm REACHABLE-DYNAMIC was introduced in
Section 3.5 as a proof that a best state-space exploration strategy exists as far as
termination is the primary concern, but does not straightforwardly translate into a
usable implementation of dynamic state-space exploration. Indeed, the guarantee
that the algorithm will terminate at least as often as any static state-space explo-
ration algorithm was obtained at the cost of detecting every cycle and exploring
every path up to a given depth in the state space. This leads to excessive time and
space requirements, since the state space usually contains a considerable number

3.7. DISCUSSION 41

of cycles of a given length as well as a large number of paths leading to the same
reachable state. In practice, there are two approaches to reducing the cost of dy-
namic exploration. The first is to impose restrictions on the cycles that are detected
and on the paths that are explored during the state-space search. For instance, one
may create only a bounded number of meta-transitions for each strongly connected
component of the state-space graph, and only explore paths that do not visit the
same state more than a given number of times. The second approach is to restrict
the set of memory operations that can label transitions of the system, in such a way
that considering a restricted set of cycles and of exploration paths is then sufficient
for exploring totally the state-space in a finite amount of time. Those approaches
are not addressed in this thesis.

42

CHAPTER 3. REACHABILITY ANALYSIS

Chapter 4

Properties

This chapter shows that state-space exploration (as introduced in Chapter 3) can
be used to check various types of properties of programs modeled as SMAs. These
properties are studied here independently of the memory domain of the SMAs, under
the hypothesis that a well suited representation system is available for the sets of
memory contents. For each algorithm discussed in this chapter, if there are specific
additional memory operations that are required for implementing the algorithm for
a particular domain, they will be pointed out.

4.1 Reachability Properties

In Chapter 3, we presented semi-algorithms for computing the set Qi of reachable
states of an SMA A = (C, ¢y, M, mg, Op,T). This set is returned as a finite list of
pairs (control location, set of memory contents), where the sets of memory contents
are represented with the help of a representation system well suited for A. If the
computation of (Qr terminates, then there are properties of A that can be decided
on the sole basis of the information contained in Qg.

Let Qp be a set of states represented as a finite list of pairs (control location, rep-
resentation of a set of memory contents). The general reachability problem consists
of determining, given ()p, whether this set contains at least one reachable state. A
simple solution to this problem consists of testing the emptiness of the intersection
Qp N Qg (this operation can be performed as explained in Section 3.2.2). Indeed,
there exists at least one reachable state in Qp if and only if Qp N Qr # 0. The uni-
versal reachability problem consists of determining, given @) p, whether all the states
belonging to Qp are reachable. This problem can be solved by testing the inclusion
Qp C Qgr. The restricted reachability problem consists of determining whether a
given state ¢p of A is reachable or not. This problem can be reduced to the general
reachability by taking Qp = {qp}.

The boundedness problem consists of determining, given a control location ¢ and

43

44 CHAPTER 4. PROPERTIES

a variable x;, whether the set of values that x; can take at ¢ is finite or not. Let
m;(U) denote the projection of a set of memory contents U C M over the domain
D; of x;, ie., let m(U) = {v; | (Jui, ..., 021,041, -, 00)((v1,...,0,) € U)}. The
boundedness problem can be solved by checking whether the set m;(values(Qg,c))
is finite or not. This requires the ability to compute projections of represented sets
of memory contents, as well as to decide the finiteness of such sets.

4.2 Deadlock Detection

Let A be an SMA. A state of A is a deadlock state if it is reachable, and if there is no
state that can be reached in one step from that state (in other words, if there is no
transition that can be followed from that state). For systems that are not intended
to halt, such as those controlled by reactive programs, the presence of deadlocks is
the reflect of design flaws. Indeed, if there is a deadlock, then it is possible for the
system to reach a state from which no further action can be performed.

The general deadlock detection problem consists of computing the set of deadlock
states of an SMA A = (C, ¢o, M, mg, Op,T). This problem can be solved as follows.
We require every transition (c,0,¢) € T to be such that the domain complement
dom() = {v € M | (v) = L} of the function 6 is representable (intuitively, dom(6)
is the set of all the memory contents from which the transition cannot be followed).
In addition, it must be possible to compute a representation of dom(f) from the
specification of #. The set Qp of all the deadlock states of A can then be obtained
by computing the intersection of the set of reachable states and of the set of all the
states from which no transition can be followed. Formally, we have

Qp=QrNJ [states(c, dom(9)).

ceC (¢,0,c')eT

Since there are only finitely many transitions in 7', this formula allows one to easily
compute a representation of Q)p from a representation of Q).

4.3 'Temporal Properties

The properties studied in Sections 4.1 and 4.2 can be decided on the sole basis of the
set of reachable states of the model. In this section, we investigate whether more
elaborate properties can be checked. More precisely, we study properties of infinite
computations of SMAs. Recall that an infinite computation is an infinite sequence
qo, q1, - - - of states such that ¢y is the initial state, and ¢; —g ¢; 1 for every ¢ € N.
In this context, a property P of an SMA A is a (possibly infinite) set of infinite
sequences of states. The SMA A satisfies P, which is denoted A |= P, if each of its
infinite computations belongs to P.

4.3. TEMPORAL PROPERTIES 45

4.3.1 Linear-Time Temporal Logic

Linear-time Temporal Logic, or LTL, is a language for specifying properties of in-
finite computations [Eme90, MP92]. In LTL, one can express properties such as
“some given condition will eventually be satisfied forever” or “some condition will
be satisfied infinitely often”, which are not expressible solely in terms of the set of
reachable states of the system. LTL properties are expressed as formulas. Let A be
a finite set of atomic propositions. The syntax of LTL formulas is defined as follows:

e Every atomic proposition a € A is an LTL formula;
e If 1)y and vy are LTL formulas, then so are 11 A 1o, U1 V 1y and 1 U 1s;
e If ¢); is an LTL formula, then so are (¢1), =11, Oy, O1hy and Sy,

The semantics of an LTL formula is defined with respect to a structure (I', L),
where T is a set of states and L : ' — 2% is a labeling function that associates to
each state the set of atomic propositions that are true in that state. The truth value
of an LTL formula is then defined with respect to pairs of the form (v,7), where
~v : Ng — I' is an infinite sequence of states, and i € Ny is the index of a state 7; in
~. Intuitively, since an infinite sequence of states can be seen as a sequence of state
changes occurring at discrete time points, the index ¢ defines the time instant at
which the truth value of the formula is evaluated. The fact that the LTL formula
is true at the time instant ¢ in the infinite sequence of states v is denoted (7, 17) = 1.
For each infinite sequence of states v = 71, 7s, ... and time instant ¢ € Ny, we define
that:

e An atomic proposition a € A is true at the time instant i in « if and only if a
is true in the state 7;. Formally, we have (v,7) = a iff a € L(;);

e A formula of the form ¥; A w9, 11 V 19, (¢1) or =)y is true whenever the
appropriate Boolean combination of the truth values of its sub-formulas v,
and 1), is true. Formally, we have

(v) E v Ay 3 ((7,0) =) and ((v,7) =),
(v, 1) i Vb G ((7,4) B ¢) or ((7,9) =),
(v:0) = () i (7,2) = 4,

(v d) = ey i —((9,4) b=)

e A formula of the form 4 U 15 is true at the time instant ¢ in v if and only
if the formula 1), is true at some time instant j greater or equal to i, and
the formula v, is true at all the time instants greater or equal to ¢ and less
than j. The temporal operator “U” is thus used to express a condition that

46 CHAPTER 4. PROPERTIES

must always be satisfied until another condition becomes satisfied and is read
“until”. Formally, we have (v,1) = 1 Uy iff (35 > 0)((7,7) = 2 A (Vk,i <
k<) (v, k) E ¥1));

e A formula of the form O1y is true at the time instant ¢ in v if and only if
the formula 1); is true at the time instant ¢ + 1 in 7. The temporal operator
“O” is thus used to express a condition that must be satisfied at the next time
instant and is read “next”. Formally, we have (v,i) = Oy iff (7,74 1) |= 91;

e A formula of the form O 1)y is true at the time instant 7 in - if and only if the
formula), is true at all the time instants greater or equal to i. The temporal
operator “007 is thus used to express a condition that must always be satisfied
at the present and future time instants and is read “always”. Formally, we

have (v,4) = Oy iff (V5 > 9)((7,7) F ¥1);

e A formula of the form <)y is true at the time instant ¢ in ~ if and only
if the formula 1), is true at some time instant greater or equal to . The
temporal operator “<$” is thus used to express a condition that must eventually
be satisfied at some present or future time instant and is read “eventually”.

Formally, we have (v,1) = O oy iff =((v,4) E O—y) iff (35 >9)((v,4) E ¢1).

We say that an infinite sequence of states v satisfies the LTL formula v, which
is denoted v |= 1, if it is such that (y,1) | 4. The property expressed by 1
with respect to the structure (I', L) is the set of all the infinite sequences of states
v : Ny — I' such that v | .

LTL formulas can also be interpreted over the computations of an SMA A =
(C, co, M, mg, Op,T). This is done by defining a function g : S — I" that associates
to each state of A a state in I'. The LTL formula 1 is then said to be satisfied by
the infinite computation qg, gy, ... € S¥ of A if it is such that g(q), 9(q1), ... F .
The property of A expressed by 1 is the set of all the infinite computations of A
satisfying 1. In practice, one can simply define g and the structure (I', L) by giving
for each atomic proposition a € A a computable predicate

T ifa € L(g(q)),
F ifa ¢ L(g(q)).

mapping each state of A onto the truth value of a at that state.

PG:C'XM—>{T,F}:Q|—>{

4.3.2 Buchi Automata

Another way of specifying properties of infinite computations is to express them as
finite-state automata on infinite words [Biic62, Mul63, Tho90]. Roughly speaking,
the idea is to represent a property by an automaton accepting exactly all the infinite
sequences of states that satisfy the property.

4.3. TEMPORAL PROPERTIES 47

We use the finite automata on infinite words introduced by Biichi [Biic62]. A
Biichi automaton B is a tuple (X, S, A, sq, F), where

e X is a finite alphabet,

S is a finite set of states;

e A C S x X xSisanon-deterministic transition relation;

Sg € S is an initial state;
e [C S is a set of accepting states.

A run of B over an infinite word w = agay --- € X is an infinite sequence of
states s, s1, ... such that sq is the initial state of B, and (s;, a;, s;11) € A for every
1 € N. A run sg, sq,... 18 accepting if there are infinitely many ¢ € N such that
s; € F. The infinite word w € ¥¥ is accepted by B if B has an accepting run on w.
The set L(B) of all the infinite words accepted by B is the language accepted by B.

The property expressed by B is defined with respect to a finite set A of atomic
propositions and a labeling function L : ¥ — 2% that associates to each symbol in
the alphabet of B the set of atomic propositions that are true for that symbol. The
property P expressed by B is then the set

P = {L(ag), L(ay), L(as), ... € (2Y)* | (3ag, ay, as, ... € X)(aparay - - - € L(B))}

of all the sequences of interpretations of atomic propositions that are associated to
words accepted by B. We say that an infinite sequence of interpretations A € (24)¢
satisfies the property P expressed by B, which is denoted A |= P, if we have A € P.

Properties expressed by Biichi automata can also be interpreted over the com-
putations of an SMA A = (C, ¢y, M, mg, Op,T). This is done by defining a func-
tion g : S — 2" that associates to each state of A a set of atomic propositions
that are true at that state. The property P expressed by a Biichi automaton B
is then said to be satisfied by the infinite computation qo,qq,... € S* of A if it
is such that g(qo),9(q1),... F P. The property of A expressed by B is the set of
all the infinite computations of A satisfying P. Like for LTL formulas, one can
simply define g by giving for each atomic proposition a € A a computable predicate
P, : C x M — {T,F} mapping each state of A onto the truth value of a at that
state.

The properties of SMAs that can be expressed as Biichi automata are said to be
w-regular. Tt is shown in [VW94] that the class of properties that can be expressed in
LTL is a strict subset of the class of w-regular properties. The proof is constructive
and yields an algorithm for converting any LTL property into a Biichi automaton.
This result is very useful in practice, since it is often convenient for algorithms to
work with automata, even though it can be more natural for humans to specify

48 CHAPTER 4. PROPERTIES

. =

P

Figure 4.1: Biichi automaton.

properties as LTL formulas. In addition, this approach is compatible with arbitrary
extensions of LTL, provided that they allow the translation of formulas into Biichi
automata [Wol83|. The translation of an LTL formula ¢ into a Biichi automaton is
of size O(2¥1) and can be computed in time O(2!%!), where || denotes the number
of symbols composing 1.

4.3.3 Example

Let us consider the SMA A = (C, ¢y, M, mg, Op, T') depicted in Figure 2.1. The prop-
erty P = “xy is not infinitely often odd” is not satisfied by A. Indeed, this automa-
ton admits the infinite computation (c1, (0,0)), (c2,(0,0)), (c1,(0,1)), (c1,(1,1)),
(c1,(2,1)), (c1,(3,1)), ..., in which the value of x5 is infinitely often equal to 1.

The property P can be expressed as the LTL formula “-0<C p”, where the
atomic proposition p is associated with the state predicate B,, defined as

I e

The property P can equivalently be expressed as the LTL formula “& 0 —p”, which
literally translates into “zo will eventually be always even”. Indeed, a sequence of
states (c1, (v1,1,v21)), (C2, (V1,2,022)), ... satisfies P if and only if there exists ¢ € Ny
such that vy ; is even for every j > i.

A Biichi automaton B expressing P is given in Figure 4.1. Its alphabet contains
the symbols p and —p, which are respectively associated with the predicates P, (as
defined above) and =P, (the complement of P,). The language L(B) accepted by B
is the set of all the infinite words over the alphabet {p, =p} containing only finitely
many p symbols.

4.4. MODEL CHECKING 49

4.4 Model Checking

Let A be an SMA. The model-checking problem consists of determining, given a
property P expressed as an LTL formula or as a Biichi automaton, whether A
satisfies P. We will first present a classical solution to this problem, the automata-
theoretic approach [VW86], which is applicable to systems with a finite state space.
For systems with an infinite state space, it is known that model checking is undecid-
able if the memory domain is sufficiently expressive [EN94, Fin94, HKPV95, CFI196,
ACJT96, AJ96, Esp97]. For such systems, we will give a partial solution based on
an extension of the automata-theoretic approach.

4.4.1 Finite-State Systems

If A has a finite number of reachable states, then the model-checking problem can
be solved by performing the following operations:

1. Building a Biichi automaton B_p accepting the complement of P (the set of
all the words whose corresponding sequence of propositional interpretations
does not belong to P);

2. Computing the product B4 -p = A X B-p, which is a Biichi automaton such
that each of its accepting runs corresponds to an infinite computation of A
accepted by B_p;

3. Checking whether the language accepted by B4 —p is empty or not. L(B4-p)
is empty if and only if A does not have an infinite computation that is accepted
by B_p, hence if and only if A satisfies P.

Carrying out the first step is easy. If P is specified as an LTL formula, then
all one has to do is to translate =P (which is also an LTL formula) into a Biichi
automaton (this can be done with the algorithm given in [GPVWO95]). If P is
expressed as a Biichi automaton Bp, then one has to complement this automaton,
i.e., to build an automaton accepting the complement of L(Bp). Algorithms for
complementing Biichi automata can be found in [Biic62, Péc86, SVWS87, Saf8§].
The complementation operation can be quite costly; indeed, the automata returned
by the nearly optimal algorithm presented in [Saf88] are of size 20V1°eN) \where N
is the number of transitions of Bp.

The second step is performed as follows. Let A = (C, ¢y, M, mg, Op, T, B_p =
(X-p, S—p, Ap, So—p, Fp), let (@, qo, R) be the semantics of A, and let @ be the
set of reachable states of A (finite by hypothesis). The product A x B_p is the Biichi
automaton B = (X, S, A, sq, F), where:

e > = {7} (the alphabet of B contains a single dummy symbol 7. B can indeed
be seen as an inputless Biichi automaton);

50 CHAPTER 4. PROPERTIES

o S = (Qr x S.p (the set of states of B is the Cartesian product of the (finite)
set of reachable states of A and of the set of states of B_p);

o A = {((c1,m1,51),7,(c2,ma,82)) € SxE xS | (Fa € X p)((c1,m1) —r
(ca,ma) A (s1,a,82) € Ap A P,((c1,m1)))}, where P, is the state predicate
of B_p associated to the symbol a (there is a transition between two states of
B if and only if there are transitions between the corresponding states of A
and of B_p, and the appropriate state predicate is satisfied);

e 50 = (co, Mo, So—p) (the initial state of B is composed of the initial states of A
and of B_p);

o ['=(Qpr x F_p (astate of B is accepting if and only if the corresponding state
of B_p is accepting).

This construction is correct thanks to the following result.

Theorem 4.1 Let (¢, my), (c2, ma), ... be states of A. The automaton B = AxB_p
has an accepting run of the form (c1,mq, 1), (c2, ma, Sa), ..., where s1,8q,... are
states of B-p, if and only if the infinite sequence of states (c1,my), (c2,msa), ... is an
infinite computation of A that does not satisfy P.

Proof The relationship between the runs of B and the infinite computations of A
is immediate by construction. O

As a direct consequence of the previous construction, the number of transitions
composing B can be as large as O(N4Ng_,,), where N 4 and Np_, denote respectively
the number of edges in the state space of A, and the number of transitions of B_p.

It remains to show how to perform the third step of the model-checking proce-
dure, which consists of determining whether the language accepted by the Biichi
automaton B = (3,5, A, sg, F') is empty or not. This can be done by perform-
ing a reachability analysis in the graph (S, A). First, one computes the maximal
strongly connected components of this graph (a strongly connected component is a
set of nodes such that any of them is reachable from all of them). Next, one checks
whether there exists an accepting state reachable from sy which belongs to a non
trivial! strongly connected component. Indeed, B has an accepting run if and only
if there exists an accepting state that is reachable from the initial state, and reach-
able from itself by following at least one transition. If properly implemented, those
operations can be performed in O(|Al) time, where |A| is the number of transitions
of B [Tar83]. A nice optimization of this method that avoids explicitly constructing
the maximal strongly connected components and uses only O(|S|) space, where |S]
is the number of states of B, is presented in [CVWY92].

LA strongly connected component is non trivial if its nodes are linked to each other by at least
one transition.

4.4. MODEL CHECKING o1

In practice, there is no need for building and storing the product automaton
B = A x B_p in its entirety. Instead, this automaton can be generated on-the-fly,
meaning that the states and transitions that are needed during the test of emptiness
at Step 3 can be produced on demand rather than systematically.

4.4.2 Infinite-State Systems

The automata-theoretic approach cannot be applied straightforwardly to the model
checking of infinite-state systems. The main problem is that the product of an SMA
with an infinite number of reachable states by a Biichi automaton does not necessar-
ily have a finite number of states, and thus cannot always be expressed as a Biichi
automaton. The solution is to express this product as a Structured-Memory Biuichi
Automaton, which is an SMA associated with an accepting condition on its control
locations. Structured-Memory Biichi Automata are finite representations of infinite-
state machines accepting infinite words, just like Structured-Memory Automata are
finite representations of infinite-state systems.

Formally, a Structured-Memory Biichi Automaton (or SMBA in short), is a tuple
(C, co, M,mg, Op, T, F), where:

o (C,cy, M, mp, Op,T) is an SMA;
e [C ('is a finite set of accepting control locations.

The notions of control location, memory domain, memory content, state, initial
state, one-step reachability and reachable states of an SMBA B = (C, ¢, M, myg, Op,
T, F) are defined identically to those of its underlying SMA (C, ¢y, M, mg, Op,T).
A run of B is an infinite sequence of states (co, mg), (¢1,m1),. .. such that (cq, mg)
is the initial state of B, and (¢;,m;) —gr (¢iy1,mi1) for every i € N, where R is
the one-step reachability relation of B. The run is said to be accepting if there are
infinitely many ¢ € N such that ¢; € F'. The set L(B) of all the accepting runs of B
is the language accepted by B.

Checking whether an infinite-state SMA A satisfies a property P can be done as
follows. The procedure is an extension of the automata-theoretic approach to model
checking for finite-state SMAs.

1. One builds a Biichi automaton B_p accepting the complement of P;

2. One computes the product B4 -p = A x B_p, which is an SMBA such that
each of its accepting runs corresponds to an infinite computation of A accepted

by B-p;

3. One checks whether the language accepted by B4 -p is empty or not. This
language is empty if and only if A satisfies P.

52 CHAPTER 4. PROPERTIES

The first step is identical to the first step of the model-checking method for
finite-state systems introduced in Section 4.4.1.

The second step is performed as follows. Let A = (Ca, coq, Ma, mos, Op s, Ta)
and Bop = (X-p, S-p, Ap, So—p, Fp). The product A x B_p is the SMBA B =
(C,co, M, mg, Op, T, F), where:

o (' = (4 x S_p (each potential state of B is composed of a control location of
A, and a state of B_p);

e ¢y = (cou,So—p) (the initial control location of B is composed of the initial
control location of A and the initial state of B_p);

o M = M, (the memory domain of B is identical to the one of A);

e my = mgy (the initial memory content of B is identical to the one of A);

Op={P,c.NBO|ceCaNaecXpAbe Opy}, where P, . denotes the
predicate satisfied by every memory content m € M such that (¢, m) satisfies
the state predicate P,. The symbol “N” denotes the intersection of functions.
Formally, for every control location ¢ € Cy, symbol a € ¥_p and operation
0 € Opy, we have

Q(m) if Pa((cv m)),

P M M
a,c N 9 — m — { L 1f —|Pa((C’ m))

Intuitively, the operations labeling the transitions of B are conjunctions of
operations labeling edges of the control graph of A and of state predicates of

BA,ﬂP§

o I'={((c1,51), Paey N O,(ca,82)) | (Ba € Xp)((c1,0,¢c2) € Ta A (51,0a,52) €
A_p)} (there is a transition between two states of B if and only if there is
an edge between the corresponding control locations of A and a transition
between the corresponding states of B_p. The memory operation performed
while following that transition consists of executing the operation labeling
the edge of A, provided that the memory content satisfies the state predicate
associated to the transition of B_p);

o ' = (4 x F_p (a control location of B is accepting if and only if the corre-
sponding state of B_p is accepting).

This construction is correct thanks to the following result.

Theorem 4.2 Let (¢, my), (c2, ma), ... be states of A. The automaton B = AxB_p
has an accepting run of the form ((c1,s1),m1), ((co, S2),m2), ..., where si, o, ... are
states of B-p, if and only if the infinite sequence of states (c1,my), (c2,msa), ... is an
infinite computation of A that does not satisfy P.

4.5. TESTING THE EMPTINESS OF SMBAS 53

Proof The relationship between the runs of B and the infinite computations of A
is immediate by construction. O

It remains to show how to perform the third step of the model-checking proce-
dure, which consists of determining whether the language accepted by the SMBA
B is empty or not. This problem, which is a crucial issue of infinite-state model
checking, is discussed in Section 4.5. As will be shown in that section, the test of
emptiness for SMBAs is undecidable for sufficiently expressive memory domains.
The solution will thus consist of a semi-decision procedure. The approach we will
propose is based on the state-space exploration of SMAs (as introduced in Chap-
ter 3). Systems for which a full decision procedure can be obtained will be studied
in Chapter 5.

As in the case of finite-state systems, there is no need for storing explicitly the
product automaton computed at the second step of the model-checking procedure;
the components of this automaton can be generated on demand by an on-the-fly
algorithm.

4.5 Testing the Emptiness of SMBAs

The problem investigated here consists of checking whether an SMBA has an accept-
ing run or not. As we will show, this problem cannot be fully solved if the memory
domain of the SMBA is sufficiently expressive. We first define precisely this notion
of expressiveness.

4.5.1 Expressiveness of Memory Domains

We characterize expressiveness by relating SMAs to Turing machines. A Turing
machine [Tur36, HUT9] is a state machine with a finite control and an infinite
memory, the latter being structured as an unbounded tape. The tape is divided into
an infinite number of locations, each containing a symbol from a finite alphabet.
The content of the tape can thus be seen as a word over this alphabet. The tape
is accessed by means of a head, which can move forwards and backwards across
the tape reading and writing symbols. The location of the head together with the
tape content characterize the state of the memory of the Turing machine. We use
inputless Turing machines, which are machines whose tape content is initially empty.
Formally, a Turing machine is a tuple (@, T, d, qo, #, F'), where

e () is a finite set of states;
e ['is a finite tape alphabet;

e 0 : QxI' = QxI'x{L, R} is a transition function (“L” and “R” respectively
indicate a left and a right move of the head);

54 CHAPTER 4. PROPERTIES

® ¢y € () is an initial state;
o # c I'is a blank symbol;
e ['C () is a set of accepting states.

The semantics of a Turing machine (Q, T, d, qo, #, F') is defined in terms of con-
figurations. A configuration contains all the information needed for continuing the
execution of the machine, i.e., it is composed of the current state, the tape content,
and the position of the head. The initial configuration corresponds to the initial
state, a tape containing only blank symbols, and the head positioned at the left-
most location of the tape. At any time, only a finite number of tape locations have
been accessed by the machine, and thus the tape content can be unambiguously
characterized by one of its finite prefixes (such that the remaining tape locations
only contain blank symbols). Formally, a configuration is a triple (¢, wy, wg), where

e g € () is a state;

e w; € I'* is the content of the tape between the leftmost location and the last
location before the head (those locations included);

e wp € I'" is the content of the tape between the head location and the last lo-
cation containing a non-blank symbol (those locations included), or the empty
string ¢ if, from the head location, the tape content is only composed of blank
symbols.

Let (q1,wr 1, wg1) be a configuration, a € I' be the rightmost symbol of wy,
(such that wr,; = w} ;a, a being undefined if wy,; = €), and b be the leftmost symbol
of wr (such that wgr; = bwky,, or such that b = # and wy, = ¢ if wr1 =¢). A
configuration (g, wr 2, Wg2) is reachable in one step from (g1, wr 1, wg,1), which is
denoted (g1, wp 1, wr1) F (¢2, WL 2, Wre), if ¢1 ¢ F' and

® 0(q1,b) = (g2, V', R), wp o = wr b and wro = wh,, or
L4 5(@1, b) = (q27b,7 L)7 wL,l # g, wL,2 = wlL71 and
— wrp = ab'wy, iV # # or wh, # ¢;

—wR,gzaifa##,b':#andw}%’lze;

—wrp=cifa=#, 0 =# and wy, =¢.

The configuration (q,wr,wg) is reachable if there exist k € Ny and (q1,wr 1,
wr1), (G2, WL 2, Wr2), - (ks Wr g, WrE) € Q X I'™ x I such that q1 = qo, wp) =
WRr1 = &, gk = (¢, WLk = WL, WRk = WR, and (QiawL,iawR,i) - (Qi-i-lawL,i—i-lawR,iJ,-l)
for every ¢ such that 0 < i < k. The longest (possibly infinite) sequence (q1,wr, 1,

4.5. TESTING THE EMPTINESS OF SMBAS 55

wWr1), (g2, W2, Wr2), (¢35, Wr3, Wr3), - .. of configurations such that ¢; = qo, w1 =
wry = ¢ and (¢, wr i, Wrs) F (¢is1, Writ1, Writ1) for every i € Ny is the execution
of the Turing machine. If this execution is finite (either because its last configuration
contains an accepting state, or because the transition function is not defined for the
last configuration), then the machine is said to halt.

We are now ready to relate SMAs to Turing machines. Roughly speaking, we
consider a class of SMAs to be “sufficiently expressive” if it is possible to simulate
every arbitrary Turing machine by an SMA belonging to the class. Formally, we
have the following definition.

Definition 4.3 Let M be a memory domain, and Op C M — M be a set of mem-
ory operations. The pair (M, Op) is Turing-expressive if there exists a computable

function o converting every Turing machine M = (Q,T', 4, qo, #, F') into an SMA
A= a(M) = (C,cy, M,mgy, Op,T) such that:

e Fvery state q € Q is associated with a unique control location a(q) € C;

e [wery potential tape content w € T'*(#)“ is associated with a set of corre-
sponding memory contents a(w) C M. For every wy,ws € I'*(#)* such that
wy # wq, we have a(wy) N a(ws) = 0;

o a(qo) = ¢y (the initial state of M is associated with the initial control location

of A);

o a((#)¥) = {mo} (the initial tape content of M, which is only composed of
blank symbols, is associated with the initial memory content of A);

o A configuration (ga, w2, wr2) € @ x I'" x I'* is reachable in one step from
a configuration (g1, wp1,wr1) € Q x I' x I'" if and only if a state of A
corresponding to the latter is reachable (not necessarily in one step) from a
state associated to the former. In other words, (q1,wr 1, wr1) & (g2, w2, Wgr2)
if and only if there exist my € a(wpwr1(#)) and my € a(wrwr2(#)“)
such that

(alq1),m1) —r (a(g2), ma),

where R is the reachability relation of A;

o T is deterministic, i.e., from every state in C' x M, there is at most one state
reachable in one step.

By extension, the set of all the SMAs sharing the same Turing-expressive pair of
memory domain and operations (M, Op) is called a Turing-expressive class of SMAs.
Turing-expressive classes of Structured-Memory Biichi Automata are defined simi-
larly.

56 CHAPTER 4. PROPERTIES

Unsurprisingly, most classes of SMAs used for modeling real-life systems are
Turing-expressive. In Chapters 7 and 8, we will recall well-known results stating
that SMAs using FIFO channels with send and receive operations and those using
integer variables with linear operations are both Turing-expressive.

4.5.2 Undecidability of the Emptiness Problem

Let us show that the emptiness problem cannot be solved for Turing-expressive
classes of SMBAs.

Theorem 4.4 Let (M, Op) be a Turing-expressive pair of memory domain and oper-
ations. The problem of determining whether an arbitrary SMBA using those domain
and operations has an accepting run is undecidable.

Proof The proof is by reduction from the halting problem for Turing machines.
Let M = (Q,T,0,qo,#, F) be a Turing machine. From this Turing machine, we
construct the SMBA B = (C, ¢y, M, mg, Op, T, F") such that

o (C,cy, M, mg, Op,T) is the SMA obtained as a result of converting M as de-
scribed in Definition 4.3. Since (M, Op) is Turing-expressive, this conversion
can be performed algorithmically;

e F' contains all the control locations in C' that are the image of a state of M
by the conversion function.

As a consequence of this construction and of Definition 4.3, B has an accepting run if
and only if M does not halt. Indeed, if B has an accepting run (co, myg), (¢1,m1), . . .,
then this run contains infinitely many ¢; associated to states of M. The run can
thus be translated into an infinite execution of M, and therefore M does not halt.
Reciprocally, if M does not halt, then it has an infinite execution which can be
translated into an accepting run of B.

The empty word halting problem for Turing machines (or, more precisely, its
complement) has thus been reduced to the emptiness problem for SMBAs. Since
the former is undecidable [HU79], the latter is undecidable as well. O

4.5.3 Semi-Decision Procedure

From now on, we will assume that the SMBAs that we consider belong to Turing-
expressive classes. Theorem 4.4 implies that it is impossible to check algorithmically
all the runs of such an SMBA in order to determine whether its accepted language
is empty or not.

It is nonetheless possible to obtain a partial decision procedure, by only searching
for runs belonging to a restricted set (as opposed to all of them). The result would

4.5. TESTING THE EMPTINESS OF SMBAS o7

be an algorithm which might give out false negatives (failing to discover an accepting
run), but no false positives (finding an accepting run when there is none). Using such
an algorithm in the model-checking procedure introduced in Section 4.4.2 would yield
an algorithm that would be able to detect the presence of some errors (by establishing
that the property is not satisfied by the model), but not their absence. This is
consistent with our view of verification: we know that a proof of correctness for a
model does not translate into a certainty of correctness for the actual system unless
lots of hypotheses are assumed. As a full decision procedure cannot be obtained for
the class of models we consider, we argue that looking for as many types of errors
as possible is practically more useful than struggling to prove absolute correctness,
which is anyway hypothetical.

Let B = (C,co, M, mg, Op, T, F) be an SMBA. A run (cy, mg), (¢c1,m1),... of B
is accepting if there are infinitely many ¢; that belong to F. Since F' is finite, this
implies that there is an accepting control location ¢ € F which is visited infinitely
often by the run, i.e., such that there are infinitely many ¢ € N for which ¢; = c.
The partial decision procedure we propose is based on the concept of meta-transition
introduced in Section 3.2.1. Sketchily, the idea consists of first associating some set
of meta-transitions to the underlying SMA A = (C, ¢y, M, mq, Op, T') of B, obtaining
the ESMA A’ = (C, ¢y, M, mg, Op, T, T) and ESMBA? B’. Then, one searches only
for sequences of states of B’ in which an accepting control location is visited infinitely
often by repeatedly following the same meta-transition.

There is a small problem with this approach, in that the existence of such a
sequence does not always imply that B has an accepting run. Let us consider an
example. Suppose that F' = {¢g}, and that T" is empty. We can associate to A the
set 7" = {t } containing the trivial meta-transition ¢ = (co, id, ¢p), where

id:2M oM . U

is the identity function (the meta-transition ¢ clearly satisfies the conditions of Defi-
nition 3.1). The infinite sequence of states (co, mo), (co, mo), - - . can then be obtained
by following repeatedly ¢ from the initial state of A’, even though this sequence does
not correspond to an accepting run of B. Indeed, there is no way of reaching (cq, my)
from itself by following a nonempty path of transitions.

The solution is to impose that every time a state ¢y is obtained from a state
¢ by following a meta-transition in 7', there must exist a nonempty sequence of
transitions in T going from ¢; to ¢». This leads to the following definitions.

Definition 4.5 A meta-transition (ci, f,c;) € T of A’ is open for the memory
content my € M if there exists my € M such that mo € f({m1}) and (c1,my) —%
(co,my), where R is the one-step reachability relation of A’.

2An Extended SMBA, or ESMBA, is simply an SMBA associated with a finite set of meta-
transitions.

58 CHAPTER 4. PROPERTIES

Definition 4.6 A meta-transition (c1, f,c3) € T of A’ is repeatedly open for the
memory content my € M if

® ¢ =y, and

o There exist mg,ms,... € M such that for every i € Ny, m;y1 € f({m;}) and
(ci;,m;) —73 (cip1,mit1), where R is the one-step reachability relation of A’.

The partial decision procedure for checking the emptiness of B simply consists
of checking if there is a run in which a repeatedly open meta-transition is followed
from a reachable state whose control location is accepting. Indeed, if there ex-
ist ¢ € F and m € M such that (c¢,m) is reachable as well as a meta-transition
(c, f,c) € T repeatedly open for m, then the previous definitions imply that there
exist mg, ms, ... € M such that

(CO7 mO) _>E (Ca m) HJ]% (C7 m?) _>E (C7 m3) U

Since c is accepting, this sequence defines an accepting run of B.

Testing the emptiness of SMBAs has thus been reduced to performing a reach-
ability analysis, followed by a search for repeatedly open meta-transitions. The
former problem has been studied in Chapter 3. Let us now address the latter one.

Checking exactly whether a meta-transition is repeatedly open for some given
memory content is in general impractical. Indeed, according to Definitions 4.5
and 4.6, the entire transition relation of the SMBA has to be taken into account in or-
der to check whether following the meta-transition amounts to following a nonempty
sequence of transitions. A more convenient approach consists of considering only
the part of the transition relation that is relevant to the meta-transition. For in-
stance, in the case of a cycle (see Section 3.4.1) or a multicycle (see Section 3.4.2)
meta-transition, only the transitions composing the cycle(s) from which the meta-
transition is derived may be taken into account. This leads to a sufficient condition
for repeated openness. The fact that this condition may be not necessary is not
at all problematic, since we know that checking for all potential accepting runs is
impossible anyway.

In practice, the search for repeatedly open meta-transitions is performed as fol-
lows. We associate to each meta-transition # belonging to T’ a set OPEN-SET(f) C
M such that ¢ is known to be repeatedly open for each memory content belonging
to that set (this set can be chosen arbitrarily as far as correctness is concerned,
provided that the previous condition is satisfied). If no such set can be determined
at the time ¢ is created, or if the origin and destination control locations of the
meta-transition differ, then we have OPEN-SET(¢) = .

Checking whether there exists a meta-transition in 7" that is repeatedly open
for a reachable memory content can now be done by first computing the set Qg
of reachable states of A’, and then testing the emptiness of each set of the form

4.5. TESTING THE EMPTINESS OF SMBAS 59

function SMBA-EMPTY?(SMBA (C, ¢, M, mq, Op, T, F), set of meta-transitions T') : {F, 7}

1 var Qg : set of states;
2 ¢ : control location;
3 (c1, f, c2) : meta~transition;
4 begin
5: Qr =REACHABLE((C, co, M, mg, Op,T,T));
6 for each ¢ € F such that values(Qg,c) # 0 do
7 for each (cy, f,c2) € T such that ¢; = ¢35 = ¢ do
8 if values(Qgr,c) N OPEN-SET((c1, f,c2)) # 0 then
9 return F;
10: return ?
11: end.

Figure 4.2: Test of emptiness for SMBAs.

values(Qr,c) N OPEN-SET(t), where ¢ € F is an accepting control location and
t=(c, f,c) € T"is a meta-transition.

A semi-algorithm implementing this semi-decision procedure is given in Fig-
ure 4.2. Its output values “F” and “?” respectively correspond to nonemptiness,
and inability to decide between emptiness and nonemptiness. Remark that termina-
tion is not guaranteed, since the computation of Qg performed at Line 5 might not
terminate (the issue is discussed in Chapter 5). Of course, the call to REACHABLE
can be replaced by a call to any alternate function obtained in Chapter 3. The
correctness of the semi-algorithm is established by the following result.

Theorem 4.7 Let B = (C,cy, M, mg, Op, T, F) be an SMBA, and let T be a set of
meta-transitions for its underlying SMA (C,co, M, mg, Op,T). If the computation

of SMBA-EMPTY?((C,co, M, mg, Op, T, F),T) returns ¥, then B has an accepting
run.

Proof Immediate. O

It remains to show how to obtain the sets OPEN-SET(¢) during the creation of
meta-transitions. Specifically, we study cycle (see Section 3.4.1) and multicycle (see
Section 3.4.2) meta-transitions. We have the following definition.

Definition 4.8 Let A = (C, co, M, mg, Op,T) be an SMA. The sequence of opera-
tions o € Op* is iterable from a memory content my € M if there exist mo, ms, ... €
M such that for every i € Ng, m;i1 = o(m;). By extension, if C is a cycle in the

60 CHAPTER 4. PROPERTIES

control graph of A and t is the cycle meta-transition associated to C, thent is iterable
from my € M if the sequence body(C) is iterable from m.

Intuitively, a cycle meta-transition is iterable from a given memory content if
its corresponding cycle can be followed repeatedly an unbounded number of times,
starting from that memory content. Clearly, if a cycle meta-transition is iterable
from a given memory content, then it is repeatedly open for that content. Indeed,
in Definition 4.8, if m;; = body(C)(m;) then (c,m;) —F% (c,mi1), where ¢ € C' is
the control location at which C starts and R is the one-step reachability relation of
A. The result is then a consequence of Definitions 4.5 and 4.6.

It follows that a way of obtaining the set OPEN-SET(#) associated to a cycle
meta-transition ¢ consists of computing the set of memory contents from which ¢ is
iterable. The advantage is that this computation can be performed on the sole basis
of the transitions composing the cycle to which ¢ is associated, as opposed to the
entire transition relation of the SMA.

Practically, we require that the representation system used for sets of memory
contents defines a function ITERABLE : Op* — 2™ mapping every sequence of
operations onto a representable set of memory contents from which this sequence
is known to be iterable. Once again, completeness is not essential, the only re-
quirements being that the sequence must be iterable from every memory content
belonging to the returned set, and that this set of memory contents must be repre-
sentable.

A similar approach can be followed with multicycle meta-transitions. The next
definition generalizes the notion of iterability to finite sets of sequences of operations.

Definition 4.9 Let A = (C, o, M, mg, Op,T) be an SMA. The set of sequences of
operations {oy,09,...,0,} € 20p" (I > 1) is iterable from a memory content m; €
M if there exist mo,ms,... € M and j1,j2,... € {1,2,...,1} such that for everyi €
Ny, miy1 = 0j,(m;). By extension, if {C1,Cs,...,C} (I > 1) is a set of cycles in the
control graph of A and t is the multicycle meta-transition associated to this set, then
t is iterable from my € M if the set of sequences {body(Cy), body(Cs), . .., body(C;)}
1s iterable from my.

Intuitively, a multicycle meta-transition is iterable from a given memory content
if it is possible to follow repeatedly one of its corresponding cycles (not necessarily the
same at each iteration) an unbounded number of times, starting from that memory
content. Like in the case of cycle meta-transitions, it is clear that if a multicycle
meta-transition is iterable from a given memory content, then it is repeatedly open
for that content. The set OPEN-SET() associated to a multicycle meta-transition
t can thus be obtained by computing the set of memory contents from which ¢ is
iterable.

4.5. TESTING THE EMPTINESS OF SMBAS 61

In practice, we require that the representation system used for sets of memory
contents defines a function MULTI-ITERABLE : 207" —, oM mapping every finite
set of sequences of operations onto the representable set of memory contents from
which that set of sequences is known to be iterable. The requirements are here
that the set of sequences must be iterable from every memory content belonging
to the set returned by this function, and that this set of memory contents must
be representable. Algorithms implementing the functions ITERABLE and MULTI-
ITERABLE for two important memory domains (FIFO channels with send/receive
operations, and integers with linear operations) will be given in Chapters 7 and 8.

62

CHAPTER 4. PROPERTIES

Chapter 5

Termination

This chapter studies the termination conditions for the state-space exploration semi-
algorithms introduced in Chapter 3. It first shows that there does not exist a
decidable necessary and sufficient condition for termination, under some mild as-
sumptions on the class of systems being considered. Then, it gives an approximate
condition, in the form of a sufficient condition for termination. This condition is pre-
sented here independently from any memory domain, the memory operations that
one should be able to perform in order to decide this condition being clearly pointed
out. Since the sufficient condition can be decided from the syntax of the system,
it defines an algorithmically recognizable class of infinite-state systems for which
an exact reachability analysis can always be carried out. This chapter next gives
additional static conditions under which the LTL model-checking semi-algorithm
presented in Chapter 4 becomes a full algorithm (i.e., an exact decision procedure
which always terminates). Finally, this chapter describes a technique for optimizing
the control graph of a state machine in order to increase the possibility of satisfying
the terminating condition, while preserving other properties of interest.

5.1 Undecidability of Termination

In this section, we show that termination of symbolic state-space exploration by
the semi-algorithms of Chapter 3 is undecidable for sufficiently expressive classes of
infinite-state systems. Let us first consider the semi-algorithms REACHABLE and
REACHABLE-D introduced in Section 3.3. We have the following result.

Theorem 5.1 Let (M, Op) be a Turing-expressive pair of memory domain and op-
erations. The problems which consist of determining, given an arbitrary ESMA
A = (C,co, M,mg, Op, T, T) using these memory domain and operations, whether
the computations of REACHABLE(A) and REACHABLE-D(A) terminate are both

undecidable.

63

64 CHAPTER 5. TERMINATION

Proof The proof is by reduction from the halting problem for Turing machines.
Since (M, Op) is Turing expressive, it follows from Definition 4.3 that there ex-
ists an algorithm for converting any Turing machine M into an equivalent SMA
(C,co, M,mg, Op,T). Let T = 0, and A be the ESMA (C, ¢y, M, mg, Op,T,T). Ac-
cording to Theorem 3.5, the computation of REACHABLE(A) terminates if and
only if there exists an upper bound on the depth of all the reachable states of A.
Since A has a deterministic transition function and does not have meta-transitions,
such an upper bound exists if and only if A has a finite number of reachable states.
This is the case if and only if M has a finite number of reachable configurations.
The problem that consists of determining whether M has a finite number of reach-
able configurations is thus reduced to deciding the termination of REACHABLE(A).
Deciding whether M halts can now be done as follows:

e [f M has an infinite number of reachable configurations, then it does not halt;

e If M has a finite number of reachable configurations, then one can simulate its
execution up to termination or to the first repetition of a previously reached
configuration. M halts if and only if its execution does not reach the same
configuration more than once.

The halting problem for Turing machines is thus reduced to deciding termination
of REACHABLE(A). Since the former is undecidable [HU79], the latter is undecid-
able as well. The case of REACHABLE-D is handled in the same way. It is actually
sufficient to notice that Theorem 3.5 also holds for REACHABLE-D whenever T is
deterministic and T is empty. Indeed, in this case, it is easily seen that there will be
as many calls to Procedure explore as there are reachable states in the state space
of A. O

Let us now consider the semi-algorithm REACHABLE-DYNAMIC introduced
in Section 3.5. A result similar to Theorem 5.1 can be obtained, the only differ-
ence being an additional requirement on the representation system used for sets of
memory contents.

Theorem 5.2 Let (M, Op) be a Turing-expressive pair of memory domain and set
of operations. The problem which consists of determining, given an arbitrary SMA
A = (C,co, M, mg, Op,T) using this pair of memory domain and set of operations,
whether the computation of REACHABLE-DYNAMIC(A) terminates is undecid-
able, provided that the representation system used for subsets of M allows a procedure
for deciding the finiteness of representable sets.

Proof The proof is by reduction from the halting problem for Turing machines.
Since (M, Op) is Turing expressive, it follows from Definition 4.3 that there ex-
ists an algorithm for converting any Turing machine M into an equivalent SMA
(C,co, M,mg, Op,T). By hypothesis, there exists a computable predicate FINITE

5.2. SUFFICIENT CONDITIONS 65

over the set of subsets of M, such that for every U C M, FINITE(U) is true if and
only if U is finite. There are three possible situations:

e The computation of REACHABLE-DYNAMIC(A) terminates, returning the
set Qr, and there ezists ¢ € C' such that FINITE(values(Qg,c)) = F. In this
case, A has an infinite number of reachable states, and thus M has an infinite
number of reachable configurations.

e The computation of REACHABLE-DYNAMIC(A) terminates, returning the
set Qr, and there does not exist ¢ € C' such that FINITE(values(Qr,c)) = F.
In this case, A has a finite number of reachable states, and thus M has a finite
number of reachable configurations.

o The computation of REACHABLE-DYNAMIC(A) does not terminate. In this
case, A has an infinite number of reachable states (otherwise, by Theorem 3.5,
the computation of REACHABLE((C, co, M, mg, Op, T, T)) with T = () would
terminate, which contradicts, as a consequence of Theorem 3.11, the fact that
REACHABLE-DYNAMIC(A) does not terminate). Therefore, M has an in-

finite number of reachable configurations.

Since there are only a finite number of control locations in C it is possible to
decide which of these situations applies. Determining whether the set of reachable
configurations of M is finite or infinite has thus been reduced to deciding termination
of REACHABLE-DYNAMIC for SMAs. The reduction from the halting problem is
then identical to the one performed in the proof of Theorem 5.1. O

5.2 Sufficient Conditions

In the previous section, we have shown that there is no decidable sufficient and nec-
essary condition for the termination of state-space exploration. Here, we investigate
whether one can obtain sufficient static conditions for the termination of the semi-
algorithms of Chapter 3. By “static condition”, we mean a condition that must be
decidable from the syntax of the system without requiring a reachability analysis or
any type of state-space search.

The main goal is to obtain a sufficient condition for the termination of REACH-
ABLE (see Section 3.3). We do not address the case of REACHABLE-D for two
reasons. First, this algorithm is non-deterministic (the choice of an outgoing transi-
tion from an explored state is arbitrary), which makes a termination study difficult.
Indeed, two different state-space explorations of the same ESMA by REACHABLE-
D are not necessarily equivalent from the point of view of termination. Additional
parameters such as the ordering of the outgoing transitions from a control location
would thus have to be taken into account by the study. The second reason is that

66 CHAPTER 5. TERMINATION

REACHABLE-D is never better than REACHABLE if termination is the primary
concern. Finally, the reason for which the case of REACHABLE-DYNAMIC (see
Section 3.5) is not explicitly addressed is that this semi-algorithm is based on a dy-
namic rather than static computation of meta-transitions. This makes a termination
analysis relying on static properties difficult to perform.

It has been established in Section 3.3 that the state-space exploration by the
procedure REACHABLE of an ESMA A terminates if and only if there is an upper
bound on the depth of all the reachable states of A, this bound depending only
on A (see Theorem 3.5). In order to get a sufficient termination condition, one
must therefore obtain a static condition which guarantees that all the reachable
states of A have a bounded depth. In other words, such a condition would imply
that all the reachable states of A are reachable from the initial state by following a
path of transitions and/or meta-transitions whose length is bounded. The solution
proposed here consists of designing a condition under which any exploration path
can be transformed into an equivalent one of bounded length (recall that two paths
or subpaths are said to be equivalent if they start from the same state and end in
the same state).

Let 7 be a finite path of transitions and/or meta-transitions from the initial state
of A to a given state (¢, m). In general, this path is composed of an alternation of se-
quences of transitions and sequences of meta-transitions. We call each such sequence
a segment. Precisely, a segment of w is a subpath of 7 entirely composed either of
transitions (in which case it is a transition segment) or of meta-transitions (in which
case it is a meta-transition segment), that is maximal, meaning that it cannot be
enlarged by appending or prepending an additional transition or meta-transition. A
subsegment is a subsequence of consecutive transitions or meta-transitions belonging
to the same segment. The methodology we will follow in order to bound the length
of exploration paths consists of bounding successively the length of each type of seg-
ment, and then bounding the number of segments in a path. We address successively
the cases of ESMAs with only cycle and then with only multicycle meta-transitions.

5.3 Machines with Only Cycle Meta-Transitions

5.3.1 Transition Segments

The first step is to bound the length of the transition segments. In other words,
given a path from the initial state of A = (C, ¢y, M, mg, Op, T) to a state (¢, m), the
goal is to show that there exists an equivalent path such that the length of each of
its transition segments is bounded by some value depending only on A. A natural
solution is to take advantage of cycle meta-transitions. Roughly speaking, the idea
is that for every simple-cyclic subsegment (i.e., beginning and ending at the same

5.3. MACHINES WITH ONLY CYCLE META-TRANSITIONS 67

control location, and not visiting twice the same control location) of the path, there
should exist a finite sequence of meta-transitions in 7T equivalent to that subsegment.
Formally, consider an exploration path of the form

1 2

t.
T = (co,mp) - - - (i, my) 4, (Cit1,Miv1) 2 (Civmi+j) - (e,;m),

where ¢ > 0, j > 1, ¢1,¢2,... € C, my,mg,... € M, ty,1y,...,t; € T, m,m are
subpaths, and the cycle labeled by (t1;ts;...;t;) is simple. Since this path contains
the simple-cyclic subsegment

ti
(ci,my) o (Cig1, Mit1) 2 (ciy Mitj),

there should exist an equivalent path
™1 B ™2

I 7. 7. t.

m' = (co,mo) -+ (esymi) 2 (¢, mh) B (chymh) -+ 2 (ci,mayy) -+ (¢;m),

where j' > 1, ¢},¢y, ...,y € C,mi,my,...,mly € M, ty,ty,...,tp € T. A
simple static sufficient condition for this requirement is the following.

Condition 1 For every simple cycle C in the control graph of A, the cycle meta-
transition corresponding to C must belong to T.

If this condition is fulfilled, then it is possible to turn every exploration path
into an equivalent one in which all the transition segments are acyclic. Indeed, if a
transition segment contains a cycle, then it necessarily contains a simple cycle. By
replacing in the path the occurrence of this simple cycle by its corresponding meta-
transition, one obtains an equivalent path composed of strictly less transitions and
one more meta-transition. Since the original path is finite and has a finite number
of transitions, this simple-cycle replacement operation can only be repeated a finite
number of times. The final result is a path equivalent to the original one in which
all the transition segments are acyclic and hence of length bounded by the number
of control locations of A.

5.3.2 Meta-Transition Segments

The second step is to bound the length of the meta-transition segments. There is
one small difficulty here: in order to keep the benefit of the first step, one must
preserve the acyclic nature of transition segments. The goal is here to make sure
that for any exploration path in which all the transition segments are acyclic, there
exists an equivalent path in which all the transition segments are acyclic as well, but
also in which all the meta-transition segments have a bounded length (the bound
depending only on A).

68 CHAPTER 5. TERMINATION

The idea is the following. Since there are only finitely many meta-transitions
in 7T, it is sufficient to ensure that for every meta-transition segment, there exists
an equivalent segment in which each meta-transition appears at most once. This
can be done as follows. Since T contains only cycle meta-transitions, the control
location is constant throughout a meta-transition segment. It is sufficient to require
an ordering between all the meta-transitions associated to that control location,
such that for any subpath entirely composed of those meta-transitions, there exists
an equivalent subpath in which the meta-transitions appear in order. The condition
is based on the following definition.

Definition 5.3 Let T, = {t,ts,...,t;} (k > 0) be a set of meta-transitions be-
ginning and ending at the same control location ¢ € C. This set is serializable if
there exists a permutation (t;,t;,, . .. Zk) ofT such that for every set of memory
contents U C M and sequence tj,; t”, .. .3 t5,, of meta-transitions of T., with k' >0
and ji, jo, - g € {1,2,.. .k}, (G5t 5t)(U) C (Bigstiy: -5 1,)(U). By ex-
tension, any meta-transition segment exclusively composed of meta-transitions of a
serializable set T, is also said to be serializable.

We are now ready to state formally the condition.

Condition 2 For every control location ¢ € C, the set T, = {t1,ts,...,tx} (k > 0)
of all the meta-transitions in T beginning and ending in ¢ must be serializable.

The implementation of this condition by an actual decision procedure will be
discussed in Section 5.3.5.

5.3.3 Number of Segments

The last step is to bound the number of segments in exploration paths. This is
done in the following way. Since the control graph (C,T) of A is finite, it contains
a finite number of maximal strongly connected components (a strongly connected
component is a set of nodes such that any of them is reachable! from all of them).
By the definition of strongly connected components, an exploration path can visit
successively several maximal strongly connected components, but can never get back
to a previously visited component. Formally, if

t.
T = (co,mo) > (c1,my) 2 -+ 2 (¢;,m;),

'Recall that a node ny of a graph is reachable from a node n; is there exists a finite path of
edges leading from n; to mo. In the present context, reachability between control locations —
which does not depend on transition labels — should not be confused with reachability between
states.

5.3. MACHINES WITH ONLY CYCLE META-TRANSITIONS 69

where 7 > 0, co,c1,...,¢; € C, mg,mq,...,m; € M, t1,ts,...,t; €T, is a path of
transitions, then one can break this path into subpaths my,ms,..., 7 (0 < k < j)
satisfying m = w7y - - - g, such that the control locations visited by each 7; all belong
to the same maximal strongly connected component of (C,T), and this strongly
connected component is different for each ;. Assume that we first break 7 into the
m;, and then transform each ; into an equivalent sequence of transition and meta-
transition segments. The total number of segments that would be obtained is at least
equal to the number of segments that would be obtained by directly transforming
into a sequence of segments. Since there are only finitely many strongly connected
components in (C,T), it is thus sufficient to bound the number of segments in each
;. We give two ways of obtaining such a bound.

The first one consists of a restriction on the form of the control graph. We simply
require that each maximal strongly connected component contains a node visited by
every simple cycle belonging to that component. Formally, the condition on every
maximal strongly connected components S of (C,T) is as follows.

Condition 3a The strongly connected component S C C' in the control graph of A
must be such that there exists a control location ¢ € S such that for every simple cycle
C = (c1,01,¢2),(ca,02,¢3),...,(ck,0,c1) (k>1,¢1,...,¢0 €C, 0q,...,0, € Op) of
S, there exists i € {1,2,...,k} such that ¢; = c.

Let us show that this condition implies a bound on the number of segments
composing a subpath entirely contained in a strongly connected component. In order
to take into account Conditions 1 and 2, we proceed by starting from an exploration
path in which all the transition and meta-transition segments are respectively acyclic
and serializable, and we turn this path into an equivalent one that fulfills the same
requirements, but whose length is bounded. Precisely, we have the following result.

Theorem 5.4 Let A be an ESMA satisfying Conditions 1 and 2, w be an exploration
path in which all the transition and meta-transition segments are respectively acyclic
and serializable, and m; be a subpath of m entirely contained in a strongly connected
component of (C,T) satisfying Condition 3a. There exists a subpath equivalent* to
m; composed of at most two transition segments, which are acyclic, and one meta-
transition segment, which is serializable.

Proof Note that the theorem is trivial if m; is only composed of transitions. If m;
contains at least one meta-transition, we first transform m; into 7} as follows. For
each occurrence (¢,m) = (e,m’) (c € C, m,m’ € M, t € T) of a meta-transition
in 7;, we know from Definitions 3.1 and 3.7 that there exist k£ > 0 and a simple

2Recall that two paths or subpaths are said to be equivalent if they start from the same state
and end in the same state.

70 CHAPTER 5. TERMINATION

cycle C in (C,T) such that m/ = body(C)*(m). We then replace the occurrence of
t in m; by k successive copies of the sequence of transitions labeling C. Repeatedly
performing this operation for all the meta-transitions in 7;, we finally obtain an
equivalent subpath 7 only composed of transitions.

Since Condition 3a is satisfied by hypothesis, there exists ¢ € C' such that every
simple cycle occurring in 7, visits ¢/. We can thus split 7} into three subpaths m,, m
and 7, satisfying 7} = m,m,7., such that m, starts and ends in ¢ and 7,, 7. either are
empty or do not visit ¢. The subpaths 7, and 7. are acyclic transition segments.
The subpath 7, is a succession of simple cycles. Since Condition 1 is fulfilled, one can
replace in 7, every occurrence of a simple cycle by its corresponding meta-transition.
The result is a subpath 7, equivalent to m, entirely composed of meta-transitions
beginning and ending in ¢’. Since Condition 2 is satisfied, 7 is a serializable segment
of meta-transitions. O

The second way of bounding the number of segments in an exploration path
does not involve the control structure, but consists of a restriction on the memory
operations. The idea is to require some type of independence between operations
carried out by meta-transitions and those performed by transitions. Intuitively, by
allowing to reorder the memory operations labeling an exploration path, it will be
easier to prove the existence of an equivalent path whose length is bounded. We
have the following definition.

Definition 5.5 Let 01,09 € Op* be two finite sequences of operations. The sequence
o1 precedes favorably oo, which is denoted o1<09, if for every set U € M of memory
contents, we have (09;01)(U) C (01;09)(U).

Intuitively, if o1 < 09, then the sequence oy; 09 generates at least all the states
generated by the sequence oy; 0. In practice, the procedure for deciding if oy < o9
has to be implemented together with the representation system for sets of memory
contents.

The number of segments contained in a maximal strongly connected component
S of (C,T) can now be bounded if the following condition is satisfied.

Condition 3b The strongly connected component S C C must be such that for
every simple cycle C = (c1,01,¢2), ..., (ck,0k,c1) (k>1,¢1,...,¢c, €8, 0q,...,0 €
Op) and transition (c,0,c) € T which is part of either

e a simple cycle C' # C starting at the location ¢y, or

e a simple cycle C' that does not wvisit the location ¢y,

we have body(C) < 6.

5.3. MACHINES WITH ONLY CYCLE META-TRANSITIONS 71

Let us show that this condition implies a bound on the number of segments
composing subpaths entirely contained in a strongly connected component. We first
need a lemma.

Lemma 5.6 Let A be an ESMA, © be an exploration path, and m; be a subpath of
7 entirely contained in a strongly connected component of (C,T) satisfying Condi-
tion 3b, with m; of the form
131 to th body(C)
T = (c1,ma) = (c2,m2) = -+ (g, mu) = (cr,mu) = (e1, man),
where k > 1, ¢1,...,c, € C, mq,...,mg,my,mw € M, t,ta,....tx €T and C is
a simple cycle of (C,T). The occurrence of C can be moved to the beginning of m;,

i.e., there exist my,mb, ..., mi € M such that
body(C) /Nt 7N\ b2 Uk
(c1,mi) =" (e1,my) = (c2,my) = -+« (e, my,) = (c1,m00)

18 equivalent to ;.

Proof For every j € {1,2,...,k}, let 6; denote the memory operation labeling the
transition t;. Let 6 = body(C).
It is sufficient to show that we have

(9 O - O -+ '91)({m1}) - (ek Op_1---01 '0)({m1})7

where “” denotes the composition of functions. This would mean that following the

sequence C;tq;ts;. ..t from m; would produce at least the memory content that
would be obtained by following the sequence ty;ts;...;tg; C from m;.
This result is established by proving the existence of functions 6;,6,,...,0; :

M — M such that

(00 Op—1---01)({mu})

C (6O Op—1---01)({mu})
C (O Op1 - Op—1---01)({m1})
C (O Op1-0g-01)({m1})
C (O Op—1---61-61)({ma})
C (O Op—1---601-0)({m}).

In other words, the idea consists of moving the leading “#” function across the
sequence. The different 6; simply express the modifications undergone by 6 at each
step of the move. For notational convenience, we define 0;,, = 6.

72 CHAPTER 5. TERMINATION

There are various types of ¢; in ;. One type of particular interest are transitions
that belong neither to a simple cycle starting at ¢; and different from C, nor to a
simple cycle that does not visit ¢; (this choice is motivated by the requirements of
Condition 3b). We call such ¢; basic transitions.

Basic transitions have nice properties. First, all of them are part of C, as a direct
consequence of their definition. More interestingly, we have that two successive basic
transitions t;, and t;, in m; (i.e., such that there is no basic transition ¢; such that
J1 < Jj < j2) are always consecutive in C, i.e., the control location c¢;, 1 at which ¢;
ends is equal to the control location c¢;, at which ¢;, begins. This is established by
contradiction. Indeed, if ¢; and ¢;, are not consecutive in C, then the subsequence
o composed of all the ¢; in 7; for which j; < j < js is a sequence of transitions from
¢ji+1 to ¢j,. Let o<;, denote the subsequence of C going from ¢; to ¢;,, and let o+,
denote the subsequence of C going from c¢j,11 to ¢;. The sequence (0<;,)o(05;,) is
therefore a cycle C' starting at ¢;. This cycle contains ¢;, and ¢;,, but no ¢; such
that j; < j < jo. Therefore, C’ contains an occurrence of a simple cycle different
from C starting at ¢; and containing ¢;,. This contradicts the fact that ¢;, is a basic
transition.

Let C = (c1,0],¢,), (ch,05,¢4), ..., (¢, 0],¢c1), with I > 1, ¢}, ¢,...,¢, € C and
01,05, ...,0, € Op. For each r € {0,1,...,1 — 1}, let C, be the r-th rotation of this
cycle, i.e., the cycle

Cr = (Chp1s U1 Crpa) (Cias Ora, Cia) s (g, Oy, € (€, 07, € py)
(for notational convenience, we define ¢| = ¢j,; = ¢;). The functions ; are com-
puted in decreasing order of j, according to the following rules:

e Each 0; satisfies 0, = body(C,,), where 7; is determined according to the re-
maining rules;

e If t; is basic, then r; = (41 — 1) mod/;
e If ¢; is non-basic, then r; = r;41.
Let us show that those rules are correct. There are two possible situations:

o [ft; is basic. Then, since all the basic transitions in 7; are consecutive in C
and the value of r; is only modified whenever the corresponding ¢, is basic,
t; is the transition of C that leads from ¢} |, (the control location at which C,,

starts) to ¢, . (the control location at which C,,,, starts). As a consequence,

J Tj+1

we have

ej; bOdy(er-H) = bOdy(er); 9j~

Therefore, since ;11 = body(C
m e M

) and 0; = body(C,,), we have for every

Tj+1

(Bj41 - 0;)({m}) = (0; - 0;)({m}).

5.3. MACHINES WITH ONLY CYCLE META-TRANSITIONS 73

o [ft; is non-basic. Then, t; belongs either to a simple cycle not visiting ¢,

or to a simple cycle different from C starting at ¢;. Both cases implies that

/
rj+1+1

starts), or to a simple cycle different from C,

t; belongs either to a simple cycle not visiting ¢ (the control location

at which C, 1
C}J__H +1- As a consequence, we have body(C,,,,)< 0;. From Definition 5.5, since
011 = 0; = body(C,,,,), we obtain for every m € M

starting at

J

(0541 - 0;)({m}) € (05 - 0;)({m}).

O
This lemma has a useful corollary.

Corollary 5.7 Let A be an ESMA, © be an exploration path, and 7; be a subpath
of ™ entirely contained in a strongly connected component of (C,T) satisfying Con-
dition 3b, with m; of the form

™ = (01,m1) =t> (Cl,my) 4, (02,m2) iy "'(Ck,mk) t—k> (Cl,mw) =t> (Claml”’)a

wherek > 1, ¢cq,...,cs € C,my, ..., my, My, myn,mam € M, t €T is a simple-cycle
meta-transition, and t; € T for every j € {1,2,...,k}. The second occurrence of t
can be removed from m;, i.e., there exist mb, ..., my, my,,mi, € M such that

(c1,m1) = (e1,my) = (c2,m5) = - (Cr M) " (c1, mym)
18 equivalent to ;.

Proof Let C be the simple cycle corresponding to ¢. There exists n > 0 such that
body(C)" (myn) = mqym. Thus, there exists a subpath equivalent to 7; of the form

— b d n
(cr,m1) & (ermy) & (ea,ma) B (exme) % (ermun) "5 (eq,mym).
Applying Lemma 5.6 n times to this subpath, we obtain that there exist m), ..., m},

m}, € M such that

7 body(c)"
=5

(c1,m1) = (c1,mu) (c1,my) 2 (c2,mb) 2 - (erymy,) o, (c1, mym)

is equivalent to m;, which implies that

(cr,mi) = (cr,miy) 5 (co,mb) B - (cx,mly) 25 (er,mom)

is equivalent to m; as well. O

We are now ready to show that Condition 3b implies a bound on the number of
segments composing a subpath entirely contained in a strongly connected compo-
nent.

74 CHAPTER 5. TERMINATION

Theorem 5.8 Let A be an ESMA satisfying Conditions 1 and 2, w be an exploration
path in which all the transition and meta-transition segments are respectively acyclic
and serializable, and m; be a subpath of m entirely contained in a maximal strongly
connected component of (C,T) satisfying Condition 3b (let S denote this strongly
connected component). There exists a subpath equivalent to m; composed of at most
N+1 transition segments, which are acyclic, and N meta-transition segments, which
are serializable, where N denotes the number of meta-transitions in T that begin and
end in control locations belonging to S.

Proof We can assume that all the meta-transitions that appear in 7; correspond to
simple cycles. Indeed, if this is not the case, then m; can easily be turned into an
equivalent subpath in which every occurrence of a meta-transition corresponding to
a non-simple cycle has been replaced by a sequence of acyclic transition segments
and of simple-cycle meta-transitions. Once this operation is performed, we simply
prove that multiple occurrences of the same simple-cycle meta-transition can be
removed from 7;. Indeed, suppose that 7; is of the form

/
i

(e, my) Y (1, myr) 2l (o, mo) 2 o (g, myg) 3 (c1,myn) Y (cr,mqm) -+,

where k > 1, ¢1,...,¢; € C, my,...,mg, my, my,mym € M, each t; is either a

43 7

transition (in which case “—” should be read as

«

—”) or a meta-transition (in
which case “—” should be read as “="), and 7} is the subpath of m; beginning and
ending with two successive occurrences in 7; of the meta-transition ¢ € T.

Let us show that the second occurrence of ¢ can be removed from 7}, i.e., that
there exist m), ..., mj, m}, € M such that

t t t t
(c1,my) = (c1,my) = (co,my) = -+ (cp,,my,) = (1, mym).

Remark that for each #; that is a meta-transition, its occurrence in 7/ can be

replaced by an equivalent sequence of transitions. Indeed, if we have

t.
(cj,m;) = (Cj+17m;‘+1)7

then there exists n > 0 such that

n

(e5:m) 2 (o1, 0),
where o; is the sequence of transitions labeling the cycle corresponding to #;. After
all the substitutions have been made, each th is a transition, and the fact that the
second occurrence of ¢ can be removed is a direct consequence of Corollary 5.7.

By suppressing iteratively redundant meta-transitions from 7;, one thus finally
obtains an equivalent subpath containing at most one occurrence of each meta-
transition in 7. This subpath is thus composed of at most N meta-transition seg-
ments and N + 1 transition segments.

5.3. MACHINES WITH ONLY CYCLE META-TRANSITIONS)

The serializable character of meta-transition segments is not affected by the
removal of meta-transitions. It remains to show that one can always obtain a suitable
subpath in which the transition sequences are acyclic. This is done as follows. If 7;
contains a cyclic subsequence of transitions, then it is of the form

(e, ma) B (eg,ma) B (e me) B (er,man) -

where k > 1, ¢,...,c,. € C,myq,....mg,my € M, ty,....tx €T, and tity-- -ty is a
simple cycle (let C be this cycle). We can replace the occurrence of C in m; by

(Claml) :t> (Cl7m1’)7

where ¢ € T is the cycle meta-transition corresponding to C.

If one performs alternatively the two operations discussed in this proof (remov-
ing in m; all the redundant meta-transitions, and replacing a cyclic subsequence of
transitions by a meta-transition) then the final result will be a subpath composed
of at most N meta-transition segments and N + 1 acyclic transition segments. This
subpath is always obtained after a finite number of steps. Indeed, the number of
transitions in 7; is not affected by the former operation, and is strictly decreased by
the latter. O

5.3.4 Summary of Conditions

Let us summarize the necessary conditions obtained in Sections 5.3.1, 5.3.2 and 5.3.3.

Definition 5.9 An ESMA with only cycle meta-transitions is safe if it satisfies
Conditions 1 and 2, and if each mazimal strongly connected component of its control
graph satisfies either Condition 3a or Condition 3b (the satisfied condition may differ
for each strongly connected component).

We are now ready to state the main result of this section.

Theorem 5.10 Let A be a safe ESMA with only cycle meta-transitions. The com-
putation of REACHABLE(A) terminates.

Proof The elements of the proof have already been developed during the discussion
of each condition. Given an exploration path 7, one first transforms its transition
segments into acyclic ones, then serializes its meta-transition segments, and finally
reduces the total number of segments. The result 7’ is an exploration path equivalent
to 7, for which:

e The length of each transition segment is less than the number of control states

in C

76 CHAPTER 5. TERMINATION

e The length of each meta-transition segment is less than the number of meta-
transitions in 7;

e The number of segments is less than three times the number of maximal
strongly connected components in the control graph (C,T).

Each reachable state of A can thus be reached by an exploration path whose length
is bounded by a value depending only on A. According to Theorem 3.5, the com-
putation of REACHABLE(A) terminates. O

5.3.5 Implementation

Let us now study how to check algorithmically that the conditions discussed in
Sections 5.3.1, 5.3.2 and 5.3.3 are satisfied by an ESMA A.

Deciding whether Condition 1 is satisfied can be done by testing the inclusion
of the set of cycles returned by SIMPLE-CYCLES (see Section 3.4.1) into the set
of cycles from which the meta-transitions of A are created. If the goal is to ensure
that Condition 1 is satisfied while creating meta-transitions, then one can simply
call SIMPLE-CYCLES and then create one meta-transition for each returned cycle.
If there are cycles for which no meta-transition can be created, then Condition 1
cannot possibly be satisfied.

Making sure that Condition 2 is satisfied is tougher. The problem consists of
checking whether a finite set of cycle meta-transition is serializable. We use the
following sufficient criterion.

Definition 5.11 Let ¢ € C be a control location and T, = {t1,ts, ..., .} (k > 0) be
a set of cycle meta-transitions beginning and ending in c. For eachi € {1,2,...,k},
let C; be the cycle corresponding to t;. The set T, is strongly serializable if there
exists a permutation {i1,is,...,1} of {1,2,...,k} such that for any j,j' for which
1 <j <j' <k, we have body(C;;) < body(C;).

The correctness of this sufficient condition is established by the following result.

Theorem 5.12 Let ¢ € C be a control location and T, = {t1,t,,...,tx} (k> 0) be a
set of cycle meta-transitions beginning and ending in c. If T, is strongly serializable,
then it is serializable.

Proof Let o = ¢,;¢),;...;t;,, be a sequence of meta-transitions of T, with &' > 0
and j1, jo, .., jw € {1,2,...,k}. Forevery i € {1,2,... k' —1} such that the cycles
Cj, and Cj,,, corresponding respectively to t;, and ¢;,,, satisfy body(C;,.,) < body(C;,),

we have for every set of memory contents U C M

(Bt sttt)U) € G- s L s -5 1,) (U).

~+
~

5.3. MACHINES WITH ONLY CYCLE META-TRANSITIONS 77

If T is strongly serializable, then there exists a permutation P = {i,1s,...,4} of
{1,2,...,k} such that for any j,j" for which 1 < j < j° < k, we have body(C;,) <
body(C; ,)-

By repeatedly permuting successive ¢;, and ¢, ,

in P, and collapsing successive t;, and ¢;,,, such that j; = j;11 (since, in that case,

we have (t;,;t;,.,)(U) =t;,(U) for every U C M), one obtains in a finite number of

in ¢ for which 7,1 precedes j;

steps that for every set of memory contents U C M

(Ejﬁfjg; e 7tjk/)(U) Q (t“,tw, e

) (U).

The set T, is thus serializable. O

The advantage of strong over plain serializability is that it is much easier to be
checked algorithmically. There is however one small difficulty: the relation “<” is
not transitive and hence does not correspond to an order relation. Thus, checking
whether a set T of cycle meta-transitions is strongly serializable does not reduce to
simply sorting the set.

We solve the problem in the following way. First, if T contains two meta-
transitions such that their corresponding cycles C and C’ are labeled by sequences of
operations which cannot be compared by “<” (in other words, if body(C) A body(C")
and body(C') Abody(C)), then T is not serializable. Suppose now that this is not
the case. We build a graph whose nodes are associated to the meta-transitions in 7
and whose edges correspond to the relation “<” between the sequences of operations
labeling the cycles corresponding to those meta-transitions. After this graph has
been build, we remove all its reciprocal edges, i.e., we remove all the edges linking
two nodes such that their corresponding meta-transitions are associated to cycles C
and C' for which body(C) < body(C') and body(C’) < body(C).

After this operation has been performed, we test whether the resulting graph is
acyclic. If the graph contains a cycle, then T is not serializable. Indeed, regardless of
the order according to which the meta-transitions in 7" are considered, the presence
of a cycle implies that Definition 5.11 is violated. On the other hand, if the graph
is acyclic, then it expresses a partial order between the meta-transitions in 7. Any
total order between those meta-transitions consistent with that partial order is such
that body(C) < body(C') for every cycles C and C’ such that the meta-transition
corresponding to C precedes the one corresponding to C’' in that order. Therefore,
T is serializable.

The total cost of building the graph and then testing whether it is acyclic is
O(NJ|TY|), where |T| is the number of meta-transitions in T, and N, is the cost of
comparing two sequences of operations with respect to “<”.

Let us now discuss the case of Condition 3a. Deciding whether it is satisfied for
a given maximal strongly connected component of the control graph can be done
by simply computing the intersection of the sets of control locations visited by all

78 CHAPTER 5. TERMINATION

the simple cycles of the component. Indeed, we have that Condition 3a is satisfied
if and only if this intersection is not empty.

Finally, a decision procedure for Condition 3b can straightforwardly be derived
from its definition. All one has to do is to test successively all the pairs (C,0)
composed of a simple cycle C and a memory operation ¢ belonging to the strongly
connected component being checked.

5.4 Machines with Only Multicycle Meta-Trans-
itions

In this section, we investigate whether the results of Section 5.3 can be adapted
to SMAs associated with only multicycle meta-transitions. We follow the same
methodology, which consists of bounding successively the lengths of the transition
and meta-transition segments composing exploration paths, and then the number
of those segments.

5.4.1 Transition Segments

Roughly speaking, Condition 1 can be adapted to the case of an ESMA with only
multicycle meta-transitions A by simply requiring that for every simple cycle C in
the control graph of A, there is a meta-transition corresponding to at least this
cycle. Precisely, the condition is as follows.

Condition 1’ For every simple cycle C in the control graph of A, there must ez-
ist a multicycle meta-transition t € T such that its set of corresponding cycles

{C1,Cy,...,Cx} (k> 0) contains C.

This condition implies that every exploration path can be translated into an
equivalent one in which all the transition segments are acyclic. Indeed, if a transition
segment contains an occurrence of a simple cycle C, then this occurrence can be
replaced by any multicycle meta-transition associated to a set of cycles containing
C. This operation can be repeated until all the transition segments composing the
path are acyclic.

5.4.2 Meta-Transition Segments

Let us now study the case of Condition 2. Instead of requiring that each meta-
transition segment in an exploration path is reducible to a segment containing at
most one occurrence of each meta-transition, we now go further and impose that
for each meta-transition segment, there exists a single multicycle meta-transition
equivalent to that segment. Precisely, the condition is the following.

5.4. MACHINES WITH ONLY MULTICYCLE META-TRANSITIONS 79

Condition 2’ For every control location ¢ € C' wvisited by at least one cycle in the
control graph of A, there must exist a multicycle meta-transition t. € T such that its
corresponding set of cycles {C1,Ca,...,Cx} (k > 0) contains at least all the simple
cycles starting at c.

This condition makes it possible to reduce the length of any meta-transition
segment to one. Indeed, one can simply replace the segment by one occurrence of
any meta-transition whose associated set of cycles contains all the cycles to which
the meta-transitions of the segment correspond.

It is worth mentioning that Condition 2’ implies Condition 1’. From an algorith-
mic perspective, a simple way of ensuring that Condition 2’ is satisfied is to impose
that the function MULTI-META-SET (introduced in Section 3.4.2) returns at least
all the meta-transitions required by the condition.

5.4.3 Number of Segments

We now address the problem of bounding the number of segments composing ex-
ploration paths. Interestingly enough, Conditions 3a and 3b are applicable in this
context without any modification. We have the following results.

Theorem 5.13 Let A = (C,co, M, mg, Op, T, T) be an ESMA satisfying Condi-
tion 2°, m be an exploration path whose transition and meta-transition segments are
respectively acyclic and of length one, and 7; be a subpath of w entirely contained in
a strongly connected component of (C,T) satisfying Condition 3a. It is possible to
transform m; into an equivalent subpath composed of at most two transition segments,
which are acyclic, and one meta-transition segment, which is of length one.

Proof The proof is very similar to the one of Theorem 5.4. First, the theorem
trivially holds if 7; is only composed of transitions. If m; contains at least one
meta-transition, then we first transform m; by replacing every occurrence of a meta-
transition by the corresponding sequence of transitions. Let n. be the subpath
obtained after having replaced all the meta-transitions in ;.

Since Condition 3a is satisfied by hypothesis, there exists ¢ € C' such that every
simple cycle occurring in 7, visits ¢. We can thus split 7} into three subpaths 7,
7, and 7, such that 7} = m,my7,, m, starts and ends in ¢/, and 7, and 7. either are
empty or do not visit ¢. The subpaths 7, and 7. are acyclic transition segments.
The subpath 7, is a sequence of simple cycles starting and ending in ¢’. Since
Condition 2’ is fulfilled, one can replace this subpath by a single occurrence of the
appropriate multicycle meta-transition. O

Theorem 5.14 Let A= (C, cy, M, mg, Op, T, T) be an ESMA with only multicycle
meta-transitions satisfying Condition 2°, w be an exploration path whose transition

80 CHAPTER 5. TERMINATION

and meta-transition segments are respectively acyclic and of length one, and m; be
a subpath of m entirely contained in a strongly connected component of (C,T) satis-
fying Condition 3b (let S denote this strongly connected component). It is possible
to transform m; into an equivalent subpath composed of at most N + 1 transition
segments and N meta-transition segments, where N denotes the number of meta-
transitions in T beginning and ending in control locations belonging to S.

Proof The proof is similar to the one of Theorem 5.8. First, we assume that all the
meta-transitions that occur in 7; can be replaced by meta-transitions associated to
sets of simple cycles (as opposed to sets of arbitrary cycles). Precisely, we assume
that for every subpath of m; of the form

(e,m) = (c,m"),

where ¢ € C, m,m’ € M and t € T, there exist a finite number k£ > 0 of non
necessarily distinct simple cycles Cy,Ca, ..., Cy in (C,T) such that

(body(Cy); body(Ca); . . . ; body(Cy))(m) = m.

This assumption can be made without loss of generality, since any subpath m; can
be turned into an equivalent one in which every occurrence of a meta-transition that
can not be replaced by a meta-transition associated to a set of simple cycles has been
replaced by a sequence of acyclic transitions and of other meta-transitions. After
this operation has been performed, we simply prove that multiple occurrences of the
same meta-transition can be deleted from ;. Indeed, suppose that this subpath is
of the form

/
r

(e, my) 2 (e, my) 2 (eaymy) 2 - (ery i) 2 (cr, man) L (c1,mam) -+,

where k > 1, ¢1,...,¢; € C, my,...,mg, my, my,mym € M, each t; is either a

49 ?

transition (in which case “—” should be read as

(13

—") or a meta-transition (in
which case “—” should be read as “="), and = is the subpath of m; beginning and
ending with two successive occurrences in 7; of the meta-transition ¢ € T.

Let us show that the second occurrence of ¢ can be deleted from 7}. For the same
reasons as in the proof of Theorem 5.8, we assume that each fj is a transition.

We know that ¢ is a meta-transition associated to a set of simple cycles {Cy, Co,
..,Ce} (k> 0). Let ty,ty,...,1; be the cycle meta-transitions associated to those
simple cycles®. From Definition 3.9, we have that there exist [> 0, iy,42,...,4 €
{1,2,...,k} and my,mb,...,m)_; € M such that

& 7z b z
(crsmun) = (c1,my) = (er,my) - (er,mi_y) = (er,my_y) = (e, mum).

3The meta-transitions ¢1,%s, ..., %, are not required to belong to T, and may even be uncom-
putable with respect to the representation system used for sets of memory contents. They are only
introduced for the purpose of the proof.

5.4. MACHINES WITH ONLY MULTICYCLE META-TRANSITIONS 81

We can assume that each meta-transition ¢; in {¢1,%s,...,%;} appears at least once
in this subpath from (¢, my7) to (¢1,myn). Indeed, since those are cycle meta-
transitions, we have for every m € M
f.
(c1,m) = (c1,m),
and therefore meta-transitions can be appended at will to the subpath.

We have just established that there is a subpath equivalent to 7} that is of the
form

t t i i t; t;
(Claml) :t> (Clamll) 2) (CZamQ) _2> e (Ck:amk‘) _k> (Claml") :'é (Clamll) :'% (ClamIQ)
ti, t;
e (er,my_y) = (cr,my_q) = (c1, mym).

We now remove successively each Z;; from this subpath, for j = 1,2,...1, by
performing the following operations:

1. Let m € M be the memory content reached prior to the occurrence of #; in
the subpath. Before t;, we insert into the subpath a dummy occurrence of t_ij:

(3

(c1,m) Ezﬂ (c1,m).

2. There is now in 7} a subpath of the form
Ei. ing ing ny fz
(Clam) = (Clam) — (CQam,Z/) =X (Ckam;c/) - (Clam;c/—f—l) = (Clam;c/—f—Q)a
with m4,my,...,my,, € M. Applying Corollary 5.7, we remove the second
occurrence of ;, from this subpath.

One eventually obtains a subpath equivalent to 7 in which all the occurrences of
the meta-transition ¢;, appear after the initial ¢ and before t1. The initial segment
of meta-transitions can be replaced by a single occurrence of ¢, yielding a subpath
equivalent to m of the form

(Claml) :t> (Cla mll’) — (CQam,Z”) 2) e (Ck’ m/k”) = (Claml’”)a
where m3' . m4' ... ,m}',m}, € M.

By suppressing iteratively redundant meta-transitions from 7;, one thus finally
obtains an equivalent subpath containing at most one occurrence of each meta-
transition in 7. The subpath is then composed of at most N meta-transition seg-
ments and N + 1 transition segments.

It remains to show that one can always obtain such a subpath in which all the
transition segments are acyclic and all the meta-transition segments are of length
one. The idea is similar to the corresponding part of the proof of Theorem 5.8. One

82 CHAPTER 5. TERMINATION

replaces every subpath of transitions forming a simple cycle by an occurrence of a
meta-transition associated to a set containing this cycle. In addition, every meta-
transition segment of length greater than one can be replaced by an occurrence of
any meta-transition associated to a superset of the sets of cycles associated with
the meta-transitions of the segment. Alternating those operations, and removing
redundant meta-transitions after each step, one finally obtains a subpath composed
of at most N meta-transition segments of length one and N + 1 acyclic transition
segments. O

5.4.4 Summary of Conditions

Let us summarize the necessary conditions obtained in Sections 5.4.1, 5.4.2 and 5.4.3.

Definition 5.15 An ESMA with only multicycle meta-transitions is safe if it sat-
isfies Condition 2°, and if each mazximal strongly connected component of its control
graph satisfies either Condition 3a or Condition 3b (the satisfied condition may differ
for each strongly connected component).

We are now ready to state the main result of this section.

Theorem 5.16 Let A = (C,co, M, mg, Op, T, T) be a safe ESMA with only multi-
cycle meta-transitions. The computation of REACHABLE(A) terminates.

Proof The elements of the proof have already been developed during the discussion
of each condition. Given an exploration path 7, one first transforms its transition
segments into acyclic ones, then replaces its meta-transition segments by single
meta-transitions, and finally reduces the total number of segments. The result 7’ is
an exploration path equivalent to 7, for which:

e The length of each transition segment is less than the total number of control
states in C;

e The length of each meta-transition segment is one;

e The number of segments is less than three times the number of maximal
strongly connected components in the control graph (C,T).

Each reachable state of A can thus be reached by an exploration path whose length
is bounded by a value depending only on A. According to Theorem 3.5, the com-
putation of REACHABLE(A) terminates. O

5.5. LTL MODEL CHECKING 83

5.5 LTL Model Checking

In the previous sections, we proposed sufficient conditions for termination of state-
space exploration by the semi-algorithms introduced in Chapter 3. As a corollary,
those conditions also guarantee the termination of semi-algorithms relying upon
state-space exploration, such as the LTL model-checking semi-algorithm proposed
in Section 4.4. Unfortunately, this does not imply that LTL model-checking is
decidable for the class of ESMAs satisfying the sufficient termination conditions,
since the semi-decision procedure introduced in Section 4.4 may sometimes terminate
with a “don’t know” answer.

Here, we go further and show that sufficient conditions can be obtained for a full
decision procedure. Precisely, since LTL model checking relies on a test of emptiness
for Structured-Memory Biichi Automata, we will give sufficient static conditions on
SMBAs that guarantee that the emptiness problem can be decided. In practice,
since the SMBAs which are tested for emptiness are constructed by computing the
product of a system (modeled as an SMA) and of a property (modeled as a Biichi
automaton), this means that the sufficient conditions will be evaluated over pairs of
the forms (system, property).

The methodology we follow in order to obtain the conditions consists of first con-
sidering SMBAs such that their underlying SMA satisfies the terminating conditions
of Sections 5.3 and 5.4 (after having been associated with a set of meta-transitions),
and then examining whether additional restrictions need to be imposed.

5.5.1 Systems with Only Cycle Meta-Transitions

We first consider the case of an SMBA B = (C, ¢o, M, mq, Op, T, F') associated with
a finite set of cycle meta-transitions T such that the ESMA (C, co, M, mq, Op, T, T)
is safe. For any accepting run of B, there exists an accepting control location ¢ €
F' visited infinitely often by the path 7 of transitions corresponding to the run.
There are two possible situations, depending on the maximal strongly connected
component S of (C,T) to which ¢ belongs.

The first situation is when S satisfies Condition 3a. In this case, we know that
there exists ¢ € S such that every simple cycle contained in S visits ¢. As a
consequence, we have that 7 is of the form

body(c1) , , body(C2)
) =

(007m0) i) (Claml CamQ) - (Clam?))”'v

where ¢ is an acyclic sequence of transitions of 7', my,mso,... € M, and Cy,Co, ...
are simple cycles of (C,T). Since there are only finitely many such cycles, there
must exist a C; that visits an accepting control location, and that occurs an infinite
number of times in the development of w. The question is to know whether this C;
can be repeatedly followed an unbounded number of times from a memory content

84 CHAPTER 5. TERMINATION

Ti++

T2 < 21
(xl)o _ 0 '
(z2)0 =0 H

To++

Figure 5.1: SMBA accepting a nonempty language.

reachable at ¢’ (in other words, whether there exists an accepting run that will be
discovered by the semi-algorithm SMBA-EMPTY? of Figure 4.2).

The answer to that question is unfortunately negative, as it is illustrated by the
SMBA depicted in Figure 5.1. Indeed, let C; = (c1,21++,¢1) and Cy = (¢, 22 <
x1,C); (Co, To++;¢1) in that figure. The SMBA admits the accepting run

(Clv (07 0))7 (Cla (17 0))’ (027 (17 0))7 (Cla (17 1))’ (Clv (27 1))7 (027 (27 1))7 (017 (27 2))7 s

corresponding to the path
(e1,(0,0)) & (er, (1,0) B (er, (1,1)) S (1, (2,1) B (1, (2,2) S (e1,(3,2)) -,

in which Cy appears an infinite number of times. However, there is no memory con-
tent (vy,vy) € Z? from which Cy can be followed repeatedly an unbounded number
of times.

We must therefore impose an additional restriction. A simple solution consists
of strengthening the condition on the meta-transitions beginning and ending in the
control location visited by all the simple cycles. Instead of requiring serializability
between the sequences of operations labeling those cycles, we impose that each such
sequence precedes favorably all of them. Formally, the condition is the following.

Condition 3a” The strongly connected component S C C' in the control graph of A
must be such that there exists a control location ¢ € S such that for every simple cycle
C = (1,61, ¢2),(co,00,¢3), ..., (ck,Op,c1) (k> 1, c1y...,c0 €S, b1,...,60, € Op),
there exists i € {1,2,...,k} such that ¢; = c. In addition, for every pair (Cy,Cs) of
simple cycles starting at ¢, we must have body(Cy) < body(Ca) N body(Cy) < body(Cy).

The correctness of this condition is established as follows. We consider an ex-
ploration path of the form

body(C1)

body(C
= (co,mo) 2 (¢;my) Y (¢ my) B (¢ mg) -

where ¢ € C, o is an acyclic sequence of transitions of T', my,mo,... € M, and
C1,Cs, ... are simple cycles of (C,T).

5.5. LTL MODEL CHECKING 85

Let us show that if ¢/ belongs to a maximal strongly connected component of
(C,T) that satisfies Condition 3a”, then every C; occurring an infinite number of
times in 7 is repeatedly executable from at least one reachable memory content.
The idea is to prove that for any n > 0, C; can be followed at least n times from the
state (¢/,my). Indeed, let 7’ be a subpath of 7 starting at (¢, m;) and containing
n occurrences of C; (not necessarily consecutive). By repeatedly permuting every
occurrence of C; in 7’ with all the occurrences of other simple cycles appearing before
(this can be done because the sequences of operations labeling the cycles precede
favorably each other), one eventually obtains a subpath equivalent to 7’ beginning
with n consecutive occurrences of C;. The cycle C; can thus be followed n times
from the state (¢/,my).

From an algorithmic point of view, Condition 3a” can be evaluated directly from
its definition with the cost O(N4(N¢)?), where N¢ is the number of simple cycles in
the strongly connected component, and N, is the maximum cost of comparing two
sequences of operations with respect to “<”.

Let us now study the case of a maximal strongly connected component of (C,T")
satisfying Condition 3b. In this case, there is no need for imposing additional restric-
tions, since Condition 3b is sufficient for ensuring that the algorithm of Figure 4.2
will always find an accepting run whenever one exists. This result is a consequence
of the following theorem.

Theorem 5.17 Let B = (C,cy, M, mg, Op, T, F) be an SMBA associated with a
finite set of cycle meta-transitions T such that the ESMA (C, co, M, mq, Op, T, T) is
safe, m be a path of transitions corresponding to an accepting run of B, and m; be a
subpath of w entirely contained in a maximal strongly connected component of (C,T')
satisfying Condition 3b (let S denote this strongly connected component). If there
exists an accepting control location ¢ € S N F wisited infinitely many times by m;,
then there exists a meta-transition (c, f,c) € T which is iterable from some memory
content m € M reachable at the location c.

Proof Suppose that there exists an accepting control location ¢ € S N F' visited
infinitely many times by 7;. Since there are only finitely many meta-transitions in
T, it is sufficient to show that there exists a memory content m € M such that
(c,m) is reachable, and for every n € N there exists a meta-transition £ € T' whose
corresponding cycle C can be followed at least n times from (¢, m).

Let C, be the set of all the control locations visited infinitely many times by ;.
We split m; into two paths of transitions 7’ and 7" such that m; = 7’7" (7’ is thus
finite), and 7’ visits at least once every control location belonging to C,.

Let n € N, and let N, be the number of meta-transitions in 7" beginning at
c. Since ¢ appears an infinite number of times in n”, there exists a finite prefix

!

7" of " in which ¢ appears at least nN. + 1 times. We now apply the following

86 CHAPTER 5. TERMINATION

transformation to m;: to the leftmost subpath of 7" (if one exists) of the form
(Cla ml) 2} (027 mQ) 2) T (Ck‘7mk) i) (Cl7m1’)7

where £ > 1, ¢1,...,c, € S, my,...,my € M and ty,...,t, € T, ¢; # c for every
J€{1,2,...,k} and ty;ts;. ..t is a simple cycle C of (C,T'), we apply Lemma 5.6
and move this occurrence of C just after the rightmost appearance of ¢; in 7. In
other words, we transform

! -

!
t t_1

- bod t
ﬂ-z = (Cll,mll) — e .. — (Claml”) —l) ------ = (Cl,ml) O_y)(c) (I

Clamll) S e e e e ,
where [,I' € Ng, ¢|,... € S, myn,m},... € M and t,t,,... € T, into an equivalent
path of the form

- -

t t_y body(C) t g t,

(&, m)) 2 - 5 (e, man) PE (erymam) S (ery) e ’
where mym, mym € M. Repeating this operation until a fixpoint is reached (i.e., until
m; does not change when the operation is subsequently performed), one eventually
obtains a subpath equivalent to m; containing at least n/N. successive occurrences
of simple cycles beginning at ¢. This implies that there exists a simple cycle C;
starting at ¢ that occurs at least n times in the subpath. Repeating again the move
operation so as to shift left all the occurrences of simple cycles different from C; in
the subpath, we finally obtain a subpath equivalent to 7; in which C; can repeatedly
be followed at least n times from a reachable state. Applying Lemma 5.6 n times,
one can move left the n occurrences of C; just right of the leftmost appearance of
c in the subpath, obtaining an equivalent subpath in which C; can repeatedly be
followed n times from a reachable state that does not depend on n. O

5.5.2 Summary of Conditions

Let us summarize the necessary conditions obtained in Section 5.5.1.

Definition 5.18 An SMBA associated with a finite set of cycle meta-transitions
is safe if it satisfies Conditions 1 and 2, and if each maximal strongly connected
component of its control graph satisfies either Condition 3a” or Condition 3b (the
satisfied condition may differ for each strongly connected component).

We are now ready to state the main result of this section.

Theorem 5.19 Let B be an SMBA which is safe when associated with a set of cycle
meta-transitions T. The problem which consists of determining whether B has an
accepting run 1s decidable.

5.5. LTL MODEL CHECKING 87

function SMBA-EMPTY-SC?(SMBA (C, ¢y, M, mg, Op, T, F), set of cycles S¢) : {T,F}

1 var Qg : set of states;

2 T : set of meta-transitions;

3 ¢ : control location;

4 begin

5: T := {(c,0%,¢) € C x Op* x C | (3C € Sc)(o = body(C) A c = first(C)))};
6 Qr :=REACHABLE((C, ¢y, M, mqg, Op, T, T));

7 for each ¢ € C such that values(Qg,c) # 0 do

8 for each (cy,61,c2),(ca,02,¢3),...,(ck,0%,c1) € Sc such that c = ¢;

and {cy,ca,...,cx} N F#0 do

9: if values(Qr,c) N ITERABLE(61;02;...;0;) # () then
10: return F;
11: return T
12: end.

Figure 5.2: Test of emptiness for safe SMBAs (with only cycle meta-transitions).

Proof The problem can be decided by the algorithm of Figure 5.2, which is a
variant of the semi-algorithm presented in Figure 4.2 to which the following minor
modifications have been applied:

e The set T of meta-transitions associated to B is computed from a set of cycles
supplied as an argument (instead of being an actual argument);

e The function OPEN-SET is implemented with the help of ITERABLE;

e The cycles that are checked are required to visit an accepting control location
instead of beginning at such a location.

O

The first two changes are motivated by the fact that we are here dealing with
cycle meta-transitions, as opposed to arbitrary ones. The purpose of the third
modification is to take into account Condition 3a”.

The correctness of this algorithm is established as follows. Let S¢ be the set of
cycles to which the meta-transitions in T are associated. The termination of the com-
putation of SMBA-EMPTY-SC?(B, Se) is a consequence of (C, ¢y, M, mg, Op, T, T)
being a safe ESMA. It remains to show that SMBA-EMPTY-SC?(B, S¢) returns F
if and only if B has an accepting run.

88 CHAPTER 5. TERMINATION

One direction is trivial. Indeed, if the algorithm returns F, then there is a
reachable state from which there exists a cycle that can be followed an unbounded
number of times and that visits an accepting control location. This defines a path
of transitions corresponding to an accepting run of B.

Reciprocally, if B has an accepting run, then we have established in Section 5.5.1
that there exists such a run in which the same simple cycle is repeatedly followed
from a reachable state, with this cycle visiting an accepting control location. Since
B is safe, this simple cycle must correspond to a meta-transition, hence must belong
to Se, and thus an accepting run will be detected by the algorithm. O

5.5.3 Systems with Only Multicycle Meta-Transitions

We now consider an SMBA B = (C, ¢y, M, mq, Op, T, F') associated with a finite
set of multicycle meta-transitions T, such that the ESMA (C, ¢y, M, mq, Op, T, T) is
safe. For any accepting run of B, there exists an accepting control location ¢ € F
visited infinitely often by the path of transitions 7 corresponding to the run. Like
in Section 5.5.1, we distinguish two possible situations depending on the maximal
strongly connected component of (C,T') to which ¢ belongs (let S be this strongly
connected component).

The first situation is when S satisfies Condition 3a. In this case, we know that
there exists ¢ € S such that every simple cycle contained in S visits ¢/. As a
consequence, we have that 7 is of the form

body(c body(Ca)
(co,mo) 2 (¢/;ma) "EY (¢ mg) D (¢ ma) -,

where ¢ is an acyclic sequence of transitions of T, my,ms,... € M, and Cy,C, ...
are simple cycles of (C,T). Since Condition 2’ is satisfied, there is a meta-transition
t € T which is associated to a superset of {C1,Cs,...}. From Definition 4.9, it
follows that ¢ is iterable for the memory content m;. As a consequence, if B has an
accepting run, then it has a meta-transition which is iterable from a reachable state
and such that its associated set contains at least one cycle that visits an accepting
control location.

Unfortunately, the reciprocal is not true. Indeed, let ¢ be a meta-transition
associated to the set of cycles {C1,Ca,...,Cr} (K > 1). Assume that C; visits an
accepting control location and that ¢ is iterable from the reachable state (¢, m) €
C x M. This does not imply that there exists a run of B in which C; appears an
unbounded number of times. Actually, Co may very well be the only C; that can
be followed from a reachable state of B, and might visit only non-accepting control
locations.

It is therefore necessary to introduce an additional requirement. We simply im-
pose that if a maximal strongly connected component of (C, T') satisfies Condition 3a

5.5. LTL MODEL CHECKING 89

and does not satisfy Condition 3b, then it must be such that if it contains an ac-
cepting control location, it also contains such a location visited by all the simple
cycles of the component. Formally, this is expressed by the following condition.

Condition 4 The strongly connected component S C C' in the control graph of
A must be such that if S N F # (), then there exists ¢ € S N F such that for
every simple cycle C = (¢q,01,¢2),(co,02,¢3),...,(ck, 0k, 1) (k> 1, ¢c1,...,c0 € C,
01,...,0, € Op), there exists i € {1,2,...,k} such that ¢; = c.

If this condition is satisfied by a strongly connected component S, then the
SMBA admits an exploration path 7« that visits infinitely many accepting control
locations in S if and only if S contains an accepting control location for which there
is a reachable memory content as well as a meta-transition repeatedly open from
that memory content.

From an algorithmic point of view, Condition 4 is easily checked by computing
the intersection of the sets of control locations visited by every simple cycle and
the set of accepting control locations of the strongly connected component. The
condition is satisfied if and only if this intersection is not empty.

Let us now study the case of a maximal strongly connected component S satisfy-
ing Condition 3b. In this case, there is no need for imposing additional restrictions,
since Condition 3b is sufficient for ensuring that the algorithm of Figure 4.2 will
always find an accepting run whenever one exists. This result is formalized by the
following theorem.

Theorem 5.20 Let B = (C,co, M, mg, Op, T, F) be an SMBA associated with a fi-
nite set of multicycle meta-transitions T such that the ESMA (C, co, M, mq, Op, T, T)
is safe, m be a path of transitions corresponding to an accepting run of B, and 7; be a
subpath of w entirely contained in a maximal strongly connected component of (C,T')
satisfying Condition 3b (let S denote this strongly connected component). If there
exists an accepting control location ¢ € S N F wisited infinitely many times by m;,
then there exists a meta-transition (c, f,c) € T which is iterable for some memory
content m € M reachable at the location c.

Proof The proof is similar to the one of Theorem 5.17. Suppose that there exists an
accepting control location ¢ € SN F visited infinitely many times by ;. Since there
are only finitely many meta-transitions in 7', it is sufficient to show that there exists
a memory content m € M such that (¢, m) is reachable and for every n € N, there
exists a meta-transition ¢ € T such that its corresponding cycles can be followed at
least n times from (¢, m) (the cycle that is followed may differ from one iteration to
the other).

Let C, be the set of all the control locations visited infinitely many times by ;.

!

We split 7; into two paths of transitions 7’ and 7" such that m; = 7’7" (7’ is thus
finite) and 7’ visits at least once every control location belonging to C..

90 CHAPTER 5. TERMINATION

Let n € N. Since ¢ appears an infinite number of times in 7", there exists a

/

finite prefix 7" of 7" in which ¢ appears at least n + 1 times. We now apply the

following transformation to 7;: to the leftmost subpath of 7"

(if one exists) of the
form

(Claml) 2} (027m2) 2) T (Ck‘7mk) i) (Cl7m1’)7

where kK > 1, ¢1,...,¢, € S, my,...,m € M, ty,...,t, € T, ¢; # c for every
J€{1,2,...,k} and ty;ts;. ..t is a simple cycle C of (C,T), we apply Lemma 5.6
and move the occurrence of C just after the rightmost appearance of ¢; in 7’. In
other words, we transform

! -

body(C) ty
—_ (Cl’ mll) —_—> s s e e e s

t t_ t! t_
ﬂ-Z:(Cllamll)_l) = (Claml”)_l> vt (Claml)
where [,I' € Ng, ¢|,... € S, myn,my,... € M and t,t,,... € T, into an equivalent
path of the form

"
I T

/
t t_1

¢ t 7
(ch,mi) = - = (c1,man) body(©) (i i t

C1y M) 5 e St ey,) B e 7
where mym, mym € M. Repeating this operation until a fixpoint is reached (i.e., until
m; does not change when the operation is subsequently performed), one eventually
obtains a subpath equivalent to 7; containing at least n successive occurrences of
simple cycles starting at ¢. Applying Lemma 5.6, one can move left the n occurrences
of these cycles just right of the leftmost appearance of ¢ in the subpath, obtaining
an equivalent subpath in which the cycles can be followed n times from a reachable
state that does not depend on n. O

As a consequence of this theorem, we have that if a maximal strongly connected
component S satisfies Condition 3b, then the SMBA admits an exploration path 7
visiting infinitely often an accepting control location in S if and only if S contains
an accepting control location for which there exist a reachable memory content as
well as a meta-transition iterable from that memory content.

5.5.4 Summary of Conditions

Let us summarize the necessary conditions obtained in Section 5.5.3.

Definition 5.21 An SMBA associated with a finite set of multicycle meta-transi-
tions is safe if it satisfies Conditions 1 and 2, and if each maximal strongly connected
component of its control graph satisfies either Conditions 3a” and 4, or Condition 3b
(the satisfied condition(s) may differ for each strongly connected component).

We are now ready to state the main result of this section.

5.5. LTL MODEL CHECKING 91

function SMBA-EMPTY-MC?(SMBA (C, co, M, mg, Op, T, F), set of sets of cycles U) : {T,F}
var Qg : set of states;

T : set of meta-transitions;

Sc : set of cycles;

¢ : control location;

T = {(c, S, c) € C x Op* x C | (3Sc € U)(VC € Se)(c = first(C)))};
Qr :=REACHABLE((C, co, M, mo, Op, T, T));
for each ¢ € F such that values(Qg,c) # () do

1
2
3
4
5: begin
6
7
8
9 for each S¢ € U such that(VC € S¢)(first(C) = ¢) do

10: if values(Qr,c) N MULTI-ITERABLE({body(C;) | C; € Sc})
() then
11: return F;
12: return T
13: end.

Figure 5.3: Test of emptiness for safe SMBAs (multicycle meta-transitions).

Theorem 5.22 Let B be an SMBA which is safe when associated with a set of
multicycle meta-transitions T. The problem which consists of determining whether
B has an accepting run is decidable.

Proof The problem can be decided by the algorithm of Figure 5.3, which is an
adaptation of the algorithm of Figure 5.2 to the case of multicycle meta-transitions.

The correctness of this algorithm is established as follows. Let U be the set of sets
of cycles to which the meta-transitions in 7" correspond. The termination of the com-
putation of SMBA-EMPTY-MC?(B, U) is a consequence of (C, ¢y, M, mg, Op, T, T)
being a safe ESMA. It remains to show that SMBA-EMPTY-MC?(B, U) returns F
if and only if B has an accepting run.

One direction is trivial. Indeed, if the algorithm returns F, then there exists a
reachable state whose control location is accepting, and from which there is a group
of cycles that can be followed an unbounded number of times. This defines an path
of transitions corresponding to an accepting run of B.

Reciprocally, if B has an accepting run, then we have established in Section 5.5.3
that there exists such a run in which a group of simple cycles is repeatedly followed
from a reachable state whose control location is accepting. Since B is safe, a set
containing those simple cycles must correspond to a meta-transition of 7', hence

92 CHAPTER 5. TERMINATION

must belong to U, and thus will be detected by the algorithm. O

5.6 Control Graph Optimization

In Sections 5.3, 5.4 and 5.5, two types of decidable conditions were obtained: condi-
tions on the shape of the control graph (Conditions 3a, 3a” and 4), and conditions
on the memory operations labeling transitions or meta-transitions (Conditions 1,
2, 3b, 17 and 2’). Conditions of the latter type depend strongly on the memory
domain that is used, and are not very restrictive whenever this domain leads to a
great amount of independence between memory operations. There are even domains
for which those conditions are always trivially satisfied regardless of the particular
system that is considered. On the other hand, conditions of the former type are
more easily fulfilled whenever the formalism used for specifying models imposes re-
strictions on the shape of the control graph. For instance, this is the case of some
structured languages for which loops can only be nested within each other rather
than arbitrarily intertwined.

In this section, we go further and show that it is sometimes possible to modify the
control graph of an SMA or SMBA in such a way that their behavior is not affected
(i.e., their set of accepting states or the emptiness or their accepting language stays
unchanged), so as to guarantee that sufficient conditions for termination are satisfied,
or at least facilitate state-space exploration.

5.6.1 Introduction

The type of optimization proposed here concerns nested loops, i.e., loops containing
loops. Roughly speaking, the idea is that the effect of following repeatedly a cycle
in the control graph of an SMA or SMBA is sometimes equivalent to following a
single transition. If the parameters of this transition can be computed, replacing the
cycle by its equivalent transition may make it possible to obtain new simple cycles,
and thus possibly new simple-cycle meta-transitions. Another advantage (which will
appear later) is that cycle replacement splits the strongly connected components of
the control graph. This increases the possibility of satisfying Conditions 3a, 3a”
and 4.

Let us illustrate on a simple example how meta-transitions can be associated
to cycles containing other cycles. The program given in Figure 5.4 is composed of
two nested loops. Its control graph is depicted in Figure 5.5 (in this figure, the
indices of control locations correspond to line numbers in the program). The only
useful simple-cycle meta-transitions that can be created correspond to the cycle
(cyr,j < iyc5),(c5,k == k+ 1,¢5),(cs,j = j+ 1,cq) (or one of its rotations).
Indeed, since there is no reachable memory content from which the cycle (3,7 <

5.6. CONTROL GRAPH OPTIMIZATION 93

program NESTED-LOOPS()

1: var i, j, k : integers;

2 begin

3 k=0

4 for i := 1 to 1000 do
5: for j := 1to ¢ do
6 k=k+1

7 end.

Figure 5.4: Example of program with nested loops.

1000, ¢4), (ca,j = 1,cq), (caryj > iycqn), (cqn i := i+ 1,cy) can be followed, meta-
transitions corresponding to this cycle or its rotations would be useless for state-
space exploration.

It is however easy to show that the overall effect of the inner loop at Lines 5-6,
i.e., the transformation undergone by the variables values whenever those lines are
completely executed, is equivalent to the sequence of instructions

if j <=1 then
begin
ji=1+1
k:=k+i
end

As a consequence, any subpath in the graph of Figure 5.5 that begins with the
transition (cg,7 < 1000, ¢4), then visits states belonging to {cy, ¢y, csr, c5, ¢}, and
finally ends with the transition (¢4, 7 := i+1, cg) is equivalent to the cycle depicted
at Figure 5.6. One can therefore associate with the SMA of Figure 5.5 the meta-
transition

(e, (1 <1000;5 == ;5 <57 =i+ Lk :=k+i75>d1:=1i+ 1) cy)

corresponding to that equivalent cycle.

5.6.2 Loop Optimization

The idea behind loop optimization is to replace in the control graph of an SMA or
SMBA some cycles by their equivalent transition. The first step is to characterize
precisely the cycles that can be replaced.

94

CHAPTER 5. TERMINATION

SRS
1
S

Figure 5.5: Control graph of program with nested cycles.

5.6. CONTROL GRAPH OPTIMIZATION 95

7 <1000

ji=i+1

Figure 5.6: Cycle equivalent to nested loops.

Definition 5.23 Let A = (C, co, M, mg, Op,T) be an SMA or A = (C,co, M, my,
Op, T, F) be an SMBA and C be a simple cycle in the control graph of A. The cycle
C s optimizable if the following conditions are satisfied:

o The cycle C can be associated with a meta-transition;

e Fach control location visited by C except first(C) has exactly one incoming
transition;

e The control location first(C) has exactly two outgoing transitions;

e There exists a function f : M — M over the memory domain such that for

any m € M, we have
{m' € M | (3k € No)(m' = 6(body(C)"(m)))} = {f(m)},

where 0 is the memory operation labeling the outgoing transition from first(C)
that does not belong to C. The corresponding function

g:2M = 2M U {f(m) | m € U}

18 computable with respect to the representation system used for sets of memory
contents. In addition, an algorithm for applying g can be obtained algorithmi-
cally from the specifications of C and 6.

96 CHAPTER 5. TERMINATION

function OPTIMIZE-CYCLE-SMBA(SMBA (C, ¢o, M, mg, Op, T, F'), cycle C) : SMBA

1 var c,,cp,c1,¢, ¢ : control locations;

2 f : memory operation;

3 begin

4 C = C U {cac};

5: c1 = first(C);

6 for each (c,0,c¢') € T\ C such that ¢ =¢; do
7 T := (T\{(c,0,)}) U {(c, 0, ca)};

8 for each (c,0,¢') € T\ C such that ¢ =¢; do
9 T =T U {(ca, (body(C) "3 0), 1), (cv,id, '), (ca, 6,) };
10: T :=T U {(cg,id, c1)};
11: if (3(c,0,¢)eC)(ce F) then F := F U {cp};
12: if ¢ = ¢1 then ¢y = cg;
13: return (C,co, M, mg, Op, T, F)
14: end.

Figure 5.7: Loop optimization for SMBAs.

Intuitively, a cycle is optimizable if it has exactly one entry and one exit, and
if the overall effect of entering the cycle, following it an arbitrary number of times,
and then exiting it is equivalent to a transition whose parameters can be computed.

If a cycle is optimizable, then optimizing it consists of modifying the control
graph of the SMA or SMBA in such a way that repeated occurrences of this cycle in
exploration paths are transformed into one occurrence of its equivalent transition.
The difficulty is to ensure that the optimized state machine has the same reachable
states as the original one (if the machine is an SMA) or is equivalent with respect
to the emptiness of its accepted language (if the machine is an SMBA).

The optimization algorithms are given in Figures 5.7 and 5.8. Intuitively, they
proceed by replacing the only transition that allows to exit the cycle (let ¢ denote this
transition) by a transition equivalent to repeated executions of the cycle followed
by t. The replacement operation is illustrated in Figure 5.9. The correctness of
the algorithms is established by two theorems. The first one expresses that the
optimized state machine has the same reachable states as the original one, provided
that the control locations added during the optimization are not taken into account.

Theorem 5.24 Let A = (C,co, M, mg, Op, T) be an SMA, C be an optimizable
cycle in its control graph (C,T), and A" be the SMA returned by the function

5.6. CONTROL GRAPH OPTIMIZATION 97

function OPTIMIZE-CYCLE-SMA(SMA (C, ¢y, M, mg, Op, T, F), cycle C) : SMA
1: wvar (C',cy, M',m{, Op', T', F') : SMBA;

2: begin

3: (C' ey, M',mypy, Op' , T' F') :=
OPTIMIZE-CYCLE-SMBA((C, co, M, mo, Op, T, 0),C);

4: return (C’,c), M',my, Op', T")

9: end.

Figure 5.8: Loop optimization for SMAs.

call OPTIMIZE-CYCLE-SMA(A,C). The sets Qr and Q' of reachable states of
A and A" (respectively) are such that for every ¢ € C, we have values(Qg,c) =

values(Q',).

Proof The proof is in two parts. We first show that for every exploration path of A,
there exists a corresponding path of A’. Then, we show that for every exploration
path of A" ending in a control location that belongs to C', there exists a corresponding
path of A.

o Letc € C and m € M. If there exists a path m of A leading from (cy, mg)
to (c,m), then there exists a path @' of A’ leading from (cy,mg) to (c,m).
Let ¢; = first(C) and t = (c1,6,c4) be the outgoing transition from ¢; that
does not belong to C. The only transitions of A that are modified during the
optimization operation are those ending in ¢; and ¢. One can transform 7 into
7" as follows (¢, and ¢, denote the control locations created at Line 4 of the

algorithm):

1. For every occurrence of ¢ in 7, one performs the following operations. Let
[> 0 be the number of occurrences of the sequence of transitions labeling
C immediately left of ¢ in 7, and let ¢ be the transition immediately left
of those occurrences of body(C) (or of ¢ if [= 0) in 7, if such a transition
exists. We thus have that 7 is of the form

! body(c)"
m= () S (o) B (e m) b (")

with ¢, ¢ € C,m/,;m",m"” € M, and t' = (c,,0',¢1). If | = 0, one simply
replaces the subpath between (¢}, m) and (¢, m") by

/

(chym) & (cq,m') = (5, m”).

98 CHAPTER 5. TERMINATION

Figure 5.9: Ilustration of loop optimization.

5.6. CONTROL GRAPH OPTIMIZATION 99

O

If [> 0, one replaces that subpath by

id

9’ body(C)*;G
/) :> (Cb, m///) = (Cg, m///).

(cy,m) = (ca,m
If ' does not exist, i.e., if ¢; is the initial control location of A and there is
no transition preceding the occurrence of C in 7, then the same operations
are performed without ¢’ appearing in the original and modified subpaths.

. For every occurrence in 7 of the first transition ¢; of C which is not

contained in a sequence of complete occurrences of C followed by ¢, one
performs the following operation. Let ¢’ be the transition immediately
left of ¢; in 7 (if this transition exists). We thus have that 7 is of the
form

T="-- (CIQ’m) t—/> (cl,m') 2) (027m”)7

with c,,co € C, m',m"” € M. One replaces the subpath between (¢, m)
and (c1,m’) by

(chy,m) 2, (Cqym’) iq (cr,m).
If ¢ does not exist, then the same operation is performed without ¢
appearing in the original and modified subpaths.

o Let c € C and m € M. If there exists a path 7" of A" leading from (cy, mo)
to (c¢,m), then there exists a path © of A leading from (co,mg) to (c,m). Let
c1 = first(C). The only transitions of A4’ that are not transitions of A are
those ending in ¢y, t1 = (cq, body(C)";0,), ta = (ca, 0, ¢4) t3 = (cq,id, ;) and
ty = (e, 1d, &), with ¢§ € C. One applies the following modifications to 7’:

— Each occurrence of a transition ending in ¢, is replaced by an identical

transition ending in cq;

— Each occurrence of ¢; is replaced by the appropriate number of occur-

rences of body(C), followed by one occurrence of the only transition ¢ of
A that goes from ¢; and does not belong to C;

— Each occurrence of 5 is replaced by t;

— All the occurrences of t3 and ¢4 are deleted.

The result is a path 7w of A equivalent to 7.

The second theorem establishes that loop-optimizing an SMBA does not influ-

ence the emptiness of its accepted language.

100 CHAPTER 5. TERMINATION

Theorem 5.25 Let B = (C, co, M, mq, Op, T, F') be an SMBA, C be an optimizable
cycle in (C,T), and B' be the SMBA returned by OPTIMIZE-CYCLE-SMBA(B,C).
The language accepted by B is empty if and only if the language accepted by B' is
empty.

Proof Let 7 be an exploration path corresponding to an (infinite) run of B. The
transformation introduced in the proof of Theorem 5.24 allows to transform this path
into a path 7’ corresponding to an infinite run of B’. The reciprocal transformation
is possible as well. It remains to show that 7 visits infinitely many accepting control
locations if and only if 7’ visits infinitely many accepting control locations. Let
c1 = first(C), t = (c1,0, ;) be the only outgoing transition from ¢; that does not
belong to C, and ¢, ¢, be the control locations created by the optimization algorithm
at Line 4 of OPTIMIZE-CYCLE-SMA.

o [f m wisits infinitely many accepting control locations, then 7' wvisits infinitely
many accepting control locations. The only control locations that do not nec-
essarily appear in 7’ each time they are visited in 7 are those visited by C.
Indeed, repeated occurrences of C in m may correspond to a single occurrence
of (cq, body(C)";0,¢) in «'. However, since ¢, is accepting provided that C
visits at least one accepting control location, we have that any finite num-
ber of visits of accepting control locations by 7 within successive occurrences
of C corresponds to one visit of the accepting control location ¢, in «’. The
transformation thus preserves the accepting nature of the path.

o [f ' wisits infinitely many accepting control locations, then m wisits infinitely
many accepting control locations. The only accepting control location that
does not appear in 7w each time it appears in 7’ is ¢,. Since each occurrence of
¢, in 7" corresponds to at least one complete occurrence of C in 7, and since
C visits at least one accepting control location provided that ¢, is accepting,
we have that the transformation of 7’ into 7 preserves the accepting nature of
the path.

5.6.3 Implementation

Here, we study how one can use the loop optimization algorithms proposed in Sec-
tion 5.6.2 in an actual implementation.

The first problem concerns an operation performed by the algorithms. Given
a sequence of memory operations o € Op* and a memory operation § € Op, one
should be able to decide whether a computable operation equivalent to (o;6) can

5.6. CONTROL GRAPH OPTIMIZATION 101

function OPTIMIZABLE?(SMA (C, ¢g, M, mg, Op,T) or SMBA (C, co, M, mq, Op, T, F),
simple cycle C) : {T,F}

1 var c¢,c’,c”’,c" : control locations;

2 0,0’ : memory operations;

3 begin

4: if «(MET A?(body(C))) then

5 return F;

6 c1 = first(C);

7 if (3(c,0,)eC, (", 0,") e T)((c,0,c) # (",0,") N #c1

A = ") then

8: return F;

9: if (3(c,0,c),(",0",") e T\C)((c,0,c) # (",0',") AN e=¢c" =c¢1) then
10: return F;
11: for each (c,0,¢') € T\ C such that ¢ =¢; do
12: return EXISTS-LOOP-EQUIV?(body(C), 6);
13: return F
14: end.

Figure 5.10: Decision procedure for optimizability of a simple cycle.

be obtained. We therefore require the existence of a computable predicate EXISTS-
LOOP-EQUIV? : Op* x Op — {T,F} and a computable function LOOP-EQUIV-
OP : Op* x Op — Op such that for any o € Op* and 6§ € Op such that EXISTS-
LOOP-EQUIV?(c,0) = T, LOOP-EQUIV-OP(0,0) returns a memory operation
0’ € Op equivalent to (o7;60). In practice, those predicate and function strongly
depend on the representation system used for sets of memory contents. Implemen-
tations of EXISTS-LOOP-EQUIV? and LOOP-EQUIV-OP for two important mem-
ory domains will be given in Chapters 7 and 8. An algorithm for deciding whether
a simple cycle is optimizable based on the predicate EXISTS-LOOP-EQUIV? is
given in Figure 5.10. The correctness of this algorithm is a direct consequence of
Definition 5.23.

The second problem is to integrate loop optimization together with cycle detec-
tion. Indeed, since loop optimization modifies the control graph and therefore its
set of cycles, performing the optimization operation more than once requires to re-
compute the set of cycles of the control graph after each optimization. An easy way
of carrying out this recomputation consists of updating after each optimization only
the cycles that have been influenced by this optimization. The advantage is that

102 CHAPTER 5. TERMINATION

those cycles are usually in very small number and are quite easy to distinguish from
the others, since each loop optimization only modifies a very small number of tran-
sitions in the control graph. Algorithms implementing repeated loop optimizations
for SMBAs and SMAs are given in Figures 5.11, 5.12 and 5.13. Their correctness is
established by the following results.

Theorem 5.26 Let B = (C,co, M, mg, Op, T, F) be a SMBA, S be a finite set of
simple cycles in (C,T), and B' be the SMBA returned by OPTIMIZE-SET-SMBA(B,
S). The language accepted by B is empty if and only if the language accepted by 5’
18 empty.

Theorem 5.27 Let A = (C, co, M, mg, Op, T) be an SMA, S be a finite set of simple
cycles in its control graph (C,T), and A" be the SMA returned by the function call
OPTIMIZE-SET-SMA(A,S). The sets Qr and Q' of reachable states of A and A’

(respectively) are such that for every ¢ € C, we have values(Qg, ¢) = values(Q'y, c).

Proofs The SMA or SMBA A’ is obtained from .4 by applying OPTIMIZE-CYCLE-
SMBA (at Line 11 of OPTIMIZE-SET-SMBA) as many times as there are optimiz-
able cycles in S. The purpose of the subsequent part of the main loop (Lines 12-29)
is to update S so as to satisfy the invariant “every element of S is a simple cycle
of (C,T)” at Line 11. We simply show that this modification of S is performed
correctly. When a loop optimization is performed on the current state machine with
the optimizable simple cycle C € S, the only elements of S that are not neces-
sarily cycles in the control graph of the optimized state machine are those visiting
¢1 = first(C). This is a consequence of the way loop optimization is performed. The
purpose of Line 13 is precisely to enumerate each cycle C’ in S that needs to be
updated. There are two possibilities:

o After wvisiting c1, C' follows the first transition of C. In this case, the update
consists of transforming the subsequence of transitions

(Ca 97 01)7 (Clu 917 62)
in C’', where ¢,co € C and 0,60, € Op, into
(C7 97 Ca)u (Ca7 1d7 Cl)7 (Clu 917 02)7

where ¢, denotes the control location of the same name created during the
loop optimization.

e After visiting c1, C' follows a transition that does not belong to C. Here, the
update simply consists of transforming the control location ¢; into ¢, in every
transition of C' beginning or ending at that location.

In both cases, the updated cycle does correspond to C’ in the control graph of the
optimized machine. O

5.6. CONTROL GRAPH OPTIMIZATION 103

function OPTIMIZE-SET-SMBA (SMBA (C, ¢g, M, mg, Op, T, F), set of simple cycles S)

: SMBA
1 var C,C’ : cycles;
2 e, ¢, " cq,cl, c1, 02,3 ¢ control locations;
3 0,6',6" 6, : memory operations;
4 (C', ey, M',mfy, Op' , T', F") : SMBA;
5: 0,0’ : sequences of memory operations;
6 begin
7 for each C € S such that OPTIMIZABLE?((C, ¢o, M, mg, Op,T, F),C) do
8 begin
9 c1 = first(C);
10: let (¢,0,c) € T\ C such that ¢ = ¢y;
11: (C',chy, M',mf), Op', T, F') :=
OPTIMIZE-CYCLE-SMBA((C, co, M, mq, Op, T, F),C);
12: let (cq,04,c,) € T'\ C such that ¢, = ¢i;
13: for each C’ € S such that (3(c2,6,¢c3) € C')(ca = ¢1) do
14: if (¢,0,c’) € C’' then
15: begin
16: S = S\ {C'};
17: for each 0,0’ € (T")*,(¢",0",c") € T" such that
"= NC'=0o,(,0","),0" do
18: C' = 0,(c",0",¢4),0;
19: let 0,0’ € (T")* such that C' =0, (c,0,),0;
20: C' = o,(cqa,0,c),0';
21: S =S uU{C}
22: end

(...)

Figure 5.11: Repeated loop optimizations for SMBAs.

104 CHAPTER 5. TERMINATION

23: else

24: begin

25: S = S\ {C'};

26: for each 0,0’ € (T")*,(¢",0",c") € T" such that
d"=c NC'=0o,(,0","),0" do

27: C' = 0,(c",0",¢q), (Ca,id, 1), 0;

28: S:=5u{l}

29: end;

30: (C,co, M,mg, Op, T, F) := (C',cy, M',m}, Op', T", F")

31: end;

32: return (C,co, M, mg, Op, T, F)

33: end.

Figure 5.12: Repeated loop optimizations for SMBAs (continued).

function OPTIMIZE-SET-SMA (SMA (C, ¢, M, mg, Op,T), set of simple cycles S) : SMA
1: wvar (C',cy, M',m{, Op', T', F') : SMBA;

2: begin

3: (C' ey, M',mpy, Op' , T' F') :=
OPTIMIZE-SET-SMBA((C, co, M, mo, Op, T, 1), C):

4: return (C’,c), M',my, Op', T")

9: end.

Figure 5.13: Repeated loop optimizations for SMAs.

Chapter 6

Finite-State Representation
Systems

This chapter introduces a general technique for designing representation systems
for sets of memory contents. The idea consists of encoding memory contents as
words over some finite alphabet, and then representing a set as a finite automaton
accepting the encodings of the contents of the set. This approach can easily be
followed for a large number of domains, since memory contents admit most of the
time natural encodings consisting of a string of bits. Moreover, we will show that
the operations that one must be able to perform on representable sets of memory
contents translate naturally into operations on automata.

The chapter is organized as follows. First, we introduce finite-state automata as
well as a few associated notions. Then, we give algorithms for performing elementary
operations on automata. Next, after defining the notion of encoding, we show that
automata can be used as representations of sets of memory contents. Finally, we
show that elementary operations on representable sets can be carried out by simply
performing the corresponding operations on their representations.

6.1 Finite-State Automata

Intuitively, a finite-state automaton is a state machine recognizing a set of words by
using only a finite amount of memory. Formally, we have the following definition.

Definition 6.1 A finite-state automaton is a tuple (3,5, A, I, F'), where
e X is a finite alphabet;
e S is a finite set of states;

e A C S x¥*x S is a transition relation. For each transition (s,w,s’) € A, s
is the origin, s’ is the end, and w is the label of the transition;

105

106 CHAPTER 6. FINITE-STATE REPRESENTATION SYSTEMS

e | C S s a set of initial states;
e ['C S is a set of accepting states.

Let A = (3,5,A,I,F) be an automaton. Given two states s,s’ € S and a
word w € X* we write (s,w,s’) € A* if there exist £k € N, sg,51,...,5 € S
and wg,wr,..., w1 € X* such that sg = s, s = &, w = wow; - --wi_1, and
(si,w;, si11) € A for every ¢ € {0,1,...,k — 1}. The sequence of transitions
(S0, Wo, S1), (S1,W1,82), -+, (Sp_1,Wr_1,Sk) is a path leading from s to &, labeled
by w. The word w is accepted by A if there exists a path labeled by w leading from
a state of I to a state of F'. The set of all the words accepted by A is the language
accepted by A and is denoted L(A). If the label of every transition of A has a
length less or equal to one, then A is said to be in normal form. If the label of every
transition of A has a length exactly equal to one, then A is said to be in strong
normal form. If A has at most one initial state, and does not have two transitions
(s1, w1, 8}), (S2,ws, s5) such that s; = sy and either w; € pre(ws) or we € pre(wy),
where pre(w) denotes the set of the prefixes of the word w € ¥*, then A is said to
be deterministic. Intuitively, A is deterministic if for every state s € S and word
w € ¥, there is at most one transition in A labeled by a prefix of w that has the
origin s. The following theorem is a well-known result of automata theory:

Theorem 6.2 For every automaton A, there exists a deterministic automaton A’
in strong normal form such that L(A) = L(A’).

Proof A constructive proof can be found in [HU79] or [Per90]. An algorithm for
computing A’ given A will be presented in Section 6.2. O

Theorem 6.2 implies that the languages that can be accepted by finite-state
automata do not depend on the deterministic nature of these automata. Such lan-
guages can easily be described by simple formulas called regular expressions. We
have the following definition, inspired by [HU79]:

Definition 6.3 Let > be a finite alphabet. The reqular expressions over ¥ and the
subsets of * that they denote are defined recursively as follows:

e () is a reqular expression and denotes the empty language (;

e ¢ is a reqular expression and denotes the language {e} whose only element is
the empty word £;

e For each a € ¥, a is a reqular expression and denotes the language {a};

o If ey is a reqular expression denoting the language Ly € X*, then (e3) is a
reqular expression and denotes the language

Ly ={we X | (Ik € N,wy,ws,...,w; € L)(w = wiwy - - - wy)}.

This language is called the Kleene closure of Lq;

6.2. OPERATIONS ON AUTOMATA 107

e [fey and ey are reqular expressions denoting respectively the languages Ly, Lo €
¥, then

— (€1 + e2) is a reqular expression and denotes the language L1 U Ly;

— (€1 - ey) is a reqular expression and denotes the language
Ll . LQ = {w1w2 ‘ wy € L1 N wy € LQ}
This language s called the concatenation of Ly and L.

In writing regular expressions, one may delete many pairs of parentheses by
assuming that “x” has an higher precedence than “” and “+”, and that “-” has an
higher precedence than “+”. If e is a regular expression, then e is a shorthand for
e-e’.

Any language that can be denoted by a regular expression is said to be regular.
The following theorem states that regular languages are exactly those than can be
accepted by finite-state automata.

Theorem 6.4 Let 3 be a finite alphabet, and L C ¥* be a language. There exists
a finite-state automaton accepting L if and only if there exists a reqular expression
over Y denoting L.

Proof A constructive proof can be found in [HU79] or [Per90]. O

Because of the equivalence between regular languages and regular expressions,
we will often use the same notation for denoting both. For instance, if L.; and Lo are
languages, then (L; - Ly)* will be used as a shorthand for “the language denoted by
the regular expression (Fj - Ey)*, where E; and F, are regular expressions denoting
respectively L; and Ly”.

6.2 Operations on Automata

An advantage of automata over other representations of regular languages is that it is
easy to write algorithms for manipulating automata. In this section, we define some
operations that can be performed on automata, and give algorithms for carrying out
these operations. The algorithms are not fully described in this thesis. They are only
included for completeness, since they will be used extensively in the sequel. Detailed
descriptions of those algorithms can be found in [HU79], [Per90] and [HopT71].

6.2.1 Determinization

The goal of the determinization operation is to compute, given an automaton A,
an automaton DETERMINIZE(A) which is complete, in strong normal form, and

108 CHAPTER 6. FINITE-STATE REPRESENTATION SYSTEMS

function NORMALIZE (automaton (X, S, A, I, F')) : automaton

1 var (s,w,s’) : transition;

2 S1, S92, ... : states;
3 begin

4 for each (s,w,s’) € A such that |w| > 1 do
5: begin
6 let s1,52,...,8)u—1 € 5;
7 S = S U {s1,52,...,8w|-1};
s A = (A\{(5w,8)}) U {(5,w0[1],51), (i1, wllwl],)}

U{(si—1,w[i],s;) | 1 <i < |w|}

9: end;

10: return (X, 5, A, I, F)
11: end.

Figure 6.1: Normalization of an automaton.

accepts exactly the same language as A. The determinization operation proceeds
by first normalizing A4, i.e., converting it into an automaton NORMALIZE(A) that
accepts the same language, but is in normal form. Normalizing an automaton can
be done by replacing each transition whose label has a length greater than one by a
succession of transitions labeled by a single symbol, creating as many intermediate
new states as necessary. An algorithm® implementing this operation is given in
Figure 6.1.

After normalizing the input automaton A, obtaining an automaton A’, the deter-
minization procedure creates an automaton A” whose states correspond to subsets
of states of A’. The set of initial states of .A” contains only one element, correspond-
ing to the set of all the states of A’ that can be reached without reading any symbol
(in other words, all the states that can be reached by reading the empty word).
Whenever it is possible to go from a set () of states of A’ to another such set Q" by
reading a symbol a, one creates a transition of A” labeled by a with its origin and
end corresponding respectively to Q and to)'. The creation of transitions can be
seen as the exploration of a finite graph and can thus be performed according to a
depth-first strategy. Finally, a state of A” is accepting if and only if it corresponds
to a set of states of A’ containing at least one accepting state. Following those rules,
one eventually obtains an automaton A” which is deterministic and in strong nor-

n this algorithm, the notations |w| and w[i] denote respectively the length of the word w, i.e.,
the number of symbols composing w, and the i-th symbol of w (1 <1 < |w|).

6.2. OPERATIONS ON AUTOMATA 109

mal form (by construction), and such that L(A"”) = L(.A). An algorithm formalizing
this determinization procedure is given in Figure 6.2. The time and space cost of
determinizing an automaton can be as high as O(2/4!); where |A| denotes the sum
of the lengths of the labels of all the transitions.

6.2.2 Minimization

The purpose of the minimization operation is to compute, given an automaton A
that is deterministic and in strong normal form, the smallest automaton (with re-
spect to the number of states) that accepts the same language as A and is determin-
istic and in strong normal form as well (this automaton is denoted MINIMIZE(A)).
According to a well-known result [Har65, McC65, HU79], MINIMIZE(A) always
exists and is unique up to isomorphism.

An efficient algorithm for computing MINIMIZE(.A) has been given by Hopcroft
[Hop71]. This algorithm can be found in Figures 6.3 and 6.4. It proceeds by first
partitioning the states of A according to the coarsest equivalence relation such that
for every equivalent states s, s’ of A and symbol a, if s and s’ both have outgoing
transitions labeled by a, then the ends of those transitions belong to the same equiv-
alence class. The automaton MINIMIZE(.A) is then obtained by creating one state
for each equivalence class, and linking those states by the same transitions as those
linking the elements of the equivalence classes to each other. A complete description
of the algorithm as well as a proof of its correctness can be found in [Hop71]. The
time and space cost of the algorithm is O(|S|log|S|), where |S| denotes the number
of states of A.

Algorithms have also been developed for minimizing transition systems with
respect to finer equivalence relations than language equivalence [PT87, BFH91]. We
do not describe them in this thesis.

6.2.3 Closure and Concatenation

The goal of the closure operation is to compute an automaton A’ accepting the
language L*, given an automaton A accepting the language L. This is done by
building A" in such a way that each of its accepting paths corresponds to a succession
of accepting paths of A. The construction is illustrated in Figure 6.5. An algorithm
implementing the closure operation is given in Figure 6.6. The time and space cost
of this operation is O(|I| + |F|), where |I| and |F| denote respectively the number
of initial and of accepting states of A.

The concatenation operation aims at computing, given two automata .4; and
A, an automaton A’ accepting the language L(A;) - L(As). It is performed by
constructing A’ in such a way that each of its accepting paths corresponds to an
accepting path of A; followed by an accepting path of As. The construction is

110 CHAPTER 6. FINITE-STATE REPRESENTATION SYSTEMS

function DETERMINIZE (automaton A) : automaton

1: var (2,5, A1, F) (X,8", A, I' F') : automata;
2: Qo : set of states;
3: procedure generate(set of states Q)
4: var @' : set of states;
5: a : symbol;
6: begin
& Shi= 5" U@k
8: for each a € ¥ such that (3(s,d’,s') € A*)(s € Q A o’ =a) do
9: begin
10: Q ={seS|(3seQ)((s,a,8)e A"}
11: A= A UA{(Q 0, @)}
12: if Q' ¢ S’ then generate(Q’)
13: end
14: end;
15: begin
16: (2,5,A,1,F) := NORMALIZE(A);
17: S o= ¥
18: S =0
19: A=)
20: Qo == {s€ S| 3so €I)((s0,,8) € A")};
21: generate(Qo);
22: I' == {Qo};
23: Fr={QeS|QnNF#0}
24: return (X', 5", A" I') F')
25: end.

Figure 6.2: Determinization of an automaton.

6.2. OPERATIONS ON AUTOMATA 111

function MINIMIZE(deterministic automaton (X, S, A, I, F)) : deterministic automaton

e O T
L

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

25:
26:

var (X', 8" A, I') F') : automaton;
s" : state;
function partition(automaton (X, S, A, I, F')) : set of sets of states
var class : array[l,2,...] of sets of states;
image-class : array[l,2,...;Y)] of sets of states;
partl, part2 : sets of states;
split-list : array[Y] of sets of integers;
1,7, k,l : integers;
a : symbol;
begin
class[l] := F;
class[2] := S\ F;
for each a € ¥, i € {1,2} do
image-classi,a] := {s € class[i] | (3(s1,a1,52) € A)
(s2=s8ANaj=a)};
for each a € ¥ do
if |image-class[l, a]| < |image-class|2, a]| then split-listla] := {1}
else split-listla] := {2};
k= 3;
while (Ja € X)(split-listfa] # 0) do
begin
let a € ¥ such that split-list[a] # 0;
let i € split-list[a];
split-listla] := split-list[a] \ {i};
for each j such that 1 < j <k A (3s € class|j],
(s1,a’,82) € A)(s1 =s A a' =a A sg € image-classi,a]) do
begin
part] = {s €S| (3(s1,d,82) € A)(s1 = s

Ad =a A sy € image-class[i, al])};

(...)

Figure 6.3: Minimization of a deterministic automaton.

112 CHAPTER 6. FINITE-STATE REPRESENTATION SYSTEMS

27: part2 = class[j] \ partl;
28: classlj] := partl;
29: classlk] = part2;
30: for each a € ¥, 1 € {j,k} do
31: image-class(l, a] := {s € class[l] |
(3(s1,a1,82) € A)(s2 =5 A a1 =a)};
32: for each a € ¥ do
33: if j & split-listla] A |image-class[j, a]|
< |image-classlk, a]| then
34: split-listla] := split-listla] U {j}
35: else split-listla] := split-listla] U {k};
36: k:=Fk+1
37: end
38: end;
39: return {class[l] | 1 <1<k A class[l] # 0}
40: end;
41: begin
42: S :={seS|(3soel,weX*)((s0,w,s) € A*)};
43: let s” & S;
44: S = SuU{s}
45: for each s; € S, a € ¥ such that (A(s',a’,s"") € A)(s' =51 AN d' =a) do
46: A= AU {(s1,a,5")};
AT: Y = 3
48: S’ = partition((3, S, A, I, F));
49: A= {(Q,a,Q) e S x¥ x5 |(Fse€Q,s€Q,acX)((s,a,8) €A}
50: I'={QesS|ICQ}
51: Fr={QeS|QnNF#0}
52: return (X', 8" A", I' F')
93: end.

Figure 6.4: Minimization of a deterministic automaton (continued).

6.2. OPERATIONS ON AUTOMATA 113

Figure 6.5: Computing the closure of an automaton.

function CLOSURE (automaton (X, S, A, I, F)) : automaton

1
2
3
4:
5
6
7

var s : state;

begin
let s ¢ S;
S =S U {s}h

end.

A= AU {(s,e,8)|sel}u{(ses)|seF};
return (3,5, A, {s},{s})

Figure 6.6: Closure of an automaton.

114 CHAPTER 6. FINITE-STATE REPRESENTATION SYSTEMS

Figure 6.7: Concatenating two automata.

illustrated in Figure 6.7. An algorithm implementing the concatenation operation
is given in Figure 6.8. Its time and space cost of is O(|Fy| + |I5]), where |F}| and |15
denote respectively the number of accepting states of A; and the number of initial
states of As.

6.2.4 Set-Theory Operators

The synchronous product operation takes as arguments two automata A; and A,
of respective alphabets ¥; and s, in normal form, and computes an automaton A’
accepting the language

{(ay,a))(ag,a) -~ (ax,a;) | k € N A ajag---a, € L(Ay) A aydy---a), € L(As)}.

It is performed by constructing an automaton whose set of states is the Cartesian
product of the sets of states of A; and of A,. Each transition of A’ labeled by a pair
of symbols (a,a’) € ¥; x 3y corresponds to a transition of A; labeled by a and a
transition of Ay labeled by a’ followed simultaneously. Each transition of A’ labeled
by e corresponds either to a transition of A; labeled by ¢, or to a transition of A,
labeled by €. An algorithm implementing this operation is given in Figure 6.9. The
time and space cost of this algorithm is O(|A1||As]).

6.2. OPERATIONS ON AUTOMATA 115

function CONCATENATE(automata (21, Sl, Al, Il, Fl), (22, SQ, AQ, IQ, F2)
such that S; N Sy = () : automaton

1 var (X,5,A,1,F) : automaton;

2 s : state;

3 begin

4 let s ¢ S1 U Sy;

5: %= % U Do

6 S =81 U Sy U {s};

7 A= AU{(s,e39)|s e} U{(ses)|sell;
8 I = I

9 F o= Fy;

10: return (X, 5, A1, F)

11: end.

Figure 6.8: Concatenation of two automata.

function PRODUCT (automata (31,51, A1, I1, F1), (22,52, Ag, I, F5)) : automaton

1 var (X,S,A, I, F) : automaton;

2 begin

3 (21,51, Ar, I, i) := NORMALIZE((y, S1, Ay, Iy, 1))

4: (2o, 82, Ao, I, Fy) := NORMALIZE((s, Sa, Ao, I, F5));

5 2 = 3 x Do

6 S = 51 X Sy;

7 A = {((s1,82), (a1,a2),(s],55)) € S x X x S| (s1,a1,8]) € Aq

A (s2,a2,85) € As}
U{((51752)a5a (8375/2)) €85 x {5} X S | (81 = 5/1 A (527575/2) € AQ)
V(s2 =85 A (s1,6,87) € A1)}

8: I:=1 %I
9: F = F x Fy;

10: return (X, 5, A, I, F)
11: end.

Figure 6.9: Synchronous product of two automata.

116 CHAPTER 6. FINITE-STATE REPRESENTATION SYSTEMS

function INTERSECTION (automata (X1, 51, A1, I, F1), (22, S2, Ao, Iz, F3)) : automaton

1 var (X,5,A,1,F) : automaton;

2 s,s’ : states;

3 ai, as : symbols;

4 begin

5: (2,5,A,1,F) := PRODUCT((Z1, 81, A1, I, F1), (Sa, S, Ao, In, Fy));
6 for each (s, (a1,0a2),s’) € A do

7 if a1 = a9 then

s A= (AN {(s (a1, a2),)}) U {(s.01.5)}
9 else

10: A= AN\ {(s,(a1,a2),5)};

11: 2= X1 N Yo

12: return (3,5, A I, F)

13: end.

Figure 6.10: Intersection of two automata.

The goal of the intersection operation is to compute, given two automata A;
and Aj of respective alphabets ¥; and Y5, an automaton A’ accepting the language
L(A;) N L(As). This operation is performed by first computing the synchronous
product A of A; and As, and then deleting from the set of transitions of A all the
transitions labeled by a pair (a,a’) € ¥; X 39 such that a # o’. Each accepting
path of the resulting automaton thus corresponds to an accepting path of A; and
an accepting path of Ay that both read the same word. An algorithm implementing
this operation is given in Figure 6.10. The time and space cost of this algorithm is
O(|A1]|Az]).

The wunion operation consists of computing, given two automata A; and A,
an automaton A" accepting the language L(A;) U L(A3). It is performed by con-
structing A’ in such a way that each of its accepting paths corresponds either to
an accepting path of A; or to an accepting path of A;. The construction is illus-
trated in Figure 6.11. An algorithm implementing the union operation is given in
Figure 6.12. The time and space cost of this operation is O(|I1| + |I2]).

The complement operation consists of computing an automaton A’ accepting the
complement w of the language accepted by an automaton A over its alphabet.
This operation is performed by first determinizing A and then completing its set
of transitions so as to have at each state and for every symbol of the alphabet
an outgoing transition labeled by that symbol. The complemented automaton is

6.2. OPERATIONS ON AUTOMATA 117

Figure 6.11: Computing the union of two automata.

function UNION(automata (Zl, Sl, Al, Il, Fl), (EQ, SQ, AQ, 12, FQ)
such that S; N Sy = () : automaton

1 var (X,5,A,1,F) : automaton;
2 s : state;

3 begin

4 let s ¢ 51 U Sy;

5: =31 U Yo

6 S = 51 USy U {s};

7 A= AU{(s,e,8) s €l UL}
8 I := {s};

9 F = U Fy;

10: return (3,5, A, I, F)

11: end.

Figure 6.12: Union of two automata.

118 CHAPTER 6. FINITE-STATE REPRESENTATION SYSTEMS

function COMPLEMENT (automaton A) : automaton

1 var (X,5,A, 1, F) : automaton;

2 s, s1 : states;

3 a : symbol;

4 begin

5: (2,5,A,1,F) := DETERMINIZE(A);
6 let s € S;

7 S =S U {s}h

8 for each s; € S, a € ¥ such that (A(s',a’,s") € A)(s' =s1 A d’ =a) do
9 A= AU {(s1,a,9)};
10: F = S\ F;
11: return (X, 5, A, I, F)
12: end.

Figure 6.13: Complement of an automaton.

then obtained by exchanging the accepting and non-accepting states. An algorithm
implementing this operation is given in Figure 6.13. Its time and space cost is
O(2121) if the automaton is non-deterministic, and O(|S]) if it is deterministic.

The difference operation consists of computing, given two automata A; and A,
an automaton accepting the language L(A;)\ L(As). This operation can simply be
performed by computing the intersection of A; and of the complement of A;. An
algorithm implementing this operation is given in Figure 6.14. Its time and space
cost is O(]A1]21221) if A, is non-deterministic, and O(]A1||Aq]) is As is deterministic.

The next operation is to test whether the language accepted by an automaton
is empty or not. This is equivalent to checking whether the automaton admits at

function DIFFERENCE (automata A, A3) : automaton

1: begin
2: return INTERSECTION(A;, COMPLEMENT(A5))
3: end.

Figure 6.14: Difference between two automata.

6.2. OPERATIONS ON AUTOMATA 119

function EMPTY?(automaton (X, S, A, I, F)) : {T,F}

1: var states : set of states;
2: s : state;
3: function accepting-path(state s') : {T,F}
4: var (s1,a, s2) : transition;
5: begin
6: if s/ € F do return T}
T states := S U {s'};
8: for each (s1,a,s2) € A such that s; = s’ A sg & states do
9: if accepting-path(ss) then return T;
10: return F
11: end;
12: begin
13: states == (;
14: for each s € I do
15: if accepting-path(s) then return F;
16: return T
17: end.

Figure 6.15: Test of emptiness of the language accepted by an automaton.

least one accepting path, which can simply be done by performing a depth-first
search for an accepting state. An algorithm implementing this operation is given in
Figure 6.15. Its time and space cost is O(|A]).

Let us now address the problem that consists of testing whether the language
accepted by an automaton A; is included in the language accepted by an automaton
As. This test can be carried out by simply checking the emptiness of the difference
between A; and Ay. An algorithm implementing this operation is given in Fig-
ure 6.16. Its time and space cost is O(]A{]|2142]) if A, is non-deterministic, and
O(]A1]]As]) is Aj is deterministic.

The last operation studied in this section is the application of an homomor-
phism. Let X be an alphabet. An homomorphism over ¥ is a function f : ¥* — ¥*
such that for any two words wy,ws € X*, f(wy - we) = f(wy) - f(we) (in other
words, an homomorphism is a function that is distributive over the concatenation
of words). It follows from this definition that an homomorphism f can simply be
defined by the mapping {(a, f(a)) | a € ¥} of the symbols of the alphabet. Applying

120 CHAPTER 6. FINITE-STATE REPRESENTATION SYSTEMS

function INCLUDED?(automata A1, As) : {T,F}

1: begin
2: return EMPTY?(DIFFERENCE(A;, A3))
3: end.

Figure 6.16: Test of inclusion between two languages accepted by automata.

an homomorphism f to an automaton A consists of computing an automaton A’
accepting {f(w) | w € L(A)}. This can be done by simply applying the homomor-
phism to each transition label of A. An algorithm implementing this operation is
given in Figure 6.17. In particular, this algorithm allows to compute an automaton
accepting the projection L(A)|s: of the language accepted by a given automaton
A= (X5 A I,F) over a subset ¥’ of its alphabet by applying to A the homo-
morphism fs such that for every a € X, fsv(a) = a if a € ¥ and fy/(a) = € if
a ¢ Y. The time and space cost of applying an homomorphism to an automaton is
O(C|Al), where C is the cost of computing the image of a transition label by the
homomorphism.

6.3 Automata as Representations of Sets

Let M be a memory domain and X be a finite alphabet. An encoding scheme for the
elements of M over Y is a relation that associates to each memory content m € M
one or several words over Y such that each of them describes unambiguously m.
Formally, we have the following definition.

Definition 6.5 An encoding scheme for the elements of M over 3 is a relation
ECMXxV, where V C¥* is a set of valid encodings, such that

o For each m € M, there exists (my,w,) € E such that my = m (the relation is
complete over M), and

e For each w € V, there exists exactly one (my,wy) € E such that wy = w (the
relation is complete and unambiguous over V).

Since encoding schemes associate words to memory contents, they can be used
for transforming a set of memory contents into a language. Given a memory domain
M, an alphabet ¥ and an encoding scheme E, we define the encoding E(U) of a set

6.3. AUTOMATA AS REPRESENTATIONS OF SETS 121

function APPLY-HOMOMORPHISM (automaton (X, S, A, I, F'), function f) : automaton

1 begin

) A = {(s1,f(w), 52) | (s1,w,52) € A};
3 return (3,5, A, I, F)

4 end.

Figure 6.17: Application of an homomorphism to an automaton.

of memory contents U C M as the language?
EU)={weX*|(3meU (my,w) € E)(mi=m A w =w)}.

Reciprocally, given a language L C ¥*, we define the decoding D(L) of L as the set
of memory contents

D(L)y={me M| (Jwe L, (m,w) € E)Y(m=m A w, =w)}.

As a consequence of the requirements of Definition 6.5, we have D(E(U)) = U for
every set of memory contents U C M. This shows that the encoding of a set of
memory contents describes unambiguously this set.

The next step is to represent the encoding of a set of memory contents, i.e., to
associate to such a set a finite object containing sufficient information for describing
this set unambiguously. We have the following definition.

Definition 6.6 Let M be a memory domain, X be a finite alphabet, and E be an
encoding scheme for the elements of M over ¥. A finite-state representation of a
set U C M of memory contents with respect to E is a finite-state automaton A of

alphabet 33, such that L(A) = E(U).

If M is infinite, then it is not possible to represent each of its subsets. The reason
is that there are uncountably many subsets of memory contents but only countably
many finite-state representations. Following Theorem 6.4, the next definition char-
acterizes the sets of memory contents that have a finite-state representation.

Definition 6.7 A set of memory contents U C M 1is recognizable with respect to
an encoding scheme E if the language E(U) is regular.

The advantages of finite-state representations over other representation systems
are that they are quite expressive, i.e., they allow to represent a large class of sets,

2By extension, if m € M and w € E({m}), then w is called an encoding of m.

122 CHAPTER 6. FINITE-STATE REPRESENTATION SYSTEMS

and that there are a lot of useful operations that can be performed on finite-state
automata. In the next section, we study how to reduce operations on representable
sets of memory contents to the operations on finite-state automata presented in
Section 6.2. The problem of characterizing precisely the expressiveness of finite-state
representations will be addressed for two particular memory domains in Chapters 7
and 8.

6.4 Operations on Representable Sets

Thanks to the following theorem, applying set-theory operators over recognizable
sets of memory contents can simply be done by performing the corresponding oper-
ations over their finite-state representation.

Theorem 6.8 Let M be a memory domain, E be an encoding scheme and 6 &€
{U,M,\} be a set-theory operation. For every recognizable sets Uy, Us C M of mem-
ory contents, we have E(U,0U,) = E(Uy) 0 E(Us).

Proof

o We have E(U; U Uy) C E(Uy) U E(Us). If w e E(Uy U Us), then there exist
m € Uy U Uy and (my,wy) € E such that m; = m A w; = w. If m € Uy, then
w e E(U;). If m € Uy, then w € E(U,).

o We have E(Uy) U E(Uy) C E(Uy U Uy). If w e E(Uy) U E(Us), there there
exists (my,w;) € E such that w; = w and my belongs to U; U Us. Thus,
w € E(U1 U UQ)

o We have E(U; N Us) C E(Uy) N E(Us). If w € E(Uy N Uy), then there exist
m € U; N Uy and (my,w;) € E such that m; = m A wy; = w. Since m € U;
and m € Us, it follows that w € E(Uy) N E(Us).

o We have E(Uy) N E(Us) C E(U; N Uy). If w e E(U;) N E(Us), there there
exist (my,wy), (mg, ws) € E such that wy = wy = w, my € Uy, and my € Us.
Since w € E(U;), we have E({mz}) C E(U;), from which we deduce my € Uj.
Since (ms,ws) belongs to F and is such that my € U; N Us and we = w, it
follows that w € E(U; N Us).

o We have E(Uy \ Uy) C E(Uy) \ E(Uy). If w e E(U; \ Us), then there exists
(my,w;) € E such that wy = w, my € Uy, and my ¢ U,. It follows that
E({mi}) € E(U;) and E({ms}) N E(Us) = 0. Since w € E({my}), this
implies w € E(U;) \ E(Us).

6.4. OPERATIONS ON REPRESENTABLE SETS 123

o We have E(Uy) \ E(Uy) € E(Uy \ Us). If w € E(Uy) \ E(Us), then there
exists (mq,w;) € E such that w; = w and m; € Uy, and there does not exist
(mg,ws) € E such that we = w and my € Us. It follows that m; & Us, hence
that my; € Uy \ Us, which implies w € E(U; \ U,).

O

Similarly, testing the emptiness of a set or the inclusion of a set into another
can also be done by performing the corresponding operation on the finite-state
representations of the sets. This is expressed by the following theorem.

Theorem 6.9 Let M be a memory domain and E be an encoding scheme whose set
of valid encodings V' is not empty. For every recognizable set Uy C M, Uy is empty
if and only if E(Uy) is empty. Moreover, for every recognizable sets Uy, Uy C M, we
have Uy C Uy if and only if E(Uy) C E(Us).

Proof The first result is a direct consequence of the fact that E is complete over
M and over V. The second result can be reduced to the first by remarking that
we have Uy C U, if and only if Uy \ U, is empty. Applying Theorem 6.8 twice, we
obtain that U; \ Us is empty if and only if E(U;) \ E(Us) is empty, hence the result.
O

124 CHAPTER 6. FINITE-STATE REPRESENTATION SYSTEMS

Chapter 7

Systems Using FIFO Channels

Chapters 3-6 introduced a general technique for analyzing properties of infinite-state
systems, as well as a general method for designing a representation system for pos-
sibly infinite sets of memory contents. In this chapter, we particularize these results
to an important class of infinite-state systems: those whose memory is composed of
a finite set of unbounded FIFO channels on which send and receive operations are
performed [BZ83, MF85, Pac86]. Such machines are a popular model for represent-
ing and reasoning about communication protocols, and are also used for defining
the semantics of standardized protocol specification languages such as SDL [CCI8S]
and Estelle [DAACS9]. Indeed, unbounded FIFO channels provide a useful abstrac-
tion that simplifies the semantics of specification languages and frees the protocol
designer from implementation details related to buffering policies and limitations.

The chapter is organized as follows. First, it introduces systems using unbounded
FIFO channels (also called queues) and defines their syntax, semantics, and elemen-
tary memory operations. After showing that such systems are Turing-expressive, it
then proposes an encoding scheme for queue-set contents which leads to a powerful
finite-state representation system for sets of queue-set contents, the Queue Deci-
sion Diagram (QDD). Then, it gives algorithms implementing with QDDs all the
predicates and functions required by Chapters 3-6.

7.1 Basic Notions

7.1.1 Queue SMAs

Let ¥ be a finite alphabet. A FIFO channel, or queue, is an object whose value is
a finite word over ¥ and on which two elementary operations are defined:

e The send operation consists of appending a specified word to the queue con-
tent. Formally, the send operation is defined by the function

gu : X=X we—w-u,

125

126 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

where ¢ denotes the queue undergoing the operation, u € X* is the word being
sent, and “.” denotes the concatenation of words;

e The receive operation consists of removing a specified word from the beginning
of the queue content. Formally, the receive operation is defined by the function

qu X=X uw— w,

where ¢ denotes the queue undergoing the operation and u € ¥* is the word
being received.

The domains of those functions are extended to sets of queue contents in the
usual way, i.e., we define

qlu - 2% = 2% ¢ U {qu(w)|weU};
qu 2% =2 U {qu(w) | we U}
We are now ready to define the class of SMAs that will be studied in this chapter.

Definition 7.1 A Queue SMA (QSMA) is an SMA (C, co, M, mg, Op,T) such that

o [ts memory domain M is of the form X7 x X5 x --- x X¥, where n > 0
is the number of queues of the QSMA, and each 3; (1 < i < n) is the
queue alphabet of the i-th queue ¢; of the QSMA. Fach memory content
m = (my,ma,...,my) € M is called a queue-set content, and associates a
queue content m; to each q;;

o [ts set of memory operations Op contains only send and receive operations.
Formally, we have

Op=A{glu|1<i<nAuweX}U{glu|l<i<nAue}

The notion of Extended QSMA (EQSMA) is defined similarly.

Definition 7.2 An Extended QSMA (EQSMA) is an ESMA (C,cy, M, mg, Op, T,
T) such that its underlying SMA (C,co, M, mg, Op,T) is a QSMA.

7.1.2 Turing Expressiveness

Brand and Zafiropoulo have shown that state machines with unbounded FIFO chan-
nels can simulate arbitrary Turing machines. The following theorem is inspired

by [BZ83].

Theorem 7.3 Let n > 0, and Xq,Xs,...,%, be finite queue alphabets such that

|3;| > 1 for at least one i € {1,2,...,n}. The class of all the QSMAs that have the
memory domain M = X7 x X5 x -+ x X7 1s Turing-expressive.

7.1. BASIC NOTIONS 127

Proof The idea is to show that QSMAs can simulate arbitrary two-counter ma-
chines, which are SMAs that have two positive integer variables, and whose memory
operations can increment or decrement the value of a variable as well as test whether
the value of a variable is equal to zero. It is indeed well known [HU79] that two-
counter machines can simulate arbitrary Turing machines.

Let us show that an arbitrary two-counter machine M can be simulated by a
QSMA A that has the memory domain M. Let a and b be two different symbols in
Y. We build A in such a way that the content of the queue ¢; is always composed
of a concatenation of words belonging to {aa,ab,bb}. The other queues are not
used and their contents can be left empty. The idea is to make the number of
occurrences of aa in the content of ¢; correspond to the value of the first counter
of M. Similarly, the number of occurrences of ab will correspond to the value of the
second counter x,. The special word bb is used as a delimiter and will always appear
once in the content of ¢;. The SMA A is constructed according to the following
rules:

e The initial content of g; is (aa)™ (ab)"?(bb), where n; and ny denote respectively
the initial values of x; and x»;

e Every increment operation of M is simulated by a send operation ¢;!w, where w
is either aa or ab depending on the counter involved in the increment operation.

e Every decrement operation of M is simulated by a loop in which the following
operations are performed. First, a non-deterministic choice is made between
the three operations ¢;7aa, ¢;7ab and ¢;?bb. According to our rules, exactly
one of them can succeed. If the operation ¢;?u corresponding to the counter
concerned by the decrement (i.e., v = aa for z; and u = ab for z,), then
the decrement operation is complete and the loop exits. If the operation
¢;?u corresponding to the other counter succeeds, then the loop resumes its
execution after performing the operation g;'u. Finally, if ¢;?bb succeeds, then
the operation ¢;!bb is first performed. Then, the loop resumes its execution if
it was the first time that ¢;7bb succeeded during the simulation of the current
decrement operation, and blocks otherwise (since that would mean that the
value of the counter involved in the decrement operation is equal to zero).

e Every test operation of M is simulated by a loop in which the following op-
erations are performed. First, a non-deterministic choice is made between the
three operations ¢;?u, with u € {aa, ab, bb}, each of these operations being fol-
lowed by the corresponding send operation ¢;!u. If the operation that succeeds
corresponds to the counter involved in the test, then the loop exits and the
test concludes that the value of the counter is different from zero. Otherwise,
the second time that the successful operation receives bb, the loop exits and
the test concludes that the value of the counter is equal to zero.

128 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

O

As it has been shown in Chapter 4, a consequence of this theorem is that the
emptiness problem is undecidable for QSMAs associated with a set of accepting
control locations.

7.1.3 Queue Decision Diagrams

According to the results of Chapter 6, the first step towards obtaining a representa-
tion system for sets of queue-set contents that is well suited for QSMAs is to define
an encoding scheme for queue-set contents. We use the following scheme.

Definition 7.4 Let n > 0, and %1, %9, ...,%, be finite queue alphabets such that
¥ N Y, =0 foreveryi,je{l1,2,...,n} such that i # j (the fact that the alphabets
are disjoint can always be assumed without loss of generality). The sequential encod-
ing scheme FJg is the relation that associates to a queue-set content the concatenation
of each individual queue content. Formally, we have

Es C M x Vs = {((wy,wa, ..., w,), w1 -wa--wy) [wy € X7, wg €35,...,w, €1,

where M =37 x X5 x --- x XF and Vg =27 - X527 .

The sequential encoding scheme satisfies the requirements of Definition 6.5. In-
deed, by definition, Fg is complete over M, and is complete and unambiguous over
Vs. The corresponding decoding function Dg is given by the formula

Dg : 2V% = 2M - L {(w|y,wly, ..., w|y) | w € L},

where for each i € {1,2,...,n}, w|; is the projection of the word w over the alphabet
i, i.e., the word obtained from w by deleting all the symbols that do not belong to
Y.

We are now ready to define the representation system for sets of queue-set con-
tents.

Definition 7.5 A Queue Decision Diagram (QDD) is a finite-state representation
of a set U C M of queue-set contents based on the sequential encoding Eg.

In other words, a QDD representing a set U C M of queue-set contents is simply
a finite-state automaton accepting the sequential encodings of the elements of U.

QDDs were originally introduced in [BG96b]. In [BGWW97], it is shown that
the class of sets of queue-set contents that can be represented as QDDs contains
exactly all the sets that can be expressed as a finite union of Cartesian products
of regular languages over the queue alphabets. This property is expressed by the
following theorem.

7.1. BASIC NOTIONS 129

Theorem 7.6 Let n > 0, and ¥1,%,, ..., %, be finite disjoint queue alphabets. A
set U C X7 x 35 x -+ X X of queue-set contents is recognizable with respect to the
sequential encoding Eg over the alphabets 1,3, ..., %, if and only if there exist
k € N and a regular set U;; C X for every i € {1,2,...,n} and j € {1,2,...,k}

such that

1<j<k 1<i<n

Proof Let A = (X,5,A, I, F) be a QDD in strong normal form, with ¥ = ¥; U ¥5 U
-+ UX,. Foreachi € {1,2,...,n}, we define the automaton A; = (3;, S;, A;, I;, F})
as follows:

e The alphabet ¥; is the queue alphabet of ¢;;
e The set of states S; is the set of states S of A;

e The set of transitions A; contains all the transitions of A labeled by words
over the queue alphabet of ¢;. Formally, we have A; = A N (S x X x S);

e The accepting states of A; are all the states of A that are reachable from an
initial state by reading only symbols in > U X9 U --- U ;. Formally, we have

Fi={seS|@@ssel,we(J Z;))((s0,w,s) € A")};

1<j<i

e The initial states of A; are the accepting states of A; 1 if i > 0, or the initial
states of A if ¢ = 0. Formally,

I I ifi=0,
Ol Fy ifi>0.

Given n + 1 states s; € Iy, s9 € Iy, ..., s, € I,, sp,y1 € F,, N F, the language
Ly, . is defined as the Cartesian product L(A}) x --- x L(A]), where each A
is a copy of the automaton A; with only s; as initial state and s;,; as accepting
state. By definition of the QDDs, each word w accepted by L(.A) is of the form
w=w|; - wl|y---wl|, Foreveryie {1,2,...,n}, each path of A accepting w visits
a state s; in [; and a state s;41 in F; between which the word w|; is read. It follows
that (w|i,wls, ..., w|,) € Ly, _s,.,, which implies that L(.A) is the (finite) union of
all the possible Ly,
the queue alphabets 3,...,%,, we have that L(A) is a finite union of Cartesian

cSn+1

Since each Ly, . is a product of regular languages over

~ySn41° cSn+1

products of regular languages over these alphabets.

The other direction of the theorem is immediate since regular languages are
closed under concatenation and finite union. O

Let us now show that the QDD is a representation system well suited for QSMAs.
According to Definition 3.3, the first requirement is the ability to represent the sets

130 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

0, M and {(wy,ws,...,wy,)} for each (wy,ws,...,w,) € M, where M = ¥F x X% x
- x 2. Since the sequential encodings of these sets are respectively denoted by
the regular expressions @), X3 - X% - - - 3* and w; - wy - - - wy, they are regular and are
therefore representable by QDDs. The next requirements are that representations
of the sets Uy U Uy, Uy N U, Uy \ Uy are computable and that the inclusion
U, C Uy and the test of emptiness of U; are decidable given the representations
of Uy and U,. This is a direct consequence of the results of Section 6.4. Finally,
it is required that one can compute the image of sets represented as QDDs by the
memory function labeling any transition or meta-transition. The case of transitions
will be addressed in Section 7.2. The requirement on the meta-transitions will be
enforced by restricting the set of potential memory functions to those that can
be applied algorithmically to sets of memory contents represented as QDDs. The
appropriate definitions of the predicate META? and of the function MULTI-META-
SET expressing this restriction will be given in Sections 7.3 and 7.4.
QDDs are defined with respect to the sequential encoding scheme Eg. One should
be aware that there are other ways of encoding queue-set contents. For instance,
the interleaved encoding scheme is defined as follows.

Definition 7.7 Let n > 0, and 1,3, ...,%, be disjoint finite queue alphabets.
The interleaved encoding scheme Ej is the relation that associates to a queue-set
content the word obtained by first concatenating the symbols located at the same
position in each individual queue content, and then concatenating the resulting words
together. Formally, we have

Er CM x Vi ={((wy,wa,...,w,),w[l] wa[l] - wp[1] - wq[2] - we2] - - wy[2] -
--wl[l] UEE [l])|w1621,w2622,...,wn622},

where

o M =37 xX5x - xXr:
Vi= (U {B}) - (U {B})---(Z, U {B}) \ {B"});
BEX Uy U--- U, is ablank symbol;

e For any word w and i € Ny, wli] is equal to the i-th symbol of w if i < |w|,
and to B if i > |w|;

[€ N is the length of the longest w;, fori € {1,2,...,n}.

The sequential and interleaved encoding schemes have different expressivenesses,

e., the classes of sets of queue-set contents that they allow to represent do not
coincide. Intuitively, the sequential encoding scheme allows to represent sets of
queue-set contents in which the contents of individual queues are loosely coupled,

7.1. BASIC NOTIONS 131

while the interleaved encoding scheme imposes a tight correlation between those
contents.

Let us give an example. Consider a QSMA with two queues ¢; and ¢y such that
¥, = {a} and ¥y = {b}. The set of queue-set contents

U = {(a"b") | n € N},

in which the contents of ¢; and ¢o are tightly correlated, cannot be represented by
a QDD. Indeed, we have

Es(U) = {a"¥" | n € N},

which is not regular (since any finite-state automaton with p states accepting a word
of the form a™b" with n > p would also have to accept the word a"**b" for some
k > 0). On the other hand, the language

Er(U)={(ab)" | n € N}

can be denoted by the regular expression (a - b)* and is hence regular.

The choice of the sequential rather than interleaved encoding scheme in the
definition of QDDs is motivated by the nature of the meta-transitions that the
two schemes allow to consider. Inspired by [BG96b], we qualify as acceptable an
encoding scheme according to which the transitive closure of a single elementary
operation can be computed over representable sets. This is equivalent to stating that
it must be possible to associate a cycle meta-transition to each cycle whose body is
labeled by a single elementary operation. It will be shown in Section 7.3 that this
requirement is met by the sequential encoding scheme (and, in addition, that a class
of cycle meta-transitions much broader than those corresponding to single memory
operations can be considered in this case). Contrariwise, the transitive closure of a
single receive operation is not always computable over sets represented according to
the interleaved encoding scheme. Indeed, let us consider a QSMA with two queues
¢1 and g, such that ¥; = {a, b} and 3y = {c,d}, and the set of queue-set contents

U={(a"b",c"d™) | n,m e N}.

Since the language
Ei(U) = {(ac)"(bd)™ | n,m € N}

is denoted by the regular expression (a-c¢)* - (b-d)*, we have that U is representable
with respect to the interleaved encoding scheme. Applying to U the transitive
closure of the receive operation ¢;7a yields the set

U’ = (@7a)"(U) = {(@"b", " d™) | n,n',m € N A 0 > n},

132 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

for which we have
E (U = {(ac)"(be)™(Be)” ™ ™(Bd)™ | n,n',m e N A 0/ > n+m}
U {(ac)™(be)™ ™ (bd)" ™™ (Bd)" ™ | n,n',m € N A n’ < n+m}.

The language E;(U’) is not regular. Indeed, any finite-state automaton with p states
accepting a word of the form (bc)™(Bc)™ (3d)™ with m > p and m’ € N would also
accept the word (be)™*(Bc)™ (Bd)™ for some k > 0, despite the fact that this word
does not belong to the language. It follows that U’ cannot be represented according
to the interleaved encoding scheme.

7.1.4 Notations

Let us recall some notations introduced in Chapter 3 and present some new defi-
nitions that will be used throughout this chapter. If 0;,0,,...,0, are elementary
queue operations (of the form ¢;lu or ¢;?u), then o = 6y;0s;...;0, is a sequence of
operations. The effect of a sequence of operations o = 61;0s;...;0, on a queue-set
content u is o(u) = O,(- - - O2(61(u)) - - -). The effect of a sequence of operations o on
a set U of queue-set contents is o(U) = {o(u) | v € U}. The sum of the lengths
of the words involved in the elementary queue operations composing o is denoted
|o|. We denote by oy (resp. o7) the subsequence of o consisting of all the send
(resp. receive) operations. The projection of o over the queue ¢;, which is denoted
o|;, is the subsequence of ¢ consisting of all the operations involving ¢;. We write
w(o) to represent the word obtained from o by extracting the message symbols from
the queue operations, i.e., by replacing each ¢;lu and ¢;?u by uw. If p € N, then o?
denotes the sequence obtained by repeating o p times. Let X1, 35, ..., 3, be finite
queue alphabets. The projection of a word w € (¥; U ¥ U --- U %,)* over the
alphabet ¥; is denoted w|; and is defined as the word obtained from w by deleting all
the symbols that do not belong to ¥;. We define w|s; as the word obtained from w
by deleting all the symbols that do not belong to >;,1 U ;.5 U --- U ¥,,. The nota-
tions w|<;, w|>;, w|<;, w|y; are defined similarly. Projections are extended naturally
to languages by defining L|;, with L C (X7 U ¥ U --- U %,)*, as {w]; | w € L}.
The notations L|;, L|<;, L|>;, L|<;, L|+ are defined similarly.

7.2 Elementary Queue Operations

The problem addressed here consists of computing the image of a set of queue-set
contents represented as a QDD by the function labeling a transition of a QSMA.
Since such a function is equivalent to a finite sequence of send and receive operations
involving a single symbol, it is sufficient to obtain algorithms for computing the effect
of these two operations on sets represented as QDDs. We first consider the case of
a QSMA with only one queue, and then reduce the general problem to that case.

7.2. ELEMENTARY QUEUE OPERATIONS 133

function APPLY-RECEIVE-ONE(QDD (%, S, A, I, F), symbol a) : QDD
1 begin
P (£,8,A,1,F) := NORMALIZE((S, 8, A, I, F));
3: I:={seS|@3sel)(s,a,s)eA*};
4 return (3,5, A1, F)
5

end.

Figure 7.1: Receive operation for a single-queue QDD.

7.2.1 Systems with One Queue

Let ¢ be a queue of alphabet ¥. If ¢ is the only queue of the system, then sets of
queue-set contents (actually, sets of queue contents) coincide with the languages of
the encodings of their elements, i.e., we have U = Eg(U) for every U C ¥*.

The first problem consists of computing a QDD representing (¢7a)(U) given a
QDD representing a set U C »* and a symbol a € ¥. We present here the solution
that is given in [BG96b]. Let A be a finite-state automaton accepting U. We can
assume that A is in normal form. In order to compute the set (¢?a)(U), one has
simply to remove from U all the words that do not begin with a, and then delete
the initial symbol from all the remaining words. An automaton accepting (¢7a)(U)
can thus be obtained by moving all the initial states of A along transitions labeled
by a. An algorithm implementing this operation is given in Figure 7.1.

Theorem 7.8 Let q be a queue of alphabet 33, a € ¥ be a symbol, and A be a QDD
representing the set U C ¥*. APPLY-RECEIVE-ONE(A,a) is a QDD representing
the set (¢7a)(U).

Proof Let A’ = APPLY-RECEIVE-ONE(A, a). The automaton A" has the accept-
ing path 7 if and only if the automaton A has an accepting path of the form 7',
where the only symbol read by «’ is a. O

The second problem consists of computing a QDD representing (¢la)(U) given a
QDD representing a set U C ¥* and a symbol a € ¥. Once again, we present here
the solution given in [BG96b]. Let A be a finite-state automaton accepting U. In
order to compute the set (gla)(U), one simply has to append the symbol a to each
word belonging to U. An automaton accepting (¢la)(U) can thus be obtained by
creating a new state s, adding transitions labeled by a leading from all the accepting
states of A to s, and finally keeping s as the only accepting state. An algorithm
implementing this operation is given in Figure 7.2.

134 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

function APPLY-SEND-ONE(QDD (X, S, A, I, F'), symbol a) : QDD

1 begin

2 let s ¢ S;

3 S =S U {s}h

4: A:=AU{(a,s)|s €F};
5 F = {s};

6 return (3,5, A1, F)

7 end.

Figure 7.2: Send operation for a single-queue QDD.

Theorem 7.9 Let q be a queue of alphabet 33, a € ¥ be a symbol, and A be a QDD
representing the set U C 3*. APPLY-SEND-ONE(A,a) is a QDD representing the
set (qla)(U).

Proof Let A" = APPLY-SEND-ONE(A, a). The automaton A" has the accepting
path 7 if and only if the automaton A has an accepting path 7’ such that = = 7’7",
where the only symbol read by 7" is a. O
The algorithms proposed in this section can easily be extended to sequences of
queue operations by simply performing one by one the operations composing the se-
quence. Send and receive operations involving more than one symbol can also be per-
formed in this way since for any word w, the operations ¢!w and ¢q?w are respectively
equivalent to the sequences ¢!(w([1]); ¢!(w[2]);...; ¢/ (w[|w]|]) and ¢?(w[1]); ¢?(w]2]);
g7 (w(|wl]). An algorithm for computing the image by an arbitrary sequence
of queue operations of a set of queue contents represented as a QDD is given in
Figure 7.3.

Theorem 7.10 Let q be a queue of alphabet 3, o be a sequence of elementary
operations on q, and A be a QDD representing the set U C ¥*. APPLY-ONE(A, o)
is a QDD representing the set o(U).

Proof Immediate. O

7.2.2 Systems with Any Number of Queues

The problem addressed here is to compute the image by a send or a receive opera-
tion of a set of queue-set contents involving an arbitrary number n > 0 of queues.
We present here the solution given in [BGWW97], which consists of reducing the
problem to the case of a system with only one queue. The idea is to show that

7.2. ELEMENTARY QUEUE OPERATIONS 135

function APPLY-ONE(QDD A4, sequence of queue operations 61;6s;...;6,,) : QDD

1 var i, j : integer;

2 var f : function;

3 begin

4 for i := 1 tom do

9: begin

6 if 0, is a send operation then

7 f = APPLY-SEND-ONE
8 else

9 f = APPLY-RECEIVE-ONE;
10: for j := 1 to |u(6;)| do
11: A= (A, u(0:)[])
12: end;
13: return A
14: end.

Figure 7.3: Image of a single-queue QDD by a sequence of queue operations.

136 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

any algorithm applying an operation to the set of contents of a single queue can be
turned into an algorithm performing the same operation on a specified queue of a
set of queue-set contents with an arbitrary number of queues.

Formally, let 3,3, ..., %, be the alphabets of the queues ¢, ¢, ..., q, and let
M =37 x X5 x --- x ¥ We consider a particular queue ¢; (1 < ¢ < n), and a
function f; : X7 — 2% transforming the content of ¢; into a set of image contents.
The function f; can be extended into a function f; defined over the sets of contents
of ¢;:

fii 2% 2% U | fiw).
wel

Given an algorithm for computing the image by f; of a representable set of queue
contents, the problem consists of deriving an algorithm for applying the function

f_.i/ . 2M —>2M U — {(wl,...,wi,l,wl’-,wiﬂ,...,wn) |
(Fwr, ..., wy,) € U)(w; € fi(w;))}

to representable sets of queue-set contents.

Intuitively, turning an algorithm for performing f; into one for performing f/ can
be done in the following way. Let A be a QDD representing the set of queue-set
contents U C M. Since queue-set contents are encoded sequentially, each path of
A reading the queue-set content (wi,ws,...,w,) is composed of three successive
subpaths reading respectively the queue contents w; to w;_1, w;, and w;11 to w,.
Since A has a finite number of states, there are only a finite number of possible
starting and ending states for each of those subpaths. Taking into account all the
possibilities, we obtain that the language accepted by A can be expressed as a
finite union of languages of the form L_; - L_; - L+;, where L_;, L_; and L~; are
regular languages defined respectively over the alphabets > U --- U ¥, 1, ¥;, and
Yip1 U -+ U X,. One can apply f/ to the set represented by A by first computing
automata accepting the L_;, L_; and L; involved in the expression of L(.A), and
then applying the algorithm implementing f; (which is available by hypothesis) to
each automaton accepting an L_;. An algorithm! implementing this method is given
in Figure 7.4.

Theorem 7.11 Let ¥1,3s, ..., %, be finite disjoint queue alphabets, M = 37 x X5 X
e x X i e {1,2,...,n} and f; © XF — 2% Let f; and f] be functions derived
from f; as previously explained in this section. Let g be a computable function

!The argument p of the function PERFORM-FUNCTION implemented by this algorithm is
used as a convenience parameter. It is not used by the function, but simply transmitted to the al-
gorithm implementing f;. For instance, if f; is implemented by the algorithm APPLY-SEND-ONE
introduced in Section 7.2.1, then the value of p represents the symbol being sent. This parameter
is introduced here for compatibility with future applications of PERFORM-FUNCTION, and may
be ignored in this section.

7.2. ELEMENTARY QUEUE OPERATIONS 137

function PERFORM-FUNCTION(QDD (%, S, A, I, F), function f, integer 4,
parameter p) : QDD

1 var A, A', A1, Az, A3 : QDDs;
2 s, s’ : states;
3 begin
4: A= (2,8,A,1,F) .= NORMALIZE((Z, S, A, I, F));
5 A= (2,0,0,0,0);
6 for each (s,s’) € S% such that
(3so € I,w € L(A))((s0, w|<i,s) € A" A (s,w];,s") € A*) do

7 begin

8: A = (B]<i, ;AN (S % (B]<i)* X 8), 1, {s});

9: As = F((S1i S, A N (S % (1) x S), {s} {s'}), p);

10: Ag = (Soi, S.A 0 (S % (Bla)* x §),{s'}, F);

11: A’ := UNION(A’, CONCATENATE(
CONCATENATE(A;, Az), As))

12: end;

13: return A’

14: end.

Figure 7.4: Application of a QDD operation to a specified queue.

138 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

and p be a value such that for every set U; C XF and QDD A; representing this
set, g(Ai, p) is a QDD representing the set fi(U;). For every set U C M and QDD
A= (%5 A, 1, F) representing this set, PERFORM-FUNCTION(A, g,1i,p) returns
a QDD representing the set f/(U).

Proof Assume that A is in normal form. Let {(s1, s]), (s2,55), ..., (Sm, sh,)} (m > 0)
be the set of all the pairs (s, s’) of states of A satisfying the condition at Line 6 of
the algorithm. For each pair (s, s},), we define the automata A - = (X|;, S, A N
(S x (B]<i)* x 8), 1, {sk}), Ak= = (Z|;, S;A N (S x (Z[;)* x 5),{sx},{s,}) and
Ap s = (3]s, S, A N (S x (X]s)* x 9), {s}}, F). We have

L(A)= U L(Aj<) - L(Aj-) - L(A;5),

1<j<m

with L(Ak <) C (2, U---UX;)% L(Ag =) C3Fand L(Ag~) C (B U---UXE,)"
for every k € {1,2,...,m}. Let A’ be the QDD returned at Line 11. We have

L(A/) = 1<LJ< L(-Aj,<) . ﬁ(L(AL:)) . L(.Aj,>)
= U A{wla}- filw]s) - {w|s}-
weL(A)

The QDD A’ thus represents the set f/(U). O

The first application of the algorithm of Figure 7.4 is to compute the effect
of an elementary operation on a set of queue-set contents represented as a QDD.
Algorithms for performing the send and the receive operation are respectively given
in Figures 7.5 and 7.6.

Theorem 7.12 Let q1,qs, . ..,q, be queues of alphabets 31,3, ..., 5, M =X} X
Yixeeex¥Xxie{l,2,...,n}, a €%; and A be a QDD representing the set U C M.
APPLY-SEND(A,i,a) is a QDD representing the set (g;!a)(U).

Proof The result is a direct consequence of Theorems 7.9 and 7.11. O

Theorem 7.13 Let q1,q2, . ..,q, be queues of alphabets 31,3, ..., 5,, M =X} X
Yixeex¥rie{l,2,...,n}, a €%; and A be a QDD representing the set U C M.
APPLY-RECEIVE(A,i,a) is a QDD representing the set (¢;7a)(U).

Proof The result is a direct consequence of Theorems 7.8 and 7.11. O

The property expressed by Theorem 7.11 is very general and is not limited to
elementary queue operations. It will be used several times in the rest of this chapter
in order to obtain algorithms for operations involving an arbitrary number of queues
from algorithms involving only one queue.

7.2. ELEMENTARY QUEUE OPERATIONS 139

function APPLY-SEND(QDD A, integer 4, symbol a) : QDD

1: begin
2: return PERFORM-FUNCTION(A, APPLY-SEND-ONE, i, a)
3: end.

Figure 7.5: Send operation for an arbitrary QDD.

function APPLY-RECEIVE(QDD A, integer 4, symbol a) : QDD

1: begin
2: return PERFORM-FUNCTION(A, APPLY-RECEIVE-ONE; i, a)
3: end.

Figure 7.6: Receive operation for an arbitrary QDD.

function APPLY(QDD A, sequence of queue operations o,
alphabets ¥1,%5,...,%,) : QDD
var ¢ : integer;
begin
for i :== 1tondo
A = PERFORM-FUNCTION(A, APPLY-ONE, i, 0|,);

return A

end.

Figure 7.7: Image of an arbitrary QDD by a sequence of queue operations.

140 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

7.2.3 Sequence of Elementary Operations

As in the case of single-queue QDDs, the algorithms for performing elementary queue
operations on arbitrary QDDs can easily be generalized to sequences of queue opera-
tions. A simple way of performing this generalization consists of remarking that two
operations involving different queues are independent, i.e., that the result of applying
those operations to a queue-set content does not depend on the order in which they
are applied. It follows that for every sequence o of operations involving the queues
Q1,42 - - -, Gn and set of queue-set contents U, we have o(U) = (o|1;0l2;...;0(.)(U).
Applying o to U can thus be done by applying successively to U the projections of
o onto the different queues of the system. An algorithm formalizing this method is
given in Figure 7.7.

Theorem 7.14 Let q1,qo, ..., q, be queues of alphabets 1,35, ...,%,, 0 be a se-
quence of elementary operations on these queues, and A be a QDD representing the
set U C Y] x X5 x -+ x 35 APPLY(A,0,%,%,...,%,) is a QDD representing
the set o(U).

Proof Immediate, as a consequence of Theorems 7.10 and 7.11. O

7.3 Creation of Cycle Meta-Transitions

As it has been shown in Section 3.4.1, the creation of cycle meta-transitions is
controlled by:

e A computable predicate META? defined over the set of potential sequences
of operations, whose purpose is to decide whether the meta-transition corre-
sponding to a given sequence can be created, i.e., whether the closure of the
sequence can always be applied to arbitrary sets of memory contents;

e An algorithm for computing the image of any representable set of memory
contents by the closure of a sequence of operations satisfying META?.

This section aims at providing algorithms for computing a suitable predicate
META? over sequences of queue operations, and for applying closures of such se-
quences to sets of queue-set contents represented by QDDs. We will give here the
most general solution to this problem, in the sense that it will always be possible
to compute the closure ¢* of a sequence o provided that the image by o* of any
representable set is representable. Computing the truth value of META? for a par-
ticular sequence o will thus amount to deciding whether the image by ¢* of any
representable set of queue-set contents is representable.

7.3. CREATION OF CYCLE META-TRANSITIONS 141

7.3.1 Systems with One Queue

In the case of systems with only one queue, a somewhat surprising result is that for
any sequence o of queue operations and recognizable set U of queue contents, o*(U)
is recognizable. Moreover, a finite-state representation of o*(U) is computable given
o and a representation of U. We establish this result constructively, i.e., in the form
of an algorithm for computing the image by ¢* of an arbitrary set represented as a
QDD.

Let ¢ be a queue of alphabet X, U C ¥* be a recognizable set of queue contents,
A be a QDD representing U, and ¢ be a finite sequence of operations on ¢q. We
assume that A is in normal form. We have o*(U) = L(Ag) U L(A;) U L(A3) U - - -,
where Ay, Aq, As, ... are QDDs such that:

o Ay =A;
o A, .1 = APPLY-ONE(A;, o) for every i € N.

For each i € N, we denote (%;, S;, A;, I;, F;) the components of A;.

The goal of the algorithm we are about to develop is to construct a finite au-
tomaton accepting exactly all the words accepted by any of the A;. The idea is that
there is some redundancy among the transitions of the different A;, and that this
redundancy can be captured within a finite structure. The first step is to charac-
terize the relationship between the sets of states and of transitions of the different
A,.

Let ¢ € N. The computation of APPLY-ONE(A;, o) proceeds by applying suc-
cessively to A; each elementary queue operation composing o. The effect of a receive
operation is to modify the set of initial states of the automaton. The effect of a send
operation is to create a new state which becomes the only accepting state, as well
as to add some transitions ending in that new accepting state. Thus, the sets of
states and of transitions of A; 1 are identical to those of A;, except for a series of
new states and transitions depending on oy. The situation is depicted in Figure 7.8.

The set of all the states that have been created during the first ¢ applications
of APPLY-ONE is called the tail of A;, and is denoted tail(i). If i > 0, we thus
have S; = S;_1 U tail(i). The set tail(z) contains exactly i|oy| states which are
denoted tail(i, 1), tail(i,2), ..., tail(i,i|oy|), in the order of their creation. For every
s € tail(i), the integer j such that s = tail(i, j) is called the rank of s and is denoted
rank(s).

During the applications of APPLY-ONE, the effect of each receive operation is
to move the initial states along transitions labeled by the symbol being received.
Since S; C S;41 and A; € A, 41, we have that for every s’ € ;1 there exists s € I;
such that (s, u(o7),s’) € A7 . We say that the initial state s’ is a shift of s. The
set ;11 is thus the set of all the shifts of the elements of I;. If s’ € ;.1 N tail(i + 1)
is a shift of s € I; N tail(i), then rank(s’) = rank(s) + |o-|.

142 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

®

Aq

Ag

Figure 7.8: Effect of repeated applications of APPLY-ONE.

Let us divide [; into two subsets, containing respectively the states that belong
to tail(i) and those that do not. We first consider the latter set, which we denote
I, We have I = I; N Syp. By construction, there is no path of transitions of A;
leading from a state in tail(i) to a state in Sp. It follows that [contains only shifts
of states belonging to I (if ¢ > 0), which implies that the value of I depends only
on the value of I* ;. Since this holds for every ¢ € Ny and since the size of each I*
is bounded by the number of states in Sy, we have that the sequence I§, I}, I, . ..
is ultimately periodic, i.e., that there exist b € N and p € Ny such that for every
i > b, I =17,
period of the sequence of the I*. Without loss of generality, we can choose p and

The numbers b and p are respectively called the base and the

b among the multiples of |0y (the purpose of this requirement is to simplify future
computations).

Computing the values of b and of p is the first step towards capturing the reg-
ularity of the infinite sequence of the A;. Indeed, considering only one A; out
of p eliminates the need to take into account the changes occurring among the
initial states that do not belong to the tail. We define the QDDs Aj, A, A, ...
such that for every i € N, A; = Ajy;p. The components of each Aj are denoted
(335,81, AL I FY). The problem which consists of computing the infinite union of

the L(A;) is easily reduced to the computation of the infinite union of the L(.A}),
thanks to the following result.

7.3. CREATION OF CYCLE META-TRANSITIONS 143

Theorem 7.15 The language U;en L(A;) can be expressed in terms of U;en L(A})
and of a finite number of individual L(A;) using finite union and applying o a finite
number of times.

Proof
U L(A) = UL(A) U ULA)
= UL U U U LA
i<b 0<j<pieN
= Ud'@) u U o (U L(Ab+,~p))
- Ubai(L(.Ao)) U O<U o’ (AL{TL(A;)) :
O

If the sequence o is such that |oy| = 0, then the tail of each A} is empty, and
thus we have A; = A} for every i,j € N. In this case, we have

U L(A) = L(A)).
S
From now on, we assume that |oy] > 0. For each i € N, the tail of A} is
denoted tail’(i) (we thus have tail'(i) = tail(b+ip)). The tail of A, contains
exactly [tail'(i)| = (b + ip)|oi| states which are denoted tail'(i,1), tail'(i,2),...,
tail'(i,|tail’(7)|), in the order of their creation. If 4 > 0, then the initial states of A’
are obtained by shifting p times those of A,_,. We have the following definition.

Definition 7.16 Let i € Ny. An initial state s' € I] of A} is a p-shift of an initial
state s € I]_| of A._, if we have (s, u(o2)P,s") € (A))*.

The initial states of A} are p-shifts of initial states of 4] ;. A crucial point is
that this property does not imply that for every initial state s of A;_,, there exists
an initial state s’ of A} that is a p-shift of s. Indeed, during the p applications of o
that allow to obtain A; from A}_,, initial states are shifted (by receive operations)
and transitions are created (by send operations) in an order depending on the place
of the different operations in . If the transitions that are needed in order to shift
a state are not yet created when the receive operation is performed, then the state
cannot be shifted. On the other hand, if the necessary transitions are available prior
to executing the receive operation, then the state can be shifted. Those observations
allow us to write a sufficient condition on initial states that can be p-shifted.

Definition 7.17 Let i € No. An initial state s € I of Al is robust if either:

144 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

o There exists ' € S! such that (s, u(o7)?,s") € (AL)*, or

o |oy| > |o7| and there exists 8" € tail'(i — 1) such that (s", p(o7)P, s) € (AL)*.

)

The sufficient condition is expressed by the following theorem.

Theorem 7.18 Let i € Ny and s € I]. If s is robust, then there exists an initial
state s’ € Ij, | such that s' is a p-shift of s.

Proof

o If there exists s’ € 5] such that (s, u(o2)?,s") € (A})*, then s’ € I/, and the
result is immediate.

e If |0y > |o9| and there exists s” € tail'(i — 1) such that (s”, u(07)?, s) € (AL,
then s” € I | and s is a p-shift of §”. During the p executions of APPLY-
ONE that compute A} from A;_,, the state s of A’ is obtained from the state
s" of A._| by following a sequence of transitions labeled by pu(c7)P. Since
the tail of A} has a greater length than the one of A ,, and since for any
subpath outgoing from s” in A]_, labeled by a word w € ¥*, there exists a
subpath outgoing from s in A} labeled by w, following an identical sequence
of transitions is possible and allows to go from the state s of A} to some state

s of Aj_ ;.

]
Applying this sufficient condition to the initial states present on the tail of each
A; yields the following result.

Theorem 7.19 Let i > 0 and s € tail’(i) N I/. If rank(s) > plos|, and either
|| > |o2| or rank(s) < |tail’(i)| — p|os|, then s is a robust state of A..

Proof Since rank(s) > p|o-|, we have that ¢ > 0 and that s is a p-shift of a state s’
of A;_, such that rank(s") = rank(s) — p|o»|. Therefore, there exists in the tail of A;
a path m composed of p|o;| transitions leading from s’ to s and labeled by pu(o7)P.
If |oy| > |ov|, then s is robust by definition since s’ € tail’(i — 1). If || < |o%|, then
rank(s) < |tail’(i)| — p|o-|. There exists in the tail of A} a path 7’ composed of p|o.|
transitions leading from s to a state s” such that rank(s”) = rank(s) + p|o-|. By
construction of the tail of Af, the transitions composing 7’ are labeled by the same
word as those composing 7. Thus, we have (s, u(07)?, s”) € AL. Hence, s is robust.
O

The effect of Theorem 7.19 is illustrated in Figures 7.9 and 7.10, in which the
grey area contains the states that satisfy the hypotheses of the theorem. In these
figures, dashed diagonal arrows represent p-shifts of initial states, and dashed ovals
are used to group initial states that are shifted together.

7.3. CREATION OF CYCLE META-TRANSITIONS 145

mnp|og|

OO // O~0O+ ///%/{/;;;%///,

-
~_

mnp(oy) inpu(d;)

mnA’

i1
. _ . 7 -
ALy b ///'//@ ,,/%//,/%;, 06t
mnp(o)) map(op) v
PR . T T , _
O -~~~ “/ 7;// / // " o ?;///
s N g N i 4 / i / i
i’ oRb-bbdio-odbobdic.cibc //%//f’@f///;/%/f@@//@/@///”
oo mn(oy) i) o) //,//// 4/%/,’%/// //////
’ ’ 70 70 _

_ 2000 i)

Figure 7.9: Initial states that are provably robust (|oy| > |o9]).

#(U!;)

*u\(ff!)

/ .
Ai+1'

4 .
Ai+2’

4 .
Ai+3’

O O-OXOHO~O+O-0~0)!
won) mep |mlep | e owlep >\<a!> u(oy)

Figure 7.10: Initial states that are provably robust (|o] < |o7]).

146 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

The notion of robustness allows to capture a part of the redundancy between
the initial states that are present on the tails of the different 4]. Indeed, since for
every ¢ € Ny, all the robust initial states of A] can be p-shifted in order to become
initial states of Aj_ ;, there will be similar patterns of initial states repeated on the
tails of the A]. In order to analyze precisely the nature of those patterns, it is useful
to define a lower bound on the indices of the A; that will be considered: the initial
index iy is defined as the lowest nonzero integer such that |tail’ (i — 1)| > plo7|,
\tail’ (ig)| > 2p|o-|, and |tail’ (ig + 1)] > 3p|os|.

The set of initial states I] of each A such that ¢ > iy can be partitioned into
five subsets:

[Q’

/

The initial states that belong to Sp;

1’ ' . The initial states that belong to tail’(i) and whose rank is less
or equal to plosl;

I’ . The initial states that belong to tail'(i) and whose rank is
greater than p(i — i + 1)|o9];

I? . The initial states that do not belong to I, If/ or Igl and that
satisfy the hypotheses of Theorem 7.19;

I¢ The remaining initial states.

This partitioning is illustrated in Figures 7.11 and 7.12.

For each ¢ > iy and £ € {«, 57,9, €}, we define .Af/ as an automaton identical to
A’ except for its set of initial states which is made equal to If/ (formally, we have
A8 = (33, 81 AL I¥F,)). Computing the infinite union of the L(A}) can easily be

reduced to computing the infinite union of the L(AY) for each € € {a, 37,6, €}, as
a consequence of the following theorem.

Theorem 7.20 The language U;en L(A%) can be expressed in terms of the languages

Uisio L(Afl), where £ € {a,57,d,€}, and of a finite number of individual L(A}),

using finite union.

Proof
U L) = U L) u | L(A)
1eN 1<1g 1210
= ULA)u U U L.
1<ig ce{a,B,0,e} i>1o
O

It remains to show how to compute finite-state representations of the different
Ui L(AY). We address each case separately.
The definition of the A; implies

— ¢

o _ 7d _ 7d _
I - Iio - Iio-‘rl io+2 — ¢

i0—1

7.3. CREATION OF CYCLE META-TRANSITIONS

Al

AL

ig’

Al

’ .
.Ai0+2A

ig—1°

ig+1’

u(;!{ pley)

u(;z)i *u\(f'!)

Al

AL

0

Al

Al

ig—1°

ig+1

ig+2°

“(U!»)—»

(o)

18’

I»L(';;)i) u(oy)

“(g!»)—»

1%

u(ff{)

*u\(oz)

w(oy)

M(U!)i

(o)

u(oy)

18’

Figure 7.12: Initial states partitioning (|o| < |o9]).

u(;!>)7>

I'Y/

(o)

148 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

, O
ae’ Gl
ig iQ O
u(;;YJ w(oy) w(oy) w(oy) w(oy) w(oy) u(or)
O PSS
ol . d R
Alo+1 Y At O M%%
#(;!37>7 (o) n(oy) p(oy) n(oy) w(oy) n(oy) n(oy) n(oy) w(oy)
O
ol 8 d R
A2 U AL Ly OSSO OO OO OO OO OO OO0 -
#(;!37>7 (o) n(oy) n(oy) n(oy) n(oy) n(oy) n(oy) n(oy) n(oy)
Ia/ IB/

we) | wle) owe) o) w(e) wley)

Figure 7.13: Automaton accepting U;s;, (L(A$) U L(APY).

Since for each i > i, the set If " is the set of all the p-shifts that do not already
belong to I¢ of the elements of I, that can be p-shifted, this result implies

CA B T -
[Z'O - [Zo+1 - [Zo+2 - [ZO+3 —_ ...,

Hence, for £ € {a, 3}, the only difference between the Af/ is the length of their tail.
For each i € N, the tail of A7, , contains p|oi| more states than the one of A}, and
the sequence of transitions visiting those additional states is labeled by p(oy)?. It

follows that we have

U (Z(AY) U L(A))) = (L(AZ) U L(AD)) - (u(o)P)".

i>i0

An automaton accepting U, (L(A2) U L(A%)) can easily be constructed by ap-
pending a cycle labeled by (o) to an automaton accepting L(A2) U L(.Afol). A
possible construction is depicted in Figure 7.13.

In order to compute the infinite union of the Azl, we distinguish two situations.
First, if |oy| > |09/, then for every i > i, all the elements of I]" are robust as a

7.3. CREATION OF CYCLE META-TRANSITIONS 149

A
iQ
we) ule)
v
ig+1
n(oy) n(oy) u(oy) u(oy) n(ay) #(;!37>/ w(oy)
'y/ ///>7;\\\ /">7>;\\\
Aio+2° : 7 ‘ b a
n(oy) w(oy) u(oy) u(oy) u(oy) u(oy) u(‘_if u(oy) u(;()ﬂ/ u(oy)
I’Y/
/ A\,
AT AN
K " ;»’bf\‘;»>f\‘)»>f\‘k>’\‘k>’\‘k>’\‘?>
i>ig

ey ule) wlen wep wep oule) uley)

Figure 7.14: Automaton accepting U;>, L(AY) (with |oy] > |o9]).

consequence of Theorem 7.19. This means that I?Jlrl is the set of the p-shifts of the
elements of I, It follows that L(A7,,) = L(AY)-u(00)%, with d = (Joy|—|o2])(p/|o]).
Therefore, we have

U L(AY) = L(AL) - (o))"

i>i
An automaton accepting U;>;, L(.AZ,) can be constructed by appending a cycle la-
beled by p(o1)¢ to an automaton accepting L(AZOI) A possible construction is de-
picted in Figure 7.14.

If |o| < |o¢|, then there exists i; > iy such that for every j > iy, 1]7/ = (). Indeed,
for every ¢ > iy, computing A;Clrl from .A;/ increases the rank of each initial state of
the tail by p|o7| while the length of the tail is only increased by p|oy|. An automaton
accepting U, >4, L(AZ/) can be constructed by first determining the value of i;, and
then building an automaton accepting the language

UL = U LA.

1>10 10<1<11

Let us now discuss the computation of the union of the L(.A?"). We have I i‘z = 0.

150 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

For every i > ig, all the initial states that belong to I?" are robust by definition.
Moreover, each of these initial states is a p-shift of an initial state belonging either to
I; g ~, or to I ;. Since all the I 7 such that i > i are equal to each other and contain
only robust states, we have that for every i > iy, I? C IfH Let us distinguish two
cases. If |oy| > |07, then all the initial states in I?,, that do not belong to I? are
exactly the states obtained as a result of p-shifting ¢ — ig + 1 times the states in
I8, Tt follows that
L(AL) = L(AY) - p(o)? U L(AY) - (o),

with d = (|o| — |o7])(p/|o1|). Therefore, we have

U L(AY) = LAY) - ((o)) - (o))"

i>io
An automaton accepting U;>, (A‘S,) can be constructed by appending successively
cycles labeled by p(oy)? and then by pu(o1)? to an automaton accepting L(AJ ;). A
possible construction is depicted in Figure 7.15.

If |o1] < |ov]|, then the situation is more tricky. Even though all the initial states
that belong to I?" can be p-shifted for i > i, their p-shifts do not necessarily belong
to 12, (as it is the case when |oy] > |o7]).

For each i > iy, all the elements of I have a rank between p|o|+1 and [;, where
l; = min(|tail’(i)| — plos|, p(i — o + 1)|o7|). We define the right index r; of i as the
greatest integer such that r;p|os| < l;, and the right block IflR of I? as the set

I'®={s eI’ | (r;— plos] < rank(s) < riplos|}.

Intuitively, this corresponds to slicing the tail of A} into groups of p|o7| consecutive
states. The right block of Af/ is the subset of initial states belonging to the rightmost
group in which each state satisfies the hypotheses of Theoren/l 7.19. The notion of
right block is illustrated in Figure 7.16. The automaton Af’* is defined as being
identical to A? except for its set of initial states Which is made equal to the right
block of A?. Formally, we have AéR = (3, SI, AL ZR, F)).

The usefulness of the notion of right block is that for every ¢ > iy, each element
of 17, i1 either belongs to I, or is a p-shift of a state belonging to I %, Moreover, for
each state s in I¢, 1 there eX1sts J € {1,2} such that s can be obtained by p-shifting

J times an element of I %11+ Therefore, we have

/

L(ATL) U L(AZ) = LAY - (o U o (L(AT)) U o (L(AT))

From this expression, we deduce

U (LAY U L(A)) = U LAR) - (ulo)?)" U o (U L(A)

12140 1>140 1>10

v (U, L<Afﬁ>) ,

7.3. CREATION OF CYCLE META-TRANSITIONS 151

/
A8
0

s
AGy 41t

#(;()7> w(oy) u(ay) u(ay) n(oy) u(oy) n(oy)

ig+2’ \

w(e) wloy) we) uley) Q) (o) (o) (o) (o)) (o)) (o))

1%

n(od

6/
U

i>ig

#(;!37> n(oy) n(oy) u(oy) u(ay) u(oy) u(oy) n(oy)

Figure 7.15: Automaton accepting U;s, L(AY) (with |on] > |ov]).

152 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

ig" | S L)

ig+1°

wloy) u(oy)

ig+2°

s
ig+3’

s
ig+4’

5/
ig+5°

o) u(oy)

W) | oule) wle) | wlop)

Figure 7.16: Right blocks.

7.3. CREATION OF CYCLE META-TRANSITIONS 153

which reduces the problem of computing the infinite unions of the A? and of the
A¢ to the computation of the infinite union of the AfR
Let us show how to solve the latter problem. For every ¢ > iy, we have

L(AY) if i =g+ 1;
a” <L(Aflfl)> if dp + 1 < i < iy
& : -
LAT) =\ L(A%) - w(o)? it i > iy and Vﬁi?(z)J Vaﬁmj' 1)|J’ (7.1)
or (L(Ale)) if i > iy and Vifi?<i>J Vagojl 1>|J b1

where s is the smallest integer such that iy > i and [tail (ig)| < (ia — io + 2)p|o-|.
Intuitively, 75 is the smallest integer such that I %% is different from the result of

p-shifting is — 79 — 1 times the states in IZOffH
The infinite sequence of languages L(.AZO), L(.Affﬁ) L(Afo a),... s ultimately

periodic. Indeed, for every ¢ > io, applying p times Equation 7.1 ylelds L(A; +p) =
5/
L(A®

;). As a consequence, we have

ULA™ = | LA™,

1>10 10<t<ig+p

2 summarizing the different steps of the computation of ¢*(U) is

An algorithm
given in Figures 7.18, 7.19 and 7.20. This algorithm relies on a subroutine which
is given in Figure 7.17. The correctness of the subroutine and of the algorithm is

established by the following theorems.

Theorem 7.21 Let q be a queue of alphabet 3, w € ¥* be a word, and A be a QDD
representing the set U C ¥*. APPEND-LOOP(A,w) is a QDD representing the set
U-w*.

Proof Immediate. O

Theorem 7.22 Let q be a queue of alphabet >, o be a sequence of elementary
operations involving q, and A be a QDD representing the set U C ¥*. APPLY-
STAR-ONE(A,c) is a QDD representing the set o*(U).

Proof The algorithm of Figures 7.18, 7.19 and 7.20 is a straightforward implementa-
tion of the method described in this section. There is however a small optimization:
a variable [is introduced in Lines 47-59 in order to simplify the computation of the
right blocks. The principle of this optimization is to ensure that at any time, the
current right block may be p-shifted inside the region containing I% if and only if

2In this algorithm, the union operator “U” applied to QDDs denotes repeated calls to the
function UNION introduced in Section 6.2.4.

154 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

function APPEND-LOOP(QDD (X, 5,A,I, F), word ajas - - am,) : QDD
1 var §i,S89,..., Sy : states;
2 begin

3 if m = 0 then return (X, 5, A, I, F);

4 let s1,89,...,8m € S

5: S =85 U{s1,82,...,8m};

6 A=A U{(s,a1,81) | s € F} U{(si-1,0i,8:) | 1 <i<m} U {(sm,a1,51)};

7 F :=F U {sm}

8 return (X, 5, A, I, F)

9

end.

Figure 7.17: Subroutine APPEND-LOOP.

[> 0. Intuitively, the value of [is related to the distance (in terms of rank difference)
between the current right block and the leftmost edge of that region. O
There is an important corollary to Theorem 7.22.

Corollary 7.23 Let q be a queue of alphabet ¥, o be a sequence of elementary
operations involving q, and U C ¥* be a recognizable set of queue contents. The set
o*(U) is recognizable.

7.3.2 Systems with Any Number of Queues

In the case of systems having more than one queue, one cannot hope to obtain a
result similar to Corollary 7.23. The reason is that iterating sequences of elementary
operations involving more than one queue can generate non-recognizable sets of
queue-set contents. For instance, in the case of a system with two queues ¢; and
¢2 whose alphabets are respectively {a;} and {as}, the closure of the sequence
¢1'a1; golas transforms the set of queue-set contents U = {(e,¢)} into the set U’ =
{(a},a%) | n € N}, whose sequential encoding is not regular.

The first step is to characterize precisely the sequences of queue operations whose
closure preserves the recognizability of sets of queue-set contents (and therefore the
possibility of representing these sets by QDDs). Our characterization is based on
the following notion.

Definition 7.24 Let o be a sequence of queue operations involving only one queue
q, and let ¥ be the alphabet of q. The sequence o is counting if one of the following
conditions is satisfied:

7.3. CREATION OF CYCLE META-TRANSITIONS

155

function APPLY-STAR-ONE(QDD (X%, S, A, I, F), sequence of queue operations o) : QDD

1 var A : array[0,1,...] of QDDs;
2 I* : array|0,1,...] of sets of states;
3 So, 51,55 : sets of states;
4 Al AL AT A A A AT A A A‘S/ A% A A : QDDs;
5: (Xfo» Sty Al Lig» Fiy)y (B 115 Sip 1 Ay 10 Lig 1
6 ni,na, p,b,d, i,1i9,%1, 12,1 : integers;
7 begin
8 Al0] == (2,8,A,1,F) := NORMALIZE((S, S, A, I, F));
9 if |o7| = 0 then return APPEND-LOOP (A[0], u(o1));
10: 1°00] = I;
11: Sy = S,
12: ny = 0;
13: repeat
14: ny = np+1;
15: Afni] = (,8,A,1,F) := APPLY-ONE(An; — 1], 0
16: I*lnq] == 1N S
17: until there exists ny such that 0 <ny <n; A I%ny] =
18: if |oy| = 0 then return U Alil;
0<i<ng
19: p = lem(ny — ng, |ov);
20: b= |on|[na/|on]];
21: io 1= [3"’?' - q 1
o] p
22: A;O = (2 1075:0, i0) ZO,F’) := APPLY-ONE(A[n4],
23: ;UJFI = (E;UJFI, SZ-UJrl, A;UJFI, o1 FZ’UJrl) := APPLY-ONE(oP);
24: Sy ={s € S’{ | (3s € Sp,w € T*)((s,w,s") € Aio A Jw| < ploe))};
25: Sy = {s'€ 8] ;1| (3seSo,weX*)((s,w,s) e A;H A |w| < 2plos|) };
26: AP = (S0 AL I NS FL):;
27: AP = APPEND-LOOP(A%B ,1(0)P);
Figure 7.18: Image of a single-queue QDD by the closure of a sequence of queue

operations.

156 CHAPTER 7. SYSTEMS USING FIFO CHANNELS
(...)
28: AL = (Tl S Al T\ St F);
29: A?Ulﬂ = (Zfgg1s Siga1s Blgars Ligpr N (S2\ S1), Fy4y);
30: if |oy| > |o7| then
31: begin
82: = oo =l
33: AV = APPEND-LOOP(A7 , u(o1)%);
34: A% .= APPEND-LOOP(APPEND-LOOP(A?Y , ,, u(o1)%), pu(e)?)
35: end
36: else
37: begin
38: - {(b/P)lil?T(ifgjl)la?lw;
39: A = A = AZU/;
40: fori := iy +1toi; —1do
41: begin
42; A" = APPLY-ONE(A"", o?);
43: A = UNION(AY, A7)
44 end;
45: i2 := 1+ max(io, {(b/p”(’l!:lr_(ira!l 2)|U?|—‘);
46: AR = A%k = A?U/H;
47: U := (b+ (io + 2)p)|or| — 4plo=];
48: fori:=iy+2tois+p—1do
49: if { > 0 then
50: begin
51: A% .= APPLY-ONE(A%%, o?);
52: Adr ;= UNION(A%R, A%R);
53: =1+ p(lo] = o)
54: end
(...)
Figure 7.19: Image of a single-queue QDD by the closure of a sequence of queue

operations (continued).

7.3. CREATION OF CYCLE META-TRANSITIONS 157

(...)

55: else

56: begin

57: A% := APPLY-ONE(A’%,o7);

58: AR .= UNION(A%, A%%);

59: =1+ plo]

60: end;

61: A% .= APPEND-LOOP(A%%, ui(0y)P);

62: A% = UNION(A% APPLY-ONE(A%%, o?));

63: A% .= UNION(A%", APPLY-ONE(A%, 627))

64: end;

65: A’ := UNION(| J APPLY-ONE(A[mi],c*™*%%) |) A%
0<i<io ée{aB,y,0¢}

66: A" := UNION(| J APPLY-ONE(A[0],0%), | APPLY-ONE(A’,0"));
0<i<b 0<i<p

67: return A"

68: end.

Figure 7.20: Image of a single-queue QDD by the closure of a sequence of queue
operations (continued).

158 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

o |X|>1and|o| >0,
o |X| =1 and|o| > |o7|.

Intuitively, a sequence o of operations that satisfies the previous definition is
called counting since in that case, there are sets U of queue contents for which
the number k of applications of o to U can be determined by examining the lan-
guage o*(U), for every k > 0. Formally, this property is expressed by the following
theorem.

Theorem 7.25 Let o be a sequence of queue operations involving only one queue
q, and let 3 be the alphabet of q. The sequence o is counting if and only if there
exists a recognizable set U C ¥* of queue contents such that o (U) # o*2(U) for all
k1, ke € N such that ky # ko.

Proof

o [f o is counting, then there exists U C ¥* such that U s recognizable and
o™ (U) # o*2(U) for all ky, ko € N such that ky # ky. If |3| = 1, then let a
denote the only symbol in ¥. Choosing U = {u(o7)} yields for every k € N

of(U) = {a(l—k)|07|+k|os|)}_

If |X| > 1, then let a € ¥ be a symbol different from pu(o7)[1]. Choosing
U = u(o9)* - a yields for every k € N

o"(U) = p(o2)" - a - p(on)".

e [f 0 is not counting, then for all the recognizable sets U C 3*, there exist
ki, ko € N such that ky # ko and o™ (U) = o*2(U). If |X| = 1, then we
must have |oy| < |ov|. The set U is a context-free language over a one-letter
alphabet. It is well known [Mat94] that such languages can be expressed as a
finite union of languages U; of the form a% - (a%)*, where a is the only symbol
of ¥, and [;,I, € N. For every k € N, the language o*(U;) is either empty or
of the form a% - (a%)*, with 17 < max(l;, |os| + /) (this is easily established by
induction on k). The set of possible o*(U;) is thus finite, hence such is the set
of possible o*(U).

If |¥| > 1, then we must have 0 = ;. Let Ay be a QDD representing U.
For every k > 0, let Ay be the QDD returned by APPLY-ONE(A;_4,0). For
every k € N, the QDD Ay, is identical to Ay except (possibly) for its set of
initial states. As there are only a finite number of possible sets of initial states,
the infinite sequence Ay, A1, As, . .. is ultimately periodic, and therefore there

exist k1, ko € N such that L(Ay,) = L(Ayg,) and ki # ko.

7.3. CREATION OF CYCLE META-TRANSITIONS 159

O

The notion of counting sequences leads to a necessary condition on sequences of
operations ¢ (involving any number of queues) whose closure preserves the recog-
nizable nature of sets of queue-set contents. Roughly speaking, the idea is that if o
admits two projections o|; and o|; (i # j) that are both counting, then there exists
a set U of queue-set contents such that for every £ € N, the sequential encoding of
o*(U) represents the value of k twice (once in o*(U)|; and once in o*(U)|;). Since
k is unbounded, it is impossible for a finite-state machine to check whether the two
represented values coincide, which implies that o*(U) is not recognizable. Formally,
we have the following theorem.

Theorem 7.26 Let o be a sequence involving the queues qi,qs, ..., q, (n > 1) and
let 3q,%9,...,%, be the alphabets of those queues. If for every recognizable set
U C X7 x X5 x---x X5 the set 0*(U) is recognizable, then there do not exist
i,j € N such that 1 <1i < j <n and such that o|; and o|; are counting sequences.

Proof The proof is by contradiction. Suppose that there exist 7, j € N such that
1 <i < j <n and such that o|; and o|; are counting. We show that there exists a
recognizable set U C X7 x ¥4 x -+ x X* such that ¢*(U) is not recognizable. For
each k € {1,2,...,n}, we define the recognizable set of queue contents U, C ¥} as
follows:

o If k€ {i,7} and || > 1, then Uy = p(0o|k,)* - ag, where a;, € Xy, is a symbol
different from p(o|y,)[1];

o If ke {i,j} and |X;| =1, then Uy, = {u(o|i,)};
o If k& {i,j}, then U, = 3.

Let U=U; x Uy x ---x U, and U" = ¢*(U). Let us prove by contradiction that U’
is not recognizable. If U’ is recognizable, then its sequential encoding L' = Eg(U’)
is regular. Let Lj; = L'|; - L'|;. We have

L;j:{ui-(vi)l-uj-(vj)l|lEN N uiGVi /\UjGV}},
where for each k € {i,j}, Vi and vy are defined as follows:
o If |X;| > 1, then Vi, = p(o|k,)* - ar, and vy = p(o|y);

o If |X;| =1, then Vj, = {u(o|k,)} and vy = (aj,)™, where aj, is the only symbol
in ¥y, and my = [(o]ky)] = |(o]k,)]

Since L;; is not regular, L is not regular. Therefore, U’ is not recognizable. O
The next step is to show that the condition expressed by Theorem 7.26 is not

only necessary but also sufficient, i.e., that for any sequence o satisfying the hy-

potheses of this theorem and recognizable set U of queue-set contents, the set o*(U)

160 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

is recognizable. Our proof of this result is constructive and can be translated into an
algorithm for computing a QDD representing ¢*(U), given ¢ and a QDD represent-
ing U. Roughly speaking, the proof is based on the fact that for every queue ¢; such
that o|; is not counting, applying an unbounded number of times the sequence o|; to
an arbitrary subset of X7 is always equivalent to applying it only a bounded number
of times (as a consequence of Theorem 7.25). Applying an unbounded number of
times the sequence o to U can thus be reduced to applying a bounded number of
times each o|; that is not counting and applying an unbounded number of times
the only (if any) o|; that is counting. The latter problem can then be solved as a
consequence of Theorem 7.22.
Formally, the sufficient condition is stated as follows.

Theorem 7.27 Let o be a sequence involving the queues qi,qs, ..., q, (n > 1) and
let 321,39, ..., 2, be the alphabets of those queues. If there exists at most one i € N
such that 1 < i < n and such that ol|; is counting, then for every recognizable set
UC¥x35x---x Xk the set o*(U) is recognizable.

Proof If U C X7 x 33 x --- x ¥ is recognizable, then it can be expressed as a finite
union Uy <<, Ujo where ¢ > 0, each Uy is of the form Ujo X Ujoa X - -+ X Ujoy, and
for every [€ {1,2,...,n}, Ujy is a regular subset of 3. We define Uy = U and for
every k € Ng, Uy = 0(Uy_1). For every k € N, we have

Up= U (©@)"(Ujor) % (0]2)*(Ujoz) x -+ % (]n)*(Ujon).

1<j<q

Let ¢ be the only integer such that o|; is counting (if any), and let i = n+1 if there is
no such integer. Applying Theorem 7.25, we obtain that for every [€ {1,2,...,n}
such that [# ¢ and j € {1,2,...,q}, there exist b; € N and p;; € Ny such
that for every k > by, (o|)"(Ujo1) = (o];)**#(Ujo). Defining b = max; ;4 b;; and
p = lem; 4;pji, we obtain that for every j € {1,2,...,q},k>bandl e {1,2,...,n}
such that I # 4, (o|,)*(Ujoa1) = (o|;)*"P(Ujo;). There are two possible situations.

e [fi > n. Then, for every k > b, we have Uy, = Uy. The set o*(U) can thus
be expressed as a finite union of recognizable sets:

0<k<b+p

e /f1 <i<mn. Then, we have

U= Foyu Y o~ (U JbJrkp(U)),

0<k<b 0<k’<p keN

7.3. CREATION OF CYCLE META-TRANSITIONS 161

function META?(sequence of queue operations o, alphabets ¥1,%,,...,%,) : {T,F}

1 var i, j : integers;

2 begin

3 7 = 0;

4 for i :== 1tondo

5: if (|3 > 1 A f(ali)| > 0) v (%] =1 A [(ali] > [(aliz)]) then
6 ifj=0then j :=1

7 else return F;

8 return T

9 end.

Figure 7.21: Implementation of META? for sequences of queue operations.

and

U o™ U) = U (@) (Ujor) % -+ x (0]i=1)"(Ujo-1y)

X (ol (1) (U)
X (0]i11)" Ujog+1)) X -+ % (0]2)"(Ujon)-

As a consequence of Corollary 7.23, the sets ((a];)?)*((a];)°(Ujoi)) are recog-
nizable. Therefore, the set ¢*(U) is also recognizable.

O
Theorems 7.26 and 7.27 can be combined into a necessary and sufficient condi-
tion:

Corollary 7.28 Let o be a sequence involving the queues qi,qa, ..., G, (n > 1) and
let 31,59, ...,5, be the alphabets of those queues. The set o*(U) is recognizable
for every recognizable set U C X7 x 35 X -+ x X* if and only if there do not exist
i,7 € N such that 1 <i < j <n and such that o|; and o|; are counting sequences.

This corollary makes it possible to decide whether the closure of a sequence o
of queue operations preserves the recognizability of sets of queue-set contents, i.e.,
to decide whether a cycle meta-transition can be associated to . An algorithm
implementing the decision procedure is given in Figure 7.21.

Theorem 7.29 Let o be a sequence involving the queues qi,qs, ..., q, (n > 1) and
Y1, %9, ..., %, be the alphabets of those queues. The set o*(U) is recognizable for ev-
ery recognizable set U C X5 x 35 x---x 3% if and only if META?(0,%1,%s,...,%5,) =
T.

162 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

Proof The result is a direct consequence of Definition 7.24 and of Corollary 7.28.
O

The proof of Theorem 7.27 provides a way of constructing a QDD representing
o*(U) given a sequence o of queue operations such that META? (0, X1, %o,...,%,) =
T and a QDD representing the set U. An algorithm?® implementing this construction
is given in Figure 7.22.

Theorem 7.30 Let o be a sequence involving the queues qi,qa,-..,qn (n > 1),
¥1,%9, ..., 5, be the alphabets of those queues, and A be a QDD representing the
set of queue set contents U C X x X5 x -+ x X5, If META?(0,%,...,%,) =T,
then APPLY-STAR(A,0,%,...,%,) is a QDD representing the set o*(U).

Proof The algorithm of Figure 7.22 is a direct implementation of the computation
method described in the proof of Theorem 7.27. O

7.4 Creation of Multicycle Meta-Transitions

This section is aimed at providing the algorithms that are needed in order to be
able to associate multicycle meta-transitions to systems using FIFO queues. As
it has been shown in Section 3.4.2, the creation of multicycle meta-transitions is
governed by a computable function MULTI-META-SET that takes as arguments a
finite number of sequences of operations, and returns a finite number of memory
functions defining multicycle meta-transitions that can be associated to the cycles
labeled by those sequences of operations.

Regrettably, one cannot hope here to obtain results similar to those of Section 7.3,
in which it was always possible to create a meta-transition whenever the memory
function of this meta-transition preserved the recognizability of sets of queue-set
contents. Indeed, there are classes of systems such as lossy systems [AJ93, AJ94]
that can be modeled as QSMAs and for which it is known [CFI96] that their set of
reachable queue-set contents is always recognizable but generally not computable.
Since every QSMA A can be simulated by a QSMA A" with only one control lo-
cation (for instance, by creating an additional queue whose content encodes the
control location of A), the existence of an algorithm for computing the effect of ev-
ery multicycle meta-transition whose memory function preserves the recognizability
of sets of queue-set contents would make it possible to compute the set of reachable
queue-set contents of an arbitrary lossy system.

The solution we propose is based on an algorithm for computing the image of
a representable set by a multicycle meta-transition, provided that the sequences
of queue operations that characterize this meta-transition satisfy some conditions.

3In this algorithm, the test of equality of the languages accepted by two QDDs can be imple-
mented by two calls to the function INCLUDED? presented in Section 6.2.4.

7.4. CREATION OF MULTICYCLE META-TRANSITIONS 163

function APPLY-STAR(QDD (3, S, A, I, F), sequence of queue operations o,
alphabets ¥1,¥9,...,%,) : QDD

var A : array[0,1,...] of QDDs;
Ao, A’ : QDDs;
1,b,p : integers;

f : function;

1= 1
while : < n do

1
2
3
4
9: begin
6
7
8 i (%] > 1A [(0])] > 0) v (%] = 1 A |(0]:)] > [(lir)]) then

goto break
9: elsei := i+ 1;
10: break:
11: f =525 = X155 50 0w w|y;
12: 7 = 0;
13: A= Ay = (5,5,A1, F);
14: A[0] := APPLY-HOMOMORPHISM (A, f);
15: repeat
16: 7 =7+1
17: A== APPLY(A',0,%1,%2,...,5,);
18: Alj] := APPLY-HOMOMORPHISM(A', f)
19: until there exists b such that 0 < b < j A L(A[j]) = L(A[b]);
20: if i > n then return U Alk];
0<k<j
21: p:=j—b
29; A’ := PERFORM-FUNCTION(A’, APPLY-STAR-ONE, i, (0]i)?);
23: return | J APPLY (A, 0% %1, %s,...,5,)
0<k<bd
U |J APPLY(A, 0% %1, %,...,%,)

0<k<p

24: end.

Figure 7.22: Image of a QDD by the closure of a sequence of queue operations.

164 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

These conditions will be chosen so as to allow a simple generalization of the function
APPLY introduced in Section 7.3 to the case of multicycle meta-transitions. We
consider successively systems with one and then with an arbitrary number of queues.

7.4.1 Systems with One Queue

The function APPLY-STAR-ONE discussed in Section 7.3.1 proceeds by construct-
ing a finite structure equivalent to the infinite union of all the automata that can
be obtained by repeated applications of a given sequence of operations. Roughly
speaking, the idea behind the construction was to capture some periodicity among
the sets of states of the different automata.

The same approach is followed here. Let ¢ be a queue of alphabet 3, and
01,02, ..., 0, (Mm > 0) be sequences of elementary queue operations involving ¢q. The
set 0 = {01,09, ...,0,} is called the multisequence characterized by oy, 09, ..., 0.
The image by o of a set U C X* of queue contents is defined as the set

5(U) = o1(U) U 0a(U) U -+ U 0 ().

The goal of this section is thus to provide an algorithm for computing a QDD
representing
o*(U) = U o"(U)
keN

given a QDD representing a recognizable set U C ¥*, under some restrictions on
o. If 6 = {o1,09,...,0,} is a multisequence, then 7, denotes the multisequence
{o11,001,...,0m}. If g; is a queue, then &|; denotes the multisequence obtained by
removing from the sequences composing & all the operations which do not involve
q;-

The first restriction concerns the receive operations that can be performed by
the sequences composing . In order to be able to exploit some results already es-
tablished in Section 7.3.1, we restrict the class of multisequences that are considered
to those whose components all share the same sequence of receive operations. This

restriction is formalized by the following definition.

Definition 7.31 The multisequence {o1,09,...,0,} is receive-deterministic if it is
such that 017 = 099 = -+ = Tppo.

If 6 = {01,09,...,0,} is receive-deterministic, then g, denotes the sequence
0i7, where 7 is arbitrarily chosen in {1,2,...,m}. A positive property of receive-

deterministic multisequences is that they allow a simple generalization of the func-
tion APPLY-ONE introduced in Section 7.2.1. Indeed, computing the image of a
QDD A by a such a multisequence & can be done by computing separately the im-
age of A by each sequence composing &, and then joining together the tails of the
resulting QDDs. An algorithm formalizing this construction is given in Figure 7.23.

7.4. CREATION OF MULTICYCLE META-TRANSITIONS 165

function APPLY-MULTI-ONE(QDD 4, multisequence of
queue operations {o1,03,...,0,}) : QDD

1 var (X,5, A1, F), (X, 8, A", I',F’) : QDDs;

2 1 : integer;

3 s : state;

4 begin

5: (3,8, A IF) = A;

6 let s € S;

7 S =S U {s}h

8 F = {s};

9 for i := 1tom do

10: begin

11: (X', A", I, F') := APPLY-ONE(A, o;);

12: S:=S5uUs;

13: A:=AUA;

14: A= AU{(sw,s) €S x* x{s}| (3(s1,w,s2) € A)
(si=8 ANwy=w A s3 € F')};

15: if o] > 0 then A := A\ (8" x ¥* x F');

16: I:=1T,

17: if I'NF' #(then I := 1 U {s}

18: end;

19: return (X, 5, A, I, F)

20: end.

Figure 7.23: Image of a single-queue QDD by a receive-deterministic multisequence
of queue operations.

166 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

Theorem 7.32 Let q be a queue of alphabet X2, 6 = {01,09,...,0,} be a receive-
deterministic multisequence of elementary operations on q, and A be a QDD repre-
senting the set U C ¥*. APPLY-MULTI-ONE(A,7) is a QDD representing the set
a(U).

Proof Each execution of Line 11 computes a QDD A; representing o;(U), with
i € {1,2,...,m}. The sets of states and of transitions of the QDD A’ returned
by the algorithm are respectively the union of the sets of states and of the sets of
transitions of all the A;. Since & is receive-deterministic, all the A; are identical
except for their tail. It follows that A" accepts a word w if and only if w is accepted
by one of the A; (the QDD A’ can actually be seen as an automaton with m disjoint
tails). There is one small optimization at Lines 14-15, in which the accepting states
of the A; are grouped into a single state. This optimization, which is introduced
in order to facilitate future applications of the algorithm, does not influence the
language accepted by the returned automaton. O

Let ¢ be a queue of alphabet 3, U C ¥* be a recognizable set of queue contents,
A be a QDD representing U, and & be a receive-deterministic multisequence of
operations on ¢q. We assume that A is in normal form. We have 6*(U) = L(Aq) U
L(Ay) U --- where Ag, Ay, ... are QDDs such that:

o Ay = A;
e A, = APPLY-MULTI-ONE(A;,) for every i > 0.

One can apply the same reasoning as in Section 7.3.1 in order to capture the re-
dundancy among the sets of states and of transitions of the A; into a finite structure.
For each i € N, we denote (%;, S;, A;, I;, F;) the components of A;. The set of all the
states that have been created during the first ¢ applications of APPLY-MULTI-ONE
is called the multitail of A; and is denoted mtail(i). The multitail of A; is actually
composed of m parallel tails created by the calls to APPLY-ONE (these tails are
called the component tails of A;). The situation is depicted in Figure 7.24.

In order to be able to apply straightforwardly the technique developed in Sec-
tion 7.3.1 to multitails, we need to impose an additional restriction. Roughly
speaking, this restriction consists of requiring that during each successive call to
APPLY-MULTI-ONE, the initial states belonging to different component tails of an
automaton are shifted together, i.e., that they are moved by the same amount of
transitions. Formally, we have the following definition.

Definition 7.33 Let q be a queue of alphabet 3 and 6 = {01, 09,...,0,} be a mul-
tisequence of elementary operations on q. The multisequence & is send-synchronized
if it is receive-deterministic, and if for every i,j € {1,2,...,m}, |oy| = |oj,|.

7.4. CREATION OF MULTICYCLE META-TRANSITIONS 167

Figure 7.24: Effect of repeated applications of APPLY-MULTI-ONE.

If 6 = {0y,09,...,04,} is send-synchronized, then |7,| denotes the length |0y,
where i is arbitrarily chosen in {1,2,...,m}. Computing the image of a recognizable
set of queue contents by the closure of & can be done by performing essentially the
same operations as in Function APPLY-STAR-ONE to each component tail of the
A;. There are however two minor differences:

e The subroutine APPEND-LOOP must be replaced by a subroutine APPEND-
MULTI-LOOP, whose purpose is to apply the closure of a multisequence only
composed of send operations;

e Applying k times (k > 0) the multisequence {oy,09,...,0,} is in general
not equivalent to applying once the multisequence {o¥ o0&, ... ok} Two sub-
routines APPLY-N-MULTI-ONE and APPEND-N-MULTI-LOOP must be in-
troduced in order to generalize APPLY-MULTI-ONE and APPEND-MULTI-

LOOP to repetitions of multisequences of operations.

The generalization of the function APPLY-STAR-ONE to send-synchronized
multisequences of queue operations is given in Figures 7.28, 7.29 and 7.30. For
convenience, the function implemented by this algorithm has an additional integer
parameter k that allows to apply the closure of % (rather than the closure of 7).
The three subroutines upon which this algorithm relies are given in Figures 7.25,

168 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

function APPLY-N-MULTI-ONE(QDD .4, multisequence of
queue operations 7, integer k) : QDD

1 var 1 : integer;

2 begin

3 for i := 1to k do

4: A := APPLY-MULTI-ONE(A, 7);
5 return A

6

end;

Figure 7.25: Image of a single-queue QDD by repetitions of a receive-deterministic
multisequence of queue operations.

7.26 and 7.27. The correctness of the subroutines and of the algorithm is established
by the following theorems.

Theorem 7.34 Let q be a queue of alphabet X3, & be a receive-deterministic mul-
tisequence of elementary operations on q, k € N be an integer, and A be a QDD
representing the set U C ¥*. APPLY-N-MULTI-ONE(A,a,k) is a QDD represent-
ing the set % (U).

Proof Immediate. O

Theorem 7.35 Let q be a queue of alphabet ¥, wi,ws,...,w, € X* (m > 0)
be same-length words, k € N be an integer, and A be a QDD representing the
set U C ¥*. APPEND-MULTI-LOOP(A, wy,ws, ..., wy) is a QDD representing
the set (a)*(U), where & is the multisequence {qlwy, ¢lws, ..., ¢w,,}. APPEND-N-
MULTI-LOOP(A, w1, wa, . .., Wy, k) is a QDD representing the set (%)*(U).

Proof Immediate. O

Theorem 7.36 Let q be a queue of alphabet X, ¢’ be a send-synchronized multi-
sequence of elementary operations on q, k € N be an integer, and A be a QDD
representing the set U C ¥*. APPLY-N-MULTI-STAR-ONE(A,5,k) is a QDD

representing the set a*(U), where & = (5')*.

Proof The proof follows the same lines as the construction presented in Section 7.3.1.
For every i € N, the rank of a state s € mtail(A;) is defined as the length of the
shortest path leading from an accepting state of A to s. The base b, the period p
and the automata A are computed exactly as in Section 7.3.1, the multitail of each

7.4. CREATION OF MULTICYCLE META-TRANSITIONS 169

function APPEND-N-MULTI-LOOP(QDD (%, S, A, I, F),

words a1,1a1,2 - G1,1,02,102,2 -~ A2, -+, Um,10m,2 - * A 1, iNteger k) : QDD
1: var s : array[l...k,1...m,1...]] of states;
2: begin
3: if m=0V k=0 then return (3,5, A, I, F);
4: let {s[i1,io, i3] |1 <it <k A1<ix<mA1<iz<Ii}nNS=0
5: S =8 U {sfi1 iz i3] | 1<i1 <k AL<ia<m Al<is<l};
6: A= AU{(s,ai,1,s[1,i2,1]) | s € F AN 1<iy<m}
U{(s[i1,92,3], Giyiz+1, S[i1, 02,03 +1]) | 1 <43 <k
ANl <is<mA1<ig<l-—2}
U{(s[i1, 2,0 — 1], @iy 1, 8[i1,1,1]) | 1 < i3 <k A1 <iyg<m}
U{(sfir, 1, 1], @iy 1, 8[ir + 1,40, 1]) [1 <ig <k —1 A 1< iy <m}
U{(s[k,1,1], @iy 1,8[1,42,1]) | 1 < iy <m};
7 F = F U {s[k,1,1]};
8: return (X, 5, A, I, F)
9: end.

Figure 7.26: Subroutine APPEND-N-MULTI-LOOP.

function APPEND-MULTI-LOOP(QDD A, words wy,ws,...,w,) : QDD

1 begin
2 return APPEND-N-MULTI-LOOP(A, wy, wa, . .., wm, 1)
3: end.

Figure 7.27: Subroutine APPEND-MULTI-LOOP.

170

CHAPTER 7. SYSTEMS USING FIFO CHANNELS

function APPLY-N-MULTI-STAR-ONE(QDD (%, S, A, I, F), multisequence of

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:
20:

21:

22:

23:
24:
25:

(...

queue operations & = {01,029, ...,0n,}, integer k) : QDD

var A : array[0,1,...] of QDDs;

I% : array|0, 1,...] of sets of states;

So, 51, S5 : sets of states;
Ay Ay AT A AT A AT AD AP AR AR AL AT QDD

10 10

(S Sty Nl Ty FL), (S 10 Sty 1 Al T, Fly) QDDs:

20? Mg 7077207~ 20

ni,na, p,b,d, i,19,%1, 12,1 : integers;

begin

)

A[0] := (,8,A,1,F) := NORMALIZE((X, S, A, I, F));
if |52 =0 V k =0 then return APPEND-N-MULTI-LOOP (A[0],
(o), p(o21), - .oy plomr), k);
I*[0] = I;
Sy = S,
ny = 0;
repeat
ny = ny +1;
Alni] == (2,8,A,1,F) := APPLY-N-MULTLI-ONE(A[n; — 1,5, k);
I*ny] == 1N Sy
until there exists ns such that 0 < ng <nj; A I%n1] = I%na];

if |51| = 0 then return U Alil;
0<i<n,

p = lem(ny — ng, k|a1]);

b:

= k|o1|[n2/(k|&1])];

iy = [SW —q +1;

lon] p
Al = (), 80, AL LT FL) == APPLY-N-MULTI-ONE(A[n1, 5,

k(b —n1 +iop));
;0-1-1 = (2204-17S£0+17A20+17[£0+17Fi/0+1) = APPLY-N—ONE(A;O,E’, kp);
Sy = {s' €S | (3s €S, we¥)((s,w,8) € A;Z A w| < kplaq|)};
Sy = {s" €8], 11| (3Fs€So,weX)((s,w,s) € A;Z-H A Jw| < 2kplaq])

Figure 7.28: Image of a single-queue QDD by the closure of a send-synchronized

multisequence of queue operations.

7.4. CREATION OF MULTICYCLE META-TRANSITIONS 171
(..)
26: AP (s Sy AT Sy, FL):;
27: A" .= APPEND-N-MULTI-LOOP(ASY | (o)), .. , si(my), kp);
28: AT = (S, S, AL T\ S FL);
29: A%H = (2 zo+17520+17 ZU+17I/0+1 N (S2\ S1), zo+1)
30: if |31 > |G| then
31: begin
32: d:= B |(Iml = |o2);
33: A7 := APPEND-N-MULTI-LOOP(A? , u(o1), - ..
34: A%’ .= APPEND-N-MULTI-LOOP(
APPEND-N-MULTL-LOOP(A? | |, u(o1y), ...,
wlomr), kd), u(orr), ..., w(omy), kp)
35: end
36: else
37: begin
3g: i = {(b/p)|5!|+(i01)|5?|—‘;
62| — |on]
39: A = A = A
40: for i := iy +1toi; —1do
41: begin
42: A" .= APPLY-N-MULTI-ONE(A""
43: A == UNION(A™, A7)
44: end;
45: ig = 1+ max(ip, {(b/p)lj(;l;(ir&] 2>|aﬂ);
46: Al = A% = AT
AT: I := (b+ (io + 2)p)k|61| — 4pk|5;
(..)

Figure 7.29: Image of a single-queue QDD by the closure of a send-synchronized

multisequence of queue operations (continued).

172 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

(...)

48: fori:=iy+2tois+p—1do

49: if > 0 then

50: begin

51: A% .= APPLY-N-MULTI-ONE(A%, &, kp);

52: AR = UNION(A%R, A%R);

53: 1 := 1+ kp(|lon] — |57])

54: end

55: else

56: begin

57: A% := APPLY-N-MULTI-ONE(A’%, {oy,, 01,
ooy Omr), kp);

58: Adr ;= UNION(A%, A%R);

59: l:= 1+ kpla

60: end;

61: A% .= APPEND-N-MULTI-LOOP(A%®, ju(01)), . . ., e(0m1), kp);

/

62: A% .= UNION(A% APPLY-N-MULTI-ONE(A%", 7, kp));

63: A% .= UNION(A%' APPLY-N-MULTI-ONE(A’", 5, 2kp))
64: end;
65: A’ := UNION(| J APPLY-N-MULTI-ONE(A[n],7, k(b — n1 + pi)),
0<i<ig
U 4%
¢e{apB,y,6¢}
66: A” := UNION(| J APPLY-N-MULTI-ONE(A[0],5, ki),
0<i<b
U APPLY-N-MULTI-ONE(A’, 7, ki));
0<i<p
67: return A"
68: end.

Figure 7.30: Image of a single-queue QDD by the closure of a a send-synchronized
multisequence of queue operations (continued).

7.4. CREATION OF MULTICYCLE META-TRANSITIONS 173

A’ being denoted mtail’(i). The notion of robustness and the partitioning of the
initial states stay unchanged (except for the transformation of tail’ (i) into mtail’ (7)),
as are the definitions of right blocks and of the indices ig,7; and 7. Adapting the
calculations made in Section 7.3.1, we now obtain

U (Z(AY) U L(A))) = ((a)")" (L(AZ) U L(AD));

_ UL = (@) (LAD) it ol = ool
‘gumvz,gyuwv if o] < |o2],
ngﬁzzamwaw>>(MWM)immz@h

Q(MM3UMﬁﬁ :LﬂwWVﬁwé)Uﬂ<UL)

72p (U L) if |5'!| < |5’7|,

1>10

!

with d = (|a1] — |a2|)(p/|71|). The computation of the union of the L(AfR) is un-
changed. O

7.4.2 Systems with Any Number of Queues

Let us now generalize the results of Section 7.3.2 to multisequences of queue opera-
tions. The first step is to generalize the algorithm for computing the image of a rec-
ognizable set of queue-set contents. Like in Section 7.2.3, we remark that two opera-
tions involving different queues are independent, i.e., that the result of applying such
operations to a queue-set content does not depend on the order in which they are
applied. It follows that for every multisequence & of operations involving the queues
Q1,42 - - - Gn and set of queue-set contents U, we have a(U) = (71;0|2;...;|)(U).
Applying & to U can thus be done by applying successively the projections of &
onto the different queues of the system. An algorithm formalizing this method is
given in Figure 7.31. A generalization of this algorithm to repeated applications of
a multisequence of queue operations is given in Figure 7.32.

Theorem 7.37 Let q1,qs,...,q, be queues of respective alphabets 1,3, ..., %,
o be a multisequence of elementary operations on these queues such that for every
i € {1,...,n}, the multisequence G|; is send-synchronized, and let A be a QDD
representing the set U C X% X X5 X -+« x X*. APPLY-MULTI(A,5,%1,%s,...,%,)
is a QDD representing the set a(U).

Proof Immediate, as a consequence of Theorems 7.11 and 7.32. O

174

CHAPTER 7. SYSTEMS USING FIFO CHANNELS

function APPLY-MULTI(QDD .4, multisequence of queue operations &,

alphabets ¥1,%5,...,%,) : QDD
var 1 : integer;
begin
for i :== 1tondo
A := PERFORM-FUNCTION(A, APPLY-MULTI-ONE, 7, 5};);
return A

end.

Figure 7.31: Image of an arbitrary QDD by multisequence of queue operations.

function APPLY-N-MULTI(QDD .4, multisequence of queue operations &,

alphabets 31, ¥, ..., %, integer k) : QDD
var ¢ : integer;
begin
for: := 1to k do
A := APPLY-MULTI(A,5,%1,3s,...,%,);
return A

end.

Figure 7.32: Image of an arbitrary QDD by repeated applications of a multisequence

of queue operations.

7.4. CREATION OF MULTICYCLE META-TRANSITIONS 175

Theorem 7.38 Let q1,qs,...,q, be queues of respective alphabets 1,3, ..., %,
o be a multisequence of elementary operations on these queues such that for every
i € {1,...,n}, the multisequence G|; is send-synchronized, let k > 0 be an integer,
and let A be a QDD representing the set U C X x 35 x --- x X*. APPLY-N-
MULTI(A,5,%1,%,...,%,, k) is a QDD representing the set a*(U).

Proof Immediate. O

The next step is to show that the concept of counting multisequences of queue
operations can be introduced as a direct generalization of counting sequences of
operations.

Definition 7.39 Let q be a queue of alphabet X3, and 6 = {oy,09,...,0,} (M >0)
be a send-synchronized multisequence of operations on q. The multisequence G s
counting if one of the following conditions is satisfied:

o |X|>1and|a| >0,
° |Z| =1 and |5'!| > |5'?|.

Theorem 7.40 Let q be a queue of alphabet X, and 6 = {o1,09,...,0,m} (m >0) be
a send-synchronized multisequence of operations on q. The sequence & is counting
if and only if there exists a recognizable set U C ¥* of queue contents such that

oM (U) # a*2(U) for all ky, ky € N such that ky # ky.

Proof If either |¥| > 1 and ¢ is not counting, or |X| = 1, then there exists a
sequence o of operations involving ¢ that is equivalent to ¢ and that is counting if
and only if ¢ is counting. The result is then a consequence of Theorem 7.25.

It thus remains to show that if |[¥| > 1 and & is counting, then there exists
a recognizable set U C X* of queue contents such that 6% (U) # *(U) for all
ki, ks € N such that k; # ko. Let a € X be a symbol different from 7[1]. Choosing
U = u(a9)* - a yields for every k € N

H(U) = 1(@2)" - a- (ulon) U plom) U -+ U alom))*.

O
We are now able to characterize precisely the send-synchronized multisequences
whose closure preserves the recognizability of sets of queue-set contents.

Theorem 7.41 Let ¢ be a multisequence of operations involving the queues ¢, qo,
.yqn (n > 1) such that ¢|y,7ls, ..., 0|, are all send-synchronized, and let 31,3,
..., Xp be the alphabets of qi,q2,...,q,. The set o*(U) is recognizable for every
recognizable set U C X7 x X5 X -+ x X¥ if and only if there do not exist i,7 € N
such that 1 <i < j <n and such that 7|; and 6\j are counting multisequences.

176 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

Proof The proof is along the same lines as the ones of Theorems 7.26 and 7.27. If
there exist 4, j € N such that 1 < i < j < n and such that 7|; and &|; are counting,
one builds a recognizable set U of queue-set contents exactly like in the proof of
Theorem 7.26, and then observes that ¢*(U) is not recognizable. If there do not
exist 4,7 € N such that 1 <7 < j <n and such that 7|; and &|; are counting, then
the operations performed in the proof of Theorem 7.27 directly yield a formula for
computing a finite-state representation of *(U). The only required modification is
to replace o by & in the proof. O

This proof provides a way of constructing a QDD representing ¢*(U) given a
multisequence & of queue operations that satisfies the requirements of Theorem 7.41.
An algorithm implementing this construction is given in Figure 7.33.

Theorem 7.42 Let ¢ = {01,09,...,0,} (m > 0) be a multisequence of operations
involving the queues q1,qs,...,q, (n > 1), 31,5, ..., %, be the alphabets of those
queues, and A be a QDD representing the set of queue set contents U C ¥} x X3 X
<o X X5 If G is such that for every i such that 1 <1 < n, &|; is send-synchronized,
and if there exists at most one i such that 1 < i < n and &|; is counting, then

APPLY-MULTI-STAR(A,G,%4,...,%,) is a QDD representing the set *(U).

Proof The algorithm of Figure 7.33 is a direct implementation of the computation
method described in the proofs of Theorems 7.27 and 7.41. O

It remains to give an implementation of the function MULTI-META-SET that
is used for creating multicycle meta-transitions. Recall that this function takes as
arguments a finite set of sequences of queue operations, and returns a finite num-
ber of memory functions corresponding to multicycle meta-transitions that can be
created. The function MULTI-META-SET can be evaluated by first discarding all
the input sequences that have more than one counting projection. Then, one parti-
tions the remaining sequences according to their subsequences of receive operations
and to the lengths of their subsequences of send operations. Indeed, the operations
studied in this section require multisequences to be receive-deterministic and send-
synchronized. The last step is to create a multisequence for each set of sequences
belonging to the partition. The set of memory functions returned by MULTI-META-
SET then contains the closures of those multisequences. An algorithm implementing
this construction is given in Figure 7.34.

7.5 Creation of Other Meta-Transitions

In this section, we show that the results presented in Sections 7.2, 7.3 and 7.4
can easily be adapted to lossy systems, which are systems whose FIFO queues are
unreliable and can non-deterministically lose messages [AJ93, AJ94, CF196]. This

7.5. CREATION OF OTHER META-TRANSITIONS

177

function APPLY-MULTI-STAR(QDD (X, S, A, I, F), multisequence of queue operations 7,
alphabets ¥1,%5,...,%,) : QDD

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:

23:

24:

var A : array|0,1,...] of QDDs;

Ao, A’ : QDDs;
i,b,p : integers;

f : function;

begin

end.

1= 1;

while i <n do

if (1% > 1 A |(ali)] > 0) v (1% =1 A |(ali)] > |(ali;)]) then

goto break

elset =1+ 1;
break:
fi=Xr-05...50k

S NN Tt we wl
J =0
A=Ay = (8,5,A,1,F);
A[0] :== APPLY-HOMOMORPHISM (A, f);
repeat
Jj=J+1
A’ := APPLY-MULTI(A,5,%1,5s,...,50);
Alj] := APPLY-HOMOMORPHISM(A’, f)
until there exists b such that 0 <b < j A L(A[j]) = L(A[b]);

if ¢ > n then return U AlE];
0<k<j
pi=73=b
A" := PERFORM-FUNCTION(A’, APPLY-N-MULTI-STAR-ONE, i,

ali,p);

return | J APPLY-N-MULTI(A,5,%1, %, . .., 5, k)
0<k<b
U |J APPLY-N-MULTI(A,0,%1,%s, ..., S, k)

0<k<p

Figure 7.33: Image of a QDD by the closure of a multisequence of queue operations

whose projections are send-synchronized.

178

CHAPTER 7. SYSTEMS USING FIFO CHANNELS

function MULTI-META-SET(set of sequences of queue operations S,

10:

11:
12:
13:
14:
15:
16:
17:

alphabets 31, X,,...,3,) : set of functions;
var §’, 5" sets of sequences of queue operations;
T : set of functions;
o : multisequence of queue operations;
begin
T = 0
S :=8S\{oeS|GFi,je{l,....,n}HE# N
(1% = 1 A (el > [(olir)) V (1% > 1A [(ali)] > 0)) A
(51 =1 A o)l > [l v (551> 1A [(elil >)}
for each (I4,...,l,) € N" such that
{oceS|Mie{l,...,n})((cl:)|=1;)} #0 do

begin
S = {oe S| (viell .napeh)] =}
for each (wq,...,w,) € ¥} X --- X ¥* such that
{oes | (Vie{l,...,n})(coli, = ¢;?w;)} # 0 do
begin
g :={oelS|(Mie{l,....,n})(cli, = ¢;?wi) };
T:=TuU{5s*}
end
end;
return T’

end.

Figure 7.34: Creation of multicycle meta-transitions.

7.5. CREATION OF OTHER META-TRANSITIONS 179

adaptation simply consists of adding a new type of meta-transition. The definition
of a lossy system is based on the following notion.

Definition 7.43 Let ¥ be a finite alphabet. The word u € ¥X* s a subword of the
word v € ¥*, which is denoted u < v, if there exist m € Ny and uy,us, . . ., U, Wo,
Wi, ..., Wy € 2% such that u = uy - Us - Uy and V = Wg + Uy - W1 - U+ Wo * * * Uy * Wy, -

We are now ready to define lossy systems.

Definition 7.44 A Lossy QSMA (LQSMA) is an ESMA (C,cy, M, mq, Op, T, T)
such that

o [ts memory domain M is of the form X7 x X35 x -+ x X* where n > 0 s
the number of queues of the LQSMA, and each 3; (1 < i < n) is the queue

alphabet of the i-th queue q; of the LQSMA;

o [ts set of memory operations Op contains only send and receive operations.
Formally, we have

Op=A{glu|1<i<nAuweX}U{gNu|l<i<nAuei}

o Its set of meta-transitions T contains for every control location ¢ € C' a meta-
transition (c, fi, ¢), where f; is the function

fi:2M = 2M U {(ug, ..., un) | (v, ..., v,) € U)
(ur Jvr Ao A up 2u) b,

with M = X7 x --- x Xy . Intuitively, those meta-transitions are introduced in
order to model the losses that can occur in each control location.

Transforming a non-lossy system into a lossy one can thus be done by simply
adding at each control location ¢ € C' a meta-transition (¢, f;, ¢). In order to be able
to compute the image of a set of states by such a meta-transition, it is therefore
necessary to dispose of an algorithm for applying the function f; to a set of queue-set
contents represented as a QDD. Such an algorithm is easily obtained by remarking
that the effect of f; is to choose non-deterministically between removing or keeping
unchanged each symbol composing queue contents, this choice being allowed to differ
between symbols. A QDD representing the set f;(U) can be computed from a QDD
representing a set of queue-set contents U C M by bypassing each transition of
the QDD by an additional transition labeled by the empty word. An algorithm
formalizing this construction is given in Figure 7.35.

Theorem 7.45 Let q1,qo,...,q, be queues of respective alphabets 1,39, ..., %,
and A be a QDD representing the set U C X7 x X5 x --- x . APPLY-LOSS(A)
is a QDD representing the set f;(U).

Proof Immediate. O

180 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

function APPLY-LOSS(QDD (X, 5, A, I, F)) : QDD

1 begin

P (£,8,A,1,F) := NORMALIZE((S, 8, A, I, F)):

3: A= AU{(s,e,8)eSx{e}xS|(3(s1,w,82) €EA)(s1 =5 N s2 =5}
4 return (3,5, A 1, F)

5 end.

Figure 7.35: Image of a QDD by the memory function modeling loss.

7.6 Model Checking with Cycle Meta-Transitions

This section is aimed at providing an algorithm for applying to sequences of queue
operations the function ITERABLE required by the algorithms introduced in Chap-
ter 4. In the present context, the purpose of ITERABLE is to determine, given a
sequence o of queue operations, a representation of the set of all the queue-set con-
tents to which o can be applied infinitely many times. A similar problem, consisting
of deciding whether a sequence can be repeatedly applied an infinite number of times
to a given queue-set content, is addressed in [JJ93, FM96]. We consider successively
the cases of systems with one and then with an arbitrary number of queues.

7.6.1 Systems with One Queue

Let ¢ be a queue of alphabet ¥, and let ¢ be a sequence of elementary queue
operations on ¢q. We first assume that o is of the form o = (o7;0), i.e., that the
sequence begins with all its receive operations.

If there exists a queue content u € ¥* to which o can be applied infinitely
many times, then o is such that |oy] > |o9| (otherwise, the length of the queue
content would decrease at each application of o). Therefore, if |oy| < |o7|, then
ITERABLE(q) = 0.

If o is such that o = oy, then we have ITERABLE(c) = ¥*. It thus remains to
study the case for which |o| > |o9].

Assume that |oy| > |o9|, and let u € 3* be a queue content to which ¢ can be
applied infinitely many times. We consider the greatest integer k£ > 0 such that
w(o2)* € pre(u). The word u is thus of the form u = u(o7)* - o/, with v’ € ¥* and
w(o7) & pre(u’). Applying k times o to u, we obtain the word uy = o*(u) = u'-u(o)*.
By hypothesis, o can be applied one more time to u,, which implies that we have
o' € pre(u(on)) \ {u(o)}.

Let g = ged(|o], |o7]). By hypothesis, o can be applied an arbitrary number of

7.6. MODEL CHECKING WITH CYCLE META-TRANSITIONS 181

times to us. We choose to apply it exactly [= |o1]/g times. We thus have

o)’ € pre(us - p(on)'),
which implies
(o)) € pre(u’ - ().
Reasoning on the lengths of the words, we obtain u' - p(o)! = p(os)

l'=lo2|/g.
Reciprocally, if w € ¥* is such that there exists v’ € pre(u(o?)) \ {u(o2)} such
that

Lo, with

o weE (u(or))t -, and
o u' - (o) = p(on)' - for I = |on| /ged(lon], |oz]) and U = || /ged(|en], o)),
then o can be applied infinitely many times to w. It follows that we have
ITERABLE(0) = (u(02))* - U,

where U = {u’ € pre(u(0v)) | u' # p(oz) A ' p(on)" = p(o7)' - u'}.

The problem is thus fully solved when ¢ = (o7;0). Let us now generalize our
solution to arbitrary sequences of operations involving q.

Let o be such a sequence. An interesting property is that ¢ can always be
applied to a queue content w € ¥* to which the sequence (o7; 1) can be applied. As
a consequence, the set ITERABLE(0) is a superset of the set ITERABLE((o7; 01)).
Computing the former set can thus be reduced to computing the set of all the queue
contents to which o can be applied infinitely many times and to which (o7;0))
cannot.

Let w be such a word. Its existence implies || > |o7|. The sequences o and
(07; 01) are indistinguishable when applied to words whose length is greater or equal
to |o»|. This yields |w| < |o9|. Since, by hypothesis, o can be applied to w, we have
w € pre(u(en)) \ (o)}

Reciprocally, if w € pre(u(o7)) \ {¢(o7)}, then there are two possible situations:

e [f|oy| =|o?|. Then, o can be applied infinitely many times to w if and only if
o(w) = w;

e [f|oy| > |o7|. Then, o can be applied infinitely many times to w if and only if
after applying o a sufficiently large number of times k to w (the exact condition
being |o*(w)| > |o3|), one obtains a queue content o*(w) that belongs to

ITERABLE((07; 0v)).

An algorithm?* formalizing the computation developed in this section is given in
Figure 7.36.

4In this algorithm, QDDs representing simple languages are denoted by the corresponding
regular expressions.

182 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

function ITERABLE-ONE(sequence of queue operations o, alphabet ¥) : QDD

1 var g,k,l,l' : integers;
2 U : set of words;
3 A, A : QDDs;
4 begin
5: if |o1] < |o?| then return §;
6 if |o7| = 0 then return X%,
7 if o = (07;01) then
8 begin
9 g = ged(|oz |, [on]);
10: L= lol/g;
11 V= o/
12: U = {u € pre(u(on)) | u# p(or) A u-p(o)’ = p(or)' - u};
13: return U (u(o?)) - u
uelU
14: end
15: else
16: begin
17: A = A := ITERABLE-ONE((04; 01), 2);
18: for each u € pre(u(o?)) \ {u(o?)} do
19: begin
20: if |oy| = |o?] A o(u) = u then
21: A’ := UNION(A', u);
22: if |o1| > |o7| then
23: begin
24: k= [(loz| = [ul)/(lon] = lo2])1;
25 if INCLUDED?(APPLY-ONE(c*, u), A)
26: then A’ := UNION(A’,u)
27: end
28: end
29: end;
30: return A’
31: end.

Figure 7.36: Set of queue contents to which a sequence can be applied infinitely
many times (one queue).

7.6. MODEL CHECKING WITH CYCLE META-TRANSITIONS 183

function ITERABLE(sequence of queue operations o, alphabets X1, ¥a,...,%,) : QDD

1 var ¢ : integer;

2 A QDD;

3 begin

4 A = g

e for i :== 1 ton do

6 A := CONCATENATE(A, ITERABLE-ONE(c|;, 3;));
7 return A

8 end.

Figure 7.37: Set of queue-set contents to which a sequence can be applied infinitely
many times (any number of queues).

Theorem 7.46 Let q be a queue of alphabet 32, and o be a sequence of operations
involving q. ITERABLE-ONE(0,%) is a QDD representing the set of all the queue
contents w € X* such that o can be applied infinitely many times to w.

Proof The algorithm of Figure 7.36 is a direct implementation of the computation
method described in this section. O

7.6.2 Systems with Any Number of Queues

The results of Section 7.6.1 can be straightforwardly generalized to sequences of
operations involving more than one queue. Indeed, the sequence o involving the
queues ¢i,qs,...q, can be applied infinitely many times to a queue-set content
(wy,ws, ..., w,) if and only if for every ¢ € {1,2,...,n}, the sequence o|; can be
applied infinitely many times to the queue content w;. The set of queue-set contents
to which ¢ can be applied infinitely many times is thus the Cartesian product of
the sets of contents of each queue to which the corresponding projection of o can
be applied infinitely many times. An algorithm formalizing this method is given in
Figure 7.37.

Theorem 7.47 Let q1,qs,...,q, be queues of respective alphabets 1,3, ..., %,
and o be a sequence of operations involving those queues. ITERABLE(o,%q, %o, . ..,
¥,) is a QDD representing the set of all the queue-set contents u € X7 X -+ x ¥
such that o can be applied infinitely many times to u.

Proof Immediate. O

184 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

7.7 Model Checking with Multicycle Meta-Tran-
sitions

The computation of ITERABLE by the method exposed in Sections 7.6.1 and 7.6.2
can be generalized to send-synchronized multisequences of queue operations. The
basic idea consists of replacing each reference to the send operations composing a
sequence by a non-deterministic choice between the sequences of send operations
composing the multisequence of interest.

7.7.1 Systems with One Queue

Let ¢ be a queue of alphabet 3, and let ¢ = {01,09,...,0,} (m > 0) be a send-
synchronized multisequence of elementary queue operations on g. We first assume
that each component o; of & is of the form o; = (0;7; 04).

For the same reasons as in Section 7.6.1, if |5y < |7/, then ITERABLE(7) = 0.
Moreover, if |67| = 0, then ITERABLE(g) = ¥*.

Assume that |6y| > ||, and let u € ¥* be a queue content to which & can be
applied infinitely many times. We consider the greatest integer k& € N such that
w(a2)* € pre(u). The word u is thus of the form u = pu(a.)* - o/, with v’ € X*
and u(57) € pre(u’). Applying k times & to u, we obtain the word uy, = ¢%(u) =
u' - wy - wg - - - wg, where wy, ..., w, € {v € pu(o;) | 1 <i < m}. By hypothesis, ¢ can
be applied one more time to uz, which implies that we have u’ € pre(u(a7))\{u(a7)}.

Let g = ged(|ay|, |a2]). Applying ¢ exactly [= |ay|/g times to uy and reasoning
on the lengths of the words, we obtain u’-w; - wy - - -wy = p(a7)! -, with I = |5+|/g
and wy,...,wpy € {v € ploy) |1 <i<m}.

Reciprocally, if w € ¥* is such that there exist v’ € pre(u(a?)

'|7 |

\ {u(a2)} and

)
Wy, Wy, ..., wy € {v € ploy) | 1 <i<m}, where I’ = |a7|/ged(|ay], |a7|), such that

e we (u(ar))" v/, and
o U -wy - wywy = pu(o9)! - for 1 = |ay|/ged(|a], |G2]),

then ¢ can be applied infinitely many times to w.
It follows that we have

ITERABLE(7) = (u(a2))* - U,

where U = {u' € pre(u(ar)) | (Gwy,...,wy € {v € ploy) | 1 < i < m})(u #
(@) A - wy - wg - wp = pu(ae)t '

Like in Section 7.6.1, computing the value of ITERABLE for an arbitrary mul-
tisequence ¢ of queue operations can be reduced to computing the set of all the
queue contents to which ¢ can be applied infinitely many times and to which

{(o12;011), (022;021), .. ., (Om2; Omy) } cannot.

7.7. MODEL CHECKING WITH MULTICYCLE META-TRANSITIONS 185

Let w be such a queue content. Its existence implies |oy| > |7| and |w| < |F9|.
Since, by hypothesis, & can be applied to w, we deduce w € pre(u(a7)) \ {u(a7)}.
Reciprocally, if w € pre(u(a7)) \ {u(a2)}, then there are two possible situations:

o [f|o| = |o7|. Then, & can be applied infinitely many times to w if and only if
w € a(w);

e [f|a)| > |d7]. Then, ¢ can be applied infinitely many times to w if and only if
after applying ¢ a sufficiently large number of times k to w (the exact condition
being |7%(w)| > |57|), one obtains a set of queue contents o*(w) that contains
at least one element of ITERABLE({(01+; 011), (022;091), - -+, (Om2;0m1) })-

An algorithm formalizing the computation developed in this section is given in
Figures 7.38 and 7.39.

Theorem 7.48 Let q be a queue of alphabet 32, and & be a send-synchronized multi-
sequence of operations involving q. MULTI-ITERABLE-ONE(G,Y) is a QDD repre-
senting the set of all the queue contents w € X* such that ¢ can be applied infinitely
many times to w.

Proof The algorithm of Figures 7.38 and 7.39 is a direct implementation of the
computation method described in this section. O

7.7.2 Systems with Any Number of Queues

For multisequences involving more than one queue, the situation is similar to the
one of Section 7.6.2. The multisequence & involving the queues qi, qs, . . . g, can be
applied infinitely many times to a queue-set content (wy, we, . .., w,) if and only if for
every i € {1,2,...,n}, the multisequence |; can be applied infinitely many times to
the queue content w;. An algorithm computing a representation of the set of queue-
set, contents to which a multisequence & whose components are send-synchronized
can be applied infinitely many times is given in Figure 7.40. Its correctness is
expressed by the following theorem.

Theorem 7.49 Let q1,qo,...,q, be queues of respective alphabets 1,39, ..., %,
and ¢ = {01,09,...,0m} (m > 0) be a multisequence of operations involving those
queues, such that for every i € {1,2,...,m}, the sequence o|; is send-synchronized.
MULTI-ITERABLE(G,%1, %, ..., %,) returns a QDD representing the set of all the
queue-set contents u € X7 X - - - X X¥ such that ¢ can be applied infinitely many times
to u.

Proof Immediate. O

186 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

function MULTI-ITERABLE-ONE(multisequence of queue operations ¢ = {o1,...,0m},
alphabet) : QDD

1: var g, k,l,l' : integers;
2: U : set of words;
3: A, A" . QDDs;
4: begin
5: if |51] < |57 then return §;
6: if |07 = 0 then return X*;
T if (Vi € {1,...,m})(0; = (0i7;041)) then
8: begin
9: g = ged(|oz],[o1]);
10: L= lo1l/g;
11: I = lo2/9;
12: U = {u € pre(u(a?)) | Gwy,...wp € {v € uloy) |1 <i<m})
(u# p(@2) Nu-wy - wp = p(Ge) - u)h;
13: return U (u(@2)" - u
wel
14: end
15: else
16: begin
17: A = A" := MULTI-ITERABLE-ONE({(017; 011), (027; 021),
oy (Omesom) }, B);
18: for each u € pre(u(az)) \ {1(G2)} do
19: begin
20: if |G1| = |77] A u € d(u) then
21: A’ := UNION(A', u);

(...)

Figure 7.38: Set of queue contents to which a send-synchronized multisequence can
be applied infinitely many times (one queue).

7.7. MODEL CHECKING WITH MULTICYCLE META-TRANSITIONS 187

22: if |71 > |o7| then

23: begin

24: k= [(g2] = |ul)/(lo2] = |o2])T;

25: if -(EMPTY?(INTERSECTION(
APPLY-N-ONE(7, u, k), A))) then

26: A’ := UNION(A', u)

27: end

28: end

29: end;

30: return A’

31: end.

Figure 7.39: Set of queue contents to which a send-synchronized multisequence can
be applied infinitely many times (one queue, continued).

function MULTI-ITERABLE(multisequence of queue operations &,
alphabets 31,¥9,...,%,) : QDD

1 var 1 : integer;

2 A : QDD;

3 begin

4 A =g

5: for i := 1ton do

6 A := CONCATENATE (A, MULTI-ITERABLE-ONE(5|;, 3;));
7 return A

8 end.

Figure 7.40: Set of queue-set contents to which a multisequence can be applied
infinitely many times (any number of queues).

188 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

7.8 Termination

The goal of this section is to give algorithms for computing over QSMAs the truth
value of the predicates required by Sections 5.1 to 5.5. Specifically, we implement
the predicates FINITE?, whose purpose is to decide the finiteness of a set of queue-
set contents represented as a QDD, and PRECEDES?, which checks whether two
sequences o and oy of queue operations are such that oy < 0y. We address each
problem separately.

7.8.1 Finiteness of Sets of Queue-Set Contents

Deciding the finiteness of a set of queue-set contents represented as a QDD is easy.
Since the sequential encoding of queue-set contents is one-to-one, i.e., since it asso-
ciates exactly one encoding to each queue-set content, this can be done by testing
whether the language accepted by the QDD is infinite. A simple way of performing
this test is to use a variant of the depth-first search algorithm of Figure 3.6 used
for detecting simple cycles in the control graph of SMAs. The adapted algorithm is
given in Figure 7.41.

Theorem 7.50 Let q1,q,...,q, (n > 0) be queues of respective alphabets 31,3,
oy X, and A be a QDD representing the set U C X7 X 335 x --- x 3. We have
FINITE?(A) =T if and only if U is finite.

Proof A finite-state automaton accepts an infinite language if and only if there
exists in its transition graph at least one simple cycle C such that:

e The body of C is not labeled by the empty word;

e The states visited by C are reachable from at least one initial state of the
automaton;

e There exists at least one accepting state of the automaton that is reachable
from the states visited by C.

The goal of Lines 26-28 is to compute the set S of all the reachable states of .A. This
is done by a depth-first search algorithm analogous to the one in Figure 3.2. Then,
at Lines 29-30, a search for a simple cycle satisfying the abovementioned conditions
is carried out. This search is a simple variant of the algorithm in Figure 3.6. O

7.8.2 Precedence Relation

Let ¢1,42,--.,q, (n > 0) be queues of respective alphabets X1, %, ..., 3,. The
problem addressed here consists of deciding whether two sequences of queue op-
erations o7 and oy involving those queues are such that o; < g9, i.e., whether
(09;01)(U) C (01;09)(U) for every set of queue-set contents U C 37 x - -+ x X,

7.8. TERMINATION

189

function FINITE?(automaton (3,5, A, I, F)) : {T,F}

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

1
2
3
4
o:
6
7
8
9

var node : array|0, 1, ...] of states;
edge : array|0, 1, ...] of words;
S’ : set of states;
s : state;
procedure explore-fw(state s)
begin
S = 8" U {s}h
for each (s',w,s") € A such that ' = s do
if s ¢ S’ then explore-fw(s")
end;
procedure explore-bw(state s, integer depth)
begin
node[depth] := s;
for each (s”,w,s’) € A such that s’ =s A s” € S’ do
begin
edgeldepth] = w;
if (3,0 <i < depth) such that node[i] = s” then
begin
if edgeli] - edge[i 4+ 1] - - - edge[depth] # € then
return F
end
else explore-bw(s”, depth + 1)
end
end;
begin
S’ =
for each s € I do
explore-fw(s);
for each s € ' do
explore-bw(s, 0);
return T

end.

Figure 7.41: Test of finiteness of the language accepted by an automaton.

190 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

An noteworthy property is that two queue operations that are adjacent within a
sequence and that involve different queues can be permuted. In other words, if the
sets of queues involved in two sequences of queue operations o and ¢’ are disjoint,
then (o;0")(U) = (0';0)(U) for every set of queue-set contents U C X} X --+ X X,
It follows that we have oy <oy if and only if (oq|;) <(09l;) for every i € {1,2,...,n}.

We can therefore reduce the problem and assume that o; and oy contain only
operations involving a single queue ¢ of alphabet .

If o1 and o9 are such that oq <0y, then we have p(o17; 097) = p(097; 017). Indeed,
choosing U = {p(027; 017)}, we have

(09;01)(U)
{u(og;o11)}

(o1;02)(U)
(o1;02)({p(o22; 012)}),

C
C

which implies the result since the right-hand side must be nonempty. Furthermore,
developing the previous equation yields

M(Uu; 0’2!) = M(Uz!;Uu)-

Hence, if oy and o9 are such that p(oq7; 097) # p(022; 017) or such that p(oq; o9)
p(o9r; 01), then we have oy dos.

Assume now that oy and oy are such that p(oy7; 097) = (0225 012) and p(oqy; 091)
= p(og; 011). For every queue content w € ¥*, if (o1;09)({w}) and (o9;01)({w})
are both nonempty, then there must be equal to each other. Indeed, both of them
then contain the word obtained by removing the first |o17| 4 |097| symbols from the
word w - pi(0115021).

As a consequence, it is sufficient to check whether there exist words w such
that (o9;01)({w}) is nonempty and (o1;02)({w}) is empty. The only words that are
worth checking are those of length less than |oy.; 01-| (otherwise (o9; 01)({w}) would
be identical to (o1;02)({w})) and that belong to the set of prefixes of pu((027;017))
(otherwise, (09; 01)({w}) would be empty). Since there are finitely many such words,
a simple solution consists of testing them one by one.

An algorithm formalizing this construction is given in Figure 7.42. Its correctness
is established by the following theorem.

Theorem 7.51 Let q1,qs,...,q, be queues of respective alphabets 1,3, ..., %,
and let 01,09 be two sequences of operations involving those queues. We have PRE-
CEDES? (01, 09,%1,%9,...,%,) = T if and only if o1 < 0.

Proof The algorithm directly implements the decision procedure developed in this
section. O

7.8. TERMINATION

191

function PRECEDES?(sequences of queue operations o1, 02,

— = =
o= 2

13:
14:
15:
16:

alphabets X1, Yo, ...

var 0,0’ : sequences of queue operations;

,2n) : {T,F}

1 : integer;
w : word;
begin
for i := 1tondo
begin
o = (01;02)l;
o' = (o2;01)|i;
if o1 # o V 07 # 0} then
return F;
for each w € pre(u(o’7)) such that w # p(o’7) do
if \INCLUDED?(APPLY (w,0’,%1,%0,...,%,),
APPLY (w,0,%1,%9,...,%,)) then
return F
end;
return T
end.

Figure 7.42: Precedence test for sequences of queue operations.

192 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

7.9 Loop Optimization

Regrettably, loop optimization cannot be applied to systems using FIFO queues
on which only send and receive operations are performed. The main reason is the
relative lack of expressiveness of send and receive operations. Indeed, even though
it has been shown that QSMAs are Turing-expressive, it is impossible in general to
simulate the effect of a loop with a single sequence of send and receive operations.
Let us illustrate this phenomenon in the case of a system with only one queue ¢
whose alphabet is X. Let o be a nonempty sequence of queue operations labeling
a cycle, and 0 be an elementary queue operation labeling the exit transition from
this cycle. Assume that there exists a sequence ¢’ of queue operations such that
for every queue content w € ¥*, (oF;0)({w}) = o’'({w}) # 0. The existence of o’
implies |o7| > 0 (indeed, if 0 = oy, then (¢7; 6)({w}) contains more than one element
and is thus different from o’({w})). Let us add the prefix p(o7) to w. We obtain
(07:0)(u(o?) - w) = o’'(w) - u(oy) which is, in general, different from o' (u(o?) - w).
This proves that ¢’ cannot be made equivalent to (o;6). As a consequence, we
have EXISTS-LOOP-EQUIV? = F for the systems studied in this chapter.

Chapter 8

Systems Using Integer Variables

In this chapter, we particularize the results of Chapters 3-6 to a specific class of
infinite-state systems: those whose memory is composed of a finite number of un-
bounded integer variables on which linear operations are performed. Such systems
form a very flexible model for reasoning about computer programs and hardware
circuits. A particular subset of those systems, the Petri net [Pet81, Rei85], is ex-
tensively used for modeling various types of hardware and software systems. Like in
the case of the FIFO channels studied in Chapter 7, considering unbounded rather
than bounded integer variables provides a useful abstraction that allows to reason
about systems without being influenced by their implementation details or physical
limitations.

The structure of this chapter is similar to the one of Chapter 7. First, we intro-
duce systems using unbounded integer variables and define their syntax, semantics,
and elementary memory operations. Then, we show that such systems are Turing-
expressive, and propose an encoding scheme which leads to a powerful finite-state
representation system for sets of integer-vector values, the Number Decision Diagram
(NDD). Finally, we give algorithms implementing with NDDs all the predicates and
functions required by Chapters 3 to 6. In particular, we will present an original
decision procedure for determining whether the closure of a linear transformation
preserves the representability by NDDs of sets of memory contents.

8.1 Basic Notions

8.1.1 Integer SMASs

Let n € N be a finite dimension. An integer vector (or simply vector) of dimension
n is an object whose value is an element of Z". We define one elementary operation
over integer vectors, the linear operation, which consists of applying a linear trans-
formation to the value of the vector, provided that this value satisfies a condition

193

194 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

expressed as a system of linear inequations. Formally, a linear operation is charac-
terized by an integer m € N, two matrices A € Z"*" and P € Z™*", two vectors
b € Z" and g€ Z™, and is denoted P¥ < §— ¥ := AT+ b. Tts semantics is defined
by the function

—

(PE<§— &= AT+0b): Z"—Z" : §— AG+b if PT<q

Let 0 = (P < q§— ¥ = AT+ l;) be a linear operation. The system of linear
inequations P¥ < ¢, which expresses the condition that must be satisfied by the
vector values in order to perform the operation, is called the guard of 6. If that
system is trivial, i.e., if it is satisfied by every vector value in Z", then 6 is said
to be guardless and the trivial guard can be omitted in the expression of 6. The
assignment 7 = AZ + b that characterizes the modification undergone by vector
values is called the transformation of 6. If this transformation is trivial, i.e., if A is
an identity matrix and if b= 0, then it can be omitted in the expression of . The
matrix A and the vector b are respectively called the transformation matriz and the
transformation offset of 6.

The domain of linear operations is extended to sets of vector values in the usual
way, i.e., we define

-,

(PE<{—T = AT+0b) : 22" 27" . U {AT+b|TeU A PTG}
We are now ready to define the class of SMAs that will be studied in this chapter.

Definition 8.1 An Integer SMA (ISMA) is an SMA (C, co, M, mq, Op,T) such that

e [ts memory domain M is equal to Z™, where n > 0 is the dimension of the
ISMA. This is equivalent to saying that the SMA has n integer variables. Each
memory content U = (vy,vq, ..., 0,) i a vector value. Each component v; € Z
(with i € {1,2,...,n}) of this vector value can be seen as the value of the i-th
variable x; of the ISMA;

e [ts set of memory operations Op contains only linear operations. Formally, we
have

7= AT +10) |
ImeN)A€Z" NbeZ" AN PeZ™" A TeZ™)}.

The notion of Extended ISMA (EISMA) is defined similarly.

Definition 8.2 An Extended ISMA (EISMA) is an ESMA (C,co, M, mq, Op, T, T)
such that its underlying SMA (C,cy, M, mq, Op,T) is an ISMA.

8.1. BASIC NOTIONS 195

An interesting property of linear operations is that they are closed under the
sequential composition, i.e., that every finite sequence of linear operations is always
equivalent to a single linear operation. Indeed, if we have

= (PZ<q — & = Aii+by)

IA

and
b= (PaZ < Gp— T := A25+52)>

with my,mg € N, Ay, Ay € ZM", by, by € Z", P, € Z™*" Py, € Zm2*n G € Zm
and ¢ € Z™2, then we have

where
P
P e Zmtman = l :] ;
P2A1
— q_)l
qu(mﬁm):l - Pob 1
G — Py
A € ann == A2A1,
and

56 Zn - Ale +52

8.1.2 Turing Expressiveness

It is well known that state machines using at least two unbounded integer variables
can simulate arbitrary Turing machines. This result is expressed by the following

theorem.

Theorem 8.3 Let n > 2 be a dimension. The class of all the ISMAs that have the
memory domain Z" is Turing-expressive.

Proof According to [HU79], it is sufficient to prove that ISMAs having at least two
variables can simulate arbitrary two-counter machines. This result is immediate,
since the values of the two counters can be directly represented by the values of
two dedicated variables x; and x5, and the operations involving the counters can be
translated into linear operations involving z; and xs:

e An increment operation on the counter i (with ¢ € {1,2}) is simulated by the
linear operation ¥ := AZ 4+ b, where A € Z™" is an identity matrix, and
b= (b1,ba,...,b,) € Z™ is such that b; = 1 and b; = 0 for every j # i;

196 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

e A decrement operation on the counter i (with ¢ € {1,2}) is simulated by the
linear operation P¥ < ¢ — ¥ = AT + l;, where P = [py;ps;...;pn) € ZV"
is such that p; = —1 and p; = 0 for every j # i, ¢ € Z' is equal to (—1),
A € 72" is an identity matrix, and b = (b1,b9,...,b,) € Z" is such that
b; = —1 and b; = 0 for every j # ;

e A test operation on the counter ¢ (with ¢ € {1,2}) is simulated by the linear
operation P¥ < ¢, where P = [py;po;...;pn] € ZY™ is such that p; = 1 and
p; = 0 for every j # i, and ¢ € Z' is equal to (0). The operation succeeds if
and only if the value of the counter is 0.

O

As it has been shown in Chapter 4, a consequence of this theorem is that the
emptiness problem is undecidable for ISMAs associated with a set of accepting
control locations if their dimension is at least equal to 2.

8.1.3 Number Decision Diagrams

The first step towards obtaining a representation system for sets of integer vector
values that is well suited for ISMAs is to define an encoding scheme for vector
values. The encoding scheme we propose for vectors is based on an encoding scheme
for integers, which consists of expressing an integer as a finite sequence of digits
belonging to a finite alphabet. Let us define precisely this encoding of integers.

Let r € N, with » > 1, be a numeration basis (or simply basis). Any positive
integer z can be encoded as a finite word w = a,_1 - ap—2---ay - ag (p > 0) of digits
belonging to {0,1,...,r — 1}, such that z = > ;. a;r*. The encoding of z is not
unique. Indeed, its length can be increased at will by adding an arbitrary number
of leading “0” digits. This encoding scheme is easily generalized to all the integers
in Z by requiring that the encoding of an integer z € Z such that —rP~! < 2z < rP=1,
where p > 0, has at least p digits. If z < 0, then the encoding of z consists of the
last p digits of the encoding of 7? + z (the number 7? + z is called the r’s complement
of z). As a consequence, the first digit of the encoding of an integer will be equal
to 0 if the number is greater or equal to zero, and to r — 1 otherwise (this first digit
is called the sign digit). The fact that the word w € {0,1,...,7 — 1}* encodes the
integer z € Z in basis r is denoted w € |[z],.

In order to represent a vector value, we encode each of its components with an
identical number of digits and we group together the digits that share the same po-
sition. Any element of Z™ (n > 0) thus has an infinite number of possible encodings,
the shortest of which having the length required by the component with the highest
magnitude. Precisely, the encoding scheme is defined as follows.

Definition 8.4 Let n > 0 be a dimension and r > 1 be a basis. The synchronous
encoding scheme FEg,.) is the relation that associates to a vector of Z" the tuples

8.1. BASIC NOTIONS 197

composed of the same-length encodings in basis r of the components of this vector.
Formally, we have

ES(T) C M x VS(T) = {((vla s ’vn)v (wh s >wn)) | |w1| = |w2| == |wn|
Awy € [v1], Awy € [va], A -+ A wy, € (v, },
where M = Z" is the domain, and Vsiy = |J ({0,7 — 1} - {0,...,r — 1}*)" is the
keN

set of valid encodings.

An encoding of an element of Z" can indifferently be viewed either as a tuple of
n words of identical length over the alphabet {0,1,...,7 — 1}, or as a single word
over the alphabet {0,1,...,r —1}".

The synchronous encoding scheme satisfies the requirements of Definition 6.5.
Indeed, by definition, Eg(is complete over M, and is complete and unambiguous
over V(. The corresponding decoding function Dg(,y is given by the formula

Dg(ry 250 = 2M o L {(vy,...,0,) € M | 3wy, w2, ..., w,) € L)
(w1 € ['Ul]r N wy € [1)2]7» N Nw, € ['Un]r)}

We are now ready to define the representation system for sets of vector values.

Definition 8.5 Letn > 0 be a dimension andr > 1 be a basis. A Number Decision
Diagram (NDD) is a finite-state representation of a set U C Z" of vector values
based on the synchronous encoding scheme Eg(y.

In other words, an NDD representing a set of vector values U C Z" is simply a
finite-state automaton accepting the synchronous encodings of the elements of U.

8.1.4 Representable Sets of Vector Values

Finite-state representations of sets of integer vector values have been studied for a
long time [BHMV94]. In [Biic60], Biichi gave the first characterization of recogniz-
able sets of vector values in terms of logic. A flaw was discovered in Biichi’s proof
by MacNaughton [Mac63], and a correct characterization was proposed in [Mac63]
and [Bru85]. Simplified proofs of this characterization can be found in [MP86]
and [Vil92]. Precisely, the characterization is expressed as the conjunction of a
necessary and of a sufficient conditions. The necessary condition is given by the
following theorem.

Theorem 8.6 Let n > 0 be a dimension, r > 1 be a basis, and U C Z" be a
set of vector values. If U 1is recognizable with respect to the synchronous encoding
scheme Esyy, then U is definable in the first-order theory (Z,<,+,V,), where V, is
a function defined as

the greatest power of r dividing z if z # 0,

:Z — N
Veid zH{1 if 2 =0.

198 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

Proof Our proof is inspired by the one proposed by Villemaire [Vil92]. Let A =
(33, 5,A,I,F) be an NDD representing U. We assume that A is in strong normal
form. The idea of the proof is to give a method for constructing from A a formula
Y of (Z,<,+,V,) denoting the set U.

The construction is as follows. By definition of NDDs, A has a finite number
of states. Therefore, there exists [€ Ny such that |S| < r’. It follows that each
state s € S can be unambiguously identified by [digits d;(s), da(s), ..., d;(s) taken
in {0,1,...,r — 1}. This assignment of unique tuples of digits to states can be
chosen arbitrarily provided that no state is associated with the tuple (0,0,...,0)
(the purpose of this restriction is to simplify future computations). A finite sequence
of states sg,s1,...,8, € S (m > 0) can then be identified by a tuple of words
(wy,wa, ..., wy) € ({0,1,...,r — 1}™F1) such that

wp = dl(Sm)'dl(Smfl)"'dl(Sl>'dl(SQ),
Wy = dz(sm)'dz(sm_l)"'dg(sl)'dQ(SQ),

w; = dl(Sm) . dl<8m,1) s dl(Sl) . dl(So).

Since each w; (1 < i <) is a word over the alphabet {0,1,...,7 — 1}, the word
w; prefixed by any nonzero number of “0” digits encodes a number z; € N. It
follows that every finite sequence of states of A can be unambiguously identified by
a single vector value 7 € N!. The essence of the construction of 1 is to express in
(Z,<,+,V,) the fact that Z identifies an accepting path of A.

Precisely, the formula ¢ : Z™ — {T,F} denoting U can be expressed as

Y(@) = (FZ€Z)Z=0A 740 A W(20),
where

T if z corresponds to a path of A that accepts a
Y Nl xzZ" . (Z,7) — synchronous encoding of v,
F otherwise.

It remains to define the predicate ¢’ in (Z, <, +,V,). We use the decomposition
w%gv U) = 1/}1<5> A 1/}2<57 U) A w3<5>7
where

e (2) = T if and only if 2 identifies a sequence of states of 4 beginning in an
initial state;

e 5(Z,¥) = T if and only if there exists a path of A that visits the sequence of
states identified by Zz and that reads a synchronous encoding of

8.1. BASIC NOTIONS 199

e 3(2) = T if and only if 2" identifies a sequence of states of A ending in an
accepting state.

In order to simplify the expressions of 1, ¥9 and 13, it is useful to introduce the
auxiliary predicate X, : Z3 — {T,F}, such that X,(z,u, k) = T if and only if u is
a power of r and the coefficient of this power of r in the development of z in basis

r is k. Formally, we have

X (z,u, k) =Vi(u) =u A /\ (k=i = X'(z,u)),

0<i<r

where for each ¢ € {0,1,...,r — 1},

Xizu) = Bz, €Z)(0<z1 <u A Vi(z)>u A 2=z +iu+ 2)
0

<
V (321 € Z)(S

21 <u A z=z +iu).

We are now ready to give the expressions of ¢y, 1) and ¢5. We have

1(21, 22, ..., 2) = \/(/\ X (2i,1,di(s0))),

soel 1<i<l

Yoz, 22, ..y 2, 01,02, .., 0) = (Vu € Z)(Vi(w) =u A\ ru<) =
1<i<i

\/ (N\ (Xio(ziou, di(s1)) A X (25,70, di(s2)))

(81,(a1,..ran),52) €A 1<i<I
A /\ XT<UZ'7U‘7&Z')))

1<i<n
MV =u A N\ ru>z)= A\ (X(vuk)
1<i<l 1<i<n ke{0,r—1}

ANu=1V X.(v;,u/rk))))),

and

Us3(z1, 22, ..., 2) = (Fu e Z)(\ (Vi(w) =u A N\ Xo(zi,u,di(s)) A

seF 1<i<l
Vo' € Z)(V,(W)=u' A >u) = N X, (z,¢,0)))).
1<i<l

(In these expressions, ru is a shorthand for u + u + - - - + u, in which u appears r
times, and u/r represents an integer z such that rz = w.) O

The second part of the characterization of the sets of vector values that are rec-
ognizable with respect to the synchronous encoding scheme consists of establishing
that the condition expressed by Theorem 8.6 is also sufficient, i.e., that all the sub-
sets of Z" that are definable in the first-order theory (Z, <,+,V,) are recognizable.

We follow the same approach as in [BHMV94|. Intuitively, if a set U C Z" of
vector values is definable in the theory (Z, < +,V,), then it can be expressed in
terms of basic vector sets which correspond to the atomic formulas of that theory,

200

CHAPTER 8. SYSTEMS USING INTEGER VARIABLES
{Ga1o<i<r}

(0,0)
(r—1,r—-1)
R O
_/

Figure 8.1: NDD representing U_.

and of basic set operations which correspond to Boolean operators and first-order

quantifiers. The sufficient condition is then proved by showing that the basic vector

sets are recognizable, and that the basic set operations preserve the recognizable
nature of sets, and can be computed on vector sets represented as NDDs. These
two results are established by the four following lemmas.

Lemma 8.7 Letr > 1 be a basis. The vector sets

U- = {(vi,v9) € Z? | vy = va},

Us = {(vi,v2) € Z? | vy < vy},

Uy {(v1,v9,v3) € Z3 | v3 = vy + v},
Uy, = {(vi,v9) € Z% | vy =Vp(v1)}.

T

are recognizable with respect to the synchronous encoding scheme Eg(,).

Proof NDDs! representing those sets are given in Figures 8.1, 8.2, 8.3 and 8.4. Let
wy, wy, w3 € {0,1,...,7—1}* be synchronous encodings of (respectively) vy, vq, v3 €

Z. The principles of operation of the NDDs are the following.

e The NDD representing U— checks that w; and wy have the same valid sign

digits, and that all their remaining digits are pairwise identical;

The NDD representing U< first compares the sign digits of w; and wy and
checks that they are valid. If v; < 0 and vy > 0, then the pair (w;,ws)
is accepted regardless of the remaining digits. If v; > 0 and vy < 0, then
the pair (w,wsy) is not accepted. If v; and vy have the same sign, then the
automaton looks for the leftmost digit that differs between w; and ws. The
pair (wy, wy) is accepted if the smaller digit is the one in wy, or if w; is identical
to ws;

The NDD representing U, first compares the sign digits of w; and wy and
checks that they are valid. Then, it jumps either to a carry or to a non-carry
state. The transitions of the automata are labeled so as to meet the following
requirements:

'In these automata, sets of transition labels are introduced as a shorthand for sets of transitions

sharing the same origin and end.

8.1. BASIC NOTIONS 201

{(.5)|0<i<rA0<)<r}

O

(r—1,0)

{Gilo<i<j<r}

{4 10<i<r}

Figure 8.2: NDD representing U<.

{(i,,i+7)|0<i<rA0<j<rAO0<i+j<r}

(0,0,0)
0, r—1,r—1)
(r—1,0,r—1)

(%) () {0 Gi+i—r)]|0<i<r AOLSj<rAr<itj<2r}

[(4,4,i+7+1)|0<i<rA0<j<rAO0<itj+l<r}
(0,7 —1,0)
(r—1,0,0)
(r—1,r—1,7r—1)

{Ghji+i4+1-1)|0<i<rAO<j<rAr<i+j+1<2r}

Figure 8.3: NDD representing U, .

202 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

(0,0)

N (0,0) Q (0,1) @

) : {G0)[0<i<r}

(r—1,0)
{(,1)|0<i<r}

{(,1)]0<i<r)

{G0)]0<i<r} (0,0)

Figure 8.4: NDD representing Uy, .

— If the automaton reaches the carry state after having read the triple
(w), wh, wh), then there exist vy, v}, vy € Z such that w € [v]],, wh € [v}],,
wh € [vy], and v = v} + v + 1,

— If the automaton reaches the non-carry state after having read the triple
(w}, wh, w}), then there exist v}, v, vy € Z such that w] € [v]],, wh € [v}],,
w} € [vh], and v} = v} 4+ v). The non-carry state is thus accepting;

e The NDD representing Uy, first checks that vy is positive, and that w; has a
valid sign digit. Then, it tests whether wy is composed of exactly one 1 digit
and of remaining 0 digits. The other restrictions are that either the digit of w;
at the same position as the 1 in ws is different from zero and all the subsequent
digits of w; are equal to zero, or v; = 0 and vy = 1.

|

Lemma 8.8 Let r > 1 be a basis, ni,ny € N be dimensions, and U; C Z",
Uy C Z™ be two sets of vector values. If Uy and Uy are recognizable with respect
to the synchronous encoding scheme, then the sets Uy U Uy, Uy N Uy, Uy \ Uy and
U, x Uy are also recognizable if they are defined. Moreover, NDDs representing those
sets can be computed from NDDs representing Uy and Us.

Proof Immediate, as a consequence of Theorem 6.8. If A; and A, are NDDs
representing respectively U; and Us, then representations of Uy U Uy, Uy N Uy, Uy \ Us
and U; x Uy are respectively given by UNION(A;, A;), INTERSECTION(A;, As),
DIFFERENCE(A;, A;), and PRODUCT(A;, Ay). O

8.1. BASIC NOTIONS 203

Lemma 8.9 Letr > 1 be a basis, n € Ny be a dimension, U C Z" be a set of vector
values, and © € N be such that 1 < i < n. If U is recognizable with respect to the
synchronous encoding scheme, then the set

32(U> = {(Ul, ey Vi1, Viaty - - - ,’Un) c Zni1 ‘ (ElUZ € Z)((’Ul, Ce ,’Un) c U)},

called the projection of U with respect to the vector component x;, is also recog-
nizable. Moreover, an NDD representing 3;(U) can be computed from an NDD
representing U.

Proof Let A be an NDD representing U. The vector value (vy,...,v;_1,Vit1, ..., 0y)
belongs to 3;(U) if and only if there exist v; € Z and a path 7 of A such that =
is labeled by an encoding in basis r of (vq,...,v,). Let f be the homomorphism
that maps every symbol in {0, 1,...,r — 1}" onto the symbol of {0,1,...,r —1}""1
obtained by deleting its ¢-th component. Formally, we have

f o (o,1,...,r =13 —= ({0,1,...,r — 1} 1)*
£ +— g,
(a1,...,a,) — (Q1,. ., Qi 1,Qi11, -, 0p),
wy - wy — f(wy) - fws).

The automaton A" = APPLY-HOMOMORPHISM(A, f) is such that the set of
vector values encoded by its accepted language is exactly 3;(U). This does not
imply that A’ is an NDD representing 3;(U), since for every element v of 3;(U), A’
may accept some encodings of ¥ but not all of them.

An NDD representing 3;(U) can be obtained by building an automaton A"
that accepts all the encodings of the vector values such that at least one of their
encodings is accepted by A’. This can be done as follows. If two encodings
wy,we € ({0,1,...,7 — 1}™)* of the same vector value v differ, then there exist
a € {0,7r—1}" and k € N such that either w; = a*-w, and a = wy[1] or wy = a*-w,
and a = wi[1]. Intuitively, this means that the two words only differ by the number
of leading copies of the sign digits of the vector components. The automaton A”
can thus be built in such a way that each of its accepted words corresponds to a
word accepted by A’ to which the leading symbol has been prefixed an arbitrary
number of times, or from which this symbol has been removed an arbitrary number
of times if it was repeated more than once. An algorithm formalizing the overall
construction of an NDD representing 3,(U) is given in Figure 8.5. O

Lemma 8.10 Let r > 1 be a basis, n € N be a dimension, U C Z" be a set of
vector values, and (iy,is,...,i,) € N™ be a permutation of {1,2,....,n}. If U is
recognizable with respect to the synchronous encoding scheme, then the set

/J(z‘l,...,z‘n)(U) = {<vi17vi27 e ,Uin) SVA \ (%Uza e ﬂfn) € U},

204 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

function PROJECT-NDD(basis r, dimension n, NDD A, integer i) : NDD

1 var f : function;

2 (3,S,A,1,F) : automaton;

3 a : symbol;

4 s',s" : states;

5: S’ : set of states;

6 begin

7 A := NORMALIZE(A);

8 f= ({0,1,...,r=1}")* = ({0,1,...,r — 1} 1)*

e — &
: { (a1, yan) — (1, Q=1 i1y ey G,
wi-wy = f(w) - fws);

9: (£,8,A,1,F) := APPLY-HOMOMORPHISM(A, f);
10: let s’ € S;
11: S =8 U {s};
12: for each a € {0,7 — 1}""! do
13: begin
14: let s ¢ S;
15: S =S u{s}
16: S = {s€ 8| (3so €I,keNy)(s0,a" s)ecA)};
17: A:=AU{(sa,s)} U{(s" a,s)} U{(s" es)|seS}
18: end;
19: I:={s};
20: return (X, 5, A, I, F)
21: end.

Figure 8.5: Projection of an NDD with respect to a vector component.

8.1. BASIC NOTIONS 205

function REORDER-NDD(basis r, dimension n, NDD A, permutation (41,2, ...,i,)) : NDD

1 var (X,S,A,I,F) : NDD;
2 begin
3 (3,8,A,1,F) == NORMALIZE(A);
4: A = (s, (g, Qigy -y a4,),8") | (8, (a1, ag,...,a,),s") € A} U {(s,e,8') € A};
5 return (X, 5, A, I, F)
6 end.
Figure 8.6: Reordering of an NDD.
called the reordering of U with respect to the indices iy, iz, ...,1,, 1S also recogniz-

able. Moreover, an NDD representing p, ...;,)(U) can be computed from an NDD
representing the set U.

Proof Immediate, since an NDD A’ representing p;, ...i,)(U) can be computed from
an NDD A’ representing U by replacing every symbol (aq, as, ..., a,) € {0,1,...,r—
1}™ labeling the transitions of A by the symbol (a;,,a;,,...,a;,). An algorithm
formalizing the construction of A’ is given in Figure 8.6. O

We are now ready to state the sufficient condition on sets of vector values that
are recognizable with respect to the synchronous encoding scheme.

Theorem 8.11 Let r > 1 be a basis, n € N be a dimension, and U C Z" be a set
of vector values. If U is definable in the first-order theory (Z,<,+,V,), then U is
recognizable with respect to the synchronous encoding scheme Egy. Moreover, an
NDD representing U can be computed from a formula of (Z,<,+,V,) defining U.

Proof If U is definable in the theory (Z, < ,+,V,), then there exists in this theory
a formula ¢ : Z" — {T,F} such that

U={(v,vq,...,0,) €Z" | p(v1,02,...,0,)}.

We then say that ¢ denotes U. The variables vy, vs, . .., v, are the free variables of .
The principle of the proof is to translate the formula ¢ into an NDD A representing
the set U denoted by ¢. The construction proceeds by induction on ¢.

The atomic formulas of (Z, <, +, V,.) are the equality = = y, the inequality z <y
and the equations z = z + y and y = V,(z), where z, y and z are variables. By
introducing as many additional variables as necessary, we can rewrite ¢ as a formula
in which each variable does not appear more than once in a given atomic formula (for
instance, the formula © = V,.(z) can be rewritten as (32’ € Z)(z' = V,(x) A x = 2/),

206 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

where 2’ is an auxiliary variable). The atomic formulas can be translated into NDDs
representing the sets U—, U<, U; and Uy, that they denote, thanks to Lemma 8.7.

The inductive formulas of (Z, <, +,V,) are the conjunction ¢; A s, the dis-
junction ¢ V 9, the negation -y, the existential quantification (3x)(¢1) and the
universal quantification (Vz)(y1), where @1 and ¢ are formulas and x is a variable.
Since 1 V @2 = (1 A —po) and (Vz)(p1) = —(3z)(—e1), it is sufficient to
consider the conjunction, negation, and existential quantification of formulas.

If the free variables of ¢ and o are identical and appear in the same order,
then the formula ¢ A @9 denotes the set U; N Us, where U; and U, are respectively
denoted by ¢ and 3. An NDD representing U; N Us can be computed thanks to
Lemma 8.8. If the free variables of ¢, and ¢, are not identical, then the sets of
free variables of each formula can be extended so as to include the free variables of
the other one. Formally, adding a free variable to the formula ¢; : Z™ — {T,F},
where n; > 0, yields the formula

) 2T S {T,F} 1 (v1,...,Un41) — ©(V1, ..., Un,).

If Uy C Z™ is the set denoted by ¢y, then the set U; C Z™*! denoted by ¢} is
such that U] = Uy x Z. Since Z = 3,(U-), an NDD A/ representing U] can be
computed from an NDD A; representing U; as a consequence of Lemmas 8.7, 8.8
and 8.9. Finally, if the free variables of ¢; and @y are identical but appear in a
different order, then thanks to Lemma 8.10, the free variables of one of the formulas
can be reordered so as to match those of the other one. This is done by applying
the reordering operator p to the NDD representing the set denoted by the formula.

The formula —¢; denotes the set U] = Z™ \ Uy, where U; C Z™ is the set denoted
by 1. Since Z™ =Z X Z x --- x Z, an NDD representing U] can be obtained from
an NDD representing U; thanks to Lemmas 8.7, 8.8 and 8.9. The formula (3x)(¢1)
denotes the set Uy = 3;(U;), where i € N is such that x is the i-th free variable of
1. An NDD representing U]’ can be obtained from an NDD representing U; thanks
to Lemma 8.10. O

Theorems 8.6 and 8.11 can be combined into a necessary and sufficient condition

which characterizes precisely the sets of vector values that can be represented as
NDDs.

Theorem 8.12 Let n € N be a dimension, r > 1 be a basis, and U C Z" be a set
of vector values. The set U is recognizable with respect to the synchronous encoding
scheme Egqy if and only if U is definable in the first-order theory (Z,<,+,V,).
Moreover, an NDD representing U can be computed from a formula of (Z,<,+,V,)
defining U.

Proof The result is a direct consequence of Theorems 8.6 and 8.11. O

8.1. BASIC NOTIONS 207

In the sequel, we will denote by NDD(U) any NDD that represents the set of
vector values U C Z". Reciprocally, the set of vector values represented by the
NDD A will be denoted SET(.A). Since the emptiness of sets represented as NDDs
is decidable (as a consequence of Theorem 6.9), Theorem 8.12 has the following
corollary.

Corollary 8.13 The first-order theory (Z,<,+,V,) is decidable.

Proof Immediate, since for every closed formula ¢ of (Z, <, +,V,), we have p =T
if and only if? EMPTY?(NDD({Z € Z" | ¢(¥)})) =F. O

8.1.5 Sets that are Representable in Any Basis

The results presented in Section 8.1.4 give an exact characterization of the sets of
vector values that can be represented as NDDs in a given basis » > 1. The question
addressed here is to characterize the sets that are representable in any basis r > 1,
with respect to the synchronous encoding scheme.

The problem has been solved by Cobham [Cob69] for subsets of Z, and then gen-
eralized to subsets of Z" for any n > 0 by Semenov [Sem77]. Their characterization,
usually referred to as the theorem of Cobham-Semenov, can be stated as follows?.

Theorem 8.14 Let n > 0 be a dimension, U C Z" be a set of vector values, and
r1,1m9 > 1 be two bases. If r1 and ro are such that there do not exist i,7 € Ny for
which i = 1} (r and ry are then said to be multiplicatively independent), and
if U is both definable in (Z,<,+,V,,) and in (Z,<,+,V,,), then U is definable in
(Z,<,4).

Proof The proof is quite technical and its presentation is well beyond the scope
of this thesis. A comprehensible proof can be found in [MV93] and [MV96]. An
elegant proof due to Muchnik [Muc91] and based on an original criterion is presented
in [BHMV94|. O

The theorem of Cobham-Semenov has an important corollary that allows to
characterize exactly the sets that are representable as NDDs in any basis.

Corollary 8.15 Let n > 0 be a dimension, and U C Z" be a set of vector values.
The set U 1is recognizable in every basis r > 1 with respect to the synchronous
encoding scheme Egy if and only if U is definable in the first-order theory (Z, <, +).
Moreover, an NDD representing U can be computed from a formula of (Z,<,+)
defining U.

2The dimension of NDD({Z € Z" | ¢(%)}) is equal to 0, which means that all the transitions of
this NDD are labeled by the empty word. This NDD is actually an inputless automaton.

3The results of Cobham and Semenov actually apply to subsets of N™. The generalization to
subsets of Z™ is immediate.

208 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

Proof One direction is a direct consequence of Theorem 8.14. The other follows
from Theorem 8.12, since (Z, <,+) is a subset of (Z, <, +,V,) for any r > 1. O

The theory (Z,<,+) has been studied by Presburger [Pre29] and is usually
referred to as Presburger arithmetic. Tt is known [Opp78, FR79] that deciding Pres-
burger arithmetic is 2EXPSPACE-complete.

An advantage of considering the sets of vector values that are definable in Pres-
burger arithmetic rather than the sets definable in (Z, <, +, V) for some basis r > 1
is that lots of techniques have been developed for dealing with Presburger arithmetic,
and that efficient implementations of these techniques have been made available. An
example of such an implementation is the Omega Test [Pug92a] which allows to ma-
nipulate formulas of Presburger arithmetic with a surprising efficiency. Another
result of interest, due to Boudet and Comon [BC96], shows that the minimal and
deterministic NDD representing the set of vector values that satisfies a system of
linear equations and inequations is very compact and can be computed efficiently.

On the other hand, there are applications for which using the theory (Z, <, +, V)
for some basis r > 1 is nonetheless more advantageous than using Presburger arith-
metic. For instance, the model of a hardware circuit performing some arithmetic
operation on unbounded binary numbers might very well have a control location in
which the set of reachable values is the set of the powers of 2. It can be shown that
this set cannot be defined in Presburger arithmetic, even though it is denoted by
the formula ¢(x) = Va(x) = x which belongs to (Z, <, +, V3).

Since both theories have advantages, the approach followed in the rest of this
chapter is to stay as general as possible. Each result dealing with the possibility of
representing a set of vector values as an NDD will thus be expressed twice: once with
respect to the theory (Z, <, +,V,) for any r > 1, and once with respect to Presburger
arithmetic. Intuitively, the former case consists of choosing the numeration basis
used by the NDD, and the latter one consists of requiring that the result has to hold
in any basis. We will make use of the following definitions.

Definition 8.16 Let r > 1 be a basis, n € N be a dimension, and U C Z" be a set
of vector values. The set U is r-recognizable if it is recognizable with respect to the
synchronous encoding Es().

Definition 8.17 Let n € N be a dimension and U C Z" be a set of vector values.
The set U is Presburger-definable if for every basis r > 1, it is recognizable with
respect to the synchronous encoding Eg.y.

In the rest of this chapter, we will only consider bases > 1 for which there does
not exist 7 € N, with j > 2, such that r(1/7) € N. This can be done without loss of
generality thanks to the following result.

8.1. BASIC NOTIONS 209

Theorem 8.18 Let n € N be a dimension, r > 1 be a basis and U C Z" be a
set of wvector values. For every k € Ny, U 1is r-recognizable if and only if U is

r*-recognizable.

Proof An automaton Ay, in normal form representing the set U with respect to Eg
can easily be turned into an automaton A; representing U with respect to Eg(,) by

. . . N ;o ;
transforming each of its transitions (s, (a1, as, ..., ay),s’) into (s, (a} 1, a) 5, ..., a,)
/ / / / / / / ; /
(ah s @y, -y ah) - (A, Qg5 0 ,),8), where for each @ € {1,2,...,n}, a,,

/ !/ . i .
Ao iyeey Ay € {0,1,...,r =1} and a; = Yp<jck Q) - The resulting automaton

A’ does not necessarily accept all the encodings of the elements of U, and the
construction proposed in the proof of Lemma 8.9 can be used to obtain A; from A’.

The reciprocal transformation is also possible. Given an automaton A;, one
first computes an automaton A in strong normal form that accepts the language
L(A) N Uien{0,1,...,7 — 1}*. Then, one constructs Ay as follows:

e The set of states of A, contains the states of A that are reachable by reading
a word w whose length is an integer multiple of k;

e There is a transition (s, (ay, as,...,a,),s’) between the states s and s’ of Ay, if
and only if there exist a} |, a} ;.. ., 0], 051,059, -, Ay, A 1, A gy -, Ay €
{0,1,...,7—1} such that A admits a path from s to s labeled by (a} ;,a} 5, - . -,
ay) - (ahq, a0, . ah,) (A, a0, -, a,,), and such that for each i €

{17 2,... 7n}7 a; = 20§j<k T]a/(k*j)yi;

e The sets of initial and of accepting states of A, are identical to those of A.

8.1.6 Other Encoding Schemes

Of course, the synchronous encoding scheme is not the only scheme that can be used
for encoding vector values. Following [BHMV94|, we qualify as “good” an encoding
scheme that allows to represent every set that is definable in Presburger arithmetic.
In this section, we define two new “good” encoding schemes for vector values, and
study how they relate to the synchronous encoding scheme.

The first encoding scheme that we introduce simply consists of reading the digits
of the vector components from the least significant one to the most significant one
rather than the other way around. We have the following definition.

Definition 8.19 Let n > 0 be a dimension and r > 1 be a basis. The reverse
synchronous encoding scheme Eg(,) is the relation that associates to a vector of Z"

210 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

the tuple of the same-length encodings in basis v of the components of this vector
written backwards. Formally, we have

ER(r) C M x VR(r) = {((Ub . "7vn>7 (wlv---awn)) \ ‘wl‘ = |w2\ == \wn|
Awl € [vy], ANwl € [va], A - A wE € [v,],},

where M = Z" and Vg = |J ({0,1,...,r — 137 - {0,r — 1})", and for every
kEN
i€{1,2,...,n}, wl denotes the word w; written from right to left.

The sets of vector values that are recognizable with respect to the reverse syn-
chronous encoding scheme are exactly the ones that are recognizable with respect
to the synchronous encoding scheme. Indeed, an automaton Ag representing the set
U CZ" (n>0) with respect to Eg(y (r > 1) can easily be turned into an automa-
ton Ag representing U with respect to Eg(, by transforming each of its transitions

R s), where w! denotes the word w written from right to left,

(s,w,s’) into (s, w
and by exchanging the sets of initial and of accepting states. The reciprocal trans-
formation can be performed identically.

It is worth mentioning that this result does not imply that the synchronous
and reverse synchronous encoding schemes are equivalent in practice. Indeed, if
one chooses to represent sets of vector values as minimal deterministic finite-state
automata, then there exist sets whose representations will be more concise with one
scheme than with its counterpart. For instance, representing in basis 2 the set of
all the integers whose binary expansion has the coefficient of 2% (k > 0) equal to 1
yields a minimal deterministic automaton of size O(2¥) if the synchronous encoding
scheme is used, but only of size O(k) with the reverse synchronous encoding scheme.
The encoding scheme used in a particular application must therefore be carefully
selected with respect to the sets of vector values that will be potentially represented.

The other encoding scheme studied here consists of reading the digits of the
vector components successively, rather than simultaneously, in increasing order of
position. This encoding scheme is formally defined as follows.

Definition 8.20 Letn € N be a dimension and r > 1 be a basis. The synchronous
interleaved encoding scheme Ej, is the relation

Erey €M x Vigy = {((v1,...,vn),w) | (3l € N)(Jw| =1.n
Aw[l] - w[l+n]---w[l+ (I —1)n] € 1],
Aw2]-w[2+n]---w[2+ (I — 1)n] € [va],

Aw[n] - wn+n]-- w[n + (I —1)n] € [va)r)},

where M = Z" and Vi = {0,r — 1} (J{0,1,...,r — 1}".

keN

8.2. LINEAR OPERATIONS 211

The sets of vector values that are recognizable with respect to the synchronous
interleaved encoding scheme are exactly the ones that are recognizable with respect
to the synchronous encoding scheme. Indeed, an automaton Ag in normal form
representing the set U C Z" (n > 0) with respect to Egq) (r > 1) can easily be
turned into an automaton A; representing U with respect to Ey(,.) by transforming
each of its transitions (s, (a1, as, ..., a,),s’) into (s,a; - as - - - a,, s'). The reciprocal
transformation is also possible. Given an automaton .4; in strong normal form, the
corresponding Ag can be constructed as follows:

e The set of states of Ag contains the states of A; that are reachable by reading
a word w whose length is a multiple of the dimension n;

e There is a transition (s, (a1, as,...,a,),s’) between the states s and s of Ag
if and only if A; admits a path from s to s’ labeled by a1 - as - - - ay;

e The sets of initial and of accepting states of Ag are identical to those of Aj;.

Once again here, even though the synchronous and the synchronous interleaved
encoding schemes have the same expressiveness, they are not equivalent in practice
from the point of view of conciseness. For instance, representing the set Z*, with
k > 0, yields a minimal deterministic automaton of size O(2*) if the synchronous
encoding scheme is used, but only of size O(k) with the synchronous interleaved
encoding scheme. The size of the minimal deterministic finite-state representa-
tions obtained with the synchronous interleaved encoding scheme is actually always
asymptotically smaller than what can be obtained with the synchronous encoding
scheme. The drawback of the synchronous interleaved encoding scheme is that the
algorithms implementing set operations are slightly more complex than their syn-
chronous counterpart.

The synchronous encoding scheme is used in the rest of this chapter for simplic-
ity. The algorithms that will be developed can however be adapted to the reverse
synchronous or the interleaved synchronous encoding schemes with little difficulty.

8.2 Linear Operations

The problem addressed here consists of computing the image of a set of vector values
represented as an NDD by the linear operation labeling a transition of an ISMA.
Given an NDD A representing the set of vector values U C Z" (n > 0) in the basis
r > 1 and a linear operation P¥ < ¢ — ¥ = AZ + g, where m € N, P € Z™*",
g€ Zm™, AeZm™ and b € Z", the problem thus consists of computing an NDD A’
representing the set

U = {AT+0b|GeU A PT<g}.

212 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

This problem can be solved by first constructing two NDDs A; and A, represent-
ing respectively the sets U; C Z™ and Uy C Z*" such that U; = {¢ € Z" | P¢ < G}
and Uy = {(v,70") | v/ = AU+ b}. Indeed, we have

U = Ellzlgan((U N Ul) x Z" N UQ),

which yields a way of computing A" from A, A; and As.
It remains to show how to build A; and A,;. A simple solution consists of
translating into NDDs the formulas

and
o 2 27" — {T,F} : (4,9') — 0 = AT+ b,

denoting respectively U; and Us, by applying Theorem 8.11. The requirement stating
that ¢ and g2 must be expressed in the theory (Z, <, +,V,) can easily be fulfilled.
The only difficulty is to convert a formula of the form y = cx, where ¢ € Z is a
constant and x and y are variables, into a formula of (Z, <,+,V}).

This conversion can be carried out as follows. First, we assume that ¢ € N.
Indeed, if ¢ < 0, then y = cz is equivalent to (Fy' € Z)(y +y' =0 A ¢y = (—c)z).
Let ¢p—1,¢p-2,...,c1,¢0 € {0,1} (p > 0) be the digits of the binary expansion of ¢,
ie.,let c,o1-cpa---c1-co € [c]a. We define ¢ > 0 and iy, i9,...7, € {0,1,...,p—1}
such that {i1,49,...,7,} = {i € {0,1,...,p — 1} | ¢, = 1}. The formula y = cx is
equivalent to

(Fzo, 1, Tp1, Y0, Y1y - - Yg € L) (o =T AN 11 =20+ 29 N Tg =21 + 21 A
o NTp 1 =Tp 0+ Tp o2 ANYo=Yo+ Yo N1 =Yoo+ Tiy NYa=Y1+2x, A
qu:yq_1+xiq /\?/:yq)a

which belongs to (Z, <,+,V,.). The size of the converted formula is O(log, ¢), which
means that the cost of the conversion is linear in the size of the original formula. In
the rest of this chapter, we will allow integer variable coefficients in formulas of (Z, <
,+,V,), and assume that the conversion method outlined above is systematically
used.

An algorithm formalizing the construction of A’ as a function of A, A; and A,
is given in Figure 8.7.

Theorem 8.21 Let n > 0 be a dimension, r > 1 be a basis, A be an NDD rep-
resenting the set of vector values U C Z", and 6 be a linear operation over Z™.
APPLY-LINEAR(r,n, A, 0) is an NDD representing the set 0(U).

Proof The algorithm in Figure 8.7 is a direct implementation of the computation
method developed in this section. O

8.3. CREATION OF CYCLE META-TRANSITIONS 213

function APPLY-LINEAR(basis r, dimension n, NDD A,
operation (P¥ < §— & := A% +1b)) : NDD

1 var A, As, A’ : NDDs;

2 1 : integer;

3 begin

4: Ay == NDD({¥ € Z" | PU < {});

5 Ay := NDD({(7,7") € 22" | 7' = AT+ b});

6 A’ .= INTERSECTION(PRODUCT(INTERSECTION(A, A;),

NDD(Z™)), As);

T for i := 1tondo

8: A’ := PROJECT-NDD(r, n, A, 1);

9: return A’
10: end.

Figure 8.7: Application of a linear operation to an NDD.

8.3 Creation of Cycle Meta-Transitions

As it has been shown in Section 3.4.1, the creation of cycle meta-transitions is
controlled by

e A computable predicate META? defined over the set of potential sequences
of operations, whose purpose is to decide whether the meta-transition corre-
sponding to a given sequence can be created, i.e., whether the closure of the
sequence can always be applied to sets of memory contents;

e An algorithm for computing the image of any representable set of memory
contents by the closure of a sequence of operations satisfying META?.

It has been seen that a finite sequence of linear operations is always equivalent
to a single linear operation, whose parameters can be computed. In this section, we
provide algorithms for computing a suitable predicate META? over linear operations,
and for applying closures of such operations to sets of vector values represented as
NDDs. Each result will successively be stated in the context of sets representable
in a given basis r > 1, and then of sets representable in any basis.

8.3.1 Overview

This section is organized as follows. First, we define some notions of algebra and
combinatorics that will be extensively used, and recall some known results. Next,

214 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

we extend in an original way the notion of recognizability to sets of vectors with
complex components. This generalized notion of recognizability is then used as
a powerful tool for establishing necessary and sufficient conditions over guardless
linear operations whose closure preserves the recognizability of sets. We will give
the most general solution to this problem, in the sense that it will always be possible
to compute the closure 6* of a guardless linear operation # provided that the image
by 6* of any recognizable set of vector values is recognizable. Computing the truth
value of META? for a particular linear operation 6 will thus amount to deciding
whether the image by 6* of any recognizable set of vector values is recognizable.
In the next part, we will present algorithms implementing with NDDs the decision
procedures expressed by the necessary and sufficient conditions. Next we will give
a simple extension of the results obtained so far that allows to apply those results
to linear operations with guards. Finally, we will conclude the section with some
proofs that are omitted from the main text for clarity.

8.3.2 Algebra and Combinatorics Basics

The sets of rational numbers and of complex numbers are respectively denoted by Q
and by C. For every n € Ny, I,, denotes the identity matrix I,, = diag(1, 1, ..., 1) of
dimension n. The successive columns of I,, are denoted €7, €, ..., €,. Let A € C"*"
be a complex matrix. If S C C" is a set of vector values, then AS is a shorthand
for {AZ | ¥ € S}. Similarly, if ¥ € C", then S + ¥ denotes the set {Z¥+ ¢ | ¥ € S}.
The sets of rows and of columns of A are respectively denoted row(A) and col(A).
The maximum number of linearly independent rows or columns of A is the rank
of A, Any A € C and # € (C"\ {0}) such that AZ = AZ are respectively called
an eigenvalue and an eigenvector of A. The eigenvalues of A are the roots of the
characteristic polynomial of A, defined as IT(\) = det(A — AI,). They are also the
roots of the minimal polynomial of A, which is defined as the polynomial II'(A) of
lowest degree such that II'(A) = (0). If A\, g, ..., Ay, are the eigenvalues of A,
then A7) AL, ..., AP are the eigenvalues of AP for any p € Ny. For every n € Ny
and A € C, the Jordan block of dimension n associated to A is the matrix

Al

A1
Jn,)\: .

A

A matrix A € C™*" only composed of Jordan blocks on its main diagonal, in other
words such that A = diag(Jp, a5 Jnargs - - -)s 18 said to be in Jordan form. For every
A € C™" there exists a nonsingular matrix U € C™" such that A = UA;U!,
with A; being in Jordan form (U is said to transform A into its Jordan form Aj).
The Jordan form A; of A is unique up to the reordering of its diagonal blocks. For

8.3. CREATION OF CYCLE META-TRANSITIONS 215

each diagonal block J,, », composing A, the corresponding); is an eigenvalue of A.
Reciprocally, for every eigenvalue \; of A, there exists a (possibly non unique) Jordan
block J,, 5, that belongs to the set of diagonal blocks of A;. If the components of
A and its eigenvalues belong to Q, then there exists U € Q"*" transforming A into
Aj. If the Jordan form of A is diagonal (in other words, if all its Jordan blocks are
of size 1), then A is said to be diagonalizable.

Let p, ¢ € N with p < g. The binomial coefficient CT € N is defined as

q!

cr=—2L
(¢ —p)!p!

q
Binomial coefficients are related to Jordan blocks in the following way. If A € C
and n, m € N with 0 < n < m, then the m-th power of the Jordan block .J,) is
such that

i AmC0 Am=lol \m=202 ymentlom-l T
)\mCO)\m—lCl o)\m—n—l—ZCn—Z
m AmCO L ATl
I Gy

We now define some notions related to cyclotomic fields. It is known that every
polynomial with integer coefficients can be factorized into a product of indivisible
polynomials with integer coefficients. This factorization is unique up to multiplica-
tive constants. For every n € Ny, the indivisible factors of the polynomial z" — 1
are called cyclotomic polynomials. There is a cyclotomic polynomial ®,, associated
to every integer m € Ny, defined as

0, (z) = [(z — ™),

[k,m]

where [k, m] stands for 1 <k <m A ged(k,m) = 1. Actually, we have

k|n

where k|n means “k divides n”. For every m € Ny, the degree of ®,,(z) is equal to
¢(m), where ¢ is the Fuler function. This function is defined as

1 1 1
¢:N0—>N0:$‘l—>l‘<1——> <1__>...<1__>’
b1 D2 Dq

where pq,ps,...,p, are the (distinct) prime factors of x. Intuitively, ¢(m) is the
number of integers in {1,2,...,m} that are relatively prime to m.

216 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

8.3.3 Recognizability of Sets of Complex Vector Values

Let n € N be a dimension. In this section, we generalize the notion of recognizable
set of vector values to subsets of C™. The reason why sets of complex vector values
are considered is that Jordan forms of matrices will be heavily used, and that trans-
forming a matrix into its Jordan form is generally not possible within R. Intuitively,
the idea behind the generalization of recognizability is the following. Let S C Z™ be
a set of vector values and let 6 = (T := AZ +b), where A € Z"™" and b € Z", be a
guardless linear operation. If the transformation matrix A is nonsingular, then the
set S is recognizable (either with respect to a given basis r > 1 or to all of them) if
and only if the set 0(5) is recognizable. This shows that the recognizable nature of
a set of integer vector values is not influenced by nonsingular linear transformations.
It is therefore natural to define a set of complex vector values as “recognizable” if it
can be expressed as the image of a recognizable set of integer vector values by some
linear transformation. Formally, we have the following definition.

Definition 8.22 Let n,r € Ny with r > 1. A set of complex vector values S C C™
is r-definable if and only if there exist m € Ny, " C Z™ and U € C™™™ such that
S’ is r-recognizable and S = US'.

The following result shows that the notion of r-definability is indeed an gener-
alization of r-recognizability, i.e., that the two notions coincide for sets of integer
vector values.

Theorem 8.23 Let n,r € Ny with r > 1. A set S C Z" is r-definable if and only
if it is r-recognizable.

Proof The proof is given in Section 8.3.8. O

The next step is to show how to obtain definable sets of complex vector values.
The following theorem establishes the definability of some elementary sets, and
presents operations that can be used for combining definable sets.

Theorem 8.24 Let r € N withr > 1, ny,ny € Ng, S; C C™, S5 C C™ such that
Sy and Sy are r-definable, v € C™, p,q € Ny, and T € CP*™ . The following sets
are r-definable:

o Any finite subset of C™,

o S|+ v,

i TSl7

e S U Sy, provided that ny = no,

S1 NSy, provided that ny = no,

8.3. CREATION OF CYCLE META-TRANSITIONS 217

° Sl X SQ,
r

o | R@ | |7},
3(z)

e expand(S),r?) = {r*7 | 7€ S; A k € N}.

Proof The proof is given in Section 8.3.8. O

It is surprising that the intersection and union of two definable sets are always
definable themselves. Indeed, S; and S are images of recognizable sets of integer
vector values by two linear transformations which might be different. It is worth
noticing that their intersection or union can always be expressed as the image of
a single set of integer vector values by the same transformation. This observation
strengthens our claim that definable sets of complex vector values are a “good”
generalization of recognizable sets of integer vector values.

Of course, not all sets of complex vector values are definable. The following theo-
rems characterize families of sets that are proved to be undefinable. In Section 8.3.4,
those theorems will be used as tools for establishing that the closure of some linear
operations does not preserve the definable nature of sets.

Theorem 8.25 Letr € N withr > 1, and a,b,c € Z with a # 0. The set
S = {ak® + bk +c| k € N}

s not r-definable.

Proof The proof is given in Section 8.3.8. O

Theorem 8.26 Letr,p € Ng withr > 1, A € C such that \’ =1, and a,b,c,d € C
with a ¢ R\ Q. The set

S:{)\kl(ija)j(li;b)Jrc] |j,/<;eN}

1s mot r-definable.

Proof The proof is given in Section 8.3.8. O

Theorem 8.27 Let r € N with r > 1, A\ € C such that there do not exist p € Ny
and m € N such that \? = r™. The set

S={\N|keN}

s not r-definable.

218 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

Proof The proof is given in Section 8.3.8. O

Theorem 8.28 Let r,p,m € Ng withr > 1, A € C such that X’ =™, and a € C
such that a € R\ Q. The set

S={\N(k+a)|keN}

s not r-definable.

Proof The proof is given in Section 8.3.8. O

Theorem 8.29 Let r,p,m € Ng withr > 1, and A € C such that \? = r™. The set
k
S:HM] |k;eN}
s not r-definable.

Proof The proof is given in Section 8.3.8. O

Theorem 8.30 Let r,p,m € Ny with r > 1, A € C such that \’ =r™, and a € C.

The set
k .
s={["V 1keny

1s not r-definable.

Proof The proof is given in Section 8.3.8. O

Theorem 8.31 Let r,py,pa,mi,my € No with v > 1, and A, Ay € C such that
ANt =rm N2 =02 and | M| # |Xa|. The set

o~ {[4] e

s not r-definable.

Proof The proof is given in Section 8.3.8. O

8.3. CREATION OF CYCLE META-TRANSITIONS 219

8.3.4 Necessary Conditions

Here, we give conditions that must be verified by A if the guardless linear operation
0= (¥ = AZ + l;) is such that 0* preserves the definable nature of sets. Those
conditions consist of conditions on the eigenvalues of A, and on the size of the blocks
of the Jordan form of A. For clarity sake, each group of conditions is presented
separately. A summary of all the necessary conditions follows.

The idea behind the necessary conditions that will be developed is to show that
the violation of any of them implies that there exists a set that is at the same time
r-definable and not r-definable. The sets that are considered are related to the

Jordan form of the transformation matrix. Precisely, we have the following result.

-

Theorem 8.32 Let n,r € Ny withr > 1, § = (¥ := AZ+b) with A € Z"" and
be 7", U € C™" transforming A into its Jordan form Ay, J, x be a Jordan block
of Ay with m € Ny, A € C, m be the projection mapping A; onto J, x, and S be a
r-definable subset of Z". If 0*(S) is r-definable, then the set

S ={JE 7+ Y. SV keNATernU9)},

0<i<k
with ¥ = w(Ub), is r-definable.
Proof We have

0°(S) = {AF+ > Ab|keNAFeS)
0<i<k
= ({UAU 'z + Y UAUY% ke N A ZeS)
0<i<k

If this set is r-definable, then applying Theorem 8.24 shows that m(U'6%(S)) is
r-definable. Hence the result. O

We are now ready to state the necessary conditions on the eigenvalues of the
transformation matrix. The first condition expresses a relationship that must exist
between those eigenvalues and the numeration basis.

-

Theorem 8.33 Let n,r € Ny withr > 1 and 0 = (¥ := AZ +b) with A € Z"*"
and b € Z™ be such that for every v € Z", the set 6*({U}) is r-definable. For every
nonzero eigenvalue A of A, there exist p € Ny and m € N such that \? = r™.

Proof Let A be a nonzero eigenvalue of A, A; be the Jordan form of A, J,, \ be a
block of A; associated with A (m € Ny), and 7 be the projection mapping A, onto
Jm.a- From Theorem 8.32, it follows that for every v € Z", the set

S = {0+ D Jrin,,\gl | k€ N},

0<i<k

220 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

with 7/ = 7#(U™'%) and ¥ = 7(U~'b), is r-definable. Let 7’ be the projection
mapping each vector onto its component of highest index. There are two possible
situations.

o If7'(M) = 0. We choose & € Z" such that «'(7(U~'7)) # 0 (this is always
possible, otherwise U~ would be singular). According to Theorem 8.24, this
implies that the set

1

—ﬂ./ N — k
ﬂ_,(ﬂ_(U_l,l—}»)) (S) {)‘ | ke N}

is r-definable.

o If7'(V') # 0. We choose & = 0. According to Theorem 8.24, this implies that
the following sets are r-definable:

L) = { ¥ N |keN},

W/(b/) 0<i<k

(N —1]keN},
{\F| ke N}.

We have thus established that the set
{\F| ke N}

is r-definable. The existence of p € Ny and m € N such that \?» = r™ is then a
consequence of Theorem 8.27. O

The property expressed by Theorem 8.33 is easily adapted to sets of vector values
that are definable in any basis.

Corollary 8.34 Let n € Ny and 0 = (& := AT +b) with A € Z" and b € Z"
be such that for every v € Z"™, the set 0*({v}) is Presburger-definable. For every
nonzero eigenvalue X\ of A, there exists p € Ng such that \? = 1.

Proof Since every Presburger-definable set of integer vector values is r-definable in
any basis r > 1, the result follows from applying Theorem 8.33 to two relatively
prime bases r; and ry (chosen arbitrarily). O

Now, we go further and establish a correlation between the different eigenvalues
of the transformation matrix.

-,

Theorem 8.35 Let n,r € Ny with r > 1, and 0 = (¥ := AZ +b) with A € Z""
and b € Z™ be such that for every ¥ € Z", the sets 0*({0}) and 6*({j7 | j € N}) are
r-definable. Every pair of nonzero eigenvalues (A1, \a) of A is such that |\1| = |As].

8.3. CREATION OF CYCLE META-TRANSITIONS 221

Proof The proof is by contradiction. Let U € C™*™ be a matrix transforming A
into its Jordan form A;. Let S be either equal to {} or to {jv | j € N}, with
v € Z". The set
0°(S) = {AT+ > Ab|keNAFeS)
0<i<k
= {(UARUT'Z+ Y UAU%b | ke N A TES)
0<i<k

is r-definable. Suppose that A has two nonzero eigenvalues A\; and Ay such that
|A1] # [A2|. Without loss of generality, we may assume that |A;| < [Aa|. Let Jp, 2,
and Jy,, 5, (M1, me € Ny) be two blocks of A respectively associated to Ay and to
A2, and let 7w be the projection onto the two components matching the positions of

the last line of J,,,, », and of the one of J,, 5, in A;. According to Theorem 8.24,
the set S" = w(U~10*(9)) is r-definable. We have

A0 x X0 b T
SEHIAEHIRIE
{[0)\g) ngz;k())\l? b2|.§L’2

b -
with S” = m(U~1S) and l bl 1 = m(U~1b). We distinguish several situations.
2

e [f\1 =1 and by = 0. We have

Sl 1 | [T
e k_
)\éﬂ?Q + iz_ibQ)

Let ¥ € Z™ be such that the two components of 7(U~1%) are different from

eS@keN},

eSﬂkeN}.

zero (such a ¥ always exists, otherwise U~! would be singular). Choosing
S ={jv|j € N}, we obtain that the set

SI: N\ k jvl)\kfl |.]7k€N)
j)\2v2 +)\iflb2

with l L] = (U ~17), is r-definable. From Theorem 8.24, it follows that the

(%
[20:78

J

is r-definable, which contradicts Theorem 8.30.

set

e [f A1 =1 and by # 0. We have

g — 1 + kbl T
B Ay + 2271, | x
242 Ao—1 2 2

eSﬂkeN}.

222

|

CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

Let ¥ € Z™ be such that the second component of 7(U~'7) is different from

132 (such a ¥ always exists, otherwise U~! would be singular). Choosing

S = {7 | j € N}, we obtain that the set
vy + kb
S =3 T uh | IkeNy,
Moz + 1,

] = 7(U~17), is r-definable. From Theorem 8.24, it follows that the

L] v}

is r-definable, which contradicts Theorem 8.29.

with l U1
(%
set

If Ay # 1. We have

S/ o A1
Ae—1
Ao—1

cS”" keN
T2

k)\’1“71
All‘l + _1b1 ‘ [1

)\éﬂ?Q + bg

Let ¥ € Z™ be such that the two components of m(U~'%) are respectively
131,\1 and from 132 (such a ¢ always exists, otherwise U~}

would be singular). Choosing S = {v'| j € N}, we obtain that the set

different from

AF—1
A1—1

)\’fvl + bl

S = | ke Ny,

k)\1571

with l 1] = (U ~17), is r-definable. From Theorem 8.24, it follows that the

N

is r-definable, which contradicts Theorem 8.31.

set

Before establishing the conditions that involve the Jordan blocks of the trans-

formation matrix, we need to give a few lemmas.

Lemma 8.36 Let n,r € Ng withn > 1,r > 1, A\ € C such that A # 1, p € Ny,
m € N such that \’ =r™, g e N with1 < q<n, V € C”" of rank q, and b € Z".
There exists a r-definable set S C Z"™ such that the set

S ={Jh@+ Y TV |TEVS AkeN},

0<i<k

where b = Vg, s not r-definable.

8.3. CREATION OF CYCLE META-TRANSITIONS 223
Proof The proof is given in Section 8.3.8. O

Lemma 8.37 Letn,r € Ng withn > 1,r>1, e N with1l <qg<mn, V € Q" of
rank q, and b € Z". There exists a r-definable set S C Z™ such that the set

S ={JhF+ Y TV |T€VS AkeN},

0<i<k
where ¥ = Vg, 1s not r-definable.
Proof The proof is given in Section 8.3.8. O

Lemma 8.38 Let n € Ny and A € Z™*"™. There exists a nonsingular matrix U €
C™" transforming A into its Jordan form Ay, and such that every row of U~!
at the same position as a line of a Jordan block J, in Ay contains only rational
components provided that X\ is rational.

The proof is given in Section 8.3.8. O
We are now ready to state the necessary condition on the size of the Jordan
blocks of the transformation matrix.

-,

Theorem 8.39 Letn,r € Ng withr > 1 and 0 = (¥ := AZ+b) with A € Z"™ and
b € Z" be such that for every r-definable set S C Z™, the set 0*(S) is r-definable. Let
Ay be the Jordan form of A. FEvery Jordan block of A; corresponding to a nonzero
eigenvalue of A is of size 1.

Proof The proof is by contradiction. Suppose that A; has a Jordan block J,, »
such that m > 1. Let U € C™*" transforming A into A;, and such that its rows
at the same position as a line of J,, » in A; contain only rational components if
A =1 (according to Lemma 8.38, such a U always exists). Let 7 be the projection
mapping A; onto J,, ». Applying Theorem 8.32, we have that for every r-definable
set S C Z", the set

S ={Jk 7+ Y SV |keNATernUT9)},

0<i<k

with & = n(U _15), is r-definable. Depending on the value of A, this contradicts
either Lemma 8.36 or Lemma 8.37. O
The necessary conditions are now complete. They can be summarized as follows.

-

Theorem 8.40 Let n,r € Nog with r > 1 and 0 = (¥ := AZ +b) with A € Z""
and b € Z™. If 0 is such that for every r-definable set S C Z", the set 0*(S) is
r-definable, then

224 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

1. There exist p € Ny and m € N such that every nonzero eigenvalue \ of A
satisfies NP = r™ and

2. The Jordan form of A is such that all the blocks corresponding to a nonzero
eigenvalue are of size 1.

Proof This result is a direct consequence of Theorems 8.33, 8.35, and 8.39. O

Corollary 8.41 Let n,r € Ng with r > 1, and 0 = (¥ := AZ + 5) with A € 2"
and b € Z™. If 0 is such that for every r-definable set S C Z", the set 0*(S) is
r-definable, then there exists p € Ny such that

1. AP has at most one nonzero eigenvalue A, and
2. X (if any) is an integer power of r, and

3. AP is diagonalizable.

Proof If 6 is as required, then Theorem 8.40 implies that there exist p’ € Ny and
m’ € N such that every nonzero eigenvalue ' of A satisfies (\')?" = ™. Moreover,
the Jordan form of A is such that all the blocks corresponding to a nonzero eigenvalue
are of size 1. Let a € Ny be such that a > n/p/, and let p = ap’, m = am/. Since
every eigenvalue \ of AP is the p-th power of an eigenvalue of A, we have A = r™.
Furthermore, every matrix transforming A into its Jordan form A; transforms A?
into AY. This last matrix is diagonal, for any power of a block of size one is of
size one, and the n-th power of a block associated to the eigenvalue zero is only
composed of zeroes. O

Theorem 8.42 Let n € Ny and 6 = (T := AT +b) with A € Z" and b € Z". If
0 is such that for every Presburger-definable set S C Z™ the set 0*(S) is Presburger-
definable, then there exists p € Ny such that

1. The eigenvalues of AP belong to {0,1}, and

2. AP is diagonalizable.

Proof The result is obtained by applying the same reasoning as in the proofs of
Theorems 8.33, 8.35, 8.39 and 8.40 with two relatively prime bases r; and r (chosen
arbitrarily). This can be done only because the sets {v} and {jv | j € N} used
in the proof of Theorem 8.35 and in the ones of Lemmas 8.36 and of 8.37 are
Presburger-definable. O

8.3. CREATION OF CYCLE META-TRANSITIONS 225

8.3.5 Sufficient Conditions

Here, we show that the necessary conditions given in Section 8.3.4 are also sufficient.
In other words, if a guardless linear operation satisfies the conditions expressed by
Corollary 8.41, then its closure preserves the definable nature of sets of vector values.
This property is formalized as follows.

-

Theorem 8.43 Let n,r € Ny with r > 1 and § = (¥ := AZ + b) with A € Z"*"
and b € Z". If there exists p € Ny such that AP is diagonalizable, AP has at most
one nonzero eigenvalue X, and A (if any) is an integer power of r, then for any

r-definable set S C Z", the set 6*(S) is r-definable.

Proof Suppose that there exists such a p. For any r-definable set S C Z", we have

0°(5) = U (s

0<j<p,keN

- ueyee

0<j<p keN

= U #")(9).

0<j<p

According to Theorem 8.24, every &’ preserves the r-definable nature of sets, as
does the finite union of sets. Therefore, it is sufficient to prove that (6”)* preserves
r-definability. Let S’ = (6?)*(S), J be the Jordan form of AP (we know that it is
diagonal), and U € Q™™ be a matrix transforming A? into J. We have

S ={APF+ N AP |FeS AkeN},

0<i<k

with b = > A’b. Hence,

0<i<p

S ={US*U '+ Y UJUW |Ze S A keN}.

0<i<k

We distinguish two situations.
o If all the eigenvalues of AP belong to {0,1}. We have

S = SU{UJU'Z+ (k—1DUJU W +V |ZFeS A keNg}
— SU{APZ+ kAW +V |Z€ S A ke N}

Since the last member of this equation is expressed in Presburger arithmetic,
the set denoted by this term is r-definable, and so is S’.

226 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

o If all the eigenvalues of AP belong to {0,r™}, with m € Ny. We have

S = {UPUE+ Y UJUW |Ze€ S A ke N}
0<i<k
= SU Dy gutz 4 Y O u Ut Y
0<i<k

| 7€ S NkeNp}
= SU APz Y A 10 | 7€ S A ke N}

0<i<k

ka

-1 - o
APY 4V | €S A keN}

rm — 1

— S U {rmhArE 4

— SU { [(= 1) A& + A7T) — A7) + 7

rm—1

|a‘:’eSAkeN}

= SU

1 lexpand (™ — 1) APS + APH,r™) — AP | + 1

According to Theorem 8.24, the last formula denotes a r-definable set.

O

A similar result holds for Presburger-definable sets.

-

Theorem 8.44 Let n,r € Nog with r > 1 and 0 = (¥ := AZ +b) with A € Z"*"
and b € Z". If there exists p € Ny such that AP is diagonalizable and has its
eigenvalues in {0, 1}, then for any Presburger-definable set S C Z™, the set 0*(S) is
Presburger-definable.

Proof The proof is identical to the first part of the proof of Theorem 8.43. O

8.3.6 Algorithms

The necessary and sufficient conditions given in Sections 8.3.4 and 8.3.5 are not easy
to use in practice. Indeed, they are defined in terms of eigenvalues and of Jordan
blocks, which can in general only be computed up to a limited accuracy. In this
section, we give an algorithm for determining whether a given linear transformation
with integer coefficients satisfies the necessary and sufficient conditions expressed
by Theorem 8.40. This decision procedure is only based on integer arithmetic.
An algorithm is also given for computing a finite-state representation of the set
0*(S) given a representation of the set of vector values S C Z" and a guardless
linear operation # that satisfies the necessary and sufficient conditions for preserving
definability.

Let r,n € Ny with » > 1, and 0 be the guardless linear operation ¥ := AT+ b
with A € Z™" and b € Z". The first problem consists of checking whether 6*(S) is

8.3. CREATION OF CYCLE META-TRANSITIONS 227

r-definable for every r-definable set S C Z". In addition, if the answer is positive,
we would like to compute m € N and p € Ny such that AP is diagonalizable and
has all its eigenvalues in {0, r}.

First, we check whether the eigenvalues of A satisfy the conditions required by
Theorem 8.40. We know that those eigenvalues are the roots of the characteristic
polynomial II; (z) of A. Since this polynomial has integer coefficients, the product
a of all its roots can easily be computed, as the ratio of its nonzero coefficients of
lowest and of highest degree (this implies a € Q). According to Theorem 8.40, all
the roots of IT;(x) must be of the same magnitude, and this magnitude must be
equal to some rational power of r. Therefore, if |a| is not a rational power of r, then
0 does not preserve the r-definable nature of sets of vector values.

Let us now assume that |a| = r®/?) with u € Z, v € Ny and ged(u,v) = 1.
The eigenvalues of A satisfy the conditions expressed by Theorem 8.40 if and only
if every nonzero root of II; () has the magnitude |a|*/™), where n’ is the difference
between the highest and the lowest degrees of the nonzero coefficients of IT;(x). If
n' = 0, then zero is the only root of II;(z) and the condition is trivially satisfied.
If n > 0, then let z = (n'v)/ged(n'v,u) and y = (zu)/(n'v). Every eigenvalue of
A? that is different from zero must have the magnitude Y. Therefore, each root
of the characteristic polynomial IIy(z) of A* must be either equal to zero or of
magnitude r¥. Hence, if £ € N is the greatest integer such that II(z) is divisible
by the polynomial ¥, then all the roots of the polynomial II3(x) = I, (rYx), where
I, (z) = y(z) /2%, must be complex roots of 1.

The problem consisting of checking whether the eigenvalues of A satisfy the
conditions expressed by Theorem 8.40 has thus been reduced to checking whether
all the roots of II3(x) are complex roots of 1. This is the case if and only if there
exists | € Ny such that II3(x) divides 2! — 1. Since the polynomial II3(z) has
integer coefficients, such an integer [exists if and only if II3(x) is a product of
cyclotomic polynomials. Checking this by trying successively to divide II3(z) by
Oy (x), Po(x), P3(x), ... introduces two difficulties. First, given an integer i € Ny,
computing the coefficients of ®;(z) is tedious. One must therefore find a way of
testing the divisibility of II3(x) by ®;(x) without computing explicitly ®;(x). Second,
one must find an upper bound on the indices i of the ®;(x) that have to be considered.

The first problem is solved by the following theorem.

Theorem 8.45 Let i € Ny and I1(x) be a polynomial with integer coefficients such
that for every 0 < j < i, II(x) is not divisible by the cyclotomic polynomial ®;(x).
The polynomial 11(x) is divisible by ®;(x) if and only if the degree of the polynomial
ged(at — 1,T1(x)) is at least equal to 1.

Proof We have 2/ —1 = ®;(2)®;, () - - - ®;, (), where each jj, is such that 0 < jj, < i.
Since the factorization of 2' — 1 into cyclotomic polynomials is unique, the result is
immediate. O

228 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

As a consequence of this theorem, trying successively to divide Il3(z) by ®4(z),
Oy (), P3(x), ... can be done by dividing successively II3(z) by its common factors
with — 1,22 — 1,2% — 1, The conditions on the eigenvalues of A are satisfied if
and only if one eventually obtains a polynomial of degree 0.

It remain to give an upper bound on the indices ¢ of the cyclotomic polynomials
®;(x) that can potentially divide II3(x). Intuitively, the idea is that it is useless to
consider the ®;(x) whose degree is greater than the one of II3. We have the following
theorem.

Theorem 8.46 For every integer k € Ng and for every degree d € N such that
lo 11
k> 210 (4%) 5107 we have degree(®(z)) > d.

Proof It is known [IR90] that degree(®x(z)) = ¢(k), where ¢ is the Euler function,

defined as
1)) o-2)
b P2 Pq

where py, pa, . .., p, are the (distinct) prime factors of k.

Assume first that ¢ > 5, i.e., that k has at least five distinct prime factors. We
have p1 > 2, pos > 3, p3 > 5, ps > 7, as well as p; > 11 for all ¢ > 5. These
inequalities imply

(=) (=) (=) =52 (-2 (-9 0-5) (-5)

(8.1)

(1—pi5> (1_%6)..(1_]%)2(1—1—11)@4). (8.2)

Moreover, since k > py---p,, we have k > 2.3.5.7.11@%_ and hence qg—4 <
log,; (k/210). Replacing into Equation (8.2), we obtain

R R Y

Introducing Equations (8.1) and (8.3) into the expression of ¢(k), we obtain

w21 (-30-50-5 -5 -

Now, let us show that the previous inequality also holds if ¢ < 5, i.e., if & does
not have more than four distinct prime factors. Let p} = 2, p, = 3, p5 = 5 and
P, = 7. We have

- g)

8.3. CREATION OF CYCLE META-TRANSITIONS

(80
log11 (55)
(=)D 0-D (- - P
with
p(k) = :

(1 1) (1 1) 1\ (o811 P yq+-+logys Py)
S L) (- < (e
Pai1 Ph 11

1\ o811 (Pgy1Ph)
= (11— — .
(%)

Since k > p) - -+ pj, and p} - - - py = 210, we have

, , 210 _ 21
Pgt1 p4_p’1~"pg =k
Therefore,
1\ 10811 (PG4 1+Py) 1 logll(%)
(-1) < (1-5)
11 11
1 —10g11<%)
_ 1__)
11

and hence p(k) > 1.
In summary, we have for every k € N

k

wzk(1-3) (-5 (D - D 0™

229

230 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES
This yields

(b(k) Z %e(logll(lo)l) log, %

Sk k logy;(10)—1
= % (m)

fo O\ 1081 10
= 48— .
8(210)

logo 11
If k is such that k£ > 210 (%) , then this last expression implies ¢(k) > d. O
Remark that the same reasoning can be followed so as to obtain a better bound

0810

(up to an arbitrary amount of accuracy), by considering a greater number of prime
factors in the expansion of ¢(k). The choice of expanding only the first five prime
factors was motivated by an explicit computation of the first few hundred cyclotomic
polynomials, which demonstrated that the bound expressed by Theorem 8.46 is
nearly optimal for these polynomials.

It remains to check whether the sizes of the Jordan blocks of A satisfy the condi-
tions required by Theorem 8.40. We assume that the conditions on the eigenvalues
of A are satisfied. Let i1,149,...,7, (¢ € N) be all the integers i such that II3(x) has
common factors with z* — 1. The least common multiple [of iy, s, ..., is such
that the [-th power of every root of II3(x) is exactly equal to 1. This means that all
the nonzero eigenvalues of A% are equal to r¥. Let

o { l if zl > n or Ily(z) = II5(x),
| I[n/(20)] if 2l < n and Tly(z) # Iy (z),

and let m = yl’, p = zI’. All the eigenvalues of AP belong to {0,7™}. If AP has
the eigenvalue 0, then the definition of [yields p > n, which implies that the
Jordan blocks of AP associated to the eigenvalue 0 are only composed of zeroes. The
condition on the size of the Jordan blocks of A will thus be satisfied if and only if
AP is diagonalizable. This can be checked thanks to the following result.

Theorem 8.47 A square matriz is diagonalizable if and only if its minimal poly-
nomaial has only simple roots.

Proof A proof of this well-known result can be found in [Bod59] or [Fra68]. O

In the present case, we know that the minimal polynomial of AP has to be either
0, z, z —r™ or x(x — r'™), depending on the eigenvalues of A. This can be checked
explicitly.

An algorithm formalizing the decision procedure that has just been developed is
given in Figures 8.8 and 8.9. (In this algorithm, the test performed at Line 11 can
easily be carried out by comparing the prime factors of ag, a; and r.)

8.3. CREATION OF CYCLE META-TRANSITIONS

231

function DEFINABLE-CLOSURE?(basis r, dimension n, integer matrix A) : {T,F} x N x Ny

1:
2:
3
4
o:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

var IIy, I, IT : polynomials with integer coefficients;
!/ o . 3 .
d07 dl; ap, a1, a,u,v,n ,z,Y,%,MmMm,p, l: mtegers,
M : integer matrix;

begin

IT; (x) := characteristic polynomial of A;
dp := lowest degree of the nonzero terms of Iy (x);
dy := highest degree of the nonzero terms of II; (x);

ag := coefficient of Iy (x) with the degree dy;

a1 := coefficient of Iy (x) with the degree dy;

a = ap/as;

if (r>1Alog.(la]) Q) V (r=1 A |a|] # 1) then return (F,0,0);
if r = 1 then (u,v) := (1,1)

else let u/v := log,(|a|) such that u € Z A v € Ny A ged(u,v) = 1;
n' = di — do;

if n” = 0 then return (T,0,n);

z := (n'v)/ ged(n'v,u);

y = () (')

IIo(x) := characteristic polynomial of A%;

n = n;

while z divides II3(z) do

begin
Iy (x) = Ia(x)/;
n =n" -1
end;
3(z) := Ha(r¥=z);
[=1

Figure 8.8: Decision procedure for the preservation of r-definability by the closure

of a guardless linear operation.

232 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

27: for i := 1 to [210(n'/48)"8w 1| do

28: begin

29: H(z) := ged(z® — 1,H3(z));

30: if degree(II(x)) > 0 then

31: begin

32: l:= lem(l,4);

33: while II(z) divides II3(x) do
34 () = Ty()/TI(x)
35: end

36: end;

37: if degree(Il3(x)) > 0 then return (F,0,0);

38: ifzl<n An <nthenl :=I[n/(zl)];

39: (m,p) = (yl, 21);

40: M = I;

41: if n’ >0 then M := (AP —r™I,)M,

42: if n’ <n then M := APM;

43: if A? = (0) Vv M = (0) then return (T, m,p);
44: return (F,0,0)

45: end.

Figure 8.9: Decision procedure for the preservation of r-definability by the closure
of a guardless linear operation (continued).

8.3. CREATION OF CYCLE META-TRANSITIONS 233

-

function META-BASIS?(basis r, dimension n, linear operation ¥ := AZ +b) : {T,F}
1 var m, p : integers;
2 t : boolean;
3 begin
4: (t,m,p) := DEFINABLE-CLOSURE?(r,n, A);
) return ¢
6

end.

Figure 8.10: Implementation of META? for guardless linear operations in a given
basis.

Theorem 8.48 Let r,n € Ny and 0 be the guardless linear operation T = AZ+b
with A € Z™" and b € Z". The set 0*(S) is r-definable for every r-definable set
S C Z" if and only if DEFINABLE-CLOSURE?(r,n, A) returns a triple of the form
(T, m,p), with m € N and p € Ny. If this is the case, then m and p are such that
AP is diagonalizable and has all its eigenvalues in {0,r™}.

Proof The algorithm in Figures 8.8 and 8.9 is a direct implementation of the com-
putation method discussed in this section. In Lines 41-42, the condition on the
minimal polynomial of AP is checked by taking advantage of the facts that n’ > 0
if and only if AP has the eigenvalue ™, and that n’ < n if and only if AP has the
eigenvalue 0. O

Theorem 8.49 Letn € Ny and 0 be the guardless linear operation ¥ := AZ+b with
A€ Z™ and b € Z". The set 0*(S) is Presburger-definable for every Presburger-
definable set S C Z" if and only if DEFINABLE-CLOSURE?(1,n,A) returns a
triple of the form (T, m,p), with m € N and p € Ng. If this is the case, then p is
such that AP is diagonalizable and has all its eigenvalues in {0, 1}.

Proof The result is a direct consequence of Theorems 8.42 and 8.48. O

Algorithms implementing the predicate META? for guardless linear operations
with respect to sets of vector values representable in a given basis r > 1 or in any
basis are respectively given in Figures 8.10 and 8.11.

It remains to give an algorithm for computing the image of a definable set of
vector values S C Z" (n € N) by the closure of a guardless linear operation 7 :=
AZ + b that satisfies META?. An expression of this image in terms of S and of
operations preserving the definable nature of sets has already been obtained in the
proof of Theorem 8.43. Algorithms based on that result are given in Figures 8.12
and 8.13.

234

CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

function META-PRESBURGER?(dimension n, linear operation Z := AZ + 5) :{T,F}

1:
2:
3
4:
5
6

t

end.

var m, p : integers;

: boolean;

begin

(t,m,p) := DEFINABLE-CLOSURE?(1,n, A);

return ¢

Figure 8.11: Implementation of META? for guardless linear operations in any basis.

function APPLY-STAR-GUARDLESS-BASIS(basis r, dimension n, NDD A,

=~

10:

11:

12:

var

-,

linear operation & := AZ 4+ b) : NDD
m,p : integers;
v integer vector;

A’ : NDD;

begin

(T,m, p) := DEFINABLE-CLOSURE?(r, n, A);
Vo= Z Aig;
0<i<p
if m = 0 then
A’ := NDD (SET(A) U{7€Z" | (3k € N, € SET(A))(] = AP
+kAPY + 5’)})
else
A’ = NDD(SET(A) U (1/(r™ — 1)) [expand ((r™ — 1) A” SET(A)
+Apg/,7"m) — AP5’:| + g’);

return NDD(U (Ak SET(A) + Y Ail;))

0<k<p 0<i<k

end.

Figure 8.12: Image of an NDD by the closure of a guardless linear operation in a

given basis.

8.3. CREATION OF CYCLE META-TRANSITIONS 235

function APPLY-STAR-GUARDLESS-PRESBURGER (dimension n, NDD A,
linear operation ¥ := AT+ b) : NDD

1 var p : integer;

2 V' : integer vector;

3 A’ : NDD;

4: begin

5 (T,0,p) := DEFINABLE-CLOSURE?(1,n, A);
6

Vo= Z Aig;

0<i<p

7: A’ .= NDD (SET(A) U{7ez"|(3keN,i e SET(A))
(7 = APZ + kAPD + 6’)});

8: return NDD (U (Ak SET(A") + Z Alg))

0<k<p 0<i<k
9: end.

Figure 8.13: Image of an NDD by the closure of a guardless linear operation in any
basis.

Theorem 8.50 Let r,n € Ny with r > 1 and 6 be the guardless linear operation
7= AT +b, with A € Z"" and b € Z", such that META-BASIS?(r,n,0) =T. If
A is an NDD representing the set of vector values S C Z" in basis r, then APPLY-

STAR-GUARDLESS-BASIS(r,n, A, 0) is an NDD representing the set 6*(S) in basis
T

Proof The algorithm in Figure 8.12 is a direct implementation of the computation
performed in the proof of Theorem 8.43. O

Theorem 8.51 Let n € Ny and 6 be the guardless linear operation T = Ax + Z;,
with A € Z" and b € Z", such that META-PRESBURGER?(n,0) = T. If A is
an NDD representing the Presburger-definable set of vector values S C Z" in some
basis r > 1, then APPLY-STAR-GUARDLESS-PRESBURGER(n, A, 0) is an NDD

representing the Presburger-definable set 0*(S) in basis .

Proof The algorithm in Figure 8.13 is a direct implementation of the computation
performed in the proof of Theorem 8.43. O

8.3.7 Linear Operations with Guard

The problem addressed here consists of checking whether a linear operation § =

-

(P < §— & := AZ+b), where n,m € N, P € Z™" § € Z™, A € Z"" and

236 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

b € Z", is such that 6*(.S) is definable for every definable set of vector values S C Z".
In addition, we would like to compute an NDD representing 6*(S) from an NDD
representing S.

We do not provide a general solution to this problem. Instead, we show that
the results developed in Sections 8.3.4, 8.3.5 and 8.3.6 can be adapted with little
difficulty to linear operations with guards, in the form of a sufficient condition for
the preservation of definability by the closure of a linear operation.

Precisely, the sufficient condition is a consequence of a remarkable property: if
0 is such that its underlying guardless operation 7 := AZ + b satisfies the necessary
and sufficient conditions expressed by Theorem 8.40, then for every definable set
S C Z", the set 0*(S) is definable. Moreover, an NDD representing 6*(S) can be
computed from an NDD representing S. Formally, we have the following result.

Theorem 8.52 Letn € N, r € N withr >1, me N, and 0 = (¥ := P¥r < {q—
AT+ E) with P € Zm*", q € 2", A € Z"*" and beZn If there exists p € Ny such
that AP is diagonalizable, has at most one nonzero eigenvalue A, and X (if any) is an
integer power of r, then for any r-definable set S C Z", the set 0*(S) is r-definable.

Proof Suppose that there exists a suitable p. Let S C Z™ be a r-definable set, 6" be
the guardless linear operation (7 := AZ +b), and V = {Z € Z" | PZ < §}. We have

0:(S) = {("@) | FeSAkeNA A (0)(2) eV}

0<i<k

= {(9)pk+J<)|SL’€S/\/{Z€N/\O<j<p
A NTEY@ evin A N @) (@) (@) e VI

0<i<y 0<i<k 0<Il<p

Let

={7ez" N\ [(0)'(2)eV]}

0<i<p

The expression of 6*(S) becomes
0*(S) = {0z)|x€5/\k:€N/\0<j <p
AN @)@ eVIA N (@) (@) eV}

0<i<y 0<i<k

= U s

0<j<p

with for every j € {0,1,...,p— 1},
S;={@y*H@) | 7e SAkeNA A\ (@)@ eV]IA N (0@ eV}

0<i<y 0<i<k
Let us define
U ={zez"@Ez' eS)@=©0)YE)Nn N\ [" eV)}

0<i<y

8.3. CREATION OF CYCLE META-TRANSITIONS 237

We obtain

S;={@V*@) | keNAZeU; A N\ [(0)(&) eV}

0<i<k

By construction, V' is a convex set. Moreover, it follows from the algorithm in
Figure 8.12 that all the the vectors belonging to {(6)P (%), (¢")P0+1(%),...} are
colinear. It follows that for any k£ > 1, the condition

A\ [(0)(&) € V']

0<i<k

is equivalent to
TeV' AN@P@E eV A @)D (E) eV
Therefore, we have

S; = U u{@)P@) |2eU;nV'}
U{@VH@) |keNAk>2ATeU;NV
A (@)P(E) e V! A ()PED(F) e VY
= (0)7(U; 0 V) U (@) (@) (U; n VN V) n VY,

with V" = {& € Z™ | (#")?(¥) € V'}. Since V', V" and every U; are Presburger-
definable (and thus r-definable), every S; is r-definable. It follows that 6*(S) is
r-definable as well. O

Unfortunately, the reciprocal of Theorem 8.52 is not true. Indeed, there are
guarded linear operations that preserve the r-definable nature of sets of vector val-
ues, but whose underlying guardless operator does not. The conditions expressed by
Theorem 8.52 are thus sufficient, but not necessary. Obtaining necessary and suffi-
cient conditions over guarded linear operations that preserve the r-definable nature
of sets of vector values seems to be a very difficult problem®.

A result similar to Theorem 8.52 holds for Presburger-definable sets.

Theorem 8.53 Letn € N, m € N, and § = (¥ = PZ < § — AT+ b), with
PeZm qgeZm Ae ZM" and b e Zn. If there exists p € Ny such that AP
1s diagonalizable, has at most one nonzero eigenvalue \, and X\ = 1, then for any
Presburger-definable set S C Z", the set 0*(S) is Presburger-definable.

4Intuitively, the difficulty originates from the fact that, if a linear operation # does not satisfy
the hypotheses of Theorem 8.52, then the trajectory {6*(v) | k € N} of an individual vector
value U € Z" to which 0 is repeatedly applied is in general non-linear. This makes a manageable
description of 6*(S), for a subset S of Z™, much more difficult to obtain.

238 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

Identical to the proof of Theorem 8.52. O

As a consequence of the two previous theorems, the implementations of the
predicate META? for guarded linear operations with respect to a given basis or to
any basis are identical to those developed for guardless linear operations. The two
algorithms have been given in Figures 8.10 and 8.11.

It remains to give an algorithm for computing the image of a definable set of
vector values S C Z™ (n € N) by the closure of a guarded linear operation (PzZ <
g— T = AT+ E) that satisfies META?. An expression of this image in terms of
S and of operations preserving the definable nature of sets is given in the proof of

Theorem 8.52. Algorithms based on that result are given in Figures 8.14 and 8.15.

Theorem 8.54 Let r,n € Ny with r > 1, and 0 be the linear operation (P¥ < § —
T = AT+ g), with m € N, P € Z™", g € Z™m, A € Z"" and b € Z" such that
META-BASIS?(r,n,0) = T. If A is an NDD representing the set of vector values
S C Z" in basis r, then APPLY-STAR-BASIS(r,n, A, 0) is an NDD representing
the set 6*(S) in basis r.

Proof The algorithm in Figure 8.14 is a direct implementation of the computation
performed in the proof of Theorem 8.52. O

Theorem 8.55 Let n € Nqy and 0 be the linear operation (P¥ < ¢ — ¥ =
AT + g), with m € N, P € Z"™", q € Z", A € Z™" and b € Z" such that
META-PRESBURGER?(n,0) = T. If A is an NDD representing the Presburger-
definable set of vector values S C Z" in some basis v > 1, then APPLY-STAR-
PRESBURGER(n, A,0) is an NDD representing the Presburger-definable set 6*(S)

in basis r.

Proof The algorithm in Figure 8.15 is a direct implementation of the computation
performed in the proof of Theorem 8.52. O

8.3.8 Proofs of Auxiliary Results

This section contains the proofs that were omitted from Sections 8.3.3 and 8.3.4 for
clarity. They are presented according to their order of appearance in the main text.

Theorem 8.23 Let n,r € Ny with r > 1. A set S C Z" is r-definable if and only
if it is r-recognizable.

Proof

o [fS isr-definable, then S is r-recognizable. 1f S is r-definable, then there exist
m € Ny, 8" C Z™ and U € C™™ such that S’ is r-recognizable and S = US’.
Let B C Z™ be a finite generator of S’, i.e., a finite subset of S’ such that

8.3. CREATION OF CYCLE META-TRANSITIONS 239

function APPLY-STAR-BASIS(basis r, dimension n, NDD A,
linear operation (P¥ < §— & := A% +b)) : NDD

1: var m,p,j : integers;
2: 0" : guardless linear operation;
3: A A" Ay, As, A3, Ay - NDDs;
4: begin
5: (T, m,p) := DEFINABLE-CLOSURE?(r, n, A);
6: 0 = (T := AT+ Db);
7 Ay ;= NDD({Z € Z" | PZ < q'});
8: Ay == NDD({TeZ"| J\ P& <q});

o<l<p
9: Az = NDD({Z € 2" | N\ P(0)" (@) <q});

0<l<p
10: A’ := NDD();
11: for j :=0top—1do
12: begin
13: Ay = NDD<{:E €Z" | (3%' € SET(A)) (& = (') (z")

A @) € SETCADD))
0<i<j
14: A== A’ U Ay UNDD((¢)?(SET(As) N SET(As)));
15: A" = APPLY-STAR-GUARDLESS-BASIS?(r, n,
Ay 0 Az N Ay, AP, D ARD);
0<k<p

16: A" = A" U NDD((¢")P((6")P(SET(A")) N SET(As)))
17: end;
18: return A’
19: end.

Figure 8.14: Image of an NDD by the closure of a linear operation in a given basis.

240 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

function APPLY-STAR-PRESBURGER(dimension n, NDD A,

-,

hfill linear operation (PZ < §— Z := AZ+b)) : NDD

1 var p,j : integers;
2 0" : guardless linear operation;
3 AlVAY Ay, Agy Az, Ay - NDD;
4 begin
5: (T,0,p) := DEFINABLE-CLOSURE?(n, A);
6 0 = (T := AT+Db);
7 Ay .= NDD({Z € Z" | PZ < '});
8 Ay == NDD({TeZ"| /\ P& <q});

0<I<p
9: Az = NDD({Z € 2" | N\ P(0)"" (@) <q});

0<i<p
10: A’ .= NDD(0);
11: for j :==0top—1do
12: begin
13: Ay = NDD<{f € Z"| (37’ € SET(A))(Z = (¢')'(Z)

A A 1)) € SETCADD))
0<i<j
14: A =AU Ay UNDD((6/)P(SET(A4) N SET(As)));
15: A" := APPLY-STAR-GUARDLESS-PRESBURGER(n,
Ay 0 Az N Ay, AP, D ARD);
0<k<p

16: A" = A" U NDD((¢")P((6")P(SET(A")) N SET(As)))
17: end;
18: return A’

19: end.

Figure 8.15: Image of an NDD by the closure of a linear operation in any basis.

8.3. CREATION OF CYCLE META-TRANSITIONS 241

each vector value in S’ is a linear combination of vector values in B. There
exists a € Ny such that every vector value in S’ is a linear combination with
integer coefficients of vector values in (1/a)B. Let p be the number of vector

values in B, and T' € Q™*? be a matrix such that col(T) = (1/a)B. Since S’
is r-recognizable, the set

S"={7eZ’| TS}

is r-recognizable as well. We have S’ = T'S”, hence S = (UT)S". Every
column ¢ of T belongs to (1/a)S’, and thus is such that U¢ belongs to (1/a)S.
It follows that UT € Q™*P, and therefore the equation S = (UT)S” leads
to a definition of S in the first-order theory (Z, < +,V;) (recall that S” is
r-recognizable). It follows that S is r-recognizable.

e [f S is r-recognizable, then S is r-definable. Let U = I, and S’ = S. We have
S =US’, where S’ is a r-recognizable subset of Z", hence S is r-definable.

|

Before proving Theorem 8.24, we introduce the following lemma.

Lemma 8.56 Let r € N with r > 1, n,mq,ma € Ny, Uy € C"™™ and Uy €

Crnxm2 - The set
T
Ty

Proof It is sufficient to prove that for any m € Ny and @ € C™, the set S of all the
vector values T € Z™ satisfying @ - © = 0 is Presburger-definable. Indeed, applying

— ﬁl
U= _
_u2

where 17 and iy are lines at the same position in U; and in Us, shows that the set

T
Ty

such that uj - 1 = uy - ¥5 is Presburger-definable. The intersection of the sets

c Zm1+mg ‘ Ulfl - Ugfg}

1s r-definable.

this result to m = my; + mq and

of all the vector values

c 7z +mz2

obtained for each pair of matching lines in U; and U, is thus Presburger-definable,
and therefore r-definable.

It remains to prove that the set S of all the solutions in Z™ of @ -7 = 0 is
Presburger-definable. This set is an additive subgroup of R™. An additive subgroup
of R™ is finitely generable if and only if it is discrete (Theorem 6.1 in [ST79]). Since

242 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

S C Z™, S is discrete and thus finitely generable. Let ¢, 05, .. ., 7, be the generators
of S. We have
S ={aty +---+a,t, | a,...,a, € Z}.

This expression can be rewritten as
S = {fe 7z | (3(1,1,...,(1,p S Z)(f:alﬁl +---+ap17p)},
which is a formula of Presburger arithmetic defining S. O

Theorem 8.24 Let r € N withr > 1, ny,ny € Ng, S; C C™, S5 C C™ such that
Sy and Sy are r-definable, v € C™, p,q € Ny, and T € CP*™ . The following sets
are r-definable:

o Any finite subset of C™,

L 51 + 17,

o TSl,

e 51 U Sy, provided that ny = no,

e S N Sy, provided that ny = no,

° Sl X SQ,
r

o | R@ | |7},
3(z)

e expand(Sy,r?) = {r*z | ¥ € S; N k € N}.
Proof

o Any finite subset of C™ is r-definable. Let Sy = {v1,v,,...,0Uy}. Defining
U=[01;...;0U,] and S" = {é1, €3, ...,€,}, we obtain S; = US’, where S" C Z"
is r-definable. It follows that S; is r-definable.

e S| + ¥ is r-definable. There exist m € Ny, U € C"*™ and S’ C Z™ such that
S’ is r-definable and S; = US'. Since S +9 = [U; 0] (S’ x {1}), the set S; + U
is r-definable.

e T'S is r-definable. There exist m € Ny, U € C™*™ and S’ C Z™ such that S’
is r-definable and S; = US’. Since T'S; = (TU)S’, the set T'S; is r-definable.

e S; U Sy is r-definable. There exist my, my € Ny, Uy € C™*™ Uy € C™*™M2,
S} € Z™ and S) C Z™ such that S| and S} are r-definable, S; = U; 57, and
So = UyShy. Since Sy U Sy = [Uy; Us] ((S] x (0)™2) U ((0)™ x S%)), the set
S1 U S, is r-definable.

8.3. CREATION OF CYCLE META-TRANSITIONS 243
e 51 N Sy is r-definable. There exist my,my € Ny, Uy € C™*"1 Uy € C"*™2,

St C Z™ and S5 C Z™ such that S| and S} are r-definable, S; = U;S], and
Sy = UsS,y. Let V€ Z™*™2 be the set

X2

V= {l n 1 € Zmtm | U3, = UQ@},
and S’ be the set

S = {fl e Z™ | T € Si A (Hfg € Sé)([;1 € V)}
2

According to Lemma 8.56, V' is r-definable. It follows that the set S’ is also
r-definable. Since S; N Sy = U157, the set S N Sy is r-definable.

o 57 x Sy is r-definable. There exist my,mo € Ng, Uy € C™™ Uy € C"*™M2,
S; € Z™ and S C Z™ such that S| and S} are r-definable, S; = U; 57, and
Sy = Uy Sh. Since Sy xSy = diag(Uy, Us)(S] x SY), the set Sy x Sy is r-definable.

i
o R(X) | | £ €Syp is r-definable. There exist m € Ny, U € C™™ and
S(7)
S’ C Z™ such that S’ is r-definable and S; = US’. Since
T U
R | |7€eSip=| RU) | 5,
S(7) S(U)

this set is r-definable.

o expand(Sy,r?) is r-definable. There exist m € Ny, U € C™™ and S’ C Z™
such that S’ is r-definable and S; = US’. Let L be the language of the shortest
synchronous encodings in basis r of the vector values in S’, expressed over the
alphabet {0,...,7 — 1}™. Since S’ is r-definable, L is regular®. The language
L' = L-((0™)7)* is thus also regular. It follows that the set S” C Z™ encoded
by L’ is r-definable. Since this set obeys

S"={rt*z| 7€ S A ke N},

we have US” = expand(Sy, r?), from which it follows that expand(Sy,r9) is
r-definable.

5Indeed, this language is denoted by the expression

L=Esy»(S)\ |J (@a-x9,

a€{0,r—1}n

where ¥ = {0,1,...,r — 1}".

244 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

O

Theorem 8.25 Letr € N withr > 1, and a,b,c € Z with a # 0. The set
S = {ak® + bk +c| k € N}
s not r-definable.

Proof The proof is by contradiction. Suppose that the set S = {ak® + bk + ¢ |
k € N} is r-definable. This implies that —S = {—xz | x € S} is r-definable as well.

Therefore, we may assume that a > 1. Let P be the characteristic predicate of S:
P(y) = (3k € N)(y = ak® + bk +c).

Since S is r-definable, P is definable in (Z,<,+,V,). Let n € N be greater than
—b/2a, and F(z,y) be the predicate

F(r,y)=y=ax’ +br+c A x>n.
This predicate is definable in (Z, <, +,V,):

F(x,y) = Ply) N Ply+2ax+a+b) ANz>n
ANNVz)(=P(z) Vz<yV z>y+2ar+a+hb).
Indeed, f(x) = az® + bx + c is strictly increasing for z > n, and the second line of

the expression of F'(x,y) states that y and y+ 2ax + a+b are two consecutive values
f(z) and f(z + 1) of the function f. Resolving

{ Y = az’+bz+c

y+2ar+a+b = alz+1)?+b(z+1)+c

yields x = z, hence y = f(x). Now, let M(x,y, z) be the predicate
M(z,y,z) =x>0ANy>0A z=uxay.

This predicate is definable in (Z, <, +,V,):

M(z,y,2) = (321, 22, 23, 21)(F(x +y +n, 21)
NF(x+mn, 2) N Fly+n, z3) A F(n, 24) (8.4)
N2az = z1 — 29 — 23+ 24).

Indeed,

21 = alz+y+n)P+bz+y+n)+c
2z = alx+n)?+bx+n)+tc
z = aly+n)>+bly+n)+c

zg = an*+bn+c

8.3. CREATION OF CYCLE META-TRANSITIONS 245

implies z; — 2o — 23 + 24 = 2axy. From Equation (8.4), it follows that the first-order
theory (N, +,.) is a subset of the theory (Z, <,+, V). This is clearly a contradiction,
since the latter is decidable (as a consequence of Corollary 8.13) and the former is
not [Chu36]. O

In order to prove Theorem 8.26, we need to establish the following result.

Theorem 8.57 Letr € N withr > 1, and p,q € Z with p # 0. The set
S:H (b +)k] |j,k:EN}
J
s not r-definable.

Proof The proof is by contradiction. Suppose that S is r-definable. Let P be the
characteristic predicate of .S:

P(y,z) = (3k € N)(y = k(pz + q)).

Since S is r-definable, P is definable in (Z, <,+,V,). The predicate D(y,z) over
Z? which is true if and only if y is different from 0 and is divisible by px + ¢ is
straightforwardly defined in terms of P:

D(y,x)zy;éo N <P<y7x) v P<_y7x))

For every = € Z, we have ged(pr + ¢, p(x+1) +q) = ged(p, pr+q) = ged(p, q), from
which we deduce

lem(pz +¢,p(z + 1) +q) = (pz + @) (p(z + 1) +q).

ged(p, q)

If a number can be divided by two others, then it can be divided by their least
common multiple. Therefore, for every y verifying

D(y,z) N D(y,z+ 1), (8.5)

there exists k € Z such that

y=———(pr+q(p(z+1)+q).

ged(p, q)
Moreover, if we have = > |¢/p| + 1, then the integer y verifying Equation (8.5) that
has the smallest magnitude corresponds to & = 1. From this argument, it follows
that the predicate

q

Qly,x) = x> 5’+1/\D(y,x)/\D(y,x+1)/\

(V2)(|z] = [y| V =D(z,2) V ~D(z,2 + 1)),

246 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

which is definable in (Z, <, +,V,), is such that

Qly,r) = x>

]%‘Jrl/\y:)(pa:+Q)(p(l°+1)+Q)-

ged(p, g
Let [€ N be such that | > |¢/p| + 1, and R(y) be the predicate
R(y) = 3z, 2)(y = ged(p,q).2 A x>0 A Q(z,x +1)).
This predicate is definable in (Z, <, +,V,), and satisfies
Ry) = Fk)(k =20 Ay = (p(k+1)+q)(p(k+1+1)+q)).
It follows that the set
{(p(k+ D) +q)(p(k+1+1) +q) [k€ N}

is r-definable, which contradicts Theorem 8.25. O

Theorem 8.26 Letr,p € Ng withr > 1, A € C such that \’ =1, and a,b,c,d € C
with a &€ R\ Q. The set

s fu U en e o)
s not r-definable.
Proof Without loss of generality, we may assume that p is such that * # 1 for

every i € {1,2,...,p — 1}. The proof is by contradiction. We suppose that S is
r-definable. Let us show that this assumption implies that the set

(j+a)k+0b)+c k
Sy = . ,— €N
0 {[j+d U D
is also r-definable. We have

(Vi k e N,0<k <p)(F e NYNG+d)=1+d A L>|[2|d])
S k=0Aj>|2d]).

Indeed,

o N(U+d)=Il+dAl>[2d] = |j+d =+d Al>|2|d]
= j=1A1>]|2d]
= MG+d) =j+dAj>|[2/d]
= k=0Aj>|2/d].

8.3. CREATION OF CYCLE META-TRANSITIONS 247

e k=0Aj>2/d]] = MNy+d)=I1+dAj>|2|d]
= jH+d=1+d AN j>|2/d]
= MN(j+d)=1+d N 1>]|2|d].
It follows that SO = 501 @) SOQ, with

501:{[(j+a)(k‘+b)+c L ENAO<;< |20 AEGN}

J+d
and

j k
SOQZ{lO—i_a).(k_'_b)_'_C] |7eNA—-—€N
J+d p

AELEN)OG+d) =1+dAlL> L2|d|J)}.
In order to prove that Sy is r-definable, we show that Sy; and Spy are r-definable.

e Su1 is r-definable. The set Sy is a finite union of sets of the form

Smj:{[(jJra)(ker)ch] |§EN}’

Jj+d P

with j € N. Each of those sets is the image of the set {k | ;’j € N} by a linear
transformation, and is thus r-definable (Theorem 8.24).

e Sy is r-definable. We have

= SN (mS)x{l+d|leN ALl>]2/d]}),

Sps = {[II]GS|(HZEN)(x2:l+d/\l> L2|d|J)}

where 71(.5) denotes the projection of S over the first vector component. By
Theorem 8.24, Sy, is r-definable.

We have thus proved that Sy is r-definable. Applying Theorem 8.24, it follows that
the following sets are also r-definable:

{[(j+a)(l;+b)+c] IJEGN},

H(Ha)(mjb)—jb—ab] |$§€N},

(5 Jsten)
(2] seen)

Let us show that the fact that the last set is r-definable leads to a contradiction.
There are two possible cases.

248 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES
e Ifae Q. Let ¢ € N be such that ga € Z. The set
H (4 + qa)k] ke N}
J
is r-definable, which contradicts Theorem 8.57.

e /fa e C\R. Applying Theorem 8.24, the following sets are r-definable:

(+ak] (j+a)k
(G +a)k) | |jkeNy = (a)k | |jkeNy,
J | J
(j+a)k
k | i,k € N,
J

{[?ﬂl%keN}

The fact that the last set is r-definable contradicts Theorem 8.57. O
In order to be able to prove Theorem 8.27, we need an additional lemma.

Lemma 8.58 Let n,r € Ng with r > 1, S C Z" be r-definable, and u € C™. If
{a -7 | & € S} is infinite, then there exist y1,ys € Q" and m € Ny such that
{371+rmkg]2 | k‘EN}QS andﬁng#O

Proof First, S must be infinite. Since it is r-definable, the language L of the shortest
synchronous encodings of its elements in basis r is regular®. Hence, there exists a
finite-state automaton A accepting L. Let |A| denote the number of states of A.
Every word w € L such that |w| > |A| must be accepted by a path of A that
contains at least one cycle, which can be suppressed or further repeated. One can
thus decompose w into wy - wy - w3, with |we| > 0 and w; - w§ -ws € L for every
k € N. The language w; - wh - w3 encodes a subset S’ of S satisfying

S = {fl + Z T‘mil_"z +T‘mkf3 | ke N},

0<i<k

with m = |ws| € Ny, &1, 7o, ¥5 € Z", and ¥y # 0. Indeed, 7 is the vector encoded

|ws]

by 0™ - ws, T5 is the vector encoded by 0" - wy multiplied by "3/ and Z3 is the

6Indeed, this language is denoted by the expression

L=Esy»(S)\ |J (@a-x9,

a€{0,r—1}n

where ¥ = {0,1,...,r — 1}".

8.3. CREATION OF CYCLE META-TRANSITIONS 249

vector encoded by wy multiplied by r**l. By defining 71 = &1 — (1/(r™ — 1))z and
Yo = (1/(r™ — 1))72 + ¥'3, we obtain

S/:{?jl+7”my3 | k € N},

with 71,7, € Q" and 7, # 0. It remains to prove that it is always possible to
choose w € L such that the corresponding v, verifies @ - 35 # 0. The proof is by
contradiction. Suppose that for every w € L such that |w| > |A|, we obtain @y, = 0.
By removing an occurrence of the cycle labeled by wsy from a path of A accepting
w, we obtain w' = w; - w3 € L. Let & and ¥’ be the elements of S respectively
encoded by w and w’. We have ¥ = ¢} + r™9» and ¥’ = 31 + 72, and therefore
-7 =1u-2'. One can thus repeat the same operation so as to remove successively
all the occurrences of cycles in w, finally obtaining w” such that |w”| < |A|. The
word w” encodes ¥” € S, with @ - ¥ =« - ¥"”. Since there is only a finite set of w”
such that |w”| < |A|, the set {@-Z | Z € S} is finite, which contradicts an hypothesis
of the lemma. O

Theorem 8.27 Let r € N with r > 1, A\ € C such that there do not exist p € Ny
and m € N such that \? = r™. The set

S={\N|keN}
s not r-definable.

Proof The proof is by contradiction. Suppose that S is r-definable. There are two
possible cases.

o If S is finite. Then, there exist ki, ks € N such that k; < ko and ¥t = \F2,
Choosing p = ks — k1 and m = 0 leads to a contradiction.

e [f S is infinite. Since S is r-definable, there exist n € Ny, ©« € C” and a
r-definable set S” C Z" such that S = {u- 2| ¥ € S'}. By Lemma 8.58, there
exist 1, y» € C" and m € Ny such that

{if +r™ 4, | ke N} C &,

and @ - ¢, # 0. Let S” denote the set {7 + 7™, | k € N}. Since S” C S', we
have
{a-7|2e 8"y C{\|keN}L

Let g =u- 95 and h = @ - ;. We have

{gr™ + h|keN}C{\|keN},

250 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

with g # 0. Since the left-hand side of this equation is an unbounded set, it
follows that |A| > 1. We have

gr™ED Lo "

lim =7r"

k—oo g,rmk: +h
which gives

D(EkeN
(Ve € RY)(3k €)(e

<e).

There must exist p;,p» € N with p; < p, such that ¢gr™* + h = AP and
gr™ &+ 1 b = APz Therefore, by choosing p = ps — p1,

(Ve e Ry)(Fp e N)(|N\ —r™| < ¢),

where R{ denotes the set of strictly positive real numbers. Since there can
only be a finite number of integers p € N such that |[\P — r™| < 1, taking
e=1/2F k=1,2,... eventually leads to

AP =™

for some p € N. This contradicts an hypothesis of the theorem.

Before proving Theorem 8.28, we need to establish two auxiliary results.

Lemma 8.59 Let u,v € R with u > 1, p,q € Ny with p > 1, and II(x) be a
polynomial of degree greater than zero with its coefficients in R. We have

{(uP* +0)7 | ke N} ¢ {u"TI(K') | K € N}
Proof The proof is by contradiction. Suppose that we have
{(uP* +)7 | k e N} C {u*TI(K) | K € N}.
This is equivalent to
(Vk € N)(3K € N)((uP* 4+ v)7 = «*TI(K)). (8.6)

For sufficiently large values of k, the left-hand side of this equation is strictly in-
creasing with respect to k. Since II is a polynomial, that implies that there exists
m > (0 such that

(Vly > 13 > m)(I1(ly) > I1(l,) > 0).

8.3. CREATION OF CYCLE META-TRANSITIONS 251

Let z = Jmax u*II(x), and n > 0 be such that (Vk > n)((uP* + v)? > 2). Equa-

tion (8.6) associates a unique k¥’ € N to every k € N such that k& > n. This &’
satisfies k' = [(k), where [is a function R — R verifying

(Vz € R,z > n)((uP® +)7 = ' @1I(1(x))). (8.7)

From this equation, we obtain for x > n

;—x ((u?* + v)7) = % (w'T1(1)) .d%m).
The left-hand side and the first factor of the right-hand side of this equation being
strictly positive for x > n (and thus [> m), the second factor of the right-hand side
is strictly positive as well, from which we deduce that [(x) is strictly increasing for
x > n. Let us compute the derivative '(z) of I(z) with respect to x. For x > n,
Equation (8.7) gives
(uP® +v) = u!'@TI(I(z)).

Taking the natural logarithm of both sides, we obtain
qlog(uP® +v) = l(x) logu + log II(I(x)).

Deriving with respect to z, and defining II'(z) = dIl(z)/dz, we get

pq(logu)u?™ : II'(1(2))!'(z)
I (logu)l'(x) + @)
from which we extract
V)= P L
142 1 I'((x))

z 1 .
u” i logu TI(I(x))

This result implies that liIP I'(x) = pq, and therefore
(Ve > 0)(3n' > n) (Vo > n)(pg —e < U'(z) < pq+¢).
Let us take e = 1. According to the previous result, there exists n’ > n such that
(Vo >n)(pg—1<l'(z) < pg+1). (8.8)

For any k£ € N such that k£ > n’, we have

k41

Ik +1) = U(k) +/ I(x)da,

k

and it follows from Equation (8.8) that

pg—1<lk+1)—I(k) <pg+1.

252 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

Remark that pq, [(k) and [(k + 1) are integer numbers. The only integer number
between pqg — 1 and pg + 1 is pq, hence

(Vk > n)(U(k + 1) — (k) = pq),
which gives
(Vk > n)(I(k) = lo + pqk),
with [y € Z. Replacing [(k) by its value in (8.7), we obtain for any k& > n’

(upk +0v)! = ul°+quH(l0 + pgk),

hence y
(lo + pgk) = w™ (1 + —75)"
U

This is clearly impossible, since
Jim TI(lo + pgk) = +o0,

and

. _ v _
lim w1+ —2)=u,
k—-+o00 uP

|

Theorem 8.60 Let r,l,a,b € N withr > 1,1 > 1 and a > 1, such that r* = [°. If
II(x) is a polynomial of degree greater than zero with its coefficients in Z, then the

set
S = {I"I(k) | k € N}

s not r-definable.

Proof The proof is by contradiction. Suppose that S is r-definable. After applying
Lemma 8.58 with @ = (1), we obtain that there exist m € Ny and y;,y2 € Q such
that yo # 0 and

{yr +r™yy |k eN} C S,

which can be rewritten as
(b + |k e NYC {IMTIR) | K € N}
This result implies
{4 2L ke NYC (1K) | k€ N,
and thus, since [* = r?,
{((rem)h + %)bm | ke N} € {(r"™)*"TI(k) | k € N}.

Applying Lemma 8.59 to this result directly leads to a contradiction. O
We are now ready to prove Theorem 8.28.

8.3. CREATION OF CYCLE META-TRANSITIONS 253

Theorem 8.28 Let r,p,m € Ng withr > 1, A € C such that \’ =™, and a € C
such that a € R\ Q. The set

S ={N(k+a)|keN}
s not r-definable.

Proof Without loss of generality, we assume that p and m are relatively prime,
and that there does not exist j € Ny such that j > 2 and r(1/7) € N (thanks to
Theorem 8.18). The proof is by contradiction. Suppose that S is r-definable. There
are two possible cases, depending on the value of a. For each of them, we will show
that our assumption implies that the set

S:{M@+@\SGN}

is r-definable, and that this result leads to a contradiction. For each £ € N, we
define y, = *(k + a).

e [fa€ Q. For each k € N such that k& > 2|a| and p divides k, we have
S(yr) = 0 A Rye) > [N (2la] + a).

Reciprocally, for each £ € N such that y; satisfies the previous formula, we
have k > 2|a| and p divides k. It follows that we have S’ =S| U S}, with

k
ﬂ:{ﬁ%+@\;eN$§2ML

Sy ={ye € 51 S(ye) =0 A R(ys) > 1},

and
1= NP (2lal + a).

The set S] is finite, hence it is r-definable (Theorem 8.24). In order to prove
that S’ is r-definable, it remains to show that S} is r-definable. Let ¢ € N be
such that ga € Z. We have

1
S§:Sﬂ§{x€N|x>ql},

whose r-definability follows from Theorem 8.24. Let us now show that the fact
that S’ is r-definable leads to a contradiction. We have

S = QWk+@\§eN}

S '
et a) |~ €N}

254 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES
Theorem 8.24 implies that the set
(k) k
{r\») (qk + qa) | p € N}

is also r-definable, which contradicts Theorem 8.60.

e /fa € C\R. We can assume without loss of generality that (a) > 0. Indeed,
Theorem 8.24 implies that the set

S={\'(k+a)|keN},

where for every z € C, Z denotes the complex conjugate of z, is r-definable
if and only if S is r-definable. Let N € N be such that N > 2|a| and 0 <

arg(N +a) < 2?”.
— For every k£ > N such that p divides k, we have

m 2
A= (5) = arg(yr) = arg(k +a) = 0 < arg(yx) < %
— For every k£ > N such that p does not divide k, we have
2
arg(yx) > s (8.9)

Let M € N be such that M > N and M > |M\¥|N+a|, and let a = arg(M +a).
Remark that 0 < arg(a) < 7.

— For every k > M such that p divides k, we have 0 < arg(yx) < a A
S(yw) > S(a).

— For every k > M such that p does not divide k, we have arg(yx) > «
(according to Inequation (8.9)).

— For every k < M, we have arg(yx) > o V (yx) < S(a). (Indeed,
0 <arg(yr) < a A S(yx) > S(a) implies k > M.)

In summary, we have for each k € N:
k> M A pdivides k < 0 < arg(yr) < a A S(yk) > S(a).

It follows that we have S’ = S] U S5, with
/ k k
S ={N(k+a)| » e N,k < M}

and
Sy={y €S0 <arg(ys) < a A S(yx) > S(a)}.

8.3. CREATION OF CYCLE META-TRANSITIONS 255

The set S} is finite, hence it is r-definable (Theorem 8.24). In order to prove
that S’ is r-definable, it remains to show that S is r-definable. Let us consider
the transformation y, — & such that

[2]-[5)

T2 (yk)
with
1 — R(a)
T = Sa) |
0 1
S(a)

This transformation can be inverted as follows.
l%(yk)]zll 9‘%@)“%1]
S (yi) 0 S(a) || z2 |
By Theorem 8.24, the set
(o [35] mes)
is r-definable if and only if S’ is r-definable. Remark that every y; € S} is

such that
R(yr) Nk
T[g]:l W | €N

Cx

\f(yk)
Let S” be the set

R(yr)
S = {T l esSy.
S(ye) | |
We thus have S” C N2. From the previous results, we deduce
- { il e N2 |0 < arg(a1 + R(a)zs + iS(a)s) < @
L 2 .

A S(a)zs > %@)} n s

] 9 S(a)zy (M + a)
{_ Ty | € N R(a)xs + 4 = R(M + a)

/\ZL‘2>1}QS”

= { il €N2|ZL‘2(§R((I)+M)<ZL‘2§R(G)+ZL‘1 /\l‘2>1} n s’
L 2 -

-3; -
= { ! €N2|IL'1>MIE2/\ZL'2>].}QS”.
xQ

This set is r-definable (Theorem 8.24), hence S, and S’ are r-definable. Let
us now show that the fact that S’ is r-definable leads to a contradiction. We

256 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES
have
! k k
ST o= {A (k:+a)|]—9€N}
ik k
=) kra)| S €N

It follows from Theorem &.24 that the set

m k
S(z) |z € 5/} = {AT’% e N}
p
is r-definable, which contradicts Theorem 8.60.

|

Theorem 8.29 Let r,p,m € Ng withr > 1, and A € C such that \? = r™. The set

([wen

Proof The proof is by contradiction. Without loss of generality, we assume that
there does not exist j € Ny such that j > 2 and 7(1/7) € N (thanks to Theorem 8.18).
Suppose that S is r-definable. According to Theorem 8.24, the following sets are

SmNZZHffk]meN},

S’:{[Tik]|keN}.

Let L be the language of the shortest synchronous encodings in basis r of the vector

s not r-definable.

also r-definable:

values in S’, expressed over the alphabet {0,1,...,r — 1}2. Since S’ is r-definable,
L is regular. Let A be a finite-state automaton accepting L. Any w € L is of the
form

w = (0,0)'(0,1)"11]1'11}2,

where w; = (0,0)™* o k=1 "k ¢ N and w, is such that (0,0) - ws is the shortest
encoding of ké] in basis r. For any sufficiently long word w in L, the path of A
that accepts w must encounter an occurrence of a cycle while reading w;. This
cycle can be further iterated, accepting words that do not belong to L. Hence the
contradiction. O

The proof of Theorem 8.30 requires two additional results.

8.3. CREATION OF CYCLE META-TRANSITIONS 257

Lemma 8.61 Let r,m,p € Ng with r > 1, A € C such that X’ = r™, and a € C.

The set i
A¥g .
. JkeN
gty 1iwen]

1s r-definable.
Proof We have
MEj

S:éij”[ﬁo+aﬂ'$geN}

It is thus sufficient to prove that the set

, A*j K
= {{ita 105 em)

S’:{rmkl -] \j,k;eN}.
J+a
According to Theorem 8.24, the set

([, 2w

is r-definable. Since S’ = expand(S”,r™), it follows from the same theorem that S’
is r-definable. O

is r-definable. We have

Theorem 8.62 Let r,m € Ny with r > 1, and p,q € Z with p # 0. The set
mk ;
sz{[r (pitq)] |j,kzeN}
J
s not r-definable.

Proof The proof is by contradiction. Suppose that S is r-definable. From Theo-
rem 8.24, it follows that the set

mk :
S/:H'f’ (pJJrq)]‘j’,{;eN}
pi+q

is also r-definable. Let L be the language of the shortest synchronous encodings in
basis r of the vector values in S, expressed as a set of pairs (wq,ws) of words of
same length over the alphabet {0,...,r —1}*. Let f be the function

f:Z2Z—-7Z:2x—

Vi ()

258 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

Intuitively, f(z) is the number obtained by removing all the trailing “0” digits from
the encoding of x in basis r. The value of f(z) stays unchanged when z is multiplied
by r. It follows that we have

|

X2

€ §)(f(x1) = f(22)). (8.10)

For any [€ N, let us define

_ o'+ 1) +q ifg=0,
P p0rt) +q if g # 0.

Remark that V,(y;) stays bounded with respect to [(in other words, the number
of trailing “0” digits of y; encoded in basis r stays bounded when [increases). Let
n € Ny be such that " > V,(y;) for every | € N, and such that n is greater than
the length of the shortest synchronous encodings of p and of ¢ in basis r. Let A
be a finite-state automaton accepting L. There exists [€ N such that the shortest
synchronous encoding of y; in basis 7 has more than |A| + n symbols, where |A]
denotes the number of states of A. Let us take k € N such that mk is greater than
the length of the shortest synchronous encoding of y; in basis r. We know that the

-
Ui

belongs to S’. Therefore, its shortest synchronous encoding (wy,ws) in basis r

vector value

belongs to L, and is thus accepted by A. This encoding can be decomposed into
(wy - wy - W wy - wh - wh), with |wj| = |wy| = |A| and |w]| = |wf| = n. It follows
that w] and w) only contain the symbol 0. Any subpath of A accepting (w], w})
must contain a cycle that can be iterated one more time. This allows to transform
a path accepting (wy, ws) into one accepting a different word (uq, us), from which it
follows that (uy,us) € L. By construction, w; and wu; differ only by their number of
trailing “0” digits, whereas uy and ws have the same number of trailing “0” digits
and encode different integers. Let x; and x5 be the integers encoded by wu; and
ug. From the previous results, it follows that f(x1) = f(y;) and f(z2) # f(w), and
therefore that f(x1) # f(x2). This contradicts Equation (8.10). Hence, S is not
r-definable. O
We are now ready to prove Theorem 8.30.

Theorem 8.30 Let r,p,m € Ny with r > 1, A € C such that X’ =r™, and a € C.

The set
k .
S:{lA (Jj”)] U,keN}

s mot r-definable.

8.3. CREATION OF CYCLE META-TRANSITIONS 259

Proof Without loss of generality, we assume that p and m are relatively prime,
and that there does not exist j € Ny such that j > 2 and r(1/9) € N (thanks to
Theorem 8.18). The proof is by contradiction. Suppose that S is r-definable. We
distinguish two cases.

e [fa e Q. Let p € Ny be such that pa € Z. According to Theorem 8.24, the
two following sets are r-definable:

[95)en).

([e e

J
mk .
_ H rpg +pa)] \j,keN}.
J
The fact that the second set is r-definable contradicts Theorem 8.62. It follows
that S is not r-definable.
e [fa¢ Q. For any ki, ks, j1, j2 € N, we have
NG +a) = A2 (ja+a) & A =22 A gy =g

The set S being r-definable, Theorem 8.24 and Lemma 8.61 imply that the
two following sets are also r-definable:

N(j +a)
Nej o i keNy,
j

(5] ssen)

The fact that the second set is r-definable contradicts Theorem 8.62. It follows
that S is not r-definable.

O

Theorem 8.31 Let r, py,p2, mi,mo € Ng with r > 1, A, \a € C such that \|' =
rm A2 =02 and |\| # |Xo|. The set

o~ {[4] e

s not r-definable.

260 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

Proof Without loss of generality, we can assume that m; and p; are relatively prime
for i € {1,2}, that m; < mg, and that there does not exist j € Ny such that j > 2
and r1/7) € N (thanks to Theorem 8.18). The proof is by contradiction. Suppose
that S is r-definable. Theorem 8.24 implies that the set

mik
S’:SﬂNZ:{[:]\keN}

mok

is r-definable as well. Let L be the language of the shortest encodings in basis r of
the vectors in S, expressed over the alphabet {0,1,...,r — 1}?. This language is of
the form

L =1{(0,0)-(0,1) - (0,0)k0m2=m)=1 (1 0).(0,0)*™ | k € N}.

Since L is not regular, S’ is not r-definable. It follows that S is not r-definable
either. O

Lemma 8.36 Let n,r € Ny withn > 1,7 > 1, A € C such that A\ # 1, p € Ny,
m € N such that \P =r™, g€ N with 1 < q<n, V € C*" of rank q, and b € Z".
There exists a r-definable set S C Z" such that the set

S ={Jk7+ > TV |TeVS A keN},

0<i<k
where b = Vg, s not r-definable.

Proof Let us project S’ onto the two vector components that have the highest index.
We obtain

k k—1 ioai-1]
S”:{H k);\’“]mz H Mx]b”|f€V’SAkeN},
0<i<k

where V' € C?*" is composed of the two last lines of V' (and is therefore of rank

2), and V" = V'b. It is sufficient to prove that there exists a r-definable set S C Z"
b -

such that the corresponding S” is not r-definable. Let l bl] = b". We distinguish
2

four different situations.

o If|A\ =1 and by = 0. We have

gr [[Mran kX 35 s
)\kl’g

eV’SAkeN}.

X2

Let v € Z™ be such that the second component of V'¥ is different from zero
(such a ¥ always exists, otherwise the rank of V' would be less than 2). Choos-
ing S = {jv|j € N} yields

. . _)\k_
o {l Ar o +kj>\:1},;+ oLy, 1 ke N},
A v

8.3. CREATION OF CYCLE META-TRANSITIONS 261

/

with l U}] = V'v. If §” is r-definable, then by Theorem 8.24 the following
Uy

sets are also r-definable:

kj)\k LUQ _'_)\ bl .
JkeN;,
{l Nj 7
g A b A b
)\k kj+j)\flz-)’2+)\flv’2 |],]{Z€N ’
J

- A b A b
J<k+ﬁ@>+ﬁ@]weN}.
j Y

By Theorem 8.26, this last set is not r-definable. It follows that S” and S’ are
not r-definable.

\mkeN},

o If|\| =1 and by # 0. Let us take S = {jb | j € N}. We obtain

k. Sy k—1 M1 (k=D)AF—EXF—141
o { { gy + kjAF by + ALy 4 Gk] U’keN}

Nejby + A=1p,

If S” is r-definable, then by Theorem 8.24 the following sets are also -
definable:

A jby + kg AEThy + 25by + B A’“b
H Jby + KGNy + 2 S | e

)\kjb2 + >_1 b2

(v
(v

Since we have ﬁ Z R\ Q, it follows from Theorem 8.26 that the last set is
not r-definable. Therefore, S” and S’ are not r-definable.

. ba 1 k
by + b 4
J02 —172

. b~ A
]kj‘l“)\éj)\1b2+_1_()\1]|jk€N}

I+ 5

- 1 biy A
438])

I+ 5

o [f|\ > 1 and by = 0. We have

S,/_{[Ak$1+kAk 1ZL‘ +A_1b1] | [1’1

k
ANixy To

eVSAkeN}.

262

O

CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

Let ¢ € Z™ be such that the second component of V'¥ is different from zero
(such a @' always exists, otherwise the rank of V’ would be less than 2). Choos-
ing S = {v| j € N} yields

k k—1,,/
SI/_{[A +k)\)\kv2+ b1‘|‘]€EN},

/

with l U}] = V'v. If §” is r-definable, then by Theorem 8.24 the following
Uy

sets are also r-definable:

{Aklkv2+)\vl+)\ T]|k:EN}

vy

{\k | k € NY.

According to Theorem 8.28, the last set is not r-definable. It follows that S”
and S’ are not r-definable.

If [\ > 1 and by # 0. Let us take S = {b}. We obtain

k k—1
S// _)\kbl +)\k lka + —1bk+ (k— 1))(\>\ f))\ +1b ‘ renl
Ay 4 A=1p,

If S” is r-definable, then by Theorem 8.24 the following sets are also -
definable:

(Remark that |[A] > 1 implies 1+ 115 # 0.) According to Theorem 8.28, the
last set is not r-definable. It follows that S” and S are not r-definable.

k k
b1+Xb2+ﬁb1+—>\(>_l)b (“b heN
52+ﬁ52

{*k | k e NY.

Lemma 8.37 Letn,r € Ng withn >1,r>1, e N with1l <qg<n,V € Q" of
rank q, and b€ Z". There exists a r-definable set S C Z" such that the set

S ={JkF+ Y JV|TeVS A keN},

0<i<k

where b = Vg, s not r-definable.

8.3. CREATION OF CYCLE META-TRANSITIONS 263

Proof Let us project S’ onto the two vector components that have the highest index.
We obtain

1 k 1 7|5

S = []:EJFZ[]b”\a‘:’eV’SAkeN :

{ 01 0Sek 01

where V' € Q**™ is composed of the two last rows of V' (and is therefore of rank 2),
and ¥ = V'b. It is sufficient to prove that there exists a r-definable S C Z" such
b

that the corresponding S” is not r-definable. Let l b
2

] =0 We distinguish two
different situations.

e [fby =0. We have

S//:{[$1+k3$2+kb1]‘[$1

T2 T2

eV’SAkeN}.

Let v € Z™ be such that the second component of V'¥ is different from zero
(such a ¥/ always exists, otherwise the rank of V' would be less than 2). Choos-
ing S = {jv|j € N} yields

<! N /
2

!/
with l U}] = V'v. If §” is r-definable, then by Theorem 8.24 the following
2

|

Since % € Q (because ¥ € Z" and V' € Q*™), Theorem 8.26 implies that
this set is not r-definable. It follows that S” and S’ are not r-definable.

set is also r-definable:

ik + Bk
2

|j,k;eN}.

e [fby #0. We have

S”: x1+kx2+kb1+%k(l€—1)b2 ‘ Al EVS//\/{ZEN .
x|+]{Zbg)

Let S = {0}. We obtain

1 _
g = [[R+ iR =Dh] L
Jebs

If S” is r-definable, then by Theorem 8.24 the following sets are also 7-

definable: X
([0 en,

264 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

{(k(k—1) | k € N}.

By Theorem 8.25, this last set is not r-definable. It follows that S” and S’ are
not r-definable. O

Lemma 8.38 Let n € Ny and A € Z"*". There exists a nonsingular matrix U €
C™ " transforming A into its Jordan form Ay, and such that every row of U~!
at the same position as a line of a Jordan block J, in A; contains only rational
components provided that X\ is rational.

Proof In order for U to transform A into A, we must have A; = U~ AU. Let J be
a Jordan block in A; associated to a rational eigenvalue. Without loss of generality,
we may assume that J is the first block of A;. We have A;U~! = U~' A, which can

be decomposed into
J 0 U Uy | | U U A
0 X ||Us Uy| |[Us U |

where Uy, ..., U, are parts of U~! of appropriate sizes. This linear system can be
split into the two equations

J[Ul;UQ] = [Ul;UQ]A (811)

and
X [Ug; U4] = [Ug; U4] A

If U exists, replacing [Uy; Us] by any solution of (8.11) whose lines are linearly inde-
pendent from each other and from the lines of [Us; Uy| yields a matrix transforming
A into Aj. Since all the coefficients of Equation (8.11) belong to Q, it is always
possible to find a suitable rational solution. O

8.4 Creation of Multicycle Meta-Transitions

The problem addressed in this section is to design the algorithms that are needed
in order to associate multicycle meta-transitions to systems using integer variables.
As it has been shown in Section 3.4.2; the creation of multicycle meta-transitions is
governed by a computable function MULTI-META-SET that takes as arguments a
finite number of linear operations, and returns a finite number of memory functions
corresponding to multicycle meta-transitions that can be associated to the cycles
labeled by those linear operations.

The problem that consists of deciding whether the closure of a finite set of
linear operations preserves the r-definable nature of sets in a given basis r > 0 is
very tough. To the best of our knowledge, it is presently not known whether this

8.5. MODEL CHECKING 265

problem is decidable or not. A weaker problem, equivalent to deciding whether
the closure of a finite set of linear operations preserves the Presburger-definable
nature of sets, has been successfully solved by Hauschildt [Hau90]. The proof of this
result is constructive, and can be turned into an algorithm for computing an NDD
representing the image of a set of vector values represented as an NDD by the closure
of a finite set of linear operations that preserves the Presburger-definable nature of
sets. Although very elegant, Hauschildt’s result is described in 150 pages, and its
presentation is far beyond the scope of this thesis. A smaller but more intricate
decision procedure has also been developed independently by Lambert [Lam94].

The implementations of MULTI-META-SET that we provide here simply return
the set of all the cycle meta-transitions that can be created from the given set of
linear operations. The algorithms developed with respect to a given basis » > 1 and
to any basis are given in Figures 8.16 and 8.17. The algorithms for computing the
image of a set of vector values represented as an NDD by cycle meta-transitions can
be found in Section 8.3.6.

8.5 Model Checking

This section is aimed at providing algorithms for applying to linear operations the
functions ITERABLE and MULTI-ITERABLE required by the model-checking algo-
rithms introduced in Chapter 4. In the present context, the purpose of ITERABLE
is to determine, given a linear operation #, a representation of the set of integer
vector values to which it is known that 6 can be applied infinitely many times.

We only consider linear operations that satisfy the conditions expressed by The-
orem 8.40, i.e., the linear operations for which it has been established that their
closure preserves the definable nature of sets of vector values. The motivation of this
restriction is twofold. First, it simplifies the computations, by allowing to exploit the
results established in Section 8.3. Second, it does not influence the model-checking
algorithms, since they only apply ITERABLE to operations that can be associated
to cycle meta-transitions.

Let n € N be a dimension, r € N with » > 1 be a basis, and § = (P¥ < ¢ —
T = A7+ l;), where m € N, P € Z"*", g€ Z™, A € Z"*" and b € Z" be a linear
operation whose transformation matrix A satisfies the hypotheses of Theorem 8.40.
For every vector value ¢ € Z", the guardless linear operation ¢’ = (¥ := AZ + E)
can be applied infinitely many times to ¢, producing the set of values (6')*(¢). The
problem is thus reduced to computing the set of all the #' for which P(6)*(7) < ¢

for every k € N.

By hypothesis, there exist m € N and p € Ny such that all the eigenvalues of
AP belong to {0,r™}. We distinguish two situations.

266 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

function MULTI-META-SET-BASIS(basis r, dimension n, set of linear operations S) :
set of functions;

1: var T : set of functions;

2: begin

3: T :={(PE<{—% = AZ+b)" |(PT<{— % := AT+b) €S
AMETA-BASIS?(r,n, (Z := AZ + b)) = T};

4: return T

9: end.

Figure 8.16: Creation of multicycle meta-transitions in a given basis.

function MULTI-META-SET-PRESBURGER(dimension n, set of linear operations S) :
set of functions;

1: var T : set of functions;

2: begin

3: T :={(PE<{—%:= AT+b)* |(PT<{— % := AT+b) e S
AMETA-PRESBURGER?(n, (Z := AZ + b)) = T};

4: return T

o: end.

Figure 8.17: Creation of multicycle meta-transitions in any basis.

8.5. MODEL CHECKING 267

e /[fm=0. For any v € Z", we have
() (@) = U @) (U @) (U)) :
keN 0<j<p
According to the proof of Theorem 8.43, this expression can be rewritten as

@ w = U @@youy (Ap< U (9/)]'(17)) +k;Ap5'+z7)

0<j<p keN 0<j<p

0<j<p kEN

- U ((e/y(ﬁ) u U (AP(G/)j(U)+kAp5’+Z7)>,

with b = Z A'b. We thus have

0<i<p

ITERABLE(f) = (| {F€Z"| P(0') () <7 N p(AP(0') (D))},

0<j<p

where ¢ is the predicate
@ Z" — {T,F} : & (Vk € N)(P(Z+ kAP + 1) < 7).

The previous formula belongs to the first-order theory (Z, <, +) and can there-
fore be translated into an algorithm for constructing an NDD representing the
set {Z € Z" | (%)} (and thus for constructing an NDD representing the set
ITERABLE(6)).

It is however possible to simplify the expression of . Since the region {Z €
Z" | P¥ < '} is convex, we have for every z € Z"

(7) = P(Z+V)<q if PAPY <0,
= F it PAPY £ .
e [fm > 0. For any v € Z", we have
@) (@)= @)™ (U (9')j(17)) :
keEN 0<j<p
According to the proof of Theorem 8.43, this expression can be rewritten as

@@ = U v v U (el (e - ne(Y erm)

m o __
0<j<p keN \T 1 0<j<p

+ Ap5’> — A”E’] + 5’)

- U ((9’)]‘(5) u (Tm%l lrm’“(w’” — 1)AP(¢')(7)

0<5<p keN
+ Ap5’> — A”E’] + 5’)),

268 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

with b = Z A'b. We thus have

0<i<p

ITERABLE(0) = () {7€Z" | P(O0')Y(7) <G A ¢ (AP(0)())},

0<j<p

where ¢’ is the predicate

o 2" = {T,F} : ¥ (W{:EN)<P<#1 [rmk<(rm—1)f+Apl7
rmt—

—APE'] + 5’) < q).

Like in the previous case, it is possible to simplify the expression of ¢'. Since
the region {7 € Z" | P7 < ¢} is convex, we have for every z € Z"

o0 = e (p(g (- v) -] 47) <4

Il
=
8
+
S
[A
Y
>
=

—, 1 =, —
(a+) <0
rm —1
Algorithms formalizing the computation of an NDD representing ITERABLE(#)

with respect to a given basis » > 1 and to any basis are given in Figures 8.18
and 8.19.

Theorem 8.39 Let n € N be a dimension, r € N with r > 1 be a basis, and
0 =(PE<{— T := AT+0b), wherem € N, P € Z™", 7€ Z™, A € Z™" and
b € Z", be a linear operation such that META-BASIS#(r,n, A) = T. ITERABLE-
BASIS(r,n,0) is an NDD representing in basis v the set of all the vector values

v € Z" to which 6 can be applied an infinite number of times.

Proof The algorithm in Figure 8.18 is a direct implementation of the computation
method discussed in this section. O

—

Theorem 8.40 Let n € N be a dimension and § = (P¥ < ¢ — & = AZ +b),
where m € N, P € Z™", g € Z, A € Z™" and b€ 7", be a linear operation
such that META-PRESBURGER?(n,A) = T. In any basis r > 1, ITERABLE-
PRESBURGER(n,0) is an NDD representing the set of all the vector values v € Z"™
to which 0 can be applied an infinite number of times.

Proof The algorithm in Figure 8.19 is a direct implementation of the computation
method discussed in this section. O

It is worth noticing that all the sets computed during the execution of the algo-
rithms in Figures 8.18 and 8.19 are closed convex polyhedra, i.e., sets whose elements
are the solutions of a linear system of inequations. A possible optimization of these

8.5. MODEL CHECKING 269

function ITERABLE-BASIS(basis r, dimension n,
linear operation (PZ < §— & := AZ +b)) : NDD

1: var m,p : integers;

2: v integer vector;

3: Aq, Ao, A3 : NDDs;

4: begin

5: (T, m,p) := DEFINABLE-CLOSURE?(r,n, A);

6: Vo= Z Ail_;;

0<i<p
T: Ay = NDD(() {Fe€2" | P45+ > A'b) <q});
0<j<p ‘ 0<i<j .
8: Ay = NDD(() {#€Z" | P(APA/G+ AP Y A'b+V) < q});
0<j<p 0<i<j

9: if m = 0 then
10: if PAPY £ (0 then return NDD(();
11: else return INTERSECTION(A, As)
12: else
13: begin
14: As = NDD(() {#€2Z" | PAP((r™ — 1)(A¥

0<j<p . .
+ 2 0<ic; A'b) +07) < 0});

15: return INTERSECTION(INTERSECTION(A;, A3), As)
16: end
17: end.

Figure 8.18: Set of vector values to which a linear operation can be applied infinitely
many times (in a given basis).

270 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

function ITERABLE-PRESBURGER(dimension n,
linear operation (P¥ < §— & := A%+ b)) : NDD

1: begin

2: var p : integers;

3: V' : integer vector;

4: A1, As : NDDs;

5: begin

6: (T,0,p) := DEFINABLE-CLOSURE?(1, n, A);

7 Vo= Z Aig;

O§i<p

8: if PAPY £ 0 then return NDD(();

9: Ay = NDD((| {FeZ" | P(ATT+ Y A'b) <))
0<j<p ‘ 0<i<j .

10: Ay = NDD(() {F€2Z" | P(APATG+ AP Y Ab+1) < q});
0<j<p 0<i<j

11: return INTERSECTION(A;, Az)

12: end.

Figure 8.19: Set of vector values to which a linear operation can be applied infinitely
many times (in any basis).

8.5. MODEL CHECKING 271

function MULTI-ITERABLE-BASIS(basis r, dimension n,
set of linear operations {61,60s,...,0,}) : NDD

1: begin

2: return U ITERABLE-BASIS(r, n, 6;)
1<i<q

3: end.

Figure 8.20: Set of vector values to which a finite set of linear operations can be
applied infinitely many times (in a given basis).

function MULTI-ITERABLE-PRESBURGER (dimension n,
set of linear operations {61,62,...,6,4}) : NDD

1: begin

2: return U ITERABLE-PRESBURGER(n, 6;)
1<i<q

3: end.

Figure 8.21: Set of vector values to which a finite set of linear operations can be
applied infinitely many times (in any basis).

algorithms would consist of manipulating sets of vector values with the help of pro-
grams specifically designed for handling closed convex polyhedra. The description
of such a program can be found in [LV92].

Since our implementation of MULTI-META-SET for systems with integer vari-
ables simply returns cycle meta-transitions, algorithms for computing the set of
vector values to which it is known that a finite set of linear operations can be ap-
plied infinitely many times can easily be obtained from the ones in Figures 8.18
and 8.19. The resulting algorithms are given in Figures 8.20 and 8.21.

Theorem 8.41 Let n € N be a dimension, r € N with r > 1 be a basis, and
01,0s,....0, (¢ € N) be linear operations such that META-BASIS?(r,n,A;) = T
for every i € {1,2,...,q}, where A; is the transformation matriz of 6;. MULTI-
ITERABLE-BASIS(r, n,{01,0s,...,0,}) is an NDD representing in basis r a set
S C Z™ such that for every v € S, the set of linear operations {61, 02,...,0,} can be
applied an infinite number of times to .

Proof Immediate. O

272 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

function NDD-FINITE?(basis r, dimension n, NDD A) : {T,F};

1: begin

2: A := DIFFERENCE(A,] a-a-({0,1,...,r = 1}")");
ac{0,r—1}m

3: return FINITE?(A)

4: end

Figure 8.22: Test of finiteness of a set represented as an NDD.

Theorem 8.42 Let n € N be a dimension and 61,6s,...,0, (¢ € N) be linear
operations such that META-PRESBURGER?(n, A;) =T for everyi € {1,2,...,q},
where A; is the transformation matriz of ;. For any r > 1, MULTI-ITERABLE-
PRESBURGER(n, {61, 03, ...,6,}) is an NDD representing a set S C Z"™ such that
for every v € S, the set of linear operations {61, 6a,...,0,} can be applied an infinite
number of times to vU.

Proof Immediate. O

8.6 Termination

The goal of this section is to give algorithms for computing the truth value of the
predicates required by Sections 5.1 to 5.5 in the context of ISMAs. Specifically, we
implement the predicates FINITE?, whose purpose is to decide the finiteness of a set
of vector values represented as an NDD, and PRECEDES?, which checks whether
two linear operations #; and 6, are such that 6; < 6,. We address each problem
separately.

8.6.1 Finiteness of Sets of Vector Contents

Deciding the finiteness of a set of vector contents S C Z™ (n € N) represented
as an NDD A is easy. Since each element of S has exactly one shortest encoding,
this can be done by checking whether the language of the shortest encodings of
the elements of S is finite or not. This language can be expressed as the difference
between L(.A) and the language of all the encodings of vectors of Z™ in which the sign
digit is repeated. Testing the finiteness of the language accepted by a finite-state
automaton can be done by the algorithm of Figure 7.41. The resulting algorithm
for deciding the emptiness of a set of vector values represented as an NDD is given
in Figure 8.22.

8.6. TERMINATION 273

Theorem 8.43 Let n € N be a dimension, r € N with r > 1 be a basis, and A be
an NDD representing the set S C Z™ in basis r. NDD-FINITE?(r,n, A) =T if and
only if S s finite.

Proof Immediate. O

8.6.2 Precedence Relation

The problem addressed here consists of deciding whether two linear operations 6,
and fy are such that 6, <6, i.e., whether (62;6,)(S) C (61;65)(S) for every subset S
of Z".

Let n € N be a dimension, » € N with » > 1 be a basis, and let

T = Alf+ gl),

01 - (Plf —
B — T = AT+ by),

092 - (sz

with my,my € N, Py € Zm*", Py € Zn", i € 2™, @y € 2™, Ay, Ay € 2" and
bi,by € Z™. We have

(92,91) = (Plfg

. Pl — q_)l T T ' / P2
th P = = - |, A= AA;, b= Ay + by, P =
Wl [PQAl]7 q [JQ —P2b1 ‘|7 2 17 2 1 + 27 [PlAQ)

q = [. QQPg], A= A A,, and V= Ayby + by. Therefore,
qi1 — 1102

b <0y = (VS CZ")((02;61)(S) C (01;62)(9))
= (VEeZ)WPZ<{ = (PE<JAAT+b=AT+1V)).

It follows that we have 6; <6, if and only if the set
{geZ" | Pi<q'}
is included in the set
(FeZ'|PE<TANAT+b=AT+V}.

This can easily be checked thanks to the results of Chapter 6. An algorithm formal-
izing the decision procedure is given in Figure 8.23.

Theorem 8.44 Let n € N be a dimension and 01,605 be two linear operations over
Z". LINFAR-PRECEDES?(n,0,,05) = T if and only if 6, and 0y are such that
091 < (92.

274 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

function LINEAR-PRECEDES?(dimension n, linear operations 61, 63) : {T,F}
1 var P, P, P, P, A1, Ay, A, A’ : integer matrices;

2 Q1,3 G, G, 51, 52, l_;, v integer vectors;

3 Ai, Aa, A3 : NDDs;

4: begin

)

6

(Plfg 71— T = A1f+51) = 91,
(P <G — T o= AoT +bo) 1= Oa;
Py
: P = ;
! { PA]’
. a1
8: = ;
1 P — Poby
9 A = AQAl;
10: b := Aoby + by;
Py
11: P = ;
o |
12: 7 = 2
g1 — Pibs
13: Al = A1 A
14: Vo= Aiby + by;
15: Ay .= NDD({Z € Z" | PZ < '});
16: Ay := NDD({Z € Z" | P’Z < q'});
17: As := NDD({Z € Z" | AT+ b= AT+ V});
18: return INCLUDED?(AQ,INTERSECTION(A1,Ag))
19: end.

Figure 8.23: Precedence test for linear operations.

8.7. LOOP OPTIMIZATION 275

Proof The algorithm in Figure 8.23 is the direct implementation of the computation
method discussed in this section. O

One again here, the sets computed during the execution of the algorithm in
Figure 8.23 are closed convex polyhedra, and specific manipulation routines may be
used.

8.7 Loop Optimization

This section is aimed at providing implementations of the predicate EXISTS-LOOP-
EQUIV? and of the function LOOP-EQUIV-OP required by the loop optimization
technique introduced in Section 5.6. In the present context, the predicate EXISTS-
LOOP-EQUIV? takes as arguments two linear operations #; and 65 corresponding
respectively to the label of the body of a loop to which a cycle meta-transition
can be associated and to the label of the exit transition of that loop. It returns
T if a memory function f equivalent to (67 ;6;) can be determined. The purpose
of the function LOOP-EQUIV-OP is to compute f given #; and #,. There is no
need for EXISTS-LOOP-EQUIV? to be complete, i.e., to return T for every pair
(61, 65) such that there exists a computable memory function equivalent to (6;;6s).
Instead, we simply require EXISTS-LOOP-EQUIV? to be easily computable, and to
be such that for every pair (6, 6;) such that EXISTS-LOOP-EQUIV?(6,,6,) = T,
LOOP-EQUIV-OP(6y, 6,) returns a memory function equivalent to (65 ;6s).

Let n € N be a dimension, r € N with » > 1 be a basis, and 6, = (PZ <
G — T = A@’Jrl;l), Oy = (Pod < o — T = A2:17+52), where my, my € N,
Py € Zmxn Py e Zm2xn G € Zm §, € ZM2, Ay, Ay € Z7™ and by, by € Z7, be
linear operations. The loop optimization method that we propose is based on the
following ideas. First, since it must be possible to associate a meta-transition to
the cycle whose body is labeled by #;, we require that 6; satisfies the hypotheses of
Corollary 8.41, i.e., that there exist m € N and p € N such that A? is diagonalizable
and has all its eigenvalues in {0, r"}.

A consequence of the proof of Theorem 8.43 is that for every vector value v € Z",
the set 0 ({0}) can be expressed as the union of p sets, each of them being composed
of colinear elements. If there exists a linear operation equivalent to (67;6,), then
the image by (0] ; 6,) of a single vector value ¢ € Z™ cannot contain more than one
vector value. A simple way of ensuring that is to require p = 1 and m = 0, which
intuitively means that all the elements of 6; ({#'}) must be colinear and uniformly
spaced. We also require that the guard of #; can never be satisfied by more than
one of those elements.

The latter requirement can be formalized by following the approach of [BW94].
Assume that A; is diagonalizable that all its eigenvalues belong to {0,1}. Such a
transformation matrix is said to be idempotent; it is such that A2 = A;. Let k € N,

276 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

with & > 2. For every vector value v € Z" to which 6; can be applied k times, we
have 0% (7) = A17 + (k — 1)A151 1 b,. The pairs (¥, k) € Z™ x Z such that k > 2, 0,
can be applied k times to #, and 0%(7) satisfies the guard of 6, are therefore those
that satisfy the predicate

YU k) = PUSG A POHW) <G AN ... A Plé’]f_l(z_}’) <q
N POY(T) <@ A k> 2
= PO AP(AT+HL)SE A ...
A Pl(A127+(k3_2)A151+g1)
A P2(A127+(k3_1)14151+51)

Since the region {7 € Z" | P\Z < ¢i} is convex, this formula can be rewritten as

VT k) = PO<q@ AP(AT+b) <G A PUAT+ (k—2)A4b + b)) < @
A Py(AT+ (k—1)Ab +b) <@ A k>2

U
= P < .
P, 0 Q@
P1A1 0 Cji - Plgl
where P = - | and §= - -
PA, PiAh 1 G + 2P A by — Py
P,A, P2Ab & + PyA1by — Poby

Assume now that the linear system of inequations defined by P and ¢ contains
at least one equation a.0+ axk = 3, with &y € Z", oy, € Zgy and 3 € Z (Zy denotes
the set of nonzero integers.) This means that the number of iterations k of 6; is
determined by the vector value 7, i.e., that the loop which is labeled by 8, and whose
exit transition is labeled by 65 is deterministic. In this situation, k can be expressed

as the linear function

1
k:Z"—7Z : U— —(8—d,.0).
Qg

If all the coefficients in this linear function are integers, then for every o, v’ € Z"
such that o' = 6% (%), we have

P [K(7) 1 <qgNAU =AU+ (kD) — 1)A151+l71.

For every v, 7' € Z™ such that v’ € (6,07, 65)(?), we thus have

P[kfﬁ)

Replacing k(¥) by its value, we obtain that the transformation (6y;6;;6,) is equiv-

<G AT = Ay(AT+ (k(T) — 1)A1by + by) + by

alent to the linear operation ¢ = (P'¥ < ¢’ — ¥ := A%+ g’), where

8.7. LOOP OPTIMIZATION 277

o g/ = (ﬁ - 1)A2A151 + Aggl + 52.
O
In these expressions, 7 denotes transposition, and pr and P denote respectively
the rightmost column of P, and the matrix composed of all the other columns of P.

In summary, the transformation (6;;6s) is equivalent to the memory function
22" 22" S 0,(0,(5)) U 0/(S).

The only difficulty in the computation of ¢ is to check whether the system of linear
inequations defined by P and ¢ contains an equation, and to determine the coef-
ficients of this equation if one exists. This can be done straightforwardly if the
proper data structures are used for handling systems of linear inequations. Sim-
ple solutions to that problem, which are not described in this thesis, can be found
in [CH78, Hal93, LV92]. If there are more than one suitable equation in the system
defined by P and ¢, then the equation that one considers can be chosen arbitrarily.

An algorithm formalizing the computation of a linear operation equivalent to the
transformation (6;; 67 ; 65) is given in Figure 8.24.

Theorem 8.45 Let n > 0 be a dimension and 61,0 be two linear operations over
subsets of Z". If LINEAR-EQUIV(n,0,,0,) = (T,0), then 6 is a linear operation
equivalent to (01;07;0,).

Proof The algorithm in Figure 8.24 directly implements the computation developed
in this section. O

Algorithms implementing the predicate EXISTS-LOOP-EQUIV? and the func-
tion LOOP-EQUIV-OP are given in Figures 8.25 and 8.26.

278 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

function LINEAR-EQUIV (dimension n, linear operations (P/Z < §§ — & := A1 &+ 51),
(P < @ — T := AT+ b)) : ({T,F}, linear operation)

1 var P, P’ A’ Pp : integer matrices;
2 ar, q,q’, g’,ﬁR : integer vectors;
3 t : boolean;
4: p, ag, [: integers;
5 begin
6 (t,0,p) := DEFINABLE-CLOSURE?(L, n, A;);
7 if p # 1 then return (F, L1);
P 0
PA
8 P = 1 0 -
P1A1 PlAlbl
PyAy PyAby
q@
. @ — Pib
9: q = . > - s
q1 + 2P A1by — Piby
G2 + P2 A1by — Paby
10: if (34, € Z™, o, B € Z) such that (d;.0+ ok =) € P [Z } <q
1
AN—adq1 €Z" A ﬁ € Z then
AL (052
11: begin
12: [PL;PR] = P;
1 ...
13: P = Pp - J(pRa?);
o . B
14: 7" = q——Dr;
L 1
15: A = AyA; — J(AQAlblo?lT);
16: g/ = (ﬁ — 1)A2A151 + Aggl + 52;
(672 .
17: return (T, (P'Z< ¢ — & = AZ+V))
18: end
19: else return (F, 1)
20: end.

Figure 8.24: Computation of a linear operation equivalent to (6y; 6y ; 6y).

8.7. LOOP OPTIMIZATION

279

function EXISTS-LOOP-EQUIV?(dimension n, linear operations 61, 6s) : {T,F}
1: var 6 : linear operation;
2: t : boolean;
3 begin
4: (t,6) := LINEAR-EQUIV(n, 61, 65);
5) return ¢
6

end.

Figure 8.25: Predicate EXISTS-LOOP-EQUIV? for linear operations.

function LOOP-EQUIV-OP(dimension n, linear operations 61, #3) : function
1: var 6 : linear operation;
2: begin
3: (T, 0) := LINEAR-EQUIV(n, 0, 65);
4: return (0;;63) U 0
ot

end.

Figure 8.26: Function LOOP-EQUIV-OP for linear operations.

280 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

Chapter 9

Conclusions

9.1 Summary

The central theme of this thesis is a new approach for performing the state-space
exploration of systems with an infinite state space. The exact class of infinite-
state systems considered are those that can be modeled as a state machine with a
finite control and an infinite data domain. No restrictions are imposed on this data
domain, except the requirement that its structure and algebraic properties make the
computation of a given set of operations possible.

The proposed approach for exploring infinite state spaces extends the classical
state-space search technique for finite-state systems. It relies on two central ideas:
carrying out the state-space exploration with possibly infinite sets of states rather
than with individual states, and the concept of meta-transition. A meta-transition
is a generalization of the notion of transition with which it is possible to deduce
the reachability of an infinite set of states from the reachability of a finite set of
states. Two important types of meta-transitions were considered, those correspond-
ing respectively to cycles and to finite sets of cycles present in the control graph
of the system. Once meta-transitions have been identified, an infinite-state system
can undergo a state-space search consisting of a simple generalization of classical
state-space exploration algorithms.

Computing a finite representation with decidable membership of the set of reach-
able states of an infinite-state system has been the main focus of this work. This gives
a solution to the reachability problem (is a given state reachable) as well as to some
of its variants and to other problems that are easily solved given a representation
of the reachable states, e.g., boundedness and absence of deadlocks. Furthermore,
the verification of temporal properties, and more specifically of properties than can
be expressed in Linear-time Temporal Logic (LTL) or as Biichi automata, has been
addressed. A partial decision procedure has been obtained for this undecidable prob-
lem, in the form of an extension of the infinite state-space exploration algorithms

281

282 CHAPTER 9. CONCLUSIONS

that have been developed.

In general, though the reachability problem for infinite-state systems is undecid-
able, it is possible to give sufficient syntactic conditions under which the exploration
of the state space is guaranteed to terminate. Examples of such conditions are given,
and it is shown that the LTL model-checking problem becomes decidable for infinite-
state systems satisfying some of these conditions. In addition, we have studied an
optimization technique that allows the control graph of systems to be modified in a
way that preserves their behavior, but that makes satisfying the sufficient termina-
tion conditions more likely.

Since the infinite state-space exploration algorithms that we have introduced pro-
ceed by manipulating sets of states that may be infinite, they need a representation
system for such sets. We have introduced a general technique for obtaining suitable
representation systems in a large number of domains. This technique consists of
encoding memory contents as words over some finite alphabet, and of representing
sets as finite automata accepting the encodings of the elements of these sets. The
advantage of this approach over other representations is that set operations translate
naturally into simple operations over automata.

This general technique has been particularized to two important classes of in-
finite-state systems. The first is the one of systems that use a finite number of
unbounded FIFO channels, on which send and receive operations are performed.
The representation system adapted for such systems is the Queue Decision Diagram,
or QDD. Another task was to show that all the operations required by the state-
space exploration, the model-checking, and the termination study of systems using
unbounded FIFO channels can be performed with QDDs. Among other results that
were obtained during the design of the algorithms, it has been proved constructively
that the iteration of any sequence of send and receive operations involving only
one channel preserves the recognizable nature of sets of channel contents. Those
results have been generalized to sequences involving more than one channel, in the
form of an exact decision procedure for the preservation of recognizability, and of an
algorithm for computing the effect of iterating a sequence of operations. Another
result that has been obtained is that lossy systems can easily be analyzed by simply
adding a new type of meta-transition.

The second class of infinite-state systems that has been studied is the one con-
taining systems using unbounded integer variables on which linear operations are
performed. The representation system developed for such systems is the Number
Decision Diagram, or NDD. It has been shown that all the operations required by
state-space exploration, model-checking, and the termination study of systems us-
ing unbounded integer variables can be performed with NDDs. An interesting result
obtained in this context is a decision procedure for determining whether the closure
of a guardless linear operation preserves the recognizability of sets of integer vector
values. In order to develop this decision procedure, an original extension of the

9.2. RELATED WORK 283

concept of definability to vectors with complex components has been introduced.
Algorithms have also been provided for applying the closure of a linear operation to
sets represented as NDDs, as well as for optimizing the control graphs of systems
using unbounded integer variables.

9.2 Related Work

A methodologically related approach is the symbolic model checking of finite-state
systems [CMB91, BCM*92, McM93]. It consists of representing symbolically sets
of states as well as the transition relation between these states, and of expressing
the set of reachable states of the system as the solution of a fixpoint equation. The
symbolic representation system that is mostly used is the Binary Decision Diagram
(BDD) [Bry92]. The main advantage of this approach over enumerative state-space
exploration [Hol88, Hol90, HK90, Hol91, DDHY92, FGM*92] is that the sets of
states are represented and manipulated implicitly rather than explicitly. This may
reduce dramatically the total cost of the exploration. The main limit of symbolic
model-checking using BDDs is that it can only be applied to systems with a finite
state space.

In this thesis, we have extended the scope of symbolic state-space exploration by
allowing to compute the reachability of an infinite number of states in a finite amount
of time. The idea of capturing the state-space periodicity that results from repeated
executions of the same operations is not new. In [KM69], Karp and Miller show that
this approach makes it possible to decide the boundedness problem for Petri nets.
Sketchily, their decision procedure consists of computing an upper approximation of
the set of reachable markings of a Petri net, by performing a state-space exploration
in which every sequence of transitions that can be repeatedly followed an infinite
number of times produces an upper bound of the set of markings that are reached
during these repetitions. The symbolic representation system that is used is rather
simple and consists of replacing in the description of markings each unbounded
component by the special value w. The set of states returned by the algorithm of
Karp and Miller does not exactly correspond to the set of reachable markings of the
Petri net, but allows to decide the boundedness of each place.

Other authors have investigated the possibility of computing exactly the set of
reachable states of an infinite-state system by considering the effect of repeated ex-
ecutions of the same operations. Lubachevsky [Lub84] uses mathematical induction
as a tool for establishing the reachability of infinite sets of states, in the field of
systems composed of a large number of identical processing elements. The method
consists of performing a depth-first search in the state space of the system, in which
one detects in exploration paths particular sequences of transitions that are repeated

284 CHAPTER 9. CONCLUSIONS

more than a given amount of times. When such a sequence is detected, one attempts
to compute in one step the effect of its repetition and then resumes the search (with-
out any guarantee of termination). This approach has similarities with the dynamic
state-space exploration algorithm presented in Section 3.5. However, Lubachevsky
does not describe algorithms for detecting repeated transitions or for computing
their effect, and does not provide a representation system for sets of states.

Similar ideas also appear in a paper by Valmari [Val89], which describes an
extended state-space exploration algorithm that is able to compute the effect of
infinitely repeating sequences of operations. Specifically, the sequences that can be
iterated are those in which the value of exactly one integer variable grows one by
one, and the value of all the other variables stays unchanged. The representation
system for sets of states consists of formulas expressed in a dedicated formalism
equivalent to a restricted subset of Presburger arithmetic. The results that we have
obtained in Chapter 8 thus strictly extend those of Valmari.

The first definition of the concept of meta-transition appears in [Boi93], in which
it is shown that adding cycle meta-transitions to a system may speed up its state-
space exploration. The class of systems that is considered is the one of state machines
associated with a finite set of integer variables. The reachability analysis of such a
system is carried out by performing a depth-first search in which a cycle analysis
takes place whenever the same control location appears twice in an exploration
path. A cycle meta-transition is then created each time one finds a cycle labeled by
a sequence of operations that can be iterated. The main limits of this technique are
that only a simple sufficient condition is given for detecting iterable sequences of
transitions (amounting to require an idempotent transformation matrix), and that
the representation system used for sets of states is only able to represent finite unions
of convex sets.

The same state-space exploration technique appears in [BW94] together with an
improved representation system for sets of states. This representation system, which
consists of associating a set of periodicity vectors to the set of integer solutions of a
linear system of inequations, is closed over the set of all the operations needed by
the state-space exploration with cycle meta-transitions. Its main drawback is the
difficulty of deciding the inclusion of a set of states into another, which is unfor-
tunately essential for detecting the convergence of state-space exploration. It can
easily be shown that the representation system introduced in [BW94] is inclusively
less expressive that the NDDs. Since the algorithms of Chapter 7 allow to apply the
closure of all the sequences whose transformation matrix is idempotent, the results
presented in this thesis supersede those of [BW94].

As already mentioned, the most widely used representation system in the context
of symbolic exploration is the Binary Decision Diagram (BDD) [Bry92]. The idea
consists of encoding the elements of a set as fixed-length words of bits. The set is
then represented by a canonical decision diagram — isomorphic to a directed acyclic

9.2. RELATED WORK 285

graph — that recognizes the encodings of all the elements of the set. This simple and
elegant representation has efficient implementations, and can easily be applied to a
large class of domains. It does however suffer from an important drawback: BDDs
only allow to represent finite sets. As a consequence, symbolic exploration with
BDDs is limited to the analysis of models with a finite state space. Nonetheless,
BDDs have similarities with the finite-state representations introduced in this thesis.
Representing a set as a BDD actually consists of constructing a minimal finite-state
machine that accepts the encodings of the elements of the set, with the restriction
that the length of those encodings is fixed. The finite-state representations proposed
in Chapter 6 can thus be seen as generalizations of the concept of BDD. By using the
minimization operation, these representations can easily be converted into BDDs if
the sets that they represent are finite.

Systems whose infinite nature results from the use of unbounded FIFO chan-
nels have been studied for a long time [BZ83, MF85, Pac86]. A restricted class of
such systems that has received much attention is the one of lossy systems, which
are systems whose FIFO channels are unreliable and may nondeterministically lose
messages. It has been shown by Abdulla and Jonsson [AJ93, AJ94] that several
interesting verification problems are decidable for this class of systems, namely the
restricted reachability problem, the problem consisting of deciding safety properties
expressed as a set of regular traces, and the eventuality problem. These results are
strictly more powerful than the ones presented in Section 7.5, in which we have only
shown that the main results of Chapter 7 can be adapted with little difficulty to lossy
systems by simply adding a new type of meta-transition. It is however possible to
solve the restricted reachability problem using the meta-transition based state-space
exploration method proposed in this thesis. The only required modifications are to
perform the search backwards (from the state whose reachability is to be determined
to the initial state) rather than forwards, and to create for each control location a
special meta-transition that nondeterministically inserts arbitrary symbols into the
queue contents. Thanks to a result due to Higman [High2], the search then always
terminates. The result of the search is the set of predecessors of the state of interest,
and this state is reachable if and only if that set contains the initial state.

In fairly recent work, Finkel [Fin90, Fin94], Cécé and Iyer [CFI96] have also
demonstrated that an infinite state space does not always prevent one from be-
ing able to decide interesting properties of systems using unbounded FIFO queues.
Precisely, these authors consider several restricted classes of such systems, and es-
tablish the decidability or the undecidability of different important problems over
these classes. In particular, they show that there are families of systems such as
those with insertion errors for which a finite-state representation of their set of
reachable states always exists and can always be computed. The approach followed
in this thesis is significantly different from the one of Finkel and al. Rather than iso-
lating elegant but very restricted classes of systems for which some simple properties

286 CHAPTER 9. CONCLUSIONS

can always be decided, we have developed partial algorithmic solutions for deciding
reachability properties of full-fledged systems. Nevertheless, we have provided in
Chapter 5 sufficient static conditions that characterize a subclass of systems using
FIFO channels for which a finite representation of their set of reachable states can
always be computed. These conditions are quite different from the ones described
in in [Fin90, Fin94, CFI96], which is far from being surprising. Indeed, our condi-
tions are derived from the state-space exploration algorithm rather than the other
way around. Moreover, the sufficient conditions presented in Chapter 5 have been
developed independently from a particular data domain and are thus also applicable
to systems different from those using FIFO channels.

There are other ways than ours of obtaining useful partial decision procedures
for interesting properties of systems using FIFO channels. In [JJ93], Jard and Jéron
address the boundedness problem, and give a partial solution based on the detection
of sequences of queue operations that can be followed an infinite number of times.
Their approach differs from the one promoted in Chapter 3 in that they consider
sequences of queue operations that can always be applied infinitely many times
to at least one initial queue-set content, rather than sequences whose closure can
always be computed with respect to some symbolic representation system. Actually,
the technique of Jard and Jéron can be seen as a generalization to systems using
FIFO channels of the Karp and Miller solution to the boundedness problem [KM69].
The condition given in [JJ93] that allows to determine whether a given sequence of
queue operations can be applied an infinite number of times is actually equivalent
to the one that has been obtained in Sections 7.6.1 and 7.6.2, except that the
latter condition allows an easy and efficient computation of the set of queue-set
contents from which the sequence can be followed an infinite number of times. The
scope of the algorithm of Jard and Jéron has been extended by Burkhart, Jéron
and Quemener [QJ95, QJ96, BQI6|, which use this algorithm for building a finite
representation of the state space of a system using unbounded FIFO queues. Their
representation consists of a graph grammar, i.e., a set of transformation rules that
finitely describes an infinite graph, and differs from ours in that it represents, in
addition to the reachable states, the reachability relation between these states. It is
shown in [QJ95, QJ96] that the branching-time temporal logic CTL can be decided
for restricted classes of systems, using a simple extension of the algorithm of Jard
and Jéron. This result is generalized to the p-calculus in [BQI6].

The notion of QDD and some algorithms for performing elementary operations
on QDDs first appeared in [BG96b]. In that paper, the sequences of queue operations
from which one is able to create meta-transitions are limited to three very restricted
subclasses, the purpose of this restriction being to simplify the algorithms for com-
puting the effect of meta-transitions. These results are improved in [BGWWO97],
in which a full decision procedure for the sequences of queue operations whose clo-
sure can be computed is presented. Most of the results appearing in Chapter 7 are

9.2. RELATED WORK 287

actually detailed descriptions of results announced in [BGWW97].

Several extensions of the QDDs have been developed in these recent years. A
generalization of QDDs that broadens their expressiveness is proposed in [BH97].
This generalization consists of associating with the QDD a set of integer variables
constrained by formulas of Presburger arithmetic, and of restricting the form of the
state-transition graph of the QDD. Although attractive, this extended representation
system has the disadvantage of not being closed under all usual operations, which
limits its applicability. An alternative to QDDs is also proposed in [FM96] in the
form of a representation system that is less expressive but easier to manipulate.
BDDs have also been used for representing finite but large sets of queue-set contents.
An elegant encoding scheme that facilitates the computation of queue operations
over finite sets represented as BDDs is described in [GL96].

Systems using integer variables have been a subject of intense study. A excellent
survey of decidability results for such systems is presented in [EN94]. Recent de-
velopments in this field include the design of efficiently manageable representation
systems for sets of integer vector values. Such a representation system has been
developed by Pugh [Pug92a, Pug92b, Pug94| and has been implemented in a tool
called the Omega Test. 1t proceeds by representing sets as formulas of Presburger
arithmetic, on which some carefully selected simplifications are made in order to
keep their size as low as possible. In spite of the very high theoretical lower bound
on the complexity of deciding Presburger arithmetic, the Omega tool allows to ma-
nipulate Presburger-definable sets with a cost that in practice is quite low. The
idea of using finite-state automata as a practical representation of sets of vector
values appeared in [WB95], in which it was shown that integer programming can
be solved in its known optimal lower bound with this technique. The same idea is
also present in the work of Boudet and Comon [BC96], who have given algorithms
for computing efficiently the minimal NDD representing the set of solutions of a
system of equations and of inequations. An extension of finite-state representations
to sets of real vectors has been proposed in [BBR97|. This extension simply consists
of encoding real vectors as infinite words over a finite alphabet, and of representing
sets as finite-state automata on infinite words.

A class of infinite-state systems that has not been studied in this thesis is the one
of pushdown systems. These systems belong however to a natural class to consider in
order to obtain decidability results, and there are indeed already a number of results
on that topic [MS85, HS91, HIM94, BS95, Wal96]. Furthermore, it is known [Cau92]
that the set of reachable states of a pushdown system can always be represented by
a finite-state automaton, and that a finite-state representation of this set can always
be effectively computed. In [BEM97, FWW97], a symbolic representation system
similar to QDDs is used in order to compute the set of reachable states of a pushdown
system. This method makes it possible to perform linear-time model checking, and
has been generalized to branching-time temporal logic in [FWW97].

288 CHAPTER 9. CONCLUSIONS

9.3 Future Work

The primary purpose of the algorithms presented in this thesis is to prove that the
functions that they implement are actually computable. Although most of them
can readily be translated into actual code, this translation is by no means always
a straightforward task and deserves further work. Due to the lack of an actual
implementation, the actual cost of analyzing systems with the approach promoted
here is still unknown, even though small tests carried out with prototypes of early
versions of this work have given encouraging results.

Another subject of potential research is to evaluate the benefit of symbolic meth-
ods for analyzing systems that have a large but finite state space. For instance, in
the case of systems using FIFO channels whose capacity is large but bounded, it is
our understanding that using symbolic state-space exploration with QDDs rather
than traditional state-space exploration might reduce dramatically the cost of the
analysis for a large class of systems.

The representation system introduced in Chapter 6 is very general and can be
used in a large number of domains. A direction that we did not follow but that
seems promising could be to combine two different domains into an heterogenous
representation system for sets. For instance, a memory content of a system using
FIFO channels as well as integer variables could be encoded as the concatenation
of the encodings of both parts of the content. The challenge would then be to com-
bine the algorithms developed for individual domains into ones suited for combined
representations.

The reachability analysis performed by the technique that have been introduced
does not rely on approximations, i.e., it computes exactly the set of reachable states
of the system. This approach has the disadvantage that termination is not guar-
anteed for sufficiently expressive systems. Another direction for future research
could be to introduce in the framework of symbolic state-space exploration opera-
tors that force convergence (at the cost of introducing approximations). One could
for instance consider transformations analogous to the widening operators used in
abstract interpretation [CC77, CC92, JN95].

Finally, we stress the fact that symbolic representations for possibly infinite sets
of values have applications well beyond verification issues. Domains such as temporal
databases could indeed benefit from the types of representation systems that we have

developed [KSW90).

Bibliography

[ACDI0]

[ACJTI6]

[AHHO3]

[AJ93]

[AJO4]

[AJO6]

[AUT2]

[BBR97]

R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time
systems. In Proceedings of the 5th Symposium on Logic in Computer
Science, pages 414-425, Philadelphia, June 1990.

P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decid-
ability theorems for infinite-state systems. In Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, pages 313-321, New
Brunswick, New Jersey, July 1996. IEEE Computer Society Press.

R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic verifica-
tion of embedded systems. In Proceedings of the 15th Annual Real-Time
Systems Symposium, pages 2-11. IEEE Computer Society Press, 1993.

P. A. Abdulla and B. Jonsson. Verifying programs with unreliable
channels. In Proceedings of the 8th IEEFE International Symposium on
Logic in Computer Science, pages 160-171, 1993.

P. A. Abdulla and B. Jonsson. Undecidable verification problems
for programs with unreliable channels. In Proceedings of ICALP’94,
volume 820 of Lecture Notes in Computer Science, pages 316-327.
Springer-Verlag, 1994.

P. A. Abdulla and B. Jonsson. Undecidable verification problems for
programs with unreliable channels. Information and Computation,
130(1):71-90, October 1996.

A. Aho and J. D. Ullman. The Theory of Parsing, Translation, and
Compiling. Prentice-Hall, 1972.

B. Boigelot, L. Bronne, and S. Rassart. An improved reachability anal-
ysis method for strongly linear hybrid systems. In Proceedings of the
9th International Conference on Computer-Aided Verification, number
1254 in Lecture Notes in Computer Science, pages 167-177, Haifa, Is-
rael, June 1997. Springer-Verlag.

289

290

[BCY6]

[BCM*92]

[BEMY7]

[BFHO1]

[BGY6a)

[BGIGH]

[BGWWO7]

[BHO7]

[BHMV94]

[Bod59)

BIBLIOGRAPHY

A. Boudet and H. Comon. Diophantine equations, Presburger arith-
metic and finite automata. In Proceedings of CAAP’96, number 1059
in Lecture Notes in Computer Science, pages 30-43. Springer-Verlag,
1996.

J. Burch, E. M. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic
model checking: 10?° states and beyond. Information and Computation,
98(2):142-170, June 1992.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Application to model checking. In Proceedings of
CONCUR ’97, number 1243 in Lecture Notes in Computer Science,
pages 135-150. Springer-Verlag, 1997.

A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimal model
generation. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 3:85-91, 1991.

B. Boigelot and P. Godefroid. Model checking in practice: An analysis
of the ACCESS.bus protocol using SPIN. In Proc. Formal Methods
Furope, volume 1051 of Lecture Notes in Computer Science, pages 456—
478, Oxford, UK, March 1996. Springer-Verlag.

B. Boigelot and P. Godefroid. Symbolic verification of communication
protocols with infinite state spaces using QDDs. In Proc. Computer
Aided Verification, volume 1102 of Lecture Notes in Computer Science,
pages 1-12, New-Brunswick, New-Jersey, July 1996. Springer-Verlag.

B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of
QDDs. Submitted for publication, 1997.

A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO
channel systems with nonregular sets of configurations. In Proceed-
ings of [CALP’97, number 1256 in Lecture Notes in Computer Science,
pages 560-570, Bologna, Italy, July 1997. Springer-Verlag.

V. Bruyere, G. Hansel, C. Michaux, and R. Villemaire. Logic and
p-recognizable sets of integers. Bulletin of the Belgian Mathematical
Society, 1(2):191-238, March 1994.

E. Bodewig. Matrixz Calculus. Elsevier North-Holland, Amsterdam,
second edition edition, 1959.

BIBLIOGRAPHY 291

[Boi93]

[BQYG]

[Bru85]

[Bry92]

[BS95]

[Biic60)

[Biic62]

[BW94]

[BZ83]

[Cau92]

[CCT7]

[CC92]

B. Boigelot. Développement d'une technique de vérification de systemes
paralleles combinant 1'utilisation d’un invariant et l’exploration de
I'espace d’états. Travail de fin d’études, Université de Liege, 1993.

O. Burkhart and Y.-M. Quemener. Model-checking of infinite graphs
defined by graph grammars. Technical Report 995, IRISA, April 1996.

V. Bruyere. Entiers et automates finis. Mémoire de fin d’études, Uni-
versité de Mons, 1985.

R. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293-318, Septem-
ber 1992.

O. Burkart and B. Steffen. Composition, decomposition and model
checking of pushdown processes. Nordic Journal of Computing, 2(2):89—
125, 1995.

J. R. Biichi. Weak second-order arithmetic and finite automata.
Zeitschrift Math. Logik und Grundlagen der Mathematik, 6:66-92, 1960.

J. R. Biichi. On a decision method in restricted second order arithmetic.
In Proceedings of the International Congress on Logic, Method, and
Philosophy of Science, pages 1-12, Stanford, California, 1962. Stanford
University Press.

B. Boigelot and P. Wolper. Symbolic verification with periodic sets.
In Proc. 6rd Workshop on Computer Aided Verification, volume 818 of
Lecture Notes in Computer Science, pages 55—67, Stanford, June 1994.
Springer-Verlag.

D. Brand and P. Zafiropoulo. On communicating finite-state machines.
Journal of the ACM, 30(2):323-342, 1983.

D. Caucal. On the regular structure of prefix rewriting. Theoretical
Computer Science, 106:61-86, 1992.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Fourth ACM Symposium on Principles of Programming
Languages, pages 238-252, Los Angeles, California, January 1977. ACM
Press, New York.

P. Cousot and R. Cousot. Abstract interpretation and application to
logic programs. Journal of Logic Programming, 13(2-3):103-179, 1992.

292

[CCISS]

[CE81]

[CFI96]

[CHTS]

[Chu36]

[CM89)]

[CMBO1]

[Cob69]

[CVWY92]

[DAACSY]

[DDHY92)

BIBLIOGRAPHY

CCITT. Specification and description language SDL. In Recommen-
dation Z.100. Blue Book X.1-X-5. ITU General Secretariat, Geneva,
1988.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. Technical Report
TR-12-81, Center for Research in Computing Technology, Harvard Uni-
versity, 1981.

G. Cécé, A. Finkel, and S. P. Iyer. Unreliable channels are easier to
verify than perfect channels. Information and Computation, 124(1):20—
31, October 1996.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the 5th ACM Sympo-
stum on Principles of Programming Languages, pages 84-96, 1978.

A. Church. A note on the entscheidungsproblem. Journal of Symbolic
Logic, 1:40-41, 101-102, 1936.

K. Chandy and J. Misra. Parallel Program Design. Addison-Wesley,
Austin, Texas, May 1989.

O. Coudert, J.-C. Madre, and C. Berthet. Verifying temporal properties
of sequential machines without building their state diagrams. In E. M.
Clarke and R. P. Kurshan, editors, Proceedings of the Workshop on
Computer-Aided Verification (CAV90), volume 3 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, New York,
1991. American Mathematical Society, Springer-Verlag.

A. Cobham. On the base-dependence of sets of numbers recognizable
by finite automata. Mathematical Systems Theory, 3:186-192, 1969.

C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory
efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1:275-288, 1992.

M. Diaz, J. P. Ansart, P. Azema, and V. Chari. The Formal Description
Technique Estelle. North-Holland, 1989.

D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification as
a hardware design aid. In 1992 IEEFE International Conference on

Computer Design: VLSI in Computers and Processors, pages 522-525,
Cambridge, MA, October 1992. IEEE Computer Society.

BIBLIOGRAPHY 293

[Dij76]

[Eme90)]

[ENO4]

[Esp97]

[FGM*92]

[Fin90]

[Fin94]

[FMY6]

[FR79]

[FRS7]

[Fra68]

[FWW97]

[GLY6]

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engle-
wood Cliffs, New-Jersey, 1976.

E. A. Emerson. Temporal and Modal Logic, volume B of Handbook of
Theoretical Computer Science, chapter 16, pages 996-1072. Elsevier,
1990.

J. Esparza and M. Nielsen. Decidability issues for Petri nets — a survey.
Bulletin of the EATCS, 52:245-262, 1994.

J. Esparza. Decidability of model checking for infinite-state concurrent
systems. Acta Informatica, 34(2):85-107, 1997.

F. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and
J. Sifakis. A toolbox for the verification of LOTOS programs. In Pro-
ceedings of the 14th International Conference on Software Engineering
(ICSE’1}), Melbourne, Australia, May 1992. ACM.

A. Finkel. Reduction and covering of infinite reachability trees. Infor-
mation and Computation, 89(2):144-179, 1990.

A. Finkel. Decidability of the termination problem for completely spec-
ified protocols. Distributed Computing, 7(3):129-135, 1994.

A. Finkel and O. Marcé. Verification of infinite regular communicating
automata. Internal report, ENS Cachan, France, 1996.

J. Ferrante and C. W. Rackoff. The Computational Complexity of Log-
ical Theories, volume 718 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin-Heidelberg-New York, 1979.

A. Finkel and L. Rosier. A survey of FIFO nets. Technical Report
632, University of Montréal, Canada, Département d’Informatique et
de Recherche Opérationnelle, October 1987.

J. N. Franklin. Matriz Theory. Prentice-Hall Series in Applied Mathe-
matics. Prentice-Hall, 1968.

A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to
model checking pushdown systems. In Proceedings of Infinity’97, 1997.

P. Godefroid and D. E. Long. Symbolic protocol verification with queue
BDDs. In Proceedings of the 11th Annual IEEE Symposium on Logic
in Computer Science, pages 198-206, New-Brunswick, New-Jersey, July
1996.

294

[God96]

[GPVWO5]

[Gri93]

(GW93]

[Hal93]

[Har65]

[Hau90]

[Hen96]

[HH94]

[High2]

[HLIMO4]

BIBLIOGRAPHY

P. Godefroid. Partial-order methods for the verification of concurrent
systems — An approach to the state-explosion problem, volume 1032 of
Lecture Notes in Computer Science. Springer-Verlag, 1996.

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly au-
tomatic verification of linear temporal logic. In Proceedings of the 15th
Workshop on Protocol Specification, Testing, and Verification, Warsaw,
June 1995. North-Holland.

E. Gribomont. Concurrency without toil: A systematic method for
parallel program design. Science of Computer Programming, 21:1-56,
1993.

P. Godefroid and P. Wolper. Using partial orders for the efficient veri-
fication of deadlock freedom and safety properties. Formal Methods in
System Design, 2(2):149-164, April 1993.

N. Halbwachs. Delay analysis in synchronous programs. In Proceedings
of the 5th Workshop on Computer-Aided Verification, volume 697 of
Lecture Notes in Computer Science, pages 333-346, Elounda, Crete,
June 1993. Springer-Verlag.

M. A. Harrison. Introduction to switching and automata theory.
McGraw-Hill, New-York, 1965.

D. Hauschildt. Semilinearity of the Reachability Set is Decidable for
Petri Nets. PhD thesis, Universitat Hamburg, May 1990.

T. A. Henzinger. The theory of hybrid automata. In Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, pages 278—
292, New Brunswick, New Jersey, July 1996.

T. A. Henzinger and P.-H. Ho. Model-checking strategies for linear
hybrid systems. Technical Report CSD-TR-94-1437, Cornell University,
1994. Presented at the 7th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems
(Austin, TX).

G. Higman. Ordering by divisibility in abstract algebras. Proceedings
of the London Mathematical Society, 2:326-336, 1952.

Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial-time algorithm
for deciding equivalence of normed context-free processes. In Proceed-
ings of the 35th Annual Symposium on Foundations of Computer Sci-
ence, pages 623-631, Santa Fe, New Mexico, November 1994. IEEE
Computer Society Press.

BIBLIOGRAPHY 295

[HK90]

[HKPV95]

[HNSY94]

[Hoa69]

[Hol88]

[Hol90]

[Hol91]

[HopT1]

[HS91]

[HU79]

[TR90]

[JJ93]

[IN95]

Z. Har’El and R. P. Kurshan. Software for analytical development of
communication protocols. ATET Technical Journal, 69(1):44-59, 1990.

T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s de-
cidable about hybrid automata? 1In Proceedings of the 27th Annual
Symposium on Theory of Computing, pages 373-382. ACM Press, 1995.

T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model checking for real-time systems. Information and Computation,
111(2):193-244, 1994. Special issue for LICS 92.

C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12:576-583, 1969.

G. Holtzmann. An improved protocol reachability analysis technique.
Software, Practice, and Ezperience, 18(2):137-161, 1988.

G. Holtzmann. Algorithms for automated protocol validation. ATéT
Technical Journal, Special Issue on Protocol Specification, Testing, and
Verification, 69(1):32-44, 1990.

G. Holtzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1991.

J. E. Hopcroft. An nlogn algorithm for minimizing states in a finite au-
tomaton. Theory of Machines and Computation, pages 189-196, 1971.

H. Hiittel and C. Stirling. Actions speak louder than words: Proving
bisimilarity for context-free processes. In Proceedings of the 6th Annual
IEEE Symposium on Logic in Computer Science, pages 376-386, Am-
sterdam, The Netherlands, July 1991. IEEE Computer Society Press.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

K. Ireland and M. Rosen. A Classical Introduction to Modern Number
Theory, volume 84 of Graduate Texts in Mathematics. Springer-Verlag,
second edition, 1990.

T. Jéron and C. Jard. Testing for unboundedness of FIFO channels.
Theoretical Computer Science, 113:93-117, 1993.

N. D. Jones and F. Nielson. Abstract Interpretation: a semantics-based
tool for program analysis, volume 4 of Handbook of Logic in Computer
Science, chapter 5, pages 527-636. Clarendon Press, 1995.

296

[KL93]

[KM69]

[KR78

[KSW0]

[Lam94]

[Lub&4]

[LV92]

[Mac63]

[Mat94]

[McC65|

[McMO3]

IMF85]

[Mor68]

BIBLIOGRAPHY

R. P. Kurshan and L. Lamport. Verification of a multiplier: 64 bits
and beyond. In Proceedings of the 5th International Conference on
Computer Aided Verification, volume 697 of Lecture Notes in Computer
Science, pages 166-179, Elounda, Greece, 1993. Springer-Verlag.

R. M. Karp and R. E. Miller. Parallel program schemata. Journal of
Computer and System Sciences, 3:147-195, 1969.

B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice-Hall Software Series. Prentice-Hall, Englewood Cliffs, NJ,
1978.

F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling infinite tempo-
ral data. In Proceedings of the 9th ACM Symposium on Principles of
Database Systems, pages 392-403, Nashville, Tennessee, 1990.

J.-L. Lambert. Vector addition systems and semi-linearity. Internal
Report, Université de Paris-Nord, 1994.

B. D. Lubachevsky. An approach to automating the verification of
compact parallel coordination programs. 1. Acta Informatica, 21:125—
169, 1984.

H. Le Verge. A note on Chernikova’s algorithm. Research Report 1662,
INRIA, Le Chesnay, France, April 1992.

R. MacNaughton. Review of [Biic60]. Journal of Symbolic Logic,
28:100-102, 1963.

A. Matos. Periodic sets of integers. Theoretical Computer Science,
127:287-312, 1994.

E. J. McCluskey. Introduction to the theory of switching circuits.
McGraw-Hill, New-York, 1965.

K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

G. Memmi and A. Finkel. An introduction to FIFO nets — monogenous
nets: A subclass of FIFO nets. Theoretical Computer Science, 35, 1985.

R. Morris. Scatter storage techniques. Communications of the ACM,
11(1):38-44, 1968.

BIBLIOGRAPHY 297

[MPS6]

IMPY92]

[MS85]

[Muc91]

[Mul63]

IMV93]

IMV6]

[Neu96|

[Neu97]

[Opp78]

[Pac86]

C. Michaux and F. Point. Les ensembles k-reconnaissables sont
définissables dans (N, +, V). Comptes Rendus de I’Académie des Sci-
ences de Paris, 303:939-942, 1986.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems: Specification. Springer-Verlag, 1992.

D. E. Muller and P. E. Schupp. The theory of ends, pushdown
automata, and second-order logic. Theoretical Computer Science,
37(1):51-75, May 1985.

A. Muchnik. Definable criterion for definability in Presburger arith-
metic and its application. Institute of New Technologies, 1991.

D. Muller. Infinite sequences and finite machines. In Proceedings of the
4th IEEE Symposium on Switching Circuit Theory and Logical Design,
pages 3-16, New-York, 1963.

C. Michaux and R. Villemaire. Cobham theorem seen through Biichi
theorem. In Proceedings of ICALP’93, volume 700 of Lecture Notes in
Computer Science, pages 325-334. Springer-Verlag, 1993.

C. Michaux and R. Villemaire. Presburger arithmetic and recognizabil-
ity of sets of natural numbers by automata: New proofs of Cobham’s
and Semenov’s theorems. Annals of Pure and Applied Logic, 77(3):251—
277, February 1996.

P. G. Neumann. Illustrative notes to the public in the use of computer
systems and related technology. ACM SIGSOFT Software Engineer-
ing Notes, 21(1):16-31, January 1996. Quarterly updates available at
ftp://ftp.csl.sri.com/pub/illustrative.PS.

P. G. Neumann. Computer security in aviation: Vulnerabilities, threats,
and risks. In International Conference on Aviation Safety in the 21st
Century. White House Commission on Safety and Security and George
Washington University, January 1997.

D. C. Oppen. A 92" upper bound on the complexity of Presburger
arithmetic. Journal of Computer and System Sciences, 16:323-332,
1978.

J. Pachl. Protocol description and analysis based on a state transition
model with channel expressions. In Proceedings of the 6th international
workshop on Protocol Specification, Testing, and Validation, IFIP’86,
Montreal, Quebec, 1986. North-Holland.

298

[Péc86]

[Per90]

[Pet62]

[Pet81]

[Pre29]

[PT87]

[Pug92al

[Pug92b)]

[Pug94]

[PY97]

[QJ95)

[QJ96)

BIBLIOGRAPHY

J.-P. Pécuchet. On the complementation of Biichi automata. Theoret-
ical Computer Science, 47:95-98, 1986.

D. Perrin. Finite Automata, volume B of Handbook of Theoretical Com-

puter Science, chapter 1. Elsevier, 1990.

C. Petri. Kommunikation mit Automaten. Technical report, University
of Bonn, 1962.

J. Peterson. Petri net theory and the modeling of systems. Prentice-
Hall, 1981.

M. Presburger. Uber die Volstindigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Op-
eration hervortritt. In Comptes Rendus du Premier Congres des
Mathématiciens des Pays Slaves, pages 92-101, Warsaw, Poland, 1929.

R. Paige and R. E. Tarjan. Three partition refinement algorithms.
SIAM Journal of Computing, 16(6):973-989, 1987.

W. Pugh. The Omega Test: A fast and practical integer programming
algorithm for dependence analysis. Communications of the ACM, pages
102-114, August 1992.

W. Pugh. A practical algorithm for exact array dependence analysis.
Communications of the ACM, 35(8):102-114, August 1992.

W. Pugh. Counting solutions to Presburger formulas: How and why.
SIGPLAN, 94-6/94:121-134, 1994.

A. Parashkevov and J. Yantchev. Space efficient reachability analy-
sis through use of pseudo-root states. In Proceedings of the 3rd In-
ternational Workshop on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’97), volume 1217 of Lecture Notes
in Computer Science, pages 50-64, Enschede, The Netherlands, April
1997. Springer Verlag.

Y.-M. Quemener and T. Jéron. Model-checking of CTL on infinite
Kripke structures defined by simple graph grammars. Technical Report
2563, INRIA, June 1995.

Y.-M. Quemener and T. Jéron. Finitely representing infinite reacha-
bility graphs of CFSMs with graph grammars. Technical Report 994,
IRISA, March 1996.

BIBLIOGRAPHY 299

[Rei5|

[Saf88]

[Sem77]

[ST79]

[SVW8T]

[Tar83]

[Tho90]

[Tur36]

[Val89]

[Val91]

[Vil92]

[VLST79]

[VWSG6]

W. Reisig. Petri nets, volume 4 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1985.

S. Safra. On the complexity of w-automata. In Proceedings of the 29th
Annual IEEE Symposium on Foundations of Computer Science, pages

319-327, 1988,

A. L. Semenov. Presburgerness of predicates regular in two number
systems. Siberian Mathematical Journal, 18:289-299, 1977.

. Stewart and D. Tall. Algebraic Number Theory. Chapman and Hall
Mathematics Series. John Wiley & Sons, New-York, 1979.

A. Sisla, M. Vardi, and P. Wolper. The complementation problem
for Biichi automata with applications to temporal logic. Theoretical
Computer Science, 49:217-237, 1987.

R. E. Tarjan. Data Structures and Network Algorithms. Society for
Industrial and Applied Mathematics, 1983.

W. Thomas. Automata on Infinite Objects, volume B of Handbook
of Theoretical Computer Science, chapter 4, pages 133-191. Elsevier,
1990.

A. M. Turing. On computable numbers with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society
(Series 2), 42:230-265, 1936.

A. Valmari. State-space generation with induction. In Proceedings of
the Scandinavian Conference on Artificial Intelligence ‘89, pages 99—
115, June 1989.

A. Valmari. Stubborn sets for reduced state space generation. In Ad-
vances in Petri Nets, volume 483 of Lecture Notes in Computer Science,
pages 491-515. Springer-Verlag, 1991.

R. Villemaire. The theory of (N, +, Vj, V}) is undecidable. Theoretical
Computer Science, 106:337-349, 1992.

A. van Lamsweerde and M. Sintzoff. Formal derivation of strongly
correct concurrent programs. Acta Informatica, 12:1-31, 1979.

M. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the First Symposium on Logic
in Computer Science, pages 322-331, Cambridge, UK, June 1986.

300

[VW94]

[Wal96]

[WB95]

[Wing4]

[Wir71]

[WL93]

[Wol83]

[Wolg6]

BIBLIOGRAPHY

M. Vardi and P. Wolper. Reasoning about infinite computations. In-
formation and Computation, 115(1):1-37, November 1994.

[. Walukiewicz. Pushdown processes: Games and model checking. In
Proceedings of the 8th Workshop on Computer-Aided Verification, vol-
ume 1102 of Lecture Notes in Computer Science, pages 62-74, New
Brunswick, New-Jersey, July/August 1996. Springer-Verlag.

P. Wolper and B. Boigelot. An automata-theoretic approach to Pres-
burger arithmetic constraints. In Proceedings of Static Analysis Sympo-
stum, volume 983 of Lecture Notes in Computer Science, pages 21-32,
Glasgow, September 1995. Springer-Verlag.

G. Winskel. Categories of models for concurrency. In Seminar on
Concurrency, number 197 in Lecture Notes in Computer Science, pages
246-267. Springer-Verlag, July 1984.

N. Wirth. The programming language Pascal. Acta Informatica,
1(1):35-63, 1971.

P. Wolper and D. Leroy. Reliable hashing without collision detection. In
Proceedings of Int. Workshop on Computer-Aided Verification, number
697 in Lecture Notes in Computer Science, Elounda, Crete, June 1993.
Springer-Verlag.

P. Wolper. Temporal logic can be more expressive. Information and
Control, 56(1-2):72-99, January-February 1983.

P. Wolper. Expressing interesting properties of programs in proposi-
tional temporal logic. In Proceedings of the 13th ACM Symposium on
Principles of Programming Languages, pages 184-193, January 1986.

