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Abstract

In this thesis, we introduce a general method for computing the set of reachable

states of an infinite-state system. The basic idea, inspired by well-known state-

space exploration methods for finite-state systems, is to propagate reachability from

the initial state of the system in order to determine exactly which are the reachable

states. Of course, the problem being in general undecidable, our goal is not to obtain

an algorithm which is guaranteed to produce results, but one that often produces

results on practically relevant cases.

Our approach is based on the concept of meta-transition, which is a mathematical

object that can be associated to the model, and whose purpose is to make it possible

to compute in a finite amount of time an infinite set of reachable states. Different

methods for creating meta-transitions are studied. We also study the properties

that can be verified by state-space exploration, in particular linear-time temporal

properties.

The state-space exploration technique that we introduce relies on a symbolic

representation system for the sets of data values manipulated during exploration.

This representation system has to satisfy a number of conditions. We give a generic

way of obtaining a suitable representation system, which consists of encoding each

data value as a string of symbols over some finite alphabet, and to represent a set

of values by a finite-state automaton accepting the language of the encodings of the

values in the set. Finally, we particularize the general representation technique to

two important domains: unbounded FIFO buffers, and unbounded integer variables.

For each of those domains, we give detailed algorithms for performing the required

operations on represented sets of values.
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Daniel Ribbens, Pascal Gribomont, Véronique Bruyère, Pierre-Yves Schobbens,

Alain Finkel and Bengt Jonsson, who have accepted to read and evaluate this thesis.

It has been a great pleasure for me to work in collaboration with several other

people during these last four years. I wish to thank Patrice Godefroid, who signifi-

cantly influenced much of the work contained in this thesis. Patrice also contributed

to some of the results presented in Chapters 3 to 7, and made possible two exciting

stays at Bell Laboratories in 1995 and 1996. Thanks to Bernard Willems, who in-

troduced me to some areas of mathematics and most willingly helped me to tackle

various problems. The results exposed in Chapter 8 would not be in the present

form without the help of Bernard. Thanks also to Louis Bronne and to Stéphane
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Chapter 1

Introduction

Because of the rapid progress of computer technology over the last decades, com-

puters are now present in a large variety of devices, ranging from home appliances

driven by simple microcontrollers to phone switches controlled by massively paral-

lel units. Even an increasing number of life-critical systems rely on computers: in

modern fly-by-wire aircrafts, control surfaces are actuated by flight computers rather

than being mechanically linked to the pilot controls. The consequences of computer

system failures have thus become more and more severe. Over the last years, there

have been numerous cases of major disturbances and even fatalities caused by com-

puter problems [Neu96]. As a chilling example, there have been more than ten fatal

computer-related aircraft incidents over the last fifteen years [Neu97].

It is therefore crucial for developers of computer systems to have at their disposal

analysis techniques for detecting potential failures before those systems are used.

Even for systems which are not life-critical, it is always economically sound to detect

design flaws as early as possible in the development process.

A long promoted way of designing correct computer systems is to develop with

the system a formal proof of its correctness. This proof is traditionally based on

invariants, which are logic formulas whose truth value provably never changes dur-

ing the possible runs of the system. The correctness of the system is expressed as

a logical consequence of an invariant that is initially true. Invariants are written

in dedicated logics such as Hoare’s logic [Hoa69] or Dijkstra’s programming calcu-

lus [Dij76]. Even though this mathematically appealing approach has occasionally

been applied [vLS79, CE81, CM89, Gri93], it inherently suffers from major draw-

backs:

• It is costly. Writing a formal proof, even with the assistance of a computerized

tool, is not straightforward and may require a significant amount of time,

ingenuity, and experience.

• It is not practical. For instance, it is not possible to reuse already existing

code if this code was developed without a proof. Even if this does not seem to

1
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be a major restriction for some specific applications, there are many domains

in which it is not economically feasible not to reuse parts of existing systems

(for instance, banking or phone switching software).

• It is rigid. Even if a system is proved correct with respect to some properties,

obtaining a correction proof for other properties may require a complete new

study of the system.

An alternative approach is automated verification. Given a computer system,

one uses an automatic technique for checking that each execution of the system

satisfies some correctness criteria. In practice, this cannot be done while taking

into account all the details of the system; indeed, an analysis carried out up to the

greatest level of precision would have to deal with the electrical and even chemical

phenomena occurring inside the components of the computer. This is far beyond

our ambition. The solution is to define some level of abstraction, and write a model,

i.e., a formal description of the system at that level of abstraction. In addition,

one must also define properties expressing the correctness of the model at that level

of abstraction. Properties are often written in dedicated logic formalisms such as

temporal logics [Wol86, Wol83, Eme90, MP92]. The analysis simply consists of

checking if every execution of the model satisfies all the correctness properties.

The result of the analysis is either the detection of an error, or a guarantee that

the model is correct with respect to the properties. In practice, results of the former

type are the most interesting ones, because it is often easy to check whether an

error in the model corresponds or not to an error in the original system. On the

contrary, a guarantee of correctness for the model does not translate into a certainty

of correctness for the system, unless lots of hypotheses are assumed. (Nevertheless,

such a proof may increase the level of confidence in the system.)

In this thesis, we consider systems modeled as state machines. Intuitively, this

modeling scheme is based on the assumption that each run of the system can be

described by a (possibly infinite) sequence of discrete state changes. The model then

consists of a finite amount of information defining the initial state of the system, as

well as all the possible state changes.

A simple way of checking the correctness of such a model is to explore its state

space. Roughly speaking, the idea is to check systematically all the possible situ-

ations that can occur during the possible executions of the model. If an execution

violating a property is found, then a scenario proving that the model is erroneous is

produced. If no such execution is found after exploring all the possible situations,

then one can deduce that the model is “correct” [Hol88, Hol90]. The main drawback

of this approach is that a model can have a very large number of states (meaning

that there are a very large number of situations to check). This phenomenon is

known as the combinational explosion of the number of states with respect to the

size of the model. Tools have been developed for performing exhaustive state-space
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exploration [HK90, Hol91, DDHY92, FGM+92], and have been successfully used to

detect unsuspected errors in industrial systems [BG96a]. However, their applicabil-

ity is still limited to small systems. Simple optimizations of the iterative state-space

exploration technique have been proposed in order to broaden the set of analyzable

systems [Mor68, WL93, PY97]. Despite some practical advantages inherent to those

optimizations, their use does not significantly increase the order of magnitude of the

size of the systems that can be handled.

On the other hand, techniques were developed for attacking directly the sources

of state-space explosion. A first example is partial-order methods [Val91, GW93,

God96], which attempt to limit the explosion caused by the modeling of concur-

rency by interleaving [Win84]. The idea consists of exploring only a part of the

state space, this part being sufficient for checking the validity of the properties of

interest. Another category of techniques tackling state-space explosion are symbolic

methods [BCM+92, McM93]. There, the basic idea is to represent and manipulate

sets of states implicitly (with the help of specific data structures), rather than explic-

itly (as enumerations of their components). In this approach, the improvement does

not concern the number of states to be explored, but instead the total cost of this

exploration. Symbolic methods have been successfully applied to different domains

such as hardware circuits [KL93], real-time systems [ACD90, AHH93, HNSY94], and

hybrid systems [HH94, Hen96].

The most widely used representation system for symbolic exploration is the Bi-

nary Decision Diagram (BDD) [Bry92]. The idea consists of encoding the elements

of a set as fixed-length words of bits. The set is then represented by a canonical

decision diagram – isomorphic to a directed acyclic graph – that recognizes the en-

codings of all the elements of the set. This simple and elegant representation has

efficient implementations, and can easily be applied to a large class of domains. It

does however suffer from an important drawback: BDDs only allow the representa-

tion of finite sets. As a consequence, symbolic exploration with BDDs is limited to

the analysis of models with a finite state space.

It is however crucial to be able to analyze models with an infinite state space.

Indeed, even though all physically constructible systems are finite in some sense,

their size is often way larger than what can be handled by finite-state methods.

Modeling such systems as infinite-state systems is then more realistic than artificially

bounding their size well below reality. (For instance, a buffer with ten megabytes

of capacity is more accurately modeled by an unbounded buffer than by a two-byte

buffer.) Another reason is that verification methods can also be used to check the

correctness of abstract systems from which real systems can then be derived. It

is often more comfortable to reason independently from any limit than to impose

an arbitrary upper bound on the size of a system. Finally, it should be stressed

that techniques developed for infinite-state systems may remain very powerful for

analyzing systems for which the state space is finite but very large. For instance,
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program COUNTER;

1: var i : unbounded integer;

2: begin

3: i := 0;

4: repeat

5: i := i + 2

6: until i = 0

7: end.

Figure 1.1: Simple infinite-state system.

there are systems whose state space is limited by an upper bound (such as the

capacity of a communication object), for which the cost of state-space exploration

appears to be independent of that bound.

Infinite-state models also have some disadvantages. The main one is that most

elementary properties are undecidable for sufficiently expressive classes of mod-

els [EN94, Fin94, HKPV95, CFI96, ACJT96, AJ96, Esp97]. This implies that, in

general, it is not possible to analyze such systems rigorously, and hence that only

partial results can be obtained. Note however that this situation is not very differ-

ent in practice from what occurs for finite-state systems, for which the analysis is

often impossible due to excessive resource (time or memory) requirements, in spite

of a theoretical guarantee that an analysis can always be carried out. Our point of

view is that it is more useful to provide a partial solution to an important general

problem rather than isolate elegant but not very meaningful subclasses of systems

for which a complete analysis is theoretically always possible.

Another drawback of infinite-state models is that the result of their reachability

analysis cannot be expressed as the explicit enumeration of all their reachable states.

One has thus to resort to symbolic methods for representing implicitly sets of states,

as well as to specific techniques for computing infinitely many reachable states in a

finite amount of time. This is not very different from what is usually done during

program analyses carried out by hand, as illustrated with the Pascal-like program

given in Figure 1.1. Even though this program has an infinite state space, it is easily

inferred that:

• Each execution of the main loop at Lines 2–6 has the effect of adding 2 to the

value of i;

• The values that i can take just before executing Line 6 are exactly all the

strictly positive even numbers;
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• The program does not terminate.

This approach can be generalized and automatized. In this thesis, we address

the problem of exploring infinite-state spaces with the help of symbolic methods.

The results presented here extend and unify those appearing in previous publica-

tions [BW94, WB95, BG96b, BGWW97].

1.1 Overview of the Thesis

This thesis is organized as follows. In Chapter 2, we describe the formalism that

is used throughout this thesis for modeling systems. This formalism, a variant of

state machines, is based on the distinction between control and data, and assumes

that the control is finite. The data domain can be chosen freely, and is the source

of the infinite nature of the state space. After the presentation of the syntax and

semantics of the formalism, an example of its use is given.

In Chapter 3, a general technique for exploring the state space of an infinite-state

system modeled according to the principles introduced in Chapter 2 is described.

The basic idea, inspired by well-known state-space exploration methods for finite-

state systems, is to propagate reachability from the initial state of the model in order

to determine exactly which are the reachable states. For fundamental reasons, this

problem can not be fully solved in general, hence we provide only a partial solution.

This solution consists a semi-algorithm, i.e., an algorithm without guarantee of

termination. Our approach is based on the concept of meta-transition, which is a

mathematical object that can be associated to the model, and whose purpose is to

make it possible to compute in a finite amount of time an infinite set of reachable

states. Different methods for creating meta-transitions are studied. An example of

reachability analysis concludes the chapter.

In Chapter 4, we study the properties that can be verified by state-space explo-

ration. For instance, it is possible to use the method discussed in Chapter 3 to verify

some properties of infinite execution sequences. In particular, we show how to check

ω-regular properties, and therefore properties expressed as Linear-time Temporal

Logic formulas. Once again, due to the undecidability of the underlying problem,

only a partial solution can be obtained.

In Chapter 5, we study the termination of the semi-algorithms proposed in Chap-

ters 3 and 4. After proving that it is impossible to define syntactically the exact

class of systems for which the reachability problem can be solved, we propose a lower

approximation of this class. In other words, we give a sufficient syntactic criterion

(on models) that guarantees the termination of the reachability analysis. We also

show that model checking ω-regular properties is decidable for the class of systems

satisfying the criterion.
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The symbolic state-space exploration technique introduced in Chapter 3 relies

on a symbolic representation system for sets of data values manipulated during

exploration. This representation system has to satisfy a number of conditions. In

Chapter 6, we give a generic way of obtaining a suitable representation system.

The main idea is to encode each data value as a string of symbols over some finite

alphabet, and to represent a set of values by a finite-state automaton accepting the

language of the encodings of the values in the set.

In Chapters 7 and 8, we particularize the notions introduced in Chapter 6 to two

important domains: unbounded FIFO buffers, and unbounded integer variables.

For each of those domains, we give detailed algorithms for performing the required

operations on represented sets of values. In particular, we introduce original decision

procedures for determining whether the closure of some sequences of data operations

preserves the representability of sets of data values.

In Chapter 9, we conclude this thesis by a comparison with related work, as well

as some ideas for future work.



Chapter 2

Structured-Memory Automata

This chapter presents the formalism that will be used for modeling programs. After

introducing its syntax and semantics, it discusses the motivations of the choice that

has been made.

2.1 Modeling Programs

We consider programs composed of a control part, which controls the order according

to which instructions are performed, and a data part, which defines the operations

carried out by instructions. The control part is modeled by a control graph, whose

edges are labeled by instructions. Each path in the control graph corresponds to a

sequence of instructions that can possibly be performed. The data part is modeled

by variables whose values can influence, and be influenced by, the execution of

instructions. In this thesis, we require that programs have a finite control graph;

however, we do not impose any restriction on the domains of variables.

Formally, a program is modeled by a Structured-Memory Automaton (SMA),

defined as follows.

Definition 2.1 An SMA is a tuple (C, c0,M,m0,Op, T ), where

• C is a finite set of control locations;

• c0 is an initial control location;

• M = D1 × D2 × · · · × Dn (n ≥ 0) is a memory domain, structured as the

Cartesian product of variable domains D1, D2, . . . , Dn (which may be infinite).

The dimension n of M defines the number of variables of the SMA; those

variables are denoted x1, x2, . . . , xn. Each element m = (v1, v2, . . . , vn) ∈M is

a memory content. For every i such that 1 ≤ i ≤ n, the component vi of m

corresponds to the value of xi;

• m0 = (v1,0, v2,0, . . . , vn,0) ∈M is an initial memory content;

7
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• Op is a (possibly infinite) set of memory operations. Each operation θ ∈ Op

is a function M → M . This function may be partial, i.e., it does not need to

be defined for every memory content in M (the fact that θ is undefined for the

memory content m ∈M is denoted θ(m) = ⊥);

• T ⊆ C × Op × C is a finite set of transitions. Each transition is a triple

(c, θ, c′), where c is the origin, c′ the end, and θ the label of the transition.

2.2 Semantics

The semantics of an SMA is defined in terms of a state-transition system. The

execution of an SMA consists of a possibly infinite sequence of discrete state changes,

starting from a distinguished initial state. At each step, the possible state changes

are determined by the outgoing transitions from the current state. SMAs can be

non-deterministic, i.e., there may be several possible state changes from any given

state.

Formally, the semantics of an SMA A = (C, c0,M,m0,Op, T ) is the state-

transition system (Q, q0, R), where:

• Q = C ×M is the set of potential states. Each state q = (c,m) ∈ Q is thus

composed of a control location c ∈ C and a memory content m ∈ M . Since

M may be infinite, Q may be infinite as well;

• q0 = (c0, m0) is the initial state;

• R ⊆ Q×Q is the one-step reachability relation. A pair ((c,m), (c′, m′)) belongs

to R, which is denoted (c,m) →R (c′, m′), if there exists a transition (c, θ, c′) ∈

T such that m′ = θ(m). The state (c′, m′) is then said to be reachable in one

step from the state (c,m).

Let N0 denote the set of strictly positive integers. A state q′ ∈ Q is reachable from a

state q ∈ Q if there exist k ∈ N0 and q1, q2, . . . qk ∈ Q such that q = q1, qk = q′, and

qi →R qi+1 for all 0 < i < k. This is equivalent to stating that the pair (q, q′) belongs

to the transitive closure R∗ of R, which is the reachability relation of A. The fact

that (q, q′) belongs to R∗ is denoted q →∗
R q

′. The fact that there exists q′′ ∈ Q such

that q →R q
′′ and q′′ →∗

R q
′ is denoted q →+

R q
′. As a particular case of the definition

of reachability, every state in Q is reachable from itself. A state q ∈ Q is reachable if

it is reachable from the initial state q0. The set of all the reachable states is denoted

QR. The state space (QR, RR) of A is the (possibly infinite) graph whose nodes are

the reachable states of A, and whose edges correspond to the one-step reachability

relation RR = R∩(QR×QR) between those states. A computation of A is a finite or

infinite maximal sequence of states q1, q2, . . . ∈ Q such that q1 = q0, and qi →R qi+1

for all i > 0.
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2.3 Example

An example of an SMA A = (C, c0,M,m0,Op, T ) is given in Figure 2.1. It has the

following components:

• C = {c1, c2} (there are two control locations c1 and c2, corresponding to the

nodes of the control graph of Figure 2.1);

• c0 = c1 (c1 is the initial control location);

• M = Z2 (there are two integer variables x1 and x2. A memory content is thus

a pair of integers);

• m0 = (0, 0) (the initial value of both variables is 0);

• Op = {x1++, x2++, even(x1)}, where

– x1++ : Z2 → Z2 : (v1, v2) 7→ (v1 + 1, v2) (this operation increments the

value of the variable x1);

– x2++ : Z2 → Z2 : (v1, v2) 7→ (v1, v2 + 1) (this operation increments the

value of the variable x2);

– even(x1) : Z2 → Z2 : (v1, v2) 7→

{

(v1, v2) if v1 is even

⊥ if v1 is odd
(this operation

tests whether the value of the variable x1 is even);

• T = {(c1, x1++, c1), (c1, even(x1), c2), (c2, x2++, c1)} (there are three transitions,

each of them corresponding to an edge of the control graph of Figure 2.1).

The SMA A is non-deterministic. Indeed, from a state such as q0 = (c1, (0, 0))

(the initial state), one can follow either transition (c1, x1++, c1) or transition (c1,

even(x1), c2). Since each of them leads to a different state, there are two different

states that are reachable in one step from q0.

The example also shows how memory contents can influence, and be influenced

by, the execution of instructions. It is always possible to follow the transition

(c1, x1++, c1) from the control location c1, and doing so has the effect of adding

1 to the value of x1. On the other hand, it is only possible to follow (c1, even(x1), c2)

from c1 if the value of x1 is even, and doing so has the effect of turning the control

location from c1 into c2 without modifying the value of x1 and x2.

A part of the (infinite) state space of A is depicted in Figure 2.2. Each state

of the form (c1, (v1, v2)) with v1, v2 ∈ N (the control location is c1 and the value of

each variable is an arbitrary positive integer) is reachable, for instance by following

from the initial state v2 times the transitions (c1, even(x1), c2) and (c2, x2++, c1), and

then v1 times the transition (c1, x1++, c1). Each state of the form (c2, (v1, v2)) with

v1 ∈ 2N (the set of all the positive even numbers) and v2 ∈ N is reachable as well,
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(x1)0 = 0
(x2)0 = 0

x1++

even(x1)

c1 c2

x2++

Figure 2.1: Example of SMA.

(c1, (0, 0))

(c1, (1, 0)) (c2, (0, 0))

(c1, (2, 0)) (c1, (0, 1))

(c1, (3, 0)) (c2, (2, 0)) (c1, (1, 1)) (c2, (0, 1))

(c1, (4, 0)) (c1, (2, 1)) (c1, (0, 2))

Figure 2.2: State space of the example.
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by following the transition (c1, even(x1), c2) from the state (c1, (v1, v2)). There is no

other reachable state.

2.4 Discussion

SMAs are a simple yet powerful way of modeling programs. Expressing the control

part as a finite graph makes it possible to model non-determinism as well as arbi-

trarily intricate control structures (such as for instance nested loops with multiple

entry and exit points). There is no restriction on the data part of the program,

since the memory domain and operations may be freely chosen. That makes it pos-

sible to model as SMAs systems such as Petri Nets1 [Pet62, Pet81, Rei85] or FIFO

nets [FR87], as well as programs expressed in imperative sequential programming

languages such as C [KR78] or Pascal [Wir71]. In the next chapters (3–6), we present

some results which hold independently from the memory domain and set of mem-

ory operations (provided that these satisfy some conditions which will be detailed).

Next, in Chapters 7 and 8, the results are particularized to two important classes of

SMAs, namely those using integer variables and linear operations, and those using

FIFO channels and send/receive operations.

Other classes of systems can be indirectly modeled as SMAs. This is the case for

concurrent systems based on the interleaving model of concurrency [Win84], pro-

vided that their control part is finite. There are simple algorithms for computing

the product of all the components of the system, which is a sequential program

equivalent to the whole system. Informally, this is done by grouping together the

states of all the components into global states, and by associating to the product

every transition corresponding to some transition of one of the components. Once

computed, the product can be converted into an SMA. Although the product opera-

tion is usually costly, it can be efficiently implemented by performing the operation

on-the-fly rather than globally. This consists of generating the set of outgoing tran-

sitions of a global state on demand rather than systematically, in order to avoid

computing and storing useless information. Another approach is to compute only

partly the product, the result being sufficient for verifying the property of interest.

For instance, partial-order methods [God96] attempt to reduce the size of the prod-

uct by not generating transitions for which it is known that they do not influence

the result of the analysis. Two different interleavings of the same computations

of the components will then correspond to one single computation of the product,

1A simple way of converting a Petri net into an SMA consists of building an SMA with only

one control location, and with one natural variable for each place of the Petri net (this variable

modeling the number of tokens at that place). Each transition of the Petri net is then converted

into a transition of the SMA. The initial memory content of the SMA corresponds to the initial

marking of the Petri net.
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provided that they are shown to be equivalent with respect to the properties being

checked. Those issues are not addressed in this thesis.

Modeling an actual system as an SMA is not always straightforward, for the

distinction between control part and data part is somehow arbitrary. For instance,

the SMA of Figure 2.1 could easily be turned into one with a single control location

and an additional variable x3 of domain {c1, c2}. Though a distinction between

control part and data part sometimes appears naturally, there are rules that must

be observed:

• The infinite character of the state space must be entirely contained in the data

part. In other words, the control graph must be finite.

• The set of memory operations should have a simple structure and have simple

algebraic properties. The purpose of this (informal) rule is to make easy the

computation of the necessary operations on memory values. The concept is

illustrated in the context of two particular memory domains with different

properties in Chapters 7 and 8.



Chapter 3

Reachability Analysis

This chapter addresses the problem of computing the set of reachable states of an

SMA. As it will be shown in Chapter 4, solving this problem makes it possible to

decide various properties of programs modeled as SMAs. We propose a solution

inspired by the algorithms developed for systems with a finite state space.

3.1 Finite-State Systems

Computing the set of reachable states of an SMA A is easy when this set is finite.

Indeed, a simple solution consists of starting with a set containing only the initial

state. Then, by following the one-step reachability relation R of A, one obtains new

reachable states which are added to the set. Since there are only a finite number of

reachable states, repeating this operation iteratively will eventually produce a stable

set, i.e., a set that can not be enlarged anymore by following R. At this point, the

set contains exactly all the reachable states of the SMA.

Recall that the state space of an SMA is a graph whose nodes correspond to

reachable states, and whose edges correspond to the one-step reachability relation

between those states. It follows that the method outlined above can be seen as an

exploration of the state-space graph, that is, a search visiting each node. There are

various strategies that can be adopted for the search, differing from each other by

the order according to which the nodes are visited. Figure 3.1 gives an algorithm

based on a breadth-first search, whose strategy is to visit nodes in increasing order

of depth (the depth of a node is the length of the shortest path from the initial

state to that node). Figure 3.2 gives an algorithm using a different search order, the

depth-first search. There, the strategy is to always follow an edge whose origin is

the most recently visited node that has an unvisited successor. The two algorithms

are equivalent, in the sense that they always yield the same result.

All the sets manipulated by the algorithms in Figures 3.1 and 3.2 are finite.

This means that the algorithms can actually be implemented by representing sets

13
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function REACHABLE-FINITE-B(SMA (C, c0, M, m0,Op, T )) : set of states

1: var visited-states, recent-states, new-states : sets of states;

2: begin

3: visited-states := ∅;

4: recent-states := {(c0, m0)};

5: repeat

6: visited-states := visited-states ∪ recent-states;

7: new-states := ∅;

8: for each (c, m) ∈ recent-states do

9: for each (c′, θ, c′′) ∈ T such that c′ = c do

10: if θ(m) 6= ⊥ and (c′′, θ(m)) 6∈ visited-states then

11: new-states := new-states ∪ {(c′′, θ(m))};

12: recent-states := new-states

13: until recent-states = ∅;

14: return visited-states

15: end.

Figure 3.1: Breadth-first exploration of a finite state space.
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function REACHABLE-FINITE-D(SMA (C, c0, M, m0,Op, T )) : set of states

1: var visited-states : set of states;

2: procedure explore(state (c, m))

3: begin

4: visited-states := visited-states ∪ {(c, m)};

5: for each (c′, θ, c′′) ∈ T such that c′ = c do

6: if θ(m) 6= ⊥ and (c′′, θ(m)) 6∈ visited-states then

7: explore((c′′, θ(m)))

8: end;

9: begin (∗ REACHABLE-FINITE-D ∗)

10: visited-states := ∅;

11: explore((c0, m0));

12: return visited-states

13: end.

Figure 3.2: Depth-first exploration of a finite state space.

as finite lists of their elements. In practical applications, specific data structures

such as hash tables can be used in order to speed up set operations. If implemented

properly, both algorithms take O(Ne) space and time, where Ne is the number of

edges in the state space.

3.2 Infinite-State Systems

The main limit of the method presented in Section 3.1 is that it can only be applied

to systems with a finite state space. Indeed, since each reachable state is visited

individually, the exploration of an infinite state space by one of the algorithms of

Figures 3.1 and 3.2 would never terminate.

It is possible though to follow the same approach, which consists of spreading

the reachability information along the edges of the state-space graph, in order to

explore infinite state spaces. In order to be able to do so, two items are needed:

• A technique for going through an infinite number of transitions in a finite

amount of time;

• An algorithmically easy to handle finite representation of infinite sets of states.
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3.2.1 Exploring Infinite Sets of Reachable States

In order to be able to explore infinite state spaces, one must be able to compute a

possibly infinite set of reachable states in a finite number of steps. An idea is to

generalize the basic operation for propagating reachability, so as to allow to deduce

the reachability of an infinite set from the reachability of a finite set. This is done

by introducing the concept of meta-transition.

Definition 3.1 Let A = (C, c0,M,m0,Op, T ) be an SMA. A meta-transition t̄ for

A is a triple (c, f, c′), where c, c′ ∈ C and f : 2M → 2M , that satisfies the following

property: for every set U ⊆M of memory contents, it is such that

(∀m′ ∈ f(U))(∃m ∈ U)((c,m) →∗
R (c′, m′)),

where R is the one-step reachability relation of A. The function f is called the

memory function of t̄.

Meta-transitions generalize the concept of transition. If S ⊆ Q is a set of states,

then following the meta-transition (c, f, c′) from S leads to the set of states

S ′ = states(c′, f(values(S, c))),

where values(S, c) denotes the set {m′ ∈ M | (c,m′) ∈ S} of all the memory

contents associated to c in S, and for every U ⊆ M , states(c, U) denotes the set

{(c,m) | m ∈ U} of all the states associating a memory content in U to c. As

a consequence of Definition 3.1, the set S ′ contains only reachable states provided

that S contains only reachable states. This means that meta-transitions propagate

reachability information. However, unlike transitions, they are able to generate

infinite sets of reachable states from finite sets of such states.

Exploring the state space of an SMA with the help of meta-transitions is done in

the following way. The first step is to add meta-transitions to the SMA, which be-

comes an Extended Structured-Memory Automaton (ESMA). The resulting ESMA

has the same set of reachable states as the original SMA. The second step is to per-

form a state-space exploration of the ESMA, taking advantage of meta-transitions.

The meta-transitions that are added to the SMA can be arbitrarily chosen as far as

correctness is concerned. However, their choice clearly influences the termination of

the state-space exploration.

Formally, an ESMA is defined as follows.

Definition 3.2 An Extended Structured-Memory Automaton is a tuple (C, c0,M,

m0,Op, T, T̄ ), where

• (C, c0,M,m0,Op, T ) is a Structured-Memory Automaton;
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• T̄ ⊆ C × FM ×C, where FM denotes the set of all the functions 2M → 2M , is

a finite set of meta-transitions. Each element t̄ ∈ T̄ is a meta-transition for

the SMA (C, c0,M,m0,Op, T ).

The semantics of an ESMA A is derived from that of the underlying SMA. The

set of potential states Q, the initial state q0, the one-step reachability relation R

and the state space (QR, RR) of an ESMA (C, c0,M,m0,Op, T, T̄ ) are identical to

those of the underlying SMA (C, c0,M,m0,Op, T ). If q = (c,m), q′ = (c′, m′) ∈ Q

are states and t = (c1, θ, c2) ∈ T is a transition such that q′ is reachable from q

by following t once, i.e., if c = c1 ∧ c′ = c2 ∧ m′ = θ(m), then we write q
t
→ q′.

Likewise, we write q
t̄
⇒ q′ if q′ is reachable from q by following once the meta-

transition t̄ = (c1, f, c2) ∈ T̄ , i.e., if c = c1 ∧ c′ = c2 ∧ m′ ∈ f({m}). Finally, we

write q
t̃
⇁ q′ if either t̃ ∈ T and q

t̃
→ q′, or t̃ ∈ T̄ and q

t̃
⇒ q′.

For every reachable state q ∈ QR, there exist k ∈ N0, q1, q2, . . . , qk ∈ QR,

and t̃1, t̃2, . . . , t̃k−1 ∈ T ∪ T̄ such that q1 = q0, qk = q, and qi
t̃i⇁ qi+1 for every

i ∈ {1, 2, . . . , k− 1}. The sequence π = q1, t̃1, q2, t̃2, . . . , t̃k−1, qk forms a path leading

to q. This path is a transition path (resp. meta-transition path) if all the t̃i belong

to T (resp. T̄ ). Any subsequence qi1 , t̃i1 , . . . , t̃i2−1, qi2 of π, with 1 ≤ i1 ≤ i2 ≤ k,

is a subpath. The length of a path or subpath π is the number of transitions and

meta-transitions appearing in π. Every reachable state has a depth, defined as the

length of the shortest path leading to that state. Finally, two paths or subpaths

π = q1, . . . , qk1 and π = q′1, . . . , q
′
k2

are said to be equivalent if q1 = q′1 and qk1 = q′k2 .

An algorithm for carrying out the state-space exploration of an ESMA by taking

advantage of meta-transitions is presented in Section 3.3. Techniques for turning an

SMA into an ESMA, i.e., for creating meta-transitions, are discussed in Section 3.4.

3.2.2 Representing Infinite Sets

An algorithm is only able to manipulate objects if their value can be encoded as a

finite string of bits. It follows that the exploration of infinite state spaces requires

a representation system for sets of states, that is, an encoding scheme transforming

a set into a finite amount of information describing it unambiguously. All represen-

tation systems have a limited expressiveness, in the sense that they do not define

an encoding for every possible infinite set. This is unavoidable, since there are un-

countably many subsets of an infinite set of states, but only countably many finite

strings of bits.

Since the infinite nature of the state space is a consequence of that of the data

part of the program, it is natural to define representation systems for infinite sets

of states in terms of representation systems for infinite sets of memory contents.

Actually, since there are only a finite number of control locations, one can repre-

sent a (possibly infinite) set of states by associating to each control location the
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representation of a set of memory contents.

From now on, we assume that sets of states are represented this way, and hence

that a representation system for subsets of M is available. This system has to

satisfy some conditions; in particular, one must be able to perform some elementary

operations on represented sets of memory contents. The requirements are formalized

in the following definition.

Definition 3.3 Let A = (C, c0,M,m0,Op, T, T̄ ) be an ESMA. A representation

system for subsets of M is well suited for A if:

• The following sets of memory contents are representable:

– The empty set ∅;

– The universal set M ;

– Every set {m}, where m ∈M , and

• All the following operations can be performed algorithmically on every repre-

sentable sets U1, U2 ⊆M :

– Computing the union U1 ∪ U2, intersection U1 ∩ U2, and difference U1 \

U2;

– Testing the inclusion U1 ⊆ U2;

– Testing the emptiness of U1;

– Computing the image θ(U1) = {θ(m) | m ∈ U1} of U1 by any operation

θ ∈ Op;

– Computing the image f(U1) of U1 by any function f : 2M → 2M labeling

a meta-transition (c, f, c′) ∈ T̄ .

By extension, a representation system for sets of states is said to be well suited

for an ESMA A if it represents sets of states as lists of pairs (control location,

set of memory contents), where the sets of memory contents are represented in

a representation system that is well suited for A. If S ⊆ Q is a set of states

and c ∈ C is a control location, then a representation of the set values(S, c) is

trivially computed from a representation of S by simply locating the pair (control

location, representation of set of contents) corresponding to c. If c ∈ C is a control

location and U ⊆ M is a set of memory contents, then a representation of the set

states(c, U) simply consists of the pair (c, representation of U). Implementations

of elementary set-theory operations such as intersection, union, difference, test of

inclusion and test of emptiness on representable sets of states are easily deduced

from the corresponding operations on representable sets of memory contents.

A general method for obtaining representation systems well suited for some types

of ESMAs is described in Chapter 6. The method is particularized to two important

classes of ESMAs in Chapters 7 and 8.
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3.3 Symbolic State-Space Exploration

The set of reachable states of an ESMA (or, more precisely, a finite and exact

representation of this set) can be computed by the same approach as for finite-state

SMAs. The idea is to propagate reachability information by following transitions,

but also meta-transitions.

An algorithm formalizing this idea is given in Figure 3.3. It can be seen as

a generalization of the breadth-first search of Figure 3.1. The main difference is

that several states, as opposed to a single state, are now visited at each step. We

assume that the sets of states manipulated by the algorithm are represented with

the help of a well suited representation system, hence the name “Symbolic State-

Space Exploration” of this technique, to highlight the fact that sets of states are not

simply manipulated as enumerations of their elements.

Despite the fact that following meta-transitions makes it possible to compute an

infinite number of reachable states in a finite amount of time, state-space exploration

algorithms are not guaranteed to terminate when the state space is infinite. Indeed,

there are classes of systems such as FIFO nets [FR87] that can be modeled as

ESMAs, but for which it is known that their set of reachable states can generally

not be computed. It follows that the algorithm of Figure 3.3 is actually a semi-

algorithm, i.e., a procedure that does not necessarily terminate. This semi-algorithm

is correct thanks to the following result.

Theorem 3.4 Let A be an ESMA such that the computation of REACHABLE(A)

terminates. The result of this computation contains exactly all the reachable states

of A.

Proof

• The result contains only reachable states. This is a direct consequence of the

fact that, at any time during the computation, the sets of states visited-states,

recent-states and new-states contain only reachable states. Indeed, executing

Lines 10–11 (resp. 12–13) adds to new-states states that are reachable by

following a transition (resp. a meta-transition) from states in recent-states.

• The result contains all the reachable states. At any time during the computa-

tion, let N denote the number of times Line 15 has been executed. Prior to

each execution of Line 15, the set recent-states contains exactly all the states

whose depth is N (this is easily shown be induction on N). If the computation

terminates, then the test recent-states = ∅ at Line 16 succeeds for some value

of N . This means that all the reachable states of A have a depth less than N .

Therefore, all of them belong to the set visited-states returned at the end of

the computation.
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function REACHABLE(ESMA (C, c0, M, m0,Op, T, T̄ )) : set of states

1: var visited-states, recent-states, new-states : sets of states;

2: begin

3: visited-states := ∅;

4: recent-states := {(c0, m0)};

5: repeat

6: visited-states := visited-states ∪ recent-states;

7: new-states := ∅;

8: for each c ∈ C such that values(recent-states, c) 6= ∅ do

9: begin

10: for each (c′, θ, c′′) ∈ T such that c′ = c do

11: new-states := new-states ∪

states(c′′, θ(values(recent-states, c))) \ visited-states;

12: for each (c′, f, c′′) ∈ T̄ such that c′ = c do

13: new-states := new-states ∪

states(c′′, f(values(recent-states, c))) \ visited-states

14: end;

15: recent-states := new-states

16: until recent-states = ∅;

17: return visited-states

18: end.

Figure 3.3: Breadth-first exploration of an infinite state space.
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2

The arguments developed in the second part of the proof have an important

corollary.

Theorem 3.5 Let A be an ESMA. The computation of REACHABLE(A) termi-

nates if and only if there exists an upper bound on the depth of all the reachable

states of A.

Proof If the computation terminates, then the number N of times Line 15 has been

executed is a suitable upper bound. Reciprocally, if there exists an upper bound

Nup ∈ N on the depth of all the reachable states of A, then visited-states will

eventually contain all the reachable states for some value of N less or equal to Nup.

At the next execution of Line 16, the condition recent-states = ∅ is satisfied and the

computation terminates. 2

There exist other semi-algorithms than the one given in Figure 3.3 for computing

the set of reachable states of an ESMA by following repeatedly transitions and meta-

transitions. Like for finite-state systems, they differ from each other by the order

according to which the states are visited. As an example, Figure 3.4 gives a semi-

algorithm analogous to the depth-first search of Figure 3.2.

Unlike for finite-state systems, the different search strategies for exploring infinite

state spaces are not equivalent. Although semi-algorithms based on different search

strategies always give out the same result when they terminate, the class of ESMAs

for which they terminate is generally different. In that context, Theorem 3.5 has an

interesting corollary.

Corollary 3.6 The breadth-first strategy used by the semi-algorithm of Figure 3.3

always terminates whenever there is some other search strategy that terminates.

Proof If there exists a search strategy that terminates after a finite number of steps

for the ESMA A, then all the reachable states of A are reached from the initial state

after following a finite number of times individual transitions and meta-transitions.

Let N be this number. Since N is an upper bound on the depth of all the reachable

states of A, it follows from Theorem 3.5 that the state-space exploration of A by

the semi-algorithm of Figure 3.3 terminates. 2

Even though Theorem 3.5 gives a necessary and sufficient condition of termina-

tion for the semi-algorithm of Figure 3.3, it does not provide an effective procedure

for deciding whether the state-space exploration of a given ESMA terminates or not.

In Chapter 5, which addresses termination issues, we show that there does not exist

such an effective procedure for most classes of ESMAs. It is nevertheless possible to

give sufficient static conditions on ESMAs for ensuring that the exploration of their

state space terminates; an example of such a condition is also given in Chapter 5.
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function REACHABLE-D(ESMA (C, c0, M, m0,Op, T, T̄ )) : set of states

1: var visited-states : set of states;

2: procedure explore(set of states current-states)

3: begin

4: if current-states ⊆ visited-states then return;

5: visited-states := visited-states ∪ current-states;

6: for each c ∈ C such that values(current-states, c) 6= ∅ do

7: begin

8: for each (c′, f, c′′) ∈ T̄ such that c′ = c do

9: explore(states(c′′, f(values(current-states, c))));

10: for each (c′, θ, c′′) ∈ T such that c′ = c do

11: explore(states(c′′, θ(values(current-states, c))))

12: end

13: end;

14: begin (∗ REACHABLE-D ∗)

15: visited-states := ∅;

16: explore({(c0, m0)});

17: return visited-states

18: end.

Figure 3.4: Depth-first exploration of an infinite state space.
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3.4 Creating Meta-Transitions

Meta-transitions are created during the transformation of an SMA into an ESMA.

Since the presence of meta-transitions has no influence over the set of reachable

states of an ESMA, meta-transitions can be arbitrarily chosen as far as the partial

correctness of the state-space exploration is concerned. However, termination of the

state-space exploration is usually influenced by the choice of meta-transitions.

For every SMA A = (C, c0,M,m0,Op, T ) with an infinite state space, there are

infinitely many potential meta-transitions. Indeed, if A has an infinite set S of

reachable states, then there exists at least one control location c ∈ C such that

values(S, c) is infinite. For every subset U of values(S, c), one can create a meta-

transition (c0, fU , c), where fU is the function 2M → 2M such that for every U ′ ⊆M ,

fU(U ′) = U if m0 ∈ U ′, and fU (U ′) = ∅ if m0 6∈ U ′.

Since an ESMA can only have a finite number of meta-transitions, a restriction

has to be imposed over the set of potential meta-transitions. There are various

methods for imposing such a restriction.

3.4.1 Cycle Meta-Transitions

When a meta-transition is followed, an infinite number of states may be reached

from a finite number of states. A natural idea is thus to associate meta-transitions

to elements of SMAs that are responsible for the infinite nature of their state space.

The only cause of state-space infinity for an SMA (C, c0,M,m0,Op, T ) is the

presence of cycles in its control graph. A cycle is a sequence C = (c1, θ1, c
′
1), . . . , (ck,

θk, c
′
k) (k ≥ 1) of transitions in T such that c′k = c1 and for every 0 < i < k, c′i =

ci+1. The sequence σ = θ1, θ2, . . . , θk of all the operations labeling the transitions

is the body of the cycle and is said to label C; this is denoted σ = body(C). The

control location c1 first visited by C is denoted first(C). The cycle C is simple if

it does not contain a subcycle, i.e., if there do not exist 1 ≤ i < j ≤ k such

that (ci, θi, c
′
i), (ci+1, θi+1, c

′
i+1), . . . , (cj , θj, c

′
j) is a cycle, and either i > 1 or j < k.

The cycle C has k rotations denoted rot(C, 0), rot(C, 1), . . . , rot(C, k − 1), such that

rot(C, 0) = C, and for every i ∈ {1, . . . , k − 1},

rot(C, i) = (ci+1, θi+1, c
′
i+1), (ci+2, θi+2, c

′
i+2), . . . , (ck, θk, c

′
k), (c1, θ1, c

′
1), . . . , (ci, θi, c

′
i).

Let U ⊆ M be a set of memory contents. Following the cycle C from the set of

states states(c1, U) amounts to following successively all the transitions composing

C, yielding the set of states states(c1, U
′), where U ′ = σ(U) = θk(θk−1(· · · θ1(U) · · ·))

is the final set of memory contents and σ = body(C). The set of contents obtained

after following the cycle l times (l ≥ 0) from the set of contents U is denoted σl(U).

The set of all the contents that can be obtained by following the cycle any number
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of times from the set of contents U is denoted σ∗(U), it can be seen as the result of

applying to U the function

σ∗ : 2M → 2M : U 7→
⋃

l∈N

σl(U).

If C is a cycle, then the cycle meta-transition associated to C is a meta-transition

whose effect is equivalent to following C any number of times. Formally, it is defined

as follows.

Definition 3.7 Let A = (C, c0,M,m0,Op, T ) be an SMA, and C = (c1, θ1, c2), (c2,

θ2, c3), . . . , (ck, θk, c1) (k ≥ 1) be a cycle in its control graph (C, T ). The cycle meta-

transition associated to C is the meta-transition (c1, f, c1), with f : 2M → 2M : U 7→

body(C)∗(U).

Cycle meta-transitions are valid meta-transitions, since their memory function

satisfies the conditions of Definition 3.1. Indeed, let (c1, f, c1) be the cycle meta-

transition associated to some cycle C. If U ⊆ M is a set of memory contents,

and U ′ = f(U), then for every m′ ∈ U ′, there exist m ∈ U and l ∈ N such that

(c1, m
′) is reached from (c1, m) by executing l times the body of C. Since this implies

(c1, m) →∗
R (c1, m

′), the conditions of Definition 3.1 are fulfilled.

Not all potential cycle meta-transitions are interesting to consider. First, cycles

visiting control locations that are unreachable in the control graph of the SMA do

not have to be considered.

Second, recall that the purpose of adding meta-transitions to an SMA is to allow

the symbolic exploration of its state space, and that this exploration relies on a

representation system for sets of memory contents. One should avoid to create meta-

transitions such that the representation system will not be suited for the resulting

ESMA (this only happens when the memory function f of the meta-transition cannot

be computed on representable sets of memory contents). This rule is enforced as

follows. Each representation system for sets of memory contents must define a

predicate META? over the set of potential sequences of operations, whose purpose

is to decide whether the corresponding meta-transition can be created or not. The

predicate META? can be arbitrarily chosen, provided that it satisfies the following

conditions:

• META? is computable over the sequences of operations in Op∗;

• There exists an algorithm for computing a representation of the set of memory

contents σ∗(U), given a sequence σ of operations such that META?(σ) is true

and a represented set of memory contents U .

The restriction to cycles for which META? is true might not be strong enough to

ensure that only a finite number of meta-transitions are created. There are different

ways of imposing additional restrictions.
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function META-SIMPLE(SMA A) : set of meta-transitions

1: var meta-transitions : set of meta-transitions;

2: begin

3: meta-transitions := ∅;

4: for each (c, σ) ∈ SIMPLE-CYCLES(A) do

5: if META?(σ) then meta-transitions := meta-transitions ∪ {(c, σ∗, c)};

6: return meta-transitions

7: end.

Figure 3.5: Creation of simple-cycle meta-transitions.

Restriction to Simple Cycles

Since the control graph of an SMA is finite, it can only have a finite number of simple

cycles. The idea is to create a meta-transition for every simple cycle in the control

graph that is reachable and satisfies META? (a cycle is reachable in the control graph

if it visits control locations for which there exists a sequence of transitions from the

initial control location to these locations). The advantage of this approach is that

there are classes of SMAs for which considering all the simple-cycle meta-transitions

is sufficient for ensuring that symbolic state-space exploration terminates. The issue

is discussed in detail in Chapter 5.

An algorithm for creating all the meta-transitions that can be derived from

reachable simple cycles is given in Figure 3.5. It relies on a function SIMPLE-

CYCLES that returns all the reachable simple cycles in the control graph of an SMA.

An algorithm for computing this function is given in Figure 3.61. This algorithm

proceeds by performing a depth-first search in the control graph, without storing a

table of the control locations already visited. This means that paths in the control

graph are explored until they visit the same control location twice, rather than

until they visit a control location already visited by a (possibly different) path.

Whenever a control location occurs twice on the same path, the cycle corresponding

to the subpath located between the two occurrences is added to the set computed

so far, as well as are all the rotations of this cycle. The algorithm is correct thanks

to the following result.

Theorem 3.8 Let A be an SMA. SIMPLE-CYCLES(A) returns the set of all the

pairs (c, σ) such that σ is the body of a simple cycle C that is reachable in the control

graph of A, and c is the first control location visited by C.

1In this algorithm, σ1, σ2 denotes the concatenation of the sequences of transitions σ1 and σ2.
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function SIMPLE-CYCLES(SMA (C, c0, M, m0,Op, T )) : set of (control location,

sequence of memory operations)

1: var cycles : set of (control location, sequence of memory operations);

2: node : array[0, 1, . . .] of control locations;

3: edge : array[0, 1, . . .] of memory operations;

4: procedure generate(integer depth1, depth2)

5: var i, j : integers;

6: σ : sequence of memory operations;

7: begin

8: for i := depth1 to depth2 do

9: begin

10: σ := edge[i];

11: for j := i + 1 to depth2 do σ := σ, edge[j];

12: for j := depth1 to i − 1 do σ := σ, edge[j];

13: cycles := cycles ∪ {(node[i], σ)}

14: end

15: end;

16: procedure explore(control location c, integer depth)

17: begin

18: node[depth] := c;

19: for each (c′, θ, c′′) ∈ T such that c′ = c do

20: begin

21: edge[depth] := θ;

22: if (∃i, 0 ≤ i ≤ depth) such that node[i] = c′′ then

23: generate(i, depth)

24: else explore(c′′, depth + 1)

25: end

26: end;

27: begin (∗ SIMPLE-CYCLES ∗)

28: cycles := ∅;

29: explore(c0, 0);

30: return cycles

31: end.

Figure 3.6: Computation of all the simple cycles in the control graph.
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Proof The proof is in three parts. First we establish termination. Then, we show

that the result of the computation contains all the simple cycles that are reachable

in the control graph. Finally, we prove that this result contains only such simple

cycles.

• The computation of SIMPLE-CYCLES(A) terminates. Since C is finite, any

exploration path that does not visit the same control location twice has a

length bounded by the number of control locations in C. It follows that the

number of recursive calls to Procedure explore is bounded, hence that the

computation terminates.

• If C = (c1, θ1, c2), . . . , (ck, θk, c1) is a simple cycle that is reachable in the control

graph of A, then the result of the computation of SIMPLE-CYCLE(A) contains

the pair (c1, body(C)). Since C is reachable in the control graph of A, there

exists a finite path π of transitions from the initial control location c0 of A to

c1. Since occurrences of cycles may be removed from π, we can assume that all

the control locations visited by π are distinct. Let l (1 ≤ l ≤ k) be such that cl
is the first control location of C visited by π, and π′ be the prefix of π leading

from c0 to cl. Appending to π′ the part of C between cl and c1 followed by the

part of C between c1 and cl−1 (or ck if l = 1) yields a path π′′ from c0 to cl−1 that

visits only distinct control locations. By induction on the argument depth of

Procedure explore, we have that at some time, this procedure is called with the

value of depth equal to the length of π′′, node[0], node[1], . . .node[depth − 1], c

are all the control locations visited by π′′, and edge[0], edge[1], . . . edge[depth−1]

are the first depth operations labeling the transitions of π′′ (in the same order).

During this call to explore, the transition leading from cl−1 (or ck if l = 1) to

cl in C is explored at Line 19. Since, by construction of π′′, we have cl ∈

{node[0], node[1], . . .node[depth − 1], c}, the condition at Line 22 is satisfied

and therefore generate is called. At this time, the arguments of generate are

such that

(node[depth1], . . . , node[depth2]) = (cl, cl+1, . . . , ck, c1, c2, . . . , cl−1)

(edge[depth1], . . . , edge[depth2]) = (θl, θl+1, . . . , θk, θ1, θ2, . . . , θl−1),

where for every 1 ≤ p ≤ k, θp denotes the operation labeling the transition

outgoing from cp in C. After the loop at Line 8 reaches the value of i such that

Node[i] = c1, the value of σ at Line 13 becomes equal to body(C). The pair

(c1, σ) is thus added to the set cycles returned at the end of the computation.

• If (c′, σ′) belongs to the result of the computation of SIMPLE-CYCLES(A),

then there exists a simple cycle C that is reachable in the control graph of A

such that c′ = first(C) and σ′ = body(C). If (c′, σ′) belongs to the result of



28 CHAPTER 3. REACHABILITY ANALYSIS

Figure 3.7: Control graph with 2N transitions and N2N simple cycles.

the computation of SIMPLE-CYCLES(A), then, by construction, there exists

a control location c ∈ C and a path π of transitions leading from the initial

control location c0 to c that is such that:

– c occurs exactly twice in π;

– σ′ is the body of some rotation C of the simple cycle C′ corresponding to

the subpath of π located between the two occurrences of c;

– c′ = first(C).

It follows that C is a simple cycle that is reachable in the control graph of A.

2

Computing all the simple cycles in the control graph can be a very inefficient

strategy. This is illustrated in Figure 3.7 which shows how to build, for any N ≥ 1,

a control graph with 2N transitions and N2N distinct simple cycles. Executing the

algorithm of Figure 3.6 on such a control graph would take O(N22N) time, since

each cycle is of length N and is produced transition by transition. It follows that

this strategy can only be applied in practice if the control graph is small, or belongs

to a specific class of graphs for which the cycle-search algorithm is more efficient

than for arbitrary graphs.

Restriction to Syntactic Cycles

In some practical applications, SMAs are derived from specifications written in high-

level modeling languages. Turning a high-level program into an SMA simply consists
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function META-SYNTACTIC(SMA A) : set of meta-transitions

1: var meta-transitions : set of meta-transitions;

2: begin

3: meta-transitions := ∅;

4: for each (c, σ) ∈ SYNTACTIC-CYCLES(A) do

5: if META?(σ) then meta-transitions := meta-transitions ∪ {(c, σ∗, c)};

6: return meta-transitions

7: end.

Figure 3.8: Creation of cycle meta-transitions from syntactic cycles.

of expressing its flow of control as a control graph, and converting its instructions into

transitions. If the syntax of the high-level language contains specific constructs for

defining loops, such as the “for”, “while” and “repeat” statements of Pascal [Wir71],

then cycles corresponding to loops defined that way can be identified with little

additional cost during the translation of the program into an SMA.

The strategy consists of associating a meta-transition to each syntactically iden-

tified cycle (or, in short, syntactic cycle) satisfying the predicate META?. The

procedure is formalized in Figure 3.8. In this program, SYNTACTIC-CYCLES(A)

denotes the set of all the pairs (c, σ) such that σ is the sequence of operations labeling

a syntactic cycle in the control graph of A, and c is the first control location visited

by that cycle. In actual implementations, SYNTACTIC-CYCLES is computed by

the syntactic analyzer of the compiler used to translate programs into SMAs.

3.4.2 Multicycle Meta-Transitions

The concept of cycle meta-transitions can be generalized. If several cycles are start-

ing from the same control location, then the multicycle meta-transition associated

to those cycles is a meta-transition whose effect is equivalent to following any of

them any number of times, in any order. Formally, it is defined as follows.

Definition 3.9 Let A = (C, c0,M,m0,Op, T ) be an SMA, and

C1 = (c1,1, θ1,1, c1,2), . . . , (c1,k1, θ1,k1 , c1,1),

C2 = (c2,1, θ2,1, c2,2), . . . , (c2,k2, θ2,k2 , c2,1),
...

Cl = (cl,1, θl,1, cl,2), . . . , (cl,kl
, θl,kl

, cl,1) ⊆ T,
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with l ≥ 1, k1, k2, . . . kl ≥ 1 and c1,1 = c2,1 = · · · = cl,1, be cycles in its control

graph. The multicycle meta-transition associated to the set {C1, C2, . . . , Cl} is the

meta-transition (c1,1, f, c1,1), with

f : 2M → 2M : U 7→
⋃

i∈N

gi(U),

and

g : 2M → 2M : U 7→
⋃

1≤j≤l

body(Cj)(U).

Multicycle meta-transitions are valid meta-transitions, i.e., they satisfy the re-

quirements of Definition 3.1. Indeed, let (c, f, c) be the multicycle meta-transition

associated to the set of cycles {C1, C2, . . . , Cl}, with l ≥ 1. If U ⊆ M is a set of

memory contents and U ′ = f(U), then for every m′ ∈ U ′, there exist m ∈ U and

p ∈ N such that {m′} = gp({m}). From the definition of g, it follows that there ex-

ist l1, l2, . . . , lp ∈ {1, 2, . . . , l} such that m′ = body(Clp)(body(Clp−1)(· · · body(Cl1)(v))).

Since each cycle is a sequence of transitions starting and ending at the control loca-

tion c, we have (c,m) →∗
R (c,m′). The conditions of Definition 3.1 are thus fulfilled.

Just as for cycle meta-transitions, not all possible multicycle meta-transitions

can generally be considered, and thus a restriction needs to be imposed. One can

use a similar strategy to the one proposed in Section 3.4.1 by considering only sets

of cycles that are reachable in the control graph and generating only multicycle

meta-transitions whose memory function is computable over representable sets of

memory contents. In addition, one can also apply here the restrictions to simple or

to syntactic cycles in order to obtain only a finite number of meta-transitions.

There is however a minor difference. Even if there are only a finite number

of cycles to consider at a given control location, it is not convenient to test every

subset of them in order to check if the corresponding multicycle meta-transition is

computable (there may be exponentially many of them). In this case, the solution is

not a predicate for testing whether a particular set of cycles leads to a computable

meta-transition, but instead a function MULTI-META-SET that takes as arguments

the sequences of operations labeling a set of cycles starting at the same control

location, and returns a finite number of memory functions defining multicycle meta-

transitions that can be associated to those cycles.

The function MULTI-META-SET may be arbitrarily chosen, provided that it

satisfies the following conditions:

• MULTI-META-SET is computable over the finite sets of sequences of opera-

tions defined by the representation system;

• Let C1, C2, . . . , Cl (l ≥ 1) be cycles starting at the same control location c ∈ C.

MULTI-META-SET({body(C1), body(C2), . . . , body(Cl)}) is finite;
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• Every f ∈ MULTI-META-SET({body(C1), body(C2), . . . , body(Cl)}) is the mem-

ory function of a multicycle meta-transition corresponding to the cycles C1, C2,

. . . , Cl;

• There exists an algorithm for computing a representation of the set of memory

contents f(U), given a memory function f belonging to a set returned by

MULTI-META-SET and a representation of a set of memory contents U ;

• MULTI-META-SET is monotonous over the finite sets of sequences of opera-

tions labeling cycles that start at the same control location. This means that

for every sets S1, S2, the inclusion S1 ⊆ S2 implies MULTI-META-SET(S1) ⊆

MULTI-META-SET(S2). Intuitively this condition expresses the fact that if

it is possible to obtain the set of meta-transitions T̄ from the set of sequences

S1, then it should be possible to obtain at least all the elements of T̄ from any

superset of S1.

An algorithm for computing multicycle meta-transitions that can be added to

an SMA is given in Figure 3.9. This algorithm applies the simple-cycle restriction

strategy, but other strategies can be implemented by replacing SIMPLE-CYCLES

by the corresponding function at Line 5.

3.5 Dynamic Creation of Meta-Transitions

The state-space exploration technique presented in Section 3.3 proceeds by first

adding meta-transitions to an SMA, and then exploring the state space of the re-

sulting ESMA. Meta-transitions are created statically, i.e., without taking advantage

of the reachability information obtained during the state-space exploration.

It is however possible to create cycle (or, more generally, multicycle) meta-

transitions while the state-space exploration is being performed. This approach

has an advantage: the selection performed among the potential meta-transitions

guarantees that a finite set of multicycle meta-transitions for which the state-space

exploration terminates will always be obtained if such a set exists. The main draw-

back is that the technique is computationally expensive.

An algorithm for exploring the state space of an SMA by creating dynamically

multicycle meta-transitions is given in Figures 3.10 and 3.112. This algorithm per-

forms a breadth-first search in the state-space graph, while simultaneously carrying

out cycle detection in order to create meta-transitions. The idea is to keep with

each explored state a path leading to that state, provided that this path is only

composed of transitions. Precisely, the algorithm maintains a list explored-paths of

triples (σ, c, U) such that states(c, U) is the set of states reached at the end of an

2In this algorithm, suf(σ) denotes the set of all the suffixes of the sequence of transitions σ.
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function MULTI-META-SMA(SMA (C, c0, M, m0,Op, T )) : set of meta-transitions

1: var meta-transitions : set of meta-transitions;

2: cycles, current-cycles : sets of (control location,

sequence of memory operations);

3: begin

4: meta-transitions := ∅;

5: cycles := SIMPLE-CYCLES((C, c0, M, m0,Op, T ));

6: for each c ∈ C do

7: if (∃(c′, σ) ∈ cycles) such that c = c′ then

8: begin

9: current-cycles := {σ | (c, σ) ∈ cycles};

10: meta-transitions := meta-transitions ∪

{(c, f, c) | f ∈ MULTI-META-SET(current-cycles)}

11: end;

12: return meta-transitions

13: end.

Figure 3.9: Creation of multicycle meta-transitions.
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function REACHABLE-DYNAMIC(SMA (C, c0, M, m0,Op, T )) : set of states

1: var visited-states, recent-states : sets of states;

2: explored-paths, new-paths : sets of (sequence of transitions,

control locations, set of memory contents);

3: cycles : array[C] of sequences of operations;

4: meta-transitions : set of meta-transitions;

5: procedure store-cycles(sequence of transitions σ)

6: begin

7: for each C = (c1, θ1, c
′
1), . . . , (cl, θl, c

′
l) ∈ suf(σ) such that c1 = c′l do

8: cycles[c1] := cycles[c1] ∪ {body(C)}

9: end;

10: procedure explore-from(sequence of transitions σ, control location c,

set of memory contents U)

11: begin

12: for each (c′, f, c′′) ∈ meta-transitions such that c′ = c do

13: new-paths := new-paths ∪ {(⊥, c′′, f(U))};

14: for each (c′, θ, c′′) ∈ T such that c′ = c do

15: if σ = ⊥ then

16: new-paths := new-paths ∪ {(⊥, c′′, θ(U))}

17: else

18: begin

19: σ′ := σ, (c′, θ, c′′);

20: new-paths := new-paths ∪ {(σ′, c′′, θ(U))};

21: store-cycles(σ′)

22: end

23: end;

(. . . )

Figure 3.10: State-space exploration by dynamic creation of meta-transitions.
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(. . . )

24: begin (∗ REACHABLE-DYNAMIC ∗)

25: visited-states := ∅;

26: recent-states := {(c0, m0)};

27: explored-paths := {(ε, c0, {m0})};

28: for each c ∈ C do cycles[c] := ∅;

29: meta-transitions := ∅;

30: repeat

31: visited-states := visited-states ∪ recent-states;

32: new-paths := ∅;

33: for each (σ, c, U) ∈ explored-paths do explore-from(σ, c, U);

34: explored-paths := explored-paths ∪ new-paths;

35: recent-states := ∅;

36: for each (σ, c, U) ∈ explored-paths do

37: recent-states := recent-states ∪ states(c, U);

38: for each c ∈ C such that (∃(σ, c′, U) ∈ explored-paths)(c = c′) do

39: meta-transitions := meta-transitions

∪{(c, f, c) | f ∈ MULTI-META-SET(cycles[c])}

40: until recent-states ⊆ visited-states;

41: return visited-states

42: end.

Figure 3.11: State-space exploration by dynamic creation of meta-transitions (con-

tinued).
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exploration path π, and σ contains either the sequence of transitions corresponding

to π, or the special value ⊥ if π contains meta-transitions. Each time a control lo-

cation c is reached, the current exploration path is checked for occurrences of cycles

starting at c, and the possible meta-transitions corresponding to those cycles are

added to the system3. The breadth-first strategy followed here is different in two

points from the one implemented by the algorithm in Figure 3.3. First, reaching

a state that has previously been visited does not prevent the path leading to that

state from being further explored. Second, each iteration of the search attempts to

append a transition or a meta-transition to every exploration path obtained so far,

as opposed to only to the paths obtained as the result of the last iteration.

The motivation behind this modified strategy is twofold. First, since all the

existing transition paths are searched for cycles in increasing order of length, ev-

ery cycle whose detection is crucial for termination of state-space exploration will

eventually be detected. Second, since no exploration path is ever discarded, the

state-space exploration is guaranteed to terminate if there exists a finite set of mul-

ticycle meta-transition (not necessarily based on simple cycles) and a finite set of

exploration paths containing those meta-transitions that lead to all the reachable

states of the system (for those sufficient exploration paths will eventually be fol-

lowed). These arguments will be used in the sequel of this section in order to show

that dynamic state-space exploration is the most powerful strategy as far as ter-

mination is concerned. The algorithm of Figures 3.10 and 3.11, which is presented

here as a proof that a theoretical “best” strategy exists from the point of view of

termination, is however very inefficient and is thus not readily usable in practice.

Indeed, there may be a large number of explored paths leading to the same reachable

states. Some possible optimizations and approximations of this algorithm will be

discussed in Section 3.7.

The algorithm is correct thanks to the following result.

Theorem 3.10 Let A = (C, c0,M,m0,Op, T ) be an SMA such that the computation

of REACHABLE-DYNAMIC(A) terminates. The result of the computation contains

exactly all the reachable states of A.

Proof

• The result contains only reachable states. It is sufficient to show that at any

time during the computation, the variables visited-states and recent-states (if

defined) only contain reachable states. This is a consequence of the following

invariant:

3The meta-transitions are actually added at the end of each exploration step, in order to ensure

that for every k > 0, only a finite number of paths of length k are explored.
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– The variables new-paths and explored-paths only contain triples (σ, c, U)

such that states(c, U) is a set of reachable states, and σ contains either a

path of transitions leading to these states or the special value “⊥”, and

– For every c ∈ C, the variable cycles[c] contains a set of sequence of

operations labeling cycles of (C, T ) starting at c, and

– The variable meta-transitions only contains valid meta-transitions.

• The result contains all the reachable states. If the condition at Line 40 is

satisfied, then all the states visited by the call to Procedure explore-from at

Line 33 already belong to the set visited-states containing all the states visited

during the previous iterations of the main loop. This means that, at Line 41,

all the states that are reachable in one step from states in visited-states belong

to visited-states. Since visited-states contains the initial state, it follows that

this set contains all the reachable states of A.

2

The main advantage of the dynamic approach, which is that the state-space

search does always terminate if there exists a finite set of multicycle meta-transitions

(not necessarily based on simple cycles) for which static state-space exploration

terminates, is a consequence of the following theorem:

Theorem 3.11 Let A = (C, c0,M,m0,Op, T ) be an SMA. The symbolic state-

space exploration performed by REACHABLE-DYNAMIC(A) terminates if and only

if there exists a finite set T̄ of multicycle meta-transitions such that computing

REACHABLE(A′) by the algorithm of Figure 3.3, where A′ is the ESMA (C, c0,M,

m0,Op, T, T̄ ), terminates.

Proof

• If the computation of REACHABLE-DYNAMIC(A) terminates, then there

exists a terminating set of multicycle meta-transitions T̄ . Every reachable

state of A is reached during the computation of REACHABLE-DYNAMIC(A)

by following a path of transitions and/or meta-transitions whose length is

bounded. Let T̄ be the (finite) set containing all the meta-transitions fol-

lowed during the execution of REACHABLE-DYNAMIC. There exists an

upper bound on the depth of all the reachable states of the ESMA A′ =

(C, c0,M,m0,Op, T, T̄ ). From Theorem 3.5, it follows that the computation

of REACHABLE(A′) terminates.

• If there exists a terminating set of multicycle meta-transitions T̄ , then the

computation of REACHABLE-DYNAMIC(A) terminates. Suppose that there

exists such a set T̄ . Without loss of generality, we may assume that it contains
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only multicycle meta-transitions derived from reachable cycles (a cycle is reach-

able if there exists a reachable state from which the entire sequence of transi-

tions composing the cycle can be followed). Indeed, since unreachable cycles

are never followed during state-space exploration, ignoring them while creating

meta-transitions does not impact the computation of REACHABLE(A′).

Since T̄ contains a finite number of multicycle meta-transitions, each derived

from a finite number of reachable cycles, there exists an upper bound N on

the length of the shortest paths of transitions in the state space of A in which

the entire sequence of transitions composing the cycles is followed. If the

computation of REACHABLE-DYNAMIC(A) does not terminate, then all

such paths of transitions as well as all their prefixes can be found in the

first component of the triples belonging to explored-paths after Line 34 has

been executed N times. It follows that all the cycles that have been entirely

followed by those paths have been detected by Procedure store-cycles, and

that the sequences of operations labeling them belong to the variables cycles

(which are indexed with respect to the control location at which cycles start).

It follows that for each meta-transition t̄ ∈ T̄ , Line 39 will eventually be

executed with cycles[c] containing at least all the cycles from which t̄ can

be derived. As a consequence, the variable meta-transitions will eventually

contain all the meta-transitions in T̄ .

By Theorem 3.5, all the reachable states of A can be explored by following

from the initial state a path of transitions and/or meta-transitions in T̄ of

bounded length (let N ′ be an upper bound on this length). After Line 34

has been executed N times, the variable explored-path still contains the triple

(ε, c0, {m0}). It follows that after Line 34 has been executed N +N ′ times, all

the paths of transitions and/or meta-transitions in T̄ of length less or equal to

N ′ have been explored. As a consequence, all the reachable states have been

explored, and the algorithm terminates at the next iteration of the main loop.

2

3.6 Example

The notions introduced in this chapter can be applied to the analysis of the example

described in Section 2.3. There are three simple cycles in the control graph of the

SMA depicted in Figure 2.1:

C1 = (c1, x1++, c1),

C2 = (c1, even(x1), c2), (c2, x2++, c1),

C3 = (c2, x2++, c1), (c1, even(x1), c2).
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Suppose that we have at our disposal a representation system for subsets of Z2 for

which META?(body(C1)) = META?(body(C2)) = T and META?(body(C3)) = F.

This means that it is possible to create two simple-cycle meta-transitions t̄1 =

(c1, f1, c1) and t̄2 = (c1, f2, c1), with f1 = (x1++)∗ and f2 = (even(x1), x2++)∗. Pre-

cisely, we have

f1 : 2Z
2
→ 2Z

2
: U 7→ {(v1 + k, v2) | (v1, v2) ∈ U ∧ k ∈ N},

f2 : 2Z
2
→ 2Z

2
: U 7→ {(v1, v2 + k) | (v1, v2) ∈ U ∧ k ∈ N

∧ (even(v1) ∨ k = 0)}.

Let A be the ESMA obtained by adding to the system the set of meta-transitions

{t̄1, t̄2}. The details of the computation of REACHABLE(A) by the algorithm of

Figure 3.3 are given in Figure 3.12. For each iteration of the main loop (Lines 6–15),

the value of recent-states at the beginning of the loop is given, followed by the list

of transitions and meta-transitions that are explored at Lines 10–13, and then by

the sets of states obtained after following those transitions and meta-transitions.

Suppose now that the representation system allows to define a multicycle meta-

transition associated to the cycles C1 and C2. We then have MULTI-SET({body(C1),

body(C2)}) = {t̄3}, with t̄3 = (c1, f3, c1), and

f3 : 2Z
2
→ 2Z

2
: U 7→ U ∪ {(v1, v2 + k2) | (v1, v2) ∈ U ∧ even(v1) ∧ k2 ∈ N}

∪ {(v1 + k1 + 1, v2 + k2) | (v1, v2) ∈ U ∧ k1, k2 ∈ N}.

Let A′ be the ESMA obtained by adding the meta-transition t̄3 to the system

of Figure 2.1. The details of the computation of REACHABLE(A′) are given in

Figure 3.13.

3.7 Discussion

In this chapter, we have studied cycle and multicycle meta-transitions. These aim at

capturing the infinite nature of the state-space resulting from the presence of cycles

in the control graph of the system.

Depending on the memory domain, there might be other types of meta-transi-

tions which could be of interest. An important example is the case of lossy systems,

which are systems whose memory contents may at any time undergo some change

(usually modeling loss of information over transmission channels). Translating a

non-lossy program into a lossy one can be done very simply by adding to each

control location a meta-transition expressing the possible losses at that location. As

an example, a technique for creating meta-transitions modeling the loss in systems

with lossy FIFO channels is presented in Chapter 7.

Using the techniques for creating meta-transitions proposed in this chapter in an

actual implementation is not straightforward. The main problem is efficiency, since
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1. (c1, {(0, 0)})
(c1,x1++,c1)

−→ (c1, {(1, 0)})
(c1,even(x1),c2)

−→ (c2, {(0, 0)})
t̄1=⇒ (c1, {(k1, 0) | k1 ∈ N})
t̄2=⇒ (c1, {(0, k2) | k2 ∈ N})

2. (c1, {(k1 + 1, 0) | k1 ∈ N} ∪ {(0, k2 + 1) | k2 ∈ N}), (c2, {(0, 0)})
(c1,x1++,c1)

−→ (c1, {(k1 + 2, 0) | k1 ∈ N} ∪ {(1, k2 + 1) | k2 ∈ N})
(c1,even(x1),c2)

−→ (c2, {(2k1 + 2, 0) | k1 ∈ N} ∪ {(0, k2 + 1) | k2 ∈ N})
t̄1=⇒ (c1, {(k1, k2) | k1, k2 ∈ N ∧ (k1 6= 0 ∨ k2 6= 0)})
t̄2=⇒ (c1, {(2k1, k2) | k1, k2 ∈ N ∧ (k1 6= 0 ∨ k2 6= 0)}

∪ {(k1 + 1, 0) | k1 ∈ N})
(c2,x2++,c1)

−→ (c1, {(0, 1)})

3. (c1,N
2
0), (c2, {(2k1 + 2, 0) | k1 ∈ N} ∪ {(0, k2 + 1) | k2 ∈ N})

(c1,x1++,c1)
−→ (c1, {(k1 + 2, k2 + 1) | k1, k2 ∈ N})

(c1,even(x1),c2)
−→ (c2, {(2k1 + 2, k2 + 1) | k1, k2 ∈ N})
t̄1=⇒ (c1,N

2
0)

t̄2=⇒ (c1,N
2
0)

(c2,x2++,c1)
−→ (c1, {(2k1 + 2, 1) | k1 ∈ N} ∪ {(0, k2 + 2) | k2 ∈ N})

4. (c2, {(2k1 + 2, k2 + 1) | k1, k2 ∈ N})
(c2,x2++,c1)

−→ (c1, {(2k1 + 2, k2 + 2) | k1, k2 ∈ N})

Reachable states: (c1,N
2), (c2, {(2k1, k2) | k1, k2 ∈ N}).

Figure 3.12: Example of state-space exploration with simple-cycle meta-transitions.
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1. (c1, {(0, 0)})
(c1,x1++,c1)

−→ (c1, {(1, 0)})
(c1,even(x1),c2)

−→ (c2, {(0, 0)})
t̄3=⇒ (c1,N

2)

2. (c1, {(k1, k2) | k1, k2 ∈ N ∧ (k1 6= 0 ∨ k2 6= 0)}), (c2, {(0, 0)})
(c1,x1++,c1)

−→ (c1, {(k1 + 1, k2) | k1, k2 ∈ N ∧ (k1 6= 0 ∨ k2 6= 0)})
(c1,even(x1),c2)

−→ (c2, {(2k1, k2) | k1, k2 ∈ N ∧ (k1 6= 0 ∨ k2 6= 0)})
t̄3=⇒ (c1, {(k1, k2) | k1, k2 ∈ N ∧ (k1 6= 0 ∨ k2 6= 0)})

(c2,x2++,c1)
−→ (c1, {(0, 1)})

3. (c2, {(2k1, k2) | k1, k2 ∈ N ∧ (k1 6= 0 ∨ k2 6= 0)})
(c2,x2++,c1)

−→ (c1, {(2k1, k2 + 1) | k1, k2 ∈ N ∧ (k1 6= 0 ∨ k2 6= 0)})

Reachable states: (c1,N
2), (c2, {(2k1, k2) | k1, k2 ∈ N}).

Figure 3.13: Example of state-space exploration with multicycle meta-transitions.

it is probably more interesting in practice to obtain quickly a limited set of meta-

transitions than to wait essentially forever for a set that guarantees termination.

A positive point is that meta-transitions can be freely chosen, as far as they are

consistent with Definition 3.1. A pragmatic solution is to allow the user to define

some bounds, such as for instance a maximum number of cycle or multicycle meta-

transition allowed per strongly connected component of the control graph. Heuristics

could then be used to select between potential meta-transitions. Another solution

is to let the user interact with the creation of meta-transitions.

The problem has similarities with the case of optimizing compilers [AU72], for

which loop detection provides a way of optimizing code. In this context, efficiency

is unhesitatingly preferred to a guarantee that every potential optimization is per-

formed. Although a comparison of the two domains might yield interesting ideas

for creating meta-transitions, those issues extend well beyond the scope of this work

and are not further discussed here.

In the same way, the algorithm REACHABLE-DYNAMIC was introduced in

Section 3.5 as a proof that a best state-space exploration strategy exists as far as

termination is the primary concern, but does not straightforwardly translate into a

usable implementation of dynamic state-space exploration. Indeed, the guarantee

that the algorithm will terminate at least as often as any static state-space explo-

ration algorithm was obtained at the cost of detecting every cycle and exploring

every path up to a given depth in the state space. This leads to excessive time and

space requirements, since the state space usually contains a considerable number
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of cycles of a given length as well as a large number of paths leading to the same

reachable state. In practice, there are two approaches to reducing the cost of dy-

namic exploration. The first is to impose restrictions on the cycles that are detected

and on the paths that are explored during the state-space search. For instance, one

may create only a bounded number of meta-transitions for each strongly connected

component of the state-space graph, and only explore paths that do not visit the

same state more than a given number of times. The second approach is to restrict

the set of memory operations that can label transitions of the system, in such a way

that considering a restricted set of cycles and of exploration paths is then sufficient

for exploring totally the state-space in a finite amount of time. Those approaches

are not addressed in this thesis.
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Chapter 4

Properties

This chapter shows that state-space exploration (as introduced in Chapter 3) can

be used to check various types of properties of programs modeled as SMAs. These

properties are studied here independently of the memory domain of the SMAs, under

the hypothesis that a well suited representation system is available for the sets of

memory contents. For each algorithm discussed in this chapter, if there are specific

additional memory operations that are required for implementing the algorithm for

a particular domain, they will be pointed out.

4.1 Reachability Properties

In Chapter 3, we presented semi-algorithms for computing the set QR of reachable

states of an SMA A = (C, c0,M,m0,Op, T ). This set is returned as a finite list of

pairs (control location, set of memory contents), where the sets of memory contents

are represented with the help of a representation system well suited for A. If the

computation of QR terminates, then there are properties of A that can be decided

on the sole basis of the information contained in QR.

Let QP be a set of states represented as a finite list of pairs (control location, rep-

resentation of a set of memory contents). The general reachability problem consists

of determining, given QP , whether this set contains at least one reachable state. A

simple solution to this problem consists of testing the emptiness of the intersection

QP ∩ QR (this operation can be performed as explained in Section 3.2.2). Indeed,

there exists at least one reachable state in QP if and only if QP ∩ QR 6= ∅. The uni-

versal reachability problem consists of determining, given QP , whether all the states

belonging to QP are reachable. This problem can be solved by testing the inclusion

QP ⊆ QR. The restricted reachability problem consists of determining whether a

given state qP of A is reachable or not. This problem can be reduced to the general

reachability by taking QP = {qP}.

The boundedness problem consists of determining, given a control location c and

43
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a variable xi, whether the set of values that xi can take at c is finite or not. Let

πi(U) denote the projection of a set of memory contents U ⊆ M over the domain

Di of xi, i.e., let πi(U) = {vi | (∃v1, . . . , vi−1, vi+1, . . . , vn)((v1, . . . , vn) ∈ U)}. The

boundedness problem can be solved by checking whether the set πi(values(QR, c))

is finite or not. This requires the ability to compute projections of represented sets

of memory contents, as well as to decide the finiteness of such sets.

4.2 Deadlock Detection

Let A be an SMA. A state of A is a deadlock state if it is reachable, and if there is no

state that can be reached in one step from that state (in other words, if there is no

transition that can be followed from that state). For systems that are not intended

to halt, such as those controlled by reactive programs, the presence of deadlocks is

the reflect of design flaws. Indeed, if there is a deadlock, then it is possible for the

system to reach a state from which no further action can be performed.

The general deadlock detection problem consists of computing the set of deadlock

states of an SMA A = (C, c0,M,m0,Op, T ). This problem can be solved as follows.

We require every transition (c, θ, c′) ∈ T to be such that the domain complement

dom(θ) = {v ∈M | θ(v) = ⊥} of the function θ is representable (intuitively, dom(θ)

is the set of all the memory contents from which the transition cannot be followed).

In addition, it must be possible to compute a representation of dom(θ) from the

specification of θ. The set QD of all the deadlock states of A can then be obtained

by computing the intersection of the set of reachable states and of the set of all the

states from which no transition can be followed. Formally, we have

QD = QR ∩
⋃

c∈C

⋂

(c,θ,c′)∈T

states(c, dom(θ)).

Since there are only finitely many transitions in T , this formula allows one to easily

compute a representation of QD from a representation of QR.

4.3 Temporal Properties

The properties studied in Sections 4.1 and 4.2 can be decided on the sole basis of the

set of reachable states of the model. In this section, we investigate whether more

elaborate properties can be checked. More precisely, we study properties of infinite

computations of SMAs. Recall that an infinite computation is an infinite sequence

q0, q1, . . . of states such that q0 is the initial state, and qi →R qi+1 for every i ∈ N.

In this context, a property P of an SMA A is a (possibly infinite) set of infinite

sequences of states. The SMA A satisfies P, which is denoted A |= P, if each of its

infinite computations belongs to P.
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4.3.1 Linear-Time Temporal Logic

Linear-time Temporal Logic, or LTL, is a language for specifying properties of in-

finite computations [Eme90, MP92]. In LTL, one can express properties such as

“some given condition will eventually be satisfied forever” or “some condition will

be satisfied infinitely often”, which are not expressible solely in terms of the set of

reachable states of the system. LTL properties are expressed as formulas. Let Λ be

a finite set of atomic propositions. The syntax of LTL formulas is defined as follows:

• Every atomic proposition a ∈ Λ is an LTL formula;

• If ψ1 and ψ2 are LTL formulas, then so are ψ1 ∧ ψ2, ψ1 ∨ ψ2 and ψ1 U ψ2;

• If ψ1 is an LTL formula, then so are (ψ1), ¬ψ1, ©ψ1, 2ψ1 and 3ψ1.

The semantics of an LTL formula is defined with respect to a structure (Γ, L),

where Γ is a set of states and L : Γ → 2Λ is a labeling function that associates to

each state the set of atomic propositions that are true in that state. The truth value

of an LTL formula is then defined with respect to pairs of the form (γ, i), where

γ : N0 → Γ is an infinite sequence of states, and i ∈ N0 is the index of a state γi in

γ. Intuitively, since an infinite sequence of states can be seen as a sequence of state

changes occurring at discrete time points, the index i defines the time instant at

which the truth value of the formula is evaluated. The fact that the LTL formula ψ

is true at the time instant i in the infinite sequence of states γ is denoted (γ, i) |= ψ.

For each infinite sequence of states γ = γ1, γ2, . . . and time instant i ∈ N0, we define

that:

• An atomic proposition a ∈ Λ is true at the time instant i in γ if and only if a

is true in the state γi. Formally, we have (γ, i) |= a iff a ∈ L(γi);

• A formula of the form ψ1 ∧ ψ2, ψ1 ∨ ψ2, (ψ1) or ¬ψ1 is true whenever the

appropriate Boolean combination of the truth values of its sub-formulas ψ1

and ψ2 is true. Formally, we have

(γ, i) |= ψ1 ∧ ψ2 iff ((γ, i) |= ψ1) and ((γ, i) |= ψ2),

(γ, i) |= ψ1 ∨ ψ2 iff ((γ, i) |= ψ1) or ((γ, i) |= ψ2),

(γ, i) |= (ψ1) iff (γ, i) |= ψ1,

(γ, i) |= ¬ψ1 iff ¬((γ, i) |= ψ1);

• A formula of the form ψ1 U ψ2 is true at the time instant i in γ if and only

if the formula ψ2 is true at some time instant j greater or equal to i, and

the formula ψ1 is true at all the time instants greater or equal to i and less

than j. The temporal operator “U ” is thus used to express a condition that
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must always be satisfied until another condition becomes satisfied and is read

“until”. Formally, we have (γ, i) |= ψ1 U ψ2 iff (∃j ≥ i)((γ, j) |= ψ2 ∧ (∀k, i ≤

k < j)((γ, k) |= ψ1));

• A formula of the form ©ψ1 is true at the time instant i in γ if and only if

the formula ψ1 is true at the time instant i + 1 in γ. The temporal operator

“©” is thus used to express a condition that must be satisfied at the next time

instant and is read “next”. Formally, we have (γ, i) |= ©ψ1 iff (γ, i+ 1) |= ψ1;

• A formula of the form 2ψ1 is true at the time instant i in γ if and only if the

formula ψ1 is true at all the time instants greater or equal to i. The temporal

operator “2” is thus used to express a condition that must always be satisfied

at the present and future time instants and is read “always”. Formally, we

have (γ, i) |= 2ψ1 iff (∀j ≥ i)((γ, j) |= ψ1);

• A formula of the form 3ψ1 is true at the time instant i in γ if and only

if the formula ψ1 is true at some time instant greater or equal to i. The

temporal operator “3” is thus used to express a condition that must eventually

be satisfied at some present or future time instant and is read “eventually”.

Formally, we have (γ, i) |= 3ψ1 iff ¬((γ, i) |= 2¬ψ1) iff (∃j ≥ i)((γ, j) |= ψ1).

We say that an infinite sequence of states γ satisfies the LTL formula ψ, which

is denoted γ |= ψ, if it is such that (γ, 1) |= ψ. The property expressed by ψ

with respect to the structure (Γ, L) is the set of all the infinite sequences of states

γ : N0 → Γ such that γ |= ψ.

LTL formulas can also be interpreted over the computations of an SMA A =

(C, c0,M, m0,Op, T ). This is done by defining a function g : S → Γ that associates

to each state of A a state in Γ. The LTL formula ψ is then said to be satisfied by

the infinite computation q0, q1, . . . ∈ Sω of A if it is such that g(q0), g(q1), . . . |= ψ.

The property of A expressed by ψ is the set of all the infinite computations of A

satisfying ψ. In practice, one can simply define g and the structure (Γ, L) by giving

for each atomic proposition a ∈ Λ a computable predicate

Pa : C ×M → {T,F} : q 7→

{

T if a ∈ L(g(q)),

F if a 6∈ L(g(q)).

mapping each state of A onto the truth value of a at that state.

4.3.2 Büchi Automata

Another way of specifying properties of infinite computations is to express them as

finite-state automata on infinite words [Büc62, Mul63, Tho90]. Roughly speaking,

the idea is to represent a property by an automaton accepting exactly all the infinite

sequences of states that satisfy the property.
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We use the finite automata on infinite words introduced by Büchi [Büc62]. A

Büchi automaton B is a tuple (Σ, S,∆, s0, F ), where

• Σ is a finite alphabet;

• S is a finite set of states;

• ∆ ⊆ S × Σ × S is a non-deterministic transition relation;

• s0 ∈ S is an initial state;

• F ⊆ S is a set of accepting states.

A run of B over an infinite word w = a0a1 · · · ∈ Σω is an infinite sequence of

states s0, s1, . . . such that s0 is the initial state of B, and (si, ai, si+1) ∈ ∆ for every

i ∈ N. A run s0, s1, . . . is accepting if there are infinitely many i ∈ N such that

si ∈ F . The infinite word w ∈ Σω is accepted by B if B has an accepting run on w.

The set L(B) of all the infinite words accepted by B is the language accepted by B.

The property expressed by B is defined with respect to a finite set Λ of atomic

propositions and a labeling function L : Σ → 2Λ that associates to each symbol in

the alphabet of B the set of atomic propositions that are true for that symbol. The

property P expressed by B is then the set

P = {L(a0), L(a1), L(a2), . . . ∈ (2Λ)ω | (∃a0, a1, a2, . . . ∈ Σ)(a0a1a2 · · · ∈ L(B))}

of all the sequences of interpretations of atomic propositions that are associated to

words accepted by B. We say that an infinite sequence of interpretations λ ∈ (2Λ)ω

satisfies the property P expressed by B, which is denoted λ |= P, if we have λ ∈ P.

Properties expressed by Büchi automata can also be interpreted over the com-

putations of an SMA A = (C, c0,M,m0,Op, T ). This is done by defining a func-

tion g : S → 2Λ that associates to each state of A a set of atomic propositions

that are true at that state. The property P expressed by a Büchi automaton B

is then said to be satisfied by the infinite computation q0, q1, . . . ∈ Sω of A if it

is such that g(q0), g(q1), . . . |= P. The property of A expressed by B is the set of

all the infinite computations of A satisfying P. Like for LTL formulas, one can

simply define g by giving for each atomic proposition a ∈ Λ a computable predicate

Pa : C ×M → {T,F} mapping each state of A onto the truth value of a at that

state.

The properties of SMAs that can be expressed as Büchi automata are said to be

ω-regular. It is shown in [VW94] that the class of properties that can be expressed in

LTL is a strict subset of the class of ω-regular properties. The proof is constructive

and yields an algorithm for converting any LTL property into a Büchi automaton.

This result is very useful in practice, since it is often convenient for algorithms to

work with automata, even though it can be more natural for humans to specify
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p

¬p

¬p

¬p

Figure 4.1: Büchi automaton.

properties as LTL formulas. In addition, this approach is compatible with arbitrary

extensions of LTL, provided that they allow the translation of formulas into Büchi

automata [Wol83]. The translation of an LTL formula ψ into a Büchi automaton is

of size O(2|ψ|) and can be computed in time O(2|ψ|), where |ψ| denotes the number

of symbols composing ψ.

4.3.3 Example

Let us consider the SMA A = (C, c0,M,m0,Op, T ) depicted in Figure 2.1. The prop-

erty P = “x2 is not infinitely often odd” is not satisfied by A. Indeed, this automa-

ton admits the infinite computation (c1, (0, 0)), (c2, (0, 0)), (c1, (0, 1)), (c1, (1, 1)),

(c1, (2, 1)), (c1, (3, 1)), . . ., in which the value of x2 is infinitely often equal to 1.

The property P can be expressed as the LTL formula “¬23 p”, where the

atomic proposition p is associated with the state predicate Pp, defined as

Pp : C ×M → {T,F} : (c, (v1, v2)) 7→

{

T if v2 is odd,

F if v2 is even.

The property P can equivalently be expressed as the LTL formula “3 2¬p”, which

literally translates into “x2 will eventually be always even”. Indeed, a sequence of

states (c1, (v1,1, v2,1)), (c2, (v1,2, v2,2)), . . . satisfies P if and only if there exists i ∈ N0

such that v2,j is even for every j > i.

A Büchi automaton B expressing P is given in Figure 4.1. Its alphabet contains

the symbols p and ¬p, which are respectively associated with the predicates Pp (as

defined above) and ¬Pp (the complement of Pp). The language L(B) accepted by B

is the set of all the infinite words over the alphabet {p,¬p} containing only finitely

many p symbols.
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4.4 Model Checking

Let A be an SMA. The model-checking problem consists of determining, given a

property P expressed as an LTL formula or as a Büchi automaton, whether A

satisfies P. We will first present a classical solution to this problem, the automata-

theoretic approach [VW86], which is applicable to systems with a finite state space.

For systems with an infinite state space, it is known that model checking is undecid-

able if the memory domain is sufficiently expressive [EN94, Fin94, HKPV95, CFI96,

ACJT96, AJ96, Esp97]. For such systems, we will give a partial solution based on

an extension of the automata-theoretic approach.

4.4.1 Finite-State Systems

If A has a finite number of reachable states, then the model-checking problem can

be solved by performing the following operations:

1. Building a Büchi automaton B¬P accepting the complement of P (the set of

all the words whose corresponding sequence of propositional interpretations

does not belong to P);

2. Computing the product BA,¬P = A× B¬P , which is a Büchi automaton such

that each of its accepting runs corresponds to an infinite computation of A

accepted by B¬P ;

3. Checking whether the language accepted by BA,¬P is empty or not. L(BA,¬P)

is empty if and only if A does not have an infinite computation that is accepted

by B¬P , hence if and only if A satisfies P.

Carrying out the first step is easy. If P is specified as an LTL formula, then

all one has to do is to translate ¬P (which is also an LTL formula) into a Büchi

automaton (this can be done with the algorithm given in [GPVW95]). If P is

expressed as a Büchi automaton BP , then one has to complement this automaton,

i.e., to build an automaton accepting the complement of L(BP). Algorithms for

complementing Büchi automata can be found in [Büc62, Péc86, SVW87, Saf88].

The complementation operation can be quite costly; indeed, the automata returned

by the nearly optimal algorithm presented in [Saf88] are of size 2O(N logN), where N

is the number of transitions of BP .

The second step is performed as follows. Let A = (C, c0,M,m0,Op, T ), B¬P =

(Σ¬P , S¬P ,∆¬P , s0¬P , F¬P), let (Q, q0, R) be the semantics of A, and let QR be the

set of reachable states of A (finite by hypothesis). The product A×B¬P is the Büchi

automaton B = (Σ, S,∆, s0, F ), where:

• Σ = {τ} (the alphabet of B contains a single dummy symbol τ . B can indeed

be seen as an inputless Büchi automaton);
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• S = QR × S¬P (the set of states of B is the Cartesian product of the (finite)

set of reachable states of A and of the set of states of B¬P);

• ∆ = {((c1, m1, s1), τ, (c2, m2, s2)) ∈ S × Σ × S | (∃a ∈ Σ¬P)((c1, m1) →R

(c2, m2) ∧ (s1, a, s2) ∈ ∆¬P ∧ Pa((c1, m1)))}, where Pa is the state predicate

of B¬P associated to the symbol a (there is a transition between two states of

B if and only if there are transitions between the corresponding states of A

and of B¬P , and the appropriate state predicate is satisfied);

• s0 = (c0, m0, s0¬P) (the initial state of B is composed of the initial states of A

and of B¬P);

• F = QR×F¬P (a state of B is accepting if and only if the corresponding state

of B¬P is accepting).

This construction is correct thanks to the following result.

Theorem 4.1 Let (c1, m1), (c2, m2), . . . be states of A. The automaton B = A×B¬P

has an accepting run of the form (c1, m1, s1), (c2, m2, s2), . . ., where s1, s2, . . . are

states of B¬P , if and only if the infinite sequence of states (c1, m1), (c2, m2), . . . is an

infinite computation of A that does not satisfy P.

Proof The relationship between the runs of B and the infinite computations of A

is immediate by construction. 2

As a direct consequence of the previous construction, the number of transitions

composing B can be as large as O(NANB¬P
), where NA and NB¬P

denote respectively

the number of edges in the state space of A, and the number of transitions of B¬P .

It remains to show how to perform the third step of the model-checking proce-

dure, which consists of determining whether the language accepted by the Büchi

automaton B = (Σ, S,∆, s0, F ) is empty or not. This can be done by perform-

ing a reachability analysis in the graph (S,∆). First, one computes the maximal

strongly connected components of this graph (a strongly connected component is a

set of nodes such that any of them is reachable from all of them). Next, one checks

whether there exists an accepting state reachable from s0 which belongs to a non

trivial1 strongly connected component. Indeed, B has an accepting run if and only

if there exists an accepting state that is reachable from the initial state, and reach-

able from itself by following at least one transition. If properly implemented, those

operations can be performed in O(|∆|) time, where |∆| is the number of transitions

of B [Tar83]. A nice optimization of this method that avoids explicitly constructing

the maximal strongly connected components and uses only O(|S|) space, where |S|

is the number of states of B, is presented in [CVWY92].

1A strongly connected component is non trivial if its nodes are linked to each other by at least

one transition.
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In practice, there is no need for building and storing the product automaton

B = A × B¬P in its entirety. Instead, this automaton can be generated on-the-fly,

meaning that the states and transitions that are needed during the test of emptiness

at Step 3 can be produced on demand rather than systematically.

4.4.2 Infinite-State Systems

The automata-theoretic approach cannot be applied straightforwardly to the model

checking of infinite-state systems. The main problem is that the product of an SMA

with an infinite number of reachable states by a Büchi automaton does not necessar-

ily have a finite number of states, and thus cannot always be expressed as a Büchi

automaton. The solution is to express this product as a Structured-Memory Büchi

Automaton, which is an SMA associated with an accepting condition on its control

locations. Structured-Memory Büchi Automata are finite representations of infinite-

state machines accepting infinite words, just like Structured-Memory Automata are

finite representations of infinite-state systems.

Formally, a Structured-Memory Büchi Automaton (or SMBA in short), is a tuple

(C, c0,M,m0,Op, T, F ), where:

• (C, c0,M,m0,Op, T ) is an SMA;

• F ⊆ C is a finite set of accepting control locations.

The notions of control location, memory domain, memory content, state, initial

state, one-step reachability and reachable states of an SMBA B = (C, c0,M,m0,Op,

T, F ) are defined identically to those of its underlying SMA (C, c0,M,m0,Op, T ).

A run of B is an infinite sequence of states (c0, m0), (c1, m1), . . . such that (c0, m0)

is the initial state of B, and (ci, mi) →R (ci+1, mi+1) for every i ∈ N, where R is

the one-step reachability relation of B. The run is said to be accepting if there are

infinitely many i ∈ N such that ci ∈ F . The set L(B) of all the accepting runs of B

is the language accepted by B.

Checking whether an infinite-state SMA A satisfies a property P can be done as

follows. The procedure is an extension of the automata-theoretic approach to model

checking for finite-state SMAs.

1. One builds a Büchi automaton B¬P accepting the complement of P;

2. One computes the product BA,¬P = A × B¬P , which is an SMBA such that

each of its accepting runs corresponds to an infinite computation of A accepted

by B¬P ;

3. One checks whether the language accepted by BA,¬P is empty or not. This

language is empty if and only if A satisfies P.
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The first step is identical to the first step of the model-checking method for

finite-state systems introduced in Section 4.4.1.

The second step is performed as follows. Let A = (CA, c0A,MA, m0A,OpA, TA)

and B¬P = (Σ¬P , S¬P ,∆¬P , s0¬P , F¬P). The product A × B¬P is the SMBA B =

(C, c0,M,m0, Op, T, F ), where:

• C = CA × S¬P (each potential state of B is composed of a control location of

A, and a state of B¬P);

• c0 = (c0A, s0¬P) (the initial control location of B is composed of the initial

control location of A and the initial state of B¬P);

• M = MA (the memory domain of B is identical to the one of A);

• m0 = m0A (the initial memory content of B is identical to the one of A);

• Op = {Pa,c ∩ θ | c ∈ CA ∧ a ∈ Σ¬P ∧ θ ∈ OpA}, where Pa,c denotes the

predicate satisfied by every memory content m ∈M such that (c,m) satisfies

the state predicate Pa. The symbol “∩” denotes the intersection of functions.

Formally, for every control location c ∈ CA, symbol a ∈ Σ¬P and operation

θ ∈ OpA, we have

Pa,c ∩ θ : M →M : m 7→

{

θ(m) if Pa((c,m)),

⊥ if ¬Pa((c,m)).

Intuitively, the operations labeling the transitions of B are conjunctions of

operations labeling edges of the control graph of A and of state predicates of

BA,¬P ;

• T = {((c1, s1), Pa,c1 ∩ θ, (c2, s2)) | (∃a ∈ Σ¬P)((c1, θ, c2) ∈ TA ∧ (s1, a, s2) ∈

∆¬P)} (there is a transition between two states of B if and only if there is

an edge between the corresponding control locations of A and a transition

between the corresponding states of B¬P . The memory operation performed

while following that transition consists of executing the operation labeling

the edge of A, provided that the memory content satisfies the state predicate

associated to the transition of B¬P);

• F = CA × F¬P (a control location of B is accepting if and only if the corre-

sponding state of B¬P is accepting).

This construction is correct thanks to the following result.

Theorem 4.2 Let (c1, m1), (c2, m2), . . . be states of A. The automaton B = A×B¬P

has an accepting run of the form ((c1, s1), m1), ((c2, s2), m2), . . ., where s1, s2, . . . are

states of B¬P , if and only if the infinite sequence of states (c1, m1), (c2, m2), . . . is an

infinite computation of A that does not satisfy P.
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Proof The relationship between the runs of B and the infinite computations of A

is immediate by construction. 2

It remains to show how to perform the third step of the model-checking proce-

dure, which consists of determining whether the language accepted by the SMBA

B is empty or not. This problem, which is a crucial issue of infinite-state model

checking, is discussed in Section 4.5. As will be shown in that section, the test of

emptiness for SMBAs is undecidable for sufficiently expressive memory domains.

The solution will thus consist of a semi-decision procedure. The approach we will

propose is based on the state-space exploration of SMAs (as introduced in Chap-

ter 3). Systems for which a full decision procedure can be obtained will be studied

in Chapter 5.

As in the case of finite-state systems, there is no need for storing explicitly the

product automaton computed at the second step of the model-checking procedure;

the components of this automaton can be generated on demand by an on-the-fly

algorithm.

4.5 Testing the Emptiness of SMBAs

The problem investigated here consists of checking whether an SMBA has an accept-

ing run or not. As we will show, this problem cannot be fully solved if the memory

domain of the SMBA is sufficiently expressive. We first define precisely this notion

of expressiveness.

4.5.1 Expressiveness of Memory Domains

We characterize expressiveness by relating SMAs to Turing machines. A Turing

machine [Tur36, HU79] is a state machine with a finite control and an infinite

memory, the latter being structured as an unbounded tape. The tape is divided into

an infinite number of locations, each containing a symbol from a finite alphabet.

The content of the tape can thus be seen as a word over this alphabet. The tape

is accessed by means of a head, which can move forwards and backwards across

the tape reading and writing symbols. The location of the head together with the

tape content characterize the state of the memory of the Turing machine. We use

inputless Turing machines, which are machines whose tape content is initially empty.

Formally, a Turing machine is a tuple (Q,Γ, δ, q0,#, F ), where

• Q is a finite set of states;

• Γ is a finite tape alphabet;

• δ : Q×Γ → Q×Γ×{L,R} is a transition function (“L” and “R” respectively

indicate a left and a right move of the head);
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• q0 ∈ Q is an initial state;

• # ∈ Γ is a blank symbol;

• F ⊆ Q is a set of accepting states.

The semantics of a Turing machine (Q,Γ, δ, q0,#, F ) is defined in terms of con-

figurations. A configuration contains all the information needed for continuing the

execution of the machine, i.e., it is composed of the current state, the tape content,

and the position of the head. The initial configuration corresponds to the initial

state, a tape containing only blank symbols, and the head positioned at the left-

most location of the tape. At any time, only a finite number of tape locations have

been accessed by the machine, and thus the tape content can be unambiguously

characterized by one of its finite prefixes (such that the remaining tape locations

only contain blank symbols). Formally, a configuration is a triple (q, wL, wR), where

• q ∈ Q is a state;

• wL ∈ Γ∗ is the content of the tape between the leftmost location and the last

location before the head (those locations included);

• wR ∈ Γ∗ is the content of the tape between the head location and the last lo-

cation containing a non-blank symbol (those locations included), or the empty

string ε if, from the head location, the tape content is only composed of blank

symbols.

Let (q1, wL,1, wR,1) be a configuration, a ∈ Γ be the rightmost symbol of wL,1
(such that wL,1 = w′

L,1a, a being undefined if wL,1 = ε), and b be the leftmost symbol

of wR,1 (such that wR,1 = bw′
R,1, or such that b = # and w′

R,1 = ε if wR,1 = ε). A

configuration (q2, wL,2, wR,2) is reachable in one step from (q1, wL,1, wR,1), which is

denoted (q1, wL,1, wR,1) ⊢ (q2, wL,2, wR,2), if q1 6∈ F and

• δ(q1, b) = (q2, b
′, R), wL,2 = wL,1b

′ and wR,2 = w′
R,1, or

• δ(q1, b) = (q2, b
′, L), wL,1 6= ε, wL,2 = w′

L,1 and

– wR,2 = ab′w′
R,1 if b′ 6= # or w′

R,1 6= ε;

– wR,2 = a if a 6= #, b′ = # and w′
R,1 = ε;

– wR,2 = ε if a = #, b′ = # and w′
R,1 = ε.

The configuration (q, wL, wR) is reachable if there exist k ∈ N0 and (q1, wL,1,

wR,1), (q2, wL,2, wR,2), . . ., (qk, wL,k, wR,k) ∈ Q × Γ∗ × Γ∗ such that q1 = q0, wL,1 =

wR,1 = ε, qk = q, wL,k = wL, wR,k = wR, and (qi, wL,i, wR,i) ⊢ (qi+1, wL,i+1, wR,i+1)

for every i such that 0 < i < k. The longest (possibly infinite) sequence (q1, wL,1,
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wR,1), (q2, wL,2, wR,2), (q3, wL,3, wR,3), . . . of configurations such that q1 = q0, wL,1 =

wR,1 = ε and (qi, wL,i, wR,i) ⊢ (qi+1, wL,i+1, wR,i+1) for every i ∈ N0 is the execution

of the Turing machine. If this execution is finite (either because its last configuration

contains an accepting state, or because the transition function is not defined for the

last configuration), then the machine is said to halt.

We are now ready to relate SMAs to Turing machines. Roughly speaking, we

consider a class of SMAs to be “sufficiently expressive” if it is possible to simulate

every arbitrary Turing machine by an SMA belonging to the class. Formally, we

have the following definition.

Definition 4.3 Let M be a memory domain, and Op ⊆M → M be a set of mem-

ory operations. The pair (M,Op) is Turing-expressive if there exists a computable

function α converting every Turing machine M = (Q,Γ, δ, q0,#, F ) into an SMA

A = α(M) = (C, c0,M,m0,Op, T ) such that:

• Every state q ∈ Q is associated with a unique control location α(q) ∈ C;

• Every potential tape content w ∈ Γ∗(#)ω is associated with a set of corre-

sponding memory contents α(w) ⊆ M . For every w1, w2 ∈ Γ∗(#)ω such that

w1 6= w2, we have α(w1) ∩ α(w2) = ∅;

• α(q0) = c0 (the initial state of M is associated with the initial control location

of A);

• α((#)ω) = {m0} (the initial tape content of M, which is only composed of

blank symbols, is associated with the initial memory content of A);

• A configuration (q2, wL,2, wR,2) ∈ Q × Γ∗ × Γ∗ is reachable in one step from

a configuration (q1, wL,1, wR,1) ∈ Q × Γ∗ × Γ∗ if and only if a state of A

corresponding to the latter is reachable (not necessarily in one step) from a

state associated to the former. In other words, (q1, wL,1, wR,1) ⊢ (q2, wL,2, wR,2)

if and only if there exist m1 ∈ α(wL,1wR,1(#)ω) and m2 ∈ α(wL,2wR,2(#)ω)

such that

(α(q1), m1) →
∗
R (α(q2), m2),

where R is the reachability relation of A;

• T is deterministic, i.e., from every state in C ×M , there is at most one state

reachable in one step.

By extension, the set of all the SMAs sharing the same Turing-expressive pair of

memory domain and operations (M,Op) is called a Turing-expressive class of SMAs.

Turing-expressive classes of Structured-Memory Büchi Automata are defined simi-

larly.
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Unsurprisingly, most classes of SMAs used for modeling real-life systems are

Turing-expressive. In Chapters 7 and 8, we will recall well-known results stating

that SMAs using FIFO channels with send and receive operations and those using

integer variables with linear operations are both Turing-expressive.

4.5.2 Undecidability of the Emptiness Problem

Let us show that the emptiness problem cannot be solved for Turing-expressive

classes of SMBAs.

Theorem 4.4 Let (M,Op) be a Turing-expressive pair of memory domain and oper-

ations. The problem of determining whether an arbitrary SMBA using those domain

and operations has an accepting run is undecidable.

Proof The proof is by reduction from the halting problem for Turing machines.

Let M = (Q,Γ, δ, q0,#, F ) be a Turing machine. From this Turing machine, we

construct the SMBA B = (C, c0,M,m0,Op, T, F ′) such that

• (C, c0,M,m0,Op, T ) is the SMA obtained as a result of converting M as de-

scribed in Definition 4.3. Since (M,Op) is Turing-expressive, this conversion

can be performed algorithmically;

• F ′ contains all the control locations in C that are the image of a state of M

by the conversion function.

As a consequence of this construction and of Definition 4.3, B has an accepting run if

and only if M does not halt. Indeed, if B has an accepting run (c0, m0), (c1, m1), . . .,

then this run contains infinitely many ci associated to states of M. The run can

thus be translated into an infinite execution of M, and therefore M does not halt.

Reciprocally, if M does not halt, then it has an infinite execution which can be

translated into an accepting run of B.

The empty word halting problem for Turing machines (or, more precisely, its

complement) has thus been reduced to the emptiness problem for SMBAs. Since

the former is undecidable [HU79], the latter is undecidable as well. 2

4.5.3 Semi-Decision Procedure

From now on, we will assume that the SMBAs that we consider belong to Turing-

expressive classes. Theorem 4.4 implies that it is impossible to check algorithmically

all the runs of such an SMBA in order to determine whether its accepted language

is empty or not.

It is nonetheless possible to obtain a partial decision procedure, by only searching

for runs belonging to a restricted set (as opposed to all of them). The result would
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be an algorithm which might give out false negatives (failing to discover an accepting

run), but no false positives (finding an accepting run when there is none). Using such

an algorithm in the model-checking procedure introduced in Section 4.4.2 would yield

an algorithm that would be able to detect the presence of some errors (by establishing

that the property is not satisfied by the model), but not their absence. This is

consistent with our view of verification: we know that a proof of correctness for a

model does not translate into a certainty of correctness for the actual system unless

lots of hypotheses are assumed. As a full decision procedure cannot be obtained for

the class of models we consider, we argue that looking for as many types of errors

as possible is practically more useful than struggling to prove absolute correctness,

which is anyway hypothetical.

Let B = (C, c0,M,m0,Op, T, F ) be an SMBA. A run (c0, m0), (c1, m1), . . . of B

is accepting if there are infinitely many ci that belong to F . Since F is finite, this

implies that there is an accepting control location c ∈ F which is visited infinitely

often by the run, i.e., such that there are infinitely many i ∈ N for which ci = c.

The partial decision procedure we propose is based on the concept of meta-transition

introduced in Section 3.2.1. Sketchily, the idea consists of first associating some set

of meta-transitions to the underlying SMA A = (C, c0,M,m0,Op, T ) of B, obtaining

the ESMA A′ = (C, c0,M,m0,Op, T, T̄ ) and ESMBA2 B′. Then, one searches only

for sequences of states of B′ in which an accepting control location is visited infinitely

often by repeatedly following the same meta-transition.

There is a small problem with this approach, in that the existence of such a

sequence does not always imply that B has an accepting run. Let us consider an

example. Suppose that F = {c0}, and that T is empty. We can associate to A the

set T ′ = {t̄ } containing the trivial meta-transition t̄ = (c0, id, c0), where

id : 2M → 2M : U 7→ U

is the identity function (the meta-transition t̄ clearly satisfies the conditions of Defi-

nition 3.1). The infinite sequence of states (c0, m0), (c0, m0), . . . can then be obtained

by following repeatedly t̄ from the initial state of A′, even though this sequence does

not correspond to an accepting run of B. Indeed, there is no way of reaching (c0, m0)

from itself by following a nonempty path of transitions.

The solution is to impose that every time a state q2 is obtained from a state

q1 by following a meta-transition in T̄ , there must exist a nonempty sequence of

transitions in T going from q1 to q2. This leads to the following definitions.

Definition 4.5 A meta-transition (c1, f, c2) ∈ T̄ of A′ is open for the memory

content m1 ∈ M if there exists m2 ∈ M such that m2 ∈ f({m1}) and (c1, m1) →+
R

(c2, m2), where R is the one-step reachability relation of A′.

2An Extended SMBA, or ESMBA, is simply an SMBA associated with a finite set of meta-

transitions.
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Definition 4.6 A meta-transition (c1, f, c2) ∈ T̄ of A′ is repeatedly open for the

memory content m1 ∈ M if

• c1 = c2, and

• There exist m2, m3, . . . ∈ M such that for every i ∈ N0, mi+1 ∈ f({mi}) and

(ci, mi) →
+
R (ci+1, mi+1), where R is the one-step reachability relation of A′.

The partial decision procedure for checking the emptiness of B simply consists

of checking if there is a run in which a repeatedly open meta-transition is followed

from a reachable state whose control location is accepting. Indeed, if there ex-

ist c ∈ F and m ∈ M such that (c,m) is reachable as well as a meta-transition

(c, f, c) ∈ T̄ repeatedly open for m, then the previous definitions imply that there

exist m2, m3, . . . ∈M such that

(c0, m0) →
∗
R (c,m) →+

R (c,m2) →
+
R (c,m3) · · · .

Since c is accepting, this sequence defines an accepting run of B.

Testing the emptiness of SMBAs has thus been reduced to performing a reach-

ability analysis, followed by a search for repeatedly open meta-transitions. The

former problem has been studied in Chapter 3. Let us now address the latter one.

Checking exactly whether a meta-transition is repeatedly open for some given

memory content is in general impractical. Indeed, according to Definitions 4.5

and 4.6, the entire transition relation of the SMBA has to be taken into account in or-

der to check whether following the meta-transition amounts to following a nonempty

sequence of transitions. A more convenient approach consists of considering only

the part of the transition relation that is relevant to the meta-transition. For in-

stance, in the case of a cycle (see Section 3.4.1) or a multicycle (see Section 3.4.2)

meta-transition, only the transitions composing the cycle(s) from which the meta-

transition is derived may be taken into account. This leads to a sufficient condition

for repeated openness. The fact that this condition may be not necessary is not

at all problematic, since we know that checking for all potential accepting runs is

impossible anyway.

In practice, the search for repeatedly open meta-transitions is performed as fol-

lows. We associate to each meta-transition t̄ belonging to T̄ a set OPEN-SET(t̄) ⊆

M such that t̄ is known to be repeatedly open for each memory content belonging

to that set (this set can be chosen arbitrarily as far as correctness is concerned,

provided that the previous condition is satisfied). If no such set can be determined

at the time t̄ is created, or if the origin and destination control locations of the

meta-transition differ, then we have OPEN-SET(t̄) = ∅.

Checking whether there exists a meta-transition in T ′ that is repeatedly open

for a reachable memory content can now be done by first computing the set QR

of reachable states of A′, and then testing the emptiness of each set of the form
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function SMBA-EMPTY?(SMBA (C, c0, M, m0,Op, T, F ), set of meta-transitions T̄ ) : {F, ?}

1: var QR : set of states;

2: c : control location;

3: (c1, f, c2) : meta-transition;

4: begin

5: QR :=REACHABLE((C, c0, M, m0,Op, T, T̄ ));

6: for each c ∈ F such that values(QR, c) 6= ∅ do

7: for each (c1, f, c2) ∈ T̄ such that c1 = c2 = c do

8: if values(QR, c) ∩ OPEN-SET((c1, f, c2)) 6= ∅ then

9: return F;

10: return ?

11: end.

Figure 4.2: Test of emptiness for SMBAs.

values(QR, c) ∩ OPEN-SET(t̄), where c ∈ F is an accepting control location and

t̄ = (c, f, c) ∈ T ′ is a meta-transition.

A semi-algorithm implementing this semi-decision procedure is given in Fig-

ure 4.2. Its output values “F” and “?” respectively correspond to nonemptiness,

and inability to decide between emptiness and nonemptiness. Remark that termina-

tion is not guaranteed, since the computation of QR performed at Line 5 might not

terminate (the issue is discussed in Chapter 5). Of course, the call to REACHABLE

can be replaced by a call to any alternate function obtained in Chapter 3. The

correctness of the semi-algorithm is established by the following result.

Theorem 4.7 Let B = (C, c0,M,m0,Op, T, F ) be an SMBA, and let T̄ be a set of

meta-transitions for its underlying SMA (C, c0,M,m0,Op, T ). If the computation

of SMBA-EMPTY?((C, c0,M,m0,Op, T, F ), T̄ ) returns F, then B has an accepting

run.

Proof Immediate. 2

It remains to show how to obtain the sets OPEN-SET(t̄) during the creation of

meta-transitions. Specifically, we study cycle (see Section 3.4.1) and multicycle (see

Section 3.4.2) meta-transitions. We have the following definition.

Definition 4.8 Let A = (C, c0,M,m0,Op, T ) be an SMA. The sequence of opera-

tions σ ∈ Op∗ is iterable from a memory content m1 ∈M if there exist m2, m3, . . . ∈

M such that for every i ∈ N0, mi+1 = σ(mi). By extension, if C is a cycle in the
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control graph of A and t̄ is the cycle meta-transition associated to C, then t̄ is iterable

from m1 ∈M if the sequence body(C) is iterable from m1.

Intuitively, a cycle meta-transition is iterable from a given memory content if

its corresponding cycle can be followed repeatedly an unbounded number of times,

starting from that memory content. Clearly, if a cycle meta-transition is iterable

from a given memory content, then it is repeatedly open for that content. Indeed,

in Definition 4.8, if mi+1 = body(C)(mi) then (c,mi) →+
R (c,mi+1), where c ∈ C is

the control location at which C starts and R is the one-step reachability relation of

A. The result is then a consequence of Definitions 4.5 and 4.6.

It follows that a way of obtaining the set OPEN-SET(t̄) associated to a cycle

meta-transition t̄ consists of computing the set of memory contents from which t̄ is

iterable. The advantage is that this computation can be performed on the sole basis

of the transitions composing the cycle to which t̄ is associated, as opposed to the

entire transition relation of the SMA.

Practically, we require that the representation system used for sets of memory

contents defines a function ITERABLE : Op∗ → 2M mapping every sequence of

operations onto a representable set of memory contents from which this sequence

is known to be iterable. Once again, completeness is not essential, the only re-

quirements being that the sequence must be iterable from every memory content

belonging to the returned set, and that this set of memory contents must be repre-

sentable.

A similar approach can be followed with multicycle meta-transitions. The next

definition generalizes the notion of iterability to finite sets of sequences of operations.

Definition 4.9 Let A = (C, c0,M,m0,Op, T ) be an SMA. The set of sequences of

operations {σ1, σ2, . . . , σl} ∈ 2Op∗

(l ≥ 1) is iterable from a memory content m1 ∈

M if there exist m2, m3, . . . ∈M and j1, j2, . . . ∈ {1, 2, . . . , l} such that for every i ∈

N0, mi+1 = σji(mi). By extension, if {C1, C2, . . . , Cl} (l ≥ 1) is a set of cycles in the

control graph of A and t̄ is the multicycle meta-transition associated to this set, then

t̄ is iterable from m1 ∈ M if the set of sequences {body(C1), body(C2), . . . , body(Cl)}

is iterable from m1.

Intuitively, a multicycle meta-transition is iterable from a given memory content

if it is possible to follow repeatedly one of its corresponding cycles (not necessarily the

same at each iteration) an unbounded number of times, starting from that memory

content. Like in the case of cycle meta-transitions, it is clear that if a multicycle

meta-transition is iterable from a given memory content, then it is repeatedly open

for that content. The set OPEN-SET(t̄) associated to a multicycle meta-transition

t̄ can thus be obtained by computing the set of memory contents from which t̄ is

iterable.
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In practice, we require that the representation system used for sets of memory

contents defines a function MULTI-ITERABLE : 2Op∗

→ 2M mapping every finite

set of sequences of operations onto the representable set of memory contents from

which that set of sequences is known to be iterable. The requirements are here

that the set of sequences must be iterable from every memory content belonging

to the set returned by this function, and that this set of memory contents must

be representable. Algorithms implementing the functions ITERABLE and MULTI-

ITERABLE for two important memory domains (FIFO channels with send/receive

operations, and integers with linear operations) will be given in Chapters 7 and 8.
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Chapter 5

Termination

This chapter studies the termination conditions for the state-space exploration semi-

algorithms introduced in Chapter 3. It first shows that there does not exist a

decidable necessary and sufficient condition for termination, under some mild as-

sumptions on the class of systems being considered. Then, it gives an approximate

condition, in the form of a sufficient condition for termination. This condition is pre-

sented here independently from any memory domain, the memory operations that

one should be able to perform in order to decide this condition being clearly pointed

out. Since the sufficient condition can be decided from the syntax of the system,

it defines an algorithmically recognizable class of infinite-state systems for which

an exact reachability analysis can always be carried out. This chapter next gives

additional static conditions under which the LTL model-checking semi-algorithm

presented in Chapter 4 becomes a full algorithm (i.e., an exact decision procedure

which always terminates). Finally, this chapter describes a technique for optimizing

the control graph of a state machine in order to increase the possibility of satisfying

the terminating condition, while preserving other properties of interest.

5.1 Undecidability of Termination

In this section, we show that termination of symbolic state-space exploration by

the semi-algorithms of Chapter 3 is undecidable for sufficiently expressive classes of

infinite-state systems. Let us first consider the semi-algorithms REACHABLE and

REACHABLE-D introduced in Section 3.3. We have the following result.

Theorem 5.1 Let (M,Op) be a Turing-expressive pair of memory domain and op-

erations. The problems which consist of determining, given an arbitrary ESMA

A = (C, c0,M,m0,Op, T, T̄ ) using these memory domain and operations, whether

the computations of REACHABLE(A) and REACHABLE-D(A) terminate are both

undecidable.

63
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Proof The proof is by reduction from the halting problem for Turing machines.

Since (M,Op) is Turing expressive, it follows from Definition 4.3 that there ex-

ists an algorithm for converting any Turing machine M into an equivalent SMA

(C, c0,M,m0,Op, T ). Let T̄ = ∅, and A be the ESMA (C, c0,M,m0,Op, T, T̄ ). Ac-

cording to Theorem 3.5, the computation of REACHABLE(A) terminates if and

only if there exists an upper bound on the depth of all the reachable states of A.

Since A has a deterministic transition function and does not have meta-transitions,

such an upper bound exists if and only if A has a finite number of reachable states.

This is the case if and only if M has a finite number of reachable configurations.

The problem that consists of determining whether M has a finite number of reach-

able configurations is thus reduced to deciding the termination of REACHABLE(A).

Deciding whether M halts can now be done as follows:

• If M has an infinite number of reachable configurations, then it does not halt;

• If M has a finite number of reachable configurations, then one can simulate its

execution up to termination or to the first repetition of a previously reached

configuration. M halts if and only if its execution does not reach the same

configuration more than once.

The halting problem for Turing machines is thus reduced to deciding termination

of REACHABLE(A). Since the former is undecidable [HU79], the latter is undecid-

able as well. The case of REACHABLE-D is handled in the same way. It is actually

sufficient to notice that Theorem 3.5 also holds for REACHABLE-D whenever T is

deterministic and T̄ is empty. Indeed, in this case, it is easily seen that there will be

as many calls to Procedure explore as there are reachable states in the state space

of A. 2

Let us now consider the semi-algorithm REACHABLE-DYNAMIC introduced

in Section 3.5. A result similar to Theorem 5.1 can be obtained, the only differ-

ence being an additional requirement on the representation system used for sets of

memory contents.

Theorem 5.2 Let (M,Op) be a Turing-expressive pair of memory domain and set

of operations. The problem which consists of determining, given an arbitrary SMA

A = (C, c0,M , m0,Op, T ) using this pair of memory domain and set of operations,

whether the computation of REACHABLE-DYNAMIC(A) terminates is undecid-

able, provided that the representation system used for subsets of M allows a procedure

for deciding the finiteness of representable sets.

Proof The proof is by reduction from the halting problem for Turing machines.

Since (M,Op) is Turing expressive, it follows from Definition 4.3 that there ex-

ists an algorithm for converting any Turing machine M into an equivalent SMA

(C, c0,M,m0,Op, T ). By hypothesis, there exists a computable predicate FINITE
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over the set of subsets of M , such that for every U ⊆ M , FINITE(U) is true if and

only if U is finite. There are three possible situations:

• The computation of REACHABLE-DYNAMIC(A) terminates, returning the

set QR, and there exists c ∈ C such that FINITE(values(QR, c)) = F. In this

case, A has an infinite number of reachable states, and thus M has an infinite

number of reachable configurations.

• The computation of REACHABLE-DYNAMIC(A) terminates, returning the

set QR, and there does not exist c ∈ C such that FINITE(values(QR, c)) = F.

In this case, A has a finite number of reachable states, and thus M has a finite

number of reachable configurations.

• The computation of REACHABLE-DYNAMIC(A) does not terminate. In this

case, A has an infinite number of reachable states (otherwise, by Theorem 3.5,

the computation of REACHABLE((C, c0,M,m0,Op, T, T̄ )) with T̄ = ∅ would

terminate, which contradicts, as a consequence of Theorem 3.11, the fact that

REACHABLE-DYNAMIC(A) does not terminate). Therefore, M has an in-

finite number of reachable configurations.

Since there are only a finite number of control locations in C, it is possible to

decide which of these situations applies. Determining whether the set of reachable

configurations of M is finite or infinite has thus been reduced to deciding termination

of REACHABLE-DYNAMIC for SMAs. The reduction from the halting problem is

then identical to the one performed in the proof of Theorem 5.1. 2

5.2 Sufficient Conditions

In the previous section, we have shown that there is no decidable sufficient and nec-

essary condition for the termination of state-space exploration. Here, we investigate

whether one can obtain sufficient static conditions for the termination of the semi-

algorithms of Chapter 3. By “static condition”, we mean a condition that must be

decidable from the syntax of the system without requiring a reachability analysis or

any type of state-space search.

The main goal is to obtain a sufficient condition for the termination of REACH-

ABLE (see Section 3.3). We do not address the case of REACHABLE-D for two

reasons. First, this algorithm is non-deterministic (the choice of an outgoing transi-

tion from an explored state is arbitrary), which makes a termination study difficult.

Indeed, two different state-space explorations of the same ESMA by REACHABLE-

D are not necessarily equivalent from the point of view of termination. Additional

parameters such as the ordering of the outgoing transitions from a control location

would thus have to be taken into account by the study. The second reason is that
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REACHABLE-D is never better than REACHABLE if termination is the primary

concern. Finally, the reason for which the case of REACHABLE-DYNAMIC (see

Section 3.5) is not explicitly addressed is that this semi-algorithm is based on a dy-

namic rather than static computation of meta-transitions. This makes a termination

analysis relying on static properties difficult to perform.

It has been established in Section 3.3 that the state-space exploration by the

procedure REACHABLE of an ESMA A terminates if and only if there is an upper

bound on the depth of all the reachable states of A, this bound depending only

on A (see Theorem 3.5). In order to get a sufficient termination condition, one

must therefore obtain a static condition which guarantees that all the reachable

states of A have a bounded depth. In other words, such a condition would imply

that all the reachable states of A are reachable from the initial state by following a

path of transitions and/or meta-transitions whose length is bounded. The solution

proposed here consists of designing a condition under which any exploration path

can be transformed into an equivalent one of bounded length (recall that two paths

or subpaths are said to be equivalent if they start from the same state and end in

the same state).

Let π be a finite path of transitions and/or meta-transitions from the initial state

of A to a given state (c,m). In general, this path is composed of an alternation of se-

quences of transitions and sequences of meta-transitions. We call each such sequence

a segment. Precisely, a segment of π is a subpath of π entirely composed either of

transitions (in which case it is a transition segment) or of meta-transitions (in which

case it is a meta-transition segment), that is maximal, meaning that it cannot be

enlarged by appending or prepending an additional transition or meta-transition. A

subsegment is a subsequence of consecutive transitions or meta-transitions belonging

to the same segment. The methodology we will follow in order to bound the length

of exploration paths consists of bounding successively the length of each type of seg-

ment, and then bounding the number of segments in a path. We address successively

the cases of ESMAs with only cycle and then with only multicycle meta-transitions.

5.3 Machines with Only Cycle Meta-Transitions

5.3.1 Transition Segments

The first step is to bound the length of the transition segments. In other words,

given a path from the initial state of A = (C, c0,M,m0,Op, T ) to a state (c,m), the

goal is to show that there exists an equivalent path such that the length of each of

its transition segments is bounded by some value depending only on A. A natural

solution is to take advantage of cycle meta-transitions. Roughly speaking, the idea

is that for every simple-cyclic subsegment (i.e., beginning and ending at the same
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control location, and not visiting twice the same control location) of the path, there

should exist a finite sequence of meta-transitions in T̄ equivalent to that subsegment.

Formally, consider an exploration path of the form

π =

π1
︷ ︸︸ ︷

(c0, m0) · · · (ci, mi)
t1→ (ci+1, mi+1)

t2→ · · ·
tj
→

π2
︷ ︸︸ ︷

(ci, mi+j) · · · (c,m),

where i ≥ 0, j ≥ 1, c1, c2, . . . ∈ C, m1, m2, . . . ∈ M , t1, t2, . . . , tj ∈ T , π1, π2 are

subpaths, and the cycle labeled by (t1; t2; . . . ; tj) is simple. Since this path contains

the simple-cyclic subsegment

(ci, mi)
t1→ (ci+1, mi+1)

t2→ · · ·
tj
→ (ci, mi+j),

there should exist an equivalent path

π′ =

π1
︷ ︸︸ ︷

(c0, m0) · · · (ci, mi)
t̄1⇒ (c′1, m

′
1)

t̄2⇒ (c′2, m
′
2)

t̄3⇒ · · ·
t̄j′
⇒

π2
︷ ︸︸ ︷

(ci, mi+j) · · · (c,m),

where j′ ≥ 1, c′1, c
′
2, . . . , c

′
j′−1 ∈ C, m′

1, m
′
2, . . . , m

′
j′−1 ∈ M , t̄1, t̄2, . . . , t̄j′ ∈ T̄ . A

simple static sufficient condition for this requirement is the following.

Condition 1 For every simple cycle C in the control graph of A, the cycle meta-

transition corresponding to C must belong to T̄ .

If this condition is fulfilled, then it is possible to turn every exploration path

into an equivalent one in which all the transition segments are acyclic. Indeed, if a

transition segment contains a cycle, then it necessarily contains a simple cycle. By

replacing in the path the occurrence of this simple cycle by its corresponding meta-

transition, one obtains an equivalent path composed of strictly less transitions and

one more meta-transition. Since the original path is finite and has a finite number

of transitions, this simple-cycle replacement operation can only be repeated a finite

number of times. The final result is a path equivalent to the original one in which

all the transition segments are acyclic and hence of length bounded by the number

of control locations of A.

5.3.2 Meta-Transition Segments

The second step is to bound the length of the meta-transition segments. There is

one small difficulty here: in order to keep the benefit of the first step, one must

preserve the acyclic nature of transition segments. The goal is here to make sure

that for any exploration path in which all the transition segments are acyclic, there

exists an equivalent path in which all the transition segments are acyclic as well, but

also in which all the meta-transition segments have a bounded length (the bound

depending only on A).
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The idea is the following. Since there are only finitely many meta-transitions

in T̄ , it is sufficient to ensure that for every meta-transition segment, there exists

an equivalent segment in which each meta-transition appears at most once. This

can be done as follows. Since T̄ contains only cycle meta-transitions, the control

location is constant throughout a meta-transition segment. It is sufficient to require

an ordering between all the meta-transitions associated to that control location,

such that for any subpath entirely composed of those meta-transitions, there exists

an equivalent subpath in which the meta-transitions appear in order. The condition

is based on the following definition.

Definition 5.3 Let T̄c = {t1, t2, . . . , tk} (k ≥ 0) be a set of meta-transitions be-

ginning and ending at the same control location c ∈ C. This set is serializable if

there exists a permutation (t̄i1 , t̄i2 , . . . , t̄ik) of T̄c such that for every set of memory

contents U ⊆ M and sequence t̄j1 ; t̄j2; . . . ; t̄jk′ of meta-transitions of T̄c, with k′ ≥ 0

and j1, j2, . . . , jk′ ∈ {1, 2, . . . , k}, (t̄j1 ; t̄j2; . . . ; t̄jk′ )(U) ⊆ (t̄i1 ; t̄i2; . . . ; t̄ik)(U). By ex-

tension, any meta-transition segment exclusively composed of meta-transitions of a

serializable set T̄c is also said to be serializable.

We are now ready to state formally the condition.

Condition 2 For every control location c ∈ C, the set T̄c = {t̄1, t̄2, . . . , t̄k} (k ≥ 0)

of all the meta-transitions in T̄ beginning and ending in c must be serializable.

The implementation of this condition by an actual decision procedure will be

discussed in Section 5.3.5.

5.3.3 Number of Segments

The last step is to bound the number of segments in exploration paths. This is

done in the following way. Since the control graph (C, T ) of A is finite, it contains

a finite number of maximal strongly connected components (a strongly connected

component is a set of nodes such that any of them is reachable1 from all of them).

By the definition of strongly connected components, an exploration path can visit

successively several maximal strongly connected components, but can never get back

to a previously visited component. Formally, if

π = (c0, m0)
t1→ (c1, m1)

t2→ · · ·
tj
→ (cj, mj),

1Recall that a node n2 of a graph is reachable from a node n1 is there exists a finite path of

edges leading from n1 to n2. In the present context, reachability between control locations —

which does not depend on transition labels — should not be confused with reachability between

states.
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where j ≥ 0, c0, c1, . . . , cj ∈ C, m0, m1, . . . , mj ∈ M , t1, t2, . . . , tj ∈ T , is a path of

transitions, then one can break this path into subpaths π1, π2, . . . , πk (0 ≤ k ≤ j)

satisfying π = π1π2 · · ·πk, such that the control locations visited by each πi all belong

to the same maximal strongly connected component of (C, T ), and this strongly

connected component is different for each πi. Assume that we first break π into the

πi, and then transform each πi into an equivalent sequence of transition and meta-

transition segments. The total number of segments that would be obtained is at least

equal to the number of segments that would be obtained by directly transforming π

into a sequence of segments. Since there are only finitely many strongly connected

components in (C, T ), it is thus sufficient to bound the number of segments in each

πi. We give two ways of obtaining such a bound.

The first one consists of a restriction on the form of the control graph. We simply

require that each maximal strongly connected component contains a node visited by

every simple cycle belonging to that component. Formally, the condition on every

maximal strongly connected components S of (C, T ) is as follows.

Condition 3a The strongly connected component S ⊆ C in the control graph of A

must be such that there exists a control location c ∈ S such that for every simple cycle

C = (c1, θ1, c2), (c2, θ2, c3), . . . , (ck, θk, c1) (k ≥ 1, c1, . . . , ck ∈ C, θ1, . . . , θk ∈ Op) of

S, there exists i ∈ {1, 2, . . . , k} such that ci = c.

Let us show that this condition implies a bound on the number of segments

composing a subpath entirely contained in a strongly connected component. In order

to take into account Conditions 1 and 2, we proceed by starting from an exploration

path in which all the transition and meta-transition segments are respectively acyclic

and serializable, and we turn this path into an equivalent one that fulfills the same

requirements, but whose length is bounded. Precisely, we have the following result.

Theorem 5.4 Let A be an ESMA satisfying Conditions 1 and 2, π be an exploration

path in which all the transition and meta-transition segments are respectively acyclic

and serializable, and πi be a subpath of π entirely contained in a strongly connected

component of (C, T ) satisfying Condition 3a. There exists a subpath equivalent2 to

πi composed of at most two transition segments, which are acyclic, and one meta-

transition segment, which is serializable.

Proof Note that the theorem is trivial if πi is only composed of transitions. If πi
contains at least one meta-transition, we first transform πi into π′

i as follows. For

each occurrence (c,m)
t̄
⇒ (c,m′) (c ∈ C, m,m′ ∈ M , t̄ ∈ T̄ ) of a meta-transition

in πi, we know from Definitions 3.1 and 3.7 that there exist k ≥ 0 and a simple

2Recall that two paths or subpaths are said to be equivalent if they start from the same state

and end in the same state.
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cycle C in (C, T ) such that m′ = body(C)k(m). We then replace the occurrence of

t̄ in πi by k successive copies of the sequence of transitions labeling C. Repeatedly

performing this operation for all the meta-transitions in πi, we finally obtain an

equivalent subpath π′
i only composed of transitions.

Since Condition 3a is satisfied by hypothesis, there exists c′ ∈ C such that every

simple cycle occurring in π′
i visits c′. We can thus split π′

i into three subpaths πa, πb
and πc satisfying π′

i = πaπbπc, such that πb starts and ends in c′ and πa, πc either are

empty or do not visit c′. The subpaths πa and πc are acyclic transition segments.

The subpath πb is a succession of simple cycles. Since Condition 1 is fulfilled, one can

replace in πb every occurrence of a simple cycle by its corresponding meta-transition.

The result is a subpath π′
b equivalent to πb entirely composed of meta-transitions

beginning and ending in c′. Since Condition 2 is satisfied, π′
b is a serializable segment

of meta-transitions. 2

The second way of bounding the number of segments in an exploration path

does not involve the control structure, but consists of a restriction on the memory

operations. The idea is to require some type of independence between operations

carried out by meta-transitions and those performed by transitions. Intuitively, by

allowing to reorder the memory operations labeling an exploration path, it will be

easier to prove the existence of an equivalent path whose length is bounded. We

have the following definition.

Definition 5.5 Let σ1, σ2 ∈ Op∗ be two finite sequences of operations. The sequence

σ1 precedes favorably σ2, which is denoted σ1⊳σ2, if for every set U ∈M of memory

contents, we have (σ2; σ1)(U) ⊆ (σ1; σ2)(U).

Intuitively, if σ1 ⊳ σ2, then the sequence σ1; σ2 generates at least all the states

generated by the sequence σ2; σ1. In practice, the procedure for deciding if σ1 ⊳ σ2

has to be implemented together with the representation system for sets of memory

contents.

The number of segments contained in a maximal strongly connected component

S of (C, T ) can now be bounded if the following condition is satisfied.

Condition 3b The strongly connected component S ⊆ C must be such that for

every simple cycle C = (c1, θ1, c2), . . . , (ck, θk, c1) (k ≥ 1, c1, . . . , ck ∈ S, θ1, . . . , θk ∈

Op) and transition (c, θ, c′) ∈ T which is part of either

• a simple cycle C′ 6= C starting at the location c1, or

• a simple cycle C′ that does not visit the location c1,

we have body(C) ⊳ θ.
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Let us show that this condition implies a bound on the number of segments

composing subpaths entirely contained in a strongly connected component. We first

need a lemma.

Lemma 5.6 Let A be an ESMA, π be an exploration path, and πi be a subpath of

π entirely contained in a strongly connected component of (C, T ) satisfying Condi-

tion 3b, with πi of the form

πi = (c1, m1)
t1→ (c2, m2)

t2→ · · · (ck, mk)
tk→ (c1, m1′)

body(C)
→ (c1, m1′′),

where k ≥ 1, c1, . . . , ck ∈ C, m1, . . . , mk, m1′, m1′′ ∈ M , t1, t2, . . . , tk ∈ T and C is

a simple cycle of (C, T ). The occurrence of C can be moved to the beginning of πi,

i.e., there exist m′
1, m

′
2, . . . , m

′
k ∈M such that

(c1, m1)
body(C)
→ (c1, m

′
1)

t1→ (c2, m
′
2)

t2→ · · · (ck, m
′
k)

tk→ (c1, m1′′)

is equivalent to πi.

Proof For every j ∈ {1, 2, . . . , k}, let θj denote the memory operation labeling the

transition tj . Let θ = body(C).

It is sufficient to show that we have

(θ · θk · θk−1 · · · θ1)({m1}) ⊆ (θk · θk−1 · · · θ1 · θ)({m1}),

where “·” denotes the composition of functions. This would mean that following the

sequence C; t1; t2; . . . ; tk from m1 would produce at least the memory content that

would be obtained by following the sequence t1; t2; . . . ; tk; C from m1.

This result is established by proving the existence of functions θ̄1, θ̄2, . . . , θ̄k :

M → M such that

(θ · θk · θk−1 · · · θ1)({m1})

⊆ (θk · θ̄k · θk−1 · · · θ1)({m1})

⊆ (θk · θk−1 · θ̄k−1 · · · θ1)({m1})
...

⊆ (θk · θk−1 · · · θ̄2 · θ1)({m1})

⊆ (θk · θk−1 · · · θ1 · θ̄1)({m1})

⊆ (θk · θk−1 · · · θ1 · θ)({m1}).

In other words, the idea consists of moving the leading “θ” function across the

sequence. The different θ̄j simply express the modifications undergone by θ at each

step of the move. For notational convenience, we define θ̄k+1 = θ.
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There are various types of tj in πi. One type of particular interest are transitions

that belong neither to a simple cycle starting at c1 and different from C, nor to a

simple cycle that does not visit c1 (this choice is motivated by the requirements of

Condition 3b). We call such tj basic transitions.

Basic transitions have nice properties. First, all of them are part of C, as a direct

consequence of their definition. More interestingly, we have that two successive basic

transitions tj1 and tj2 in πi (i.e., such that there is no basic transition tj such that

j1 < j < j2) are always consecutive in C, i.e., the control location cj1+1 at which tj1
ends is equal to the control location cj2 at which tj2 begins. This is established by

contradiction. Indeed, if tj1 and tj2 are not consecutive in C, then the subsequence

σ composed of all the tj in πi for which j1 < j < j2 is a sequence of transitions from

cj1+1 to cj2. Let σ≤j1 denote the subsequence of C going from c1 to cj1, and let σ>j2
denote the subsequence of C going from cj2+1 to c1. The sequence (σ≤j1)σ(σ>j2) is

therefore a cycle C′ starting at c1. This cycle contains tj1 and tj2 , but no tj such

that j1 < j < j2. Therefore, C′ contains an occurrence of a simple cycle different

from C starting at c1 and containing tj1 . This contradicts the fact that tj1 is a basic

transition.

Let C = (c1, θ
′
1, c

′
2), (c

′
2, θ

′
2, c

′
3), . . . , (c

′
l, θ

′
l, c1), with l ≥ 1, c′2, c

′
3, . . . , c

′
l ∈ C and

θ′1, θ
′
2, . . . , θ

′
l ∈ Op. For each r ∈ {0, 1, . . . , l − 1}, let Cr be the r-th rotation of this

cycle, i.e., the cycle

Cr = (c′r+1, θ
′
r+1, c

′
r+2), (c

′
r+2, θ

′
r+2, c

′
r+3), . . . , (c

′
r−1, θ

′
r−1, c

′
r)(c

′
r, θ

′
r, c

′
r+1)

(for notational convenience, we define c′1 = c′l+1 = c1). The functions θ̄j are com-

puted in decreasing order of j, according to the following rules:

• Each θ̄j satisfies θ̄j = body(Crj ), where rj is determined according to the re-

maining rules;

• If tj is basic, then rj = (rj+1 − 1) mod l;

• If tj is non-basic, then rj = rj+1.

Let us show that those rules are correct. There are two possible situations:

• If tj is basic. Then, since all the basic transitions in πi are consecutive in C

and the value of rj′ is only modified whenever the corresponding tj′ is basic,

tj is the transition of C that leads from c′rj+1 (the control location at which Crj
starts) to c′rj+1+1 (the control location at which Crj+1

starts). As a consequence,

we have

θj ; body(Crj+1
) = body(Crj ); θj .

Therefore, since θ̄j+1 = body(Crj+1
) and θ̄j = body(Crj ), we have for every

m ∈M

(θ̄j+1 · θj)({m}) = (θj · θ̄j)({m}).
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• If tj is non-basic. Then, tj belongs either to a simple cycle not visiting c1,

or to a simple cycle different from C starting at c1. Both cases implies that

tj belongs either to a simple cycle not visiting c′rj+1+1 (the control location

at which Crj+1
starts), or to a simple cycle different from Crj+1

starting at

c′rj+1+1. As a consequence, we have body(Crj+1
) ⊳ θj . From Definition 5.5, since

θ̄j+1 = θ̄j = body(Crj+1
), we obtain for every m ∈M

(θ̄j+1 · θj)({m}) ⊆ (θj · θ̄j)({m}).

2

This lemma has a useful corollary.

Corollary 5.7 Let A be an ESMA, π be an exploration path, and πi be a subpath

of π entirely contained in a strongly connected component of (C, T ) satisfying Con-

dition 3b, with πi of the form

πi = (c1, m1)
t̄
⇒ (c1, m1′)

t1→ (c2, m2)
t2→ · · · (ck, mk)

tk→ (c1, m1′′)
t̄
⇒ (c1, m1′′′),

where k ≥ 1, c1, . . . , ck ∈ C, m1, . . . , mk, m1′ , m1′′ , m1′′′ ∈M , t̄ ∈ T̄ is a simple-cycle

meta-transition, and tj ∈ T for every j ∈ {1, 2, . . . , k}. The second occurrence of t̄

can be removed from πi, i.e., there exist m′
2, . . . , m

′
k, m

′
1′ , m

′
1′′ ∈M such that

(c1, m1)
t̄
⇒ (c1, m

′
1′)

t1→ (c2, m
′
2)

t2→ · · · (ck, m
′
k)

tk→ (c1, m1′′′)

is equivalent to πi.

Proof Let C be the simple cycle corresponding to t̄. There exists n ≥ 0 such that

body(C)n(m1′′) = m1′′′ . Thus, there exists a subpath equivalent to πi of the form

(c1, m1)
t̄
⇒ (c1, m1′)

t1→ (c2, m2)
t2→ · · · (ck, mk)

tk→ (c1, m1′′)
body(C)

n

→ (c1, m1′′′).

Applying Lemma 5.6 n times to this subpath, we obtain that there exist m′
2, . . . , m

′
k,

m′
1′ ∈M such that

(c1, m1)
t̄
⇒ (c1, m1′)

body(C)
n

→ (c1, m
′
1′)

t1→ (c2, m
′
2)

t2→ · · · (ck, m
′
k)

tk→ (c1, m1′′′)

is equivalent to πi, which implies that

(c1, m1)
t̄
⇒ (c1, m

′
1′)

t1→ (c2, m
′
2)

t2→ · · · (ck, m
′
k)

tk→ (c1, m1′′′)

is equivalent to πi as well. 2

We are now ready to show that Condition 3b implies a bound on the number of

segments composing a subpath entirely contained in a strongly connected compo-

nent.
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Theorem 5.8 Let A be an ESMA satisfying Conditions 1 and 2, π be an exploration

path in which all the transition and meta-transition segments are respectively acyclic

and serializable, and πi be a subpath of π entirely contained in a maximal strongly

connected component of (C, T ) satisfying Condition 3b (let S denote this strongly

connected component). There exists a subpath equivalent to πi composed of at most

N+1 transition segments, which are acyclic, and N meta-transition segments, which

are serializable, where N denotes the number of meta-transitions in T̄ that begin and

end in control locations belonging to S.

Proof We can assume that all the meta-transitions that appear in πi correspond to

simple cycles. Indeed, if this is not the case, then πi can easily be turned into an

equivalent subpath in which every occurrence of a meta-transition corresponding to

a non-simple cycle has been replaced by a sequence of acyclic transition segments

and of simple-cycle meta-transitions. Once this operation is performed, we simply

prove that multiple occurrences of the same simple-cycle meta-transition can be

removed from πi. Indeed, suppose that πi is of the form

· · ·

π′
i

︷ ︸︸ ︷

(c1, m1)
t̄
⇒ (c1, m1′)

t̃1⇁ (c2, m2)
t̃2⇁ · · · (ck, mk)

t̃k⇁ (c1, m1′′)
t̄
⇒ (c1, m1′′′) · · · ,

where k ≥ 1, c1, . . . , ck ∈ C, m1, . . . , mk, m1′ , m1′′ , m1′′′ ∈ M , each t̃j is either a

transition (in which case “⇁” should be read as “→”) or a meta-transition (in

which case “⇁” should be read as “⇒”), and π′
i is the subpath of πi beginning and

ending with two successive occurrences in πi of the meta-transition t̄ ∈ T̄ .

Let us show that the second occurrence of t̄ can be removed from π′
i, i.e., that

there exist m′
2, . . . , m

′
k, m

′
1′ ∈M such that

(c1, m1)
t̄
⇒ (c1, m

′
1′)

t̃1⇁ (c2, m
′
2)

t̃2⇁ · · · (ck, m
′
k)

t̃k⇁ (c1, m1′′′).

Remark that for each t̃j that is a meta-transition, its occurrence in π′
i can be

replaced by an equivalent sequence of transitions. Indeed, if we have

(cj, m
′
j)

t̃j
⇒ (cj+1, m

′
j+1),

then there exists n ≥ 0 such that

(cj , m
′
j)

(σj)n

→ (cj+1, m
′
j+1),

where σj is the sequence of transitions labeling the cycle corresponding to t̃j . After

all the substitutions have been made, each t̃j is a transition, and the fact that the

second occurrence of t̄ can be removed is a direct consequence of Corollary 5.7.

By suppressing iteratively redundant meta-transitions from πi, one thus finally

obtains an equivalent subpath containing at most one occurrence of each meta-

transition in T̄ . This subpath is thus composed of at most N meta-transition seg-

ments and N + 1 transition segments.
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The serializable character of meta-transition segments is not affected by the

removal of meta-transitions. It remains to show that one can always obtain a suitable

subpath in which the transition sequences are acyclic. This is done as follows. If πi
contains a cyclic subsequence of transitions, then it is of the form

· · · (c1, m1)
t1→ (c2, m2)

t2→ · · · (ck, mk)
tk→ (c1, m1′) · · · ,

where k ≥ 1, c1, . . . , ck ∈ C, m1, . . . , mk, m1′ ∈ M , t1, . . . , tk ∈ T , and t1t2 · · · tk is a

simple cycle (let C be this cycle). We can replace the occurrence of C in πi by

(c1, m1)
t̄
⇒ (c1, m1′),

where t̄ ∈ T̄ is the cycle meta-transition corresponding to C.

If one performs alternatively the two operations discussed in this proof (remov-

ing in πi all the redundant meta-transitions, and replacing a cyclic subsequence of

transitions by a meta-transition) then the final result will be a subpath composed

of at most N meta-transition segments and N + 1 acyclic transition segments. This

subpath is always obtained after a finite number of steps. Indeed, the number of

transitions in πi is not affected by the former operation, and is strictly decreased by

the latter. 2

5.3.4 Summary of Conditions

Let us summarize the necessary conditions obtained in Sections 5.3.1, 5.3.2 and 5.3.3.

Definition 5.9 An ESMA with only cycle meta-transitions is safe if it satisfies

Conditions 1 and 2, and if each maximal strongly connected component of its control

graph satisfies either Condition 3a or Condition 3b (the satisfied condition may differ

for each strongly connected component).

We are now ready to state the main result of this section.

Theorem 5.10 Let A be a safe ESMA with only cycle meta-transitions. The com-

putation of REACHABLE(A) terminates.

Proof The elements of the proof have already been developed during the discussion

of each condition. Given an exploration path π, one first transforms its transition

segments into acyclic ones, then serializes its meta-transition segments, and finally

reduces the total number of segments. The result π′ is an exploration path equivalent

to π, for which:

• The length of each transition segment is less than the number of control states

in C;
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• The length of each meta-transition segment is less than the number of meta-

transitions in T̄ ;

• The number of segments is less than three times the number of maximal

strongly connected components in the control graph (C, T ).

Each reachable state of A can thus be reached by an exploration path whose length

is bounded by a value depending only on A. According to Theorem 3.5, the com-

putation of REACHABLE(A) terminates. 2

5.3.5 Implementation

Let us now study how to check algorithmically that the conditions discussed in

Sections 5.3.1, 5.3.2 and 5.3.3 are satisfied by an ESMA A.

Deciding whether Condition 1 is satisfied can be done by testing the inclusion

of the set of cycles returned by SIMPLE-CYCLES (see Section 3.4.1) into the set

of cycles from which the meta-transitions of A are created. If the goal is to ensure

that Condition 1 is satisfied while creating meta-transitions, then one can simply

call SIMPLE-CYCLES and then create one meta-transition for each returned cycle.

If there are cycles for which no meta-transition can be created, then Condition 1

cannot possibly be satisfied.

Making sure that Condition 2 is satisfied is tougher. The problem consists of

checking whether a finite set of cycle meta-transition is serializable. We use the

following sufficient criterion.

Definition 5.11 Let c ∈ C be a control location and T̄c = {t̄1, t̄2, . . . , t̄k} (k ≥ 0) be

a set of cycle meta-transitions beginning and ending in c. For each i ∈ {1, 2, . . . , k},

let Ci be the cycle corresponding to t̄i. The set T̄c is strongly serializable if there

exists a permutation {i1, i2, . . . , ik} of {1, 2, . . . , k} such that for any j, j′ for which

1 ≤ j < j′ ≤ k, we have body(Cij ) ⊳ body(Cij′ ).

The correctness of this sufficient condition is established by the following result.

Theorem 5.12 Let c ∈ C be a control location and T̄c = {t̄1, t̄2, . . . , t̄k} (k ≥ 0) be a

set of cycle meta-transitions beginning and ending in c. If T̄c is strongly serializable,

then it is serializable.

Proof Let σ = t̄j1; t̄j2 ; . . . ; t̄jk′ be a sequence of meta-transitions of T̄c, with k′ ≥ 0

and j1, j2, . . . , jk′ ∈ {1, 2, . . . , k}. For every i ∈ {1, 2, . . . , k′−1} such that the cycles

Cji and Cji+1
corresponding respectively to t̄ji and t̄ji+1

satisfy body(Cji+1
)⊳ body(Cji),

we have for every set of memory contents U ⊆M

(t̄j1 ; . . . ; t̄ji−1
; t̄ji; t̄ji+1

; . . . ; t̄jk′ )(U) ⊆ (t̄j1; . . . ; t̄ji−1
; t̄ji+1

; t̄ji; t̄ji+2
; . . . ; t̄jk′ )(U).
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If T̄c is strongly serializable, then there exists a permutation P = {i1, i2, . . . , ik} of

{1, 2, . . . , k} such that for any j, j′ for which 1 ≤ j < j′ ≤ k, we have body(Cij ) ⊳

body(Cij′ ).

By repeatedly permuting successive t̄ji and t̄ji+1
in σ for which ji+1 precedes ji

in P , and collapsing successive t̄ji and t̄ji+1
such that ji = ji+1 (since, in that case,

we have (t̄ji; t̄ji+1
)(U) = t̄ji(U) for every U ⊆ M), one obtains in a finite number of

steps that for every set of memory contents U ⊆ M

(t̄j1; t̄j2; . . . ; t̄jk′ )(U) ⊆ (t̄i1 ; t̄i2 ; . . . ; t̄ik)(U).

The set T̄c is thus serializable. 2

The advantage of strong over plain serializability is that it is much easier to be

checked algorithmically. There is however one small difficulty: the relation “⊳” is

not transitive and hence does not correspond to an order relation. Thus, checking

whether a set T̄ of cycle meta-transitions is strongly serializable does not reduce to

simply sorting the set.

We solve the problem in the following way. First, if T̄ contains two meta-

transitions such that their corresponding cycles C and C′ are labeled by sequences of

operations which cannot be compared by “⊳” (in other words, if body(C) 6⊳ body(C′)

and body(C′) 6 ⊳ body(C)), then T̄ is not serializable. Suppose now that this is not

the case. We build a graph whose nodes are associated to the meta-transitions in T̄

and whose edges correspond to the relation “⊳” between the sequences of operations

labeling the cycles corresponding to those meta-transitions. After this graph has

been build, we remove all its reciprocal edges, i.e., we remove all the edges linking

two nodes such that their corresponding meta-transitions are associated to cycles C

and C′ for which body(C) ⊳ body(C′) and body(C′) ⊳ body(C).

After this operation has been performed, we test whether the resulting graph is

acyclic. If the graph contains a cycle, then T̄ is not serializable. Indeed, regardless of

the order according to which the meta-transitions in T̄ are considered, the presence

of a cycle implies that Definition 5.11 is violated. On the other hand, if the graph

is acyclic, then it expresses a partial order between the meta-transitions in T̄ . Any

total order between those meta-transitions consistent with that partial order is such

that body(C) ⊳ body(C′) for every cycles C and C′ such that the meta-transition

corresponding to C precedes the one corresponding to C′ in that order. Therefore,

T̄ is serializable.

The total cost of building the graph and then testing whether it is acyclic is

O(N⊳|T̄ |), where |T̄ | is the number of meta-transitions in T̄ , and N⊳ is the cost of

comparing two sequences of operations with respect to “⊳”.

Let us now discuss the case of Condition 3a. Deciding whether it is satisfied for

a given maximal strongly connected component of the control graph can be done

by simply computing the intersection of the sets of control locations visited by all
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the simple cycles of the component. Indeed, we have that Condition 3a is satisfied

if and only if this intersection is not empty.

Finally, a decision procedure for Condition 3b can straightforwardly be derived

from its definition. All one has to do is to test successively all the pairs (C, θ)

composed of a simple cycle C and a memory operation θ belonging to the strongly

connected component being checked.

5.4 Machines with Only Multicycle Meta-Trans-

itions

In this section, we investigate whether the results of Section 5.3 can be adapted

to SMAs associated with only multicycle meta-transitions. We follow the same

methodology, which consists of bounding successively the lengths of the transition

and meta-transition segments composing exploration paths, and then the number

of those segments.

5.4.1 Transition Segments

Roughly speaking, Condition 1 can be adapted to the case of an ESMA with only

multicycle meta-transitions A by simply requiring that for every simple cycle C in

the control graph of A, there is a meta-transition corresponding to at least this

cycle. Precisely, the condition is as follows.

Condition 1’ For every simple cycle C in the control graph of A, there must ex-

ist a multicycle meta-transition t̄ ∈ T̄ such that its set of corresponding cycles

{C1, C2, . . . , Ck} (k > 0) contains C.

This condition implies that every exploration path can be translated into an

equivalent one in which all the transition segments are acyclic. Indeed, if a transition

segment contains an occurrence of a simple cycle C, then this occurrence can be

replaced by any multicycle meta-transition associated to a set of cycles containing

C. This operation can be repeated until all the transition segments composing the

path are acyclic.

5.4.2 Meta-Transition Segments

Let us now study the case of Condition 2. Instead of requiring that each meta-

transition segment in an exploration path is reducible to a segment containing at

most one occurrence of each meta-transition, we now go further and impose that

for each meta-transition segment, there exists a single multicycle meta-transition

equivalent to that segment. Precisely, the condition is the following.
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Condition 2’ For every control location c ∈ C visited by at least one cycle in the

control graph of A, there must exist a multicycle meta-transition t̄c ∈ T̄ such that its

corresponding set of cycles {C1, C2, . . . , Ck} (k > 0) contains at least all the simple

cycles starting at c.

This condition makes it possible to reduce the length of any meta-transition

segment to one. Indeed, one can simply replace the segment by one occurrence of

any meta-transition whose associated set of cycles contains all the cycles to which

the meta-transitions of the segment correspond.

It is worth mentioning that Condition 2’ implies Condition 1’. From an algorith-

mic perspective, a simple way of ensuring that Condition 2’ is satisfied is to impose

that the function MULTI-META-SET (introduced in Section 3.4.2) returns at least

all the meta-transitions required by the condition.

5.4.3 Number of Segments

We now address the problem of bounding the number of segments composing ex-

ploration paths. Interestingly enough, Conditions 3a and 3b are applicable in this

context without any modification. We have the following results.

Theorem 5.13 Let A = (C, c0,M,m0,Op, T, T̄ ) be an ESMA satisfying Condi-

tion 2’, π be an exploration path whose transition and meta-transition segments are

respectively acyclic and of length one, and πi be a subpath of π entirely contained in

a strongly connected component of (C, T ) satisfying Condition 3a. It is possible to

transform πi into an equivalent subpath composed of at most two transition segments,

which are acyclic, and one meta-transition segment, which is of length one.

Proof The proof is very similar to the one of Theorem 5.4. First, the theorem

trivially holds if πi is only composed of transitions. If πi contains at least one

meta-transition, then we first transform πi by replacing every occurrence of a meta-

transition by the corresponding sequence of transitions. Let π′
i be the subpath

obtained after having replaced all the meta-transitions in πi.

Since Condition 3a is satisfied by hypothesis, there exists c′ ∈ C such that every

simple cycle occurring in π′
i visits c′. We can thus split π′

i into three subpaths πa,

πb and πc such that π′
i = πaπbπc, πb starts and ends in c′, and πa and πc either are

empty or do not visit c′. The subpaths πa and πc are acyclic transition segments.

The subpath πb is a sequence of simple cycles starting and ending in c′. Since

Condition 2’ is fulfilled, one can replace this subpath by a single occurrence of the

appropriate multicycle meta-transition. 2

Theorem 5.14 Let A = (C, c0,M,m0,Op, T, T̄ ) be an ESMA with only multicycle

meta-transitions satisfying Condition 2’, π be an exploration path whose transition
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and meta-transition segments are respectively acyclic and of length one, and πi be

a subpath of π entirely contained in a strongly connected component of (C, T ) satis-

fying Condition 3b (let S denote this strongly connected component). It is possible

to transform πi into an equivalent subpath composed of at most N + 1 transition

segments and N meta-transition segments, where N denotes the number of meta-

transitions in T̄ beginning and ending in control locations belonging to S.

Proof The proof is similar to the one of Theorem 5.8. First, we assume that all the

meta-transitions that occur in πi can be replaced by meta-transitions associated to

sets of simple cycles (as opposed to sets of arbitrary cycles). Precisely, we assume

that for every subpath of πi of the form

(c,m)
t̄
⇒ (c,m′),

where c ∈ C, m,m′ ∈ M and t̄ ∈ T̄ , there exist a finite number k > 0 of non

necessarily distinct simple cycles C1, C2, . . . , Ck in (C, T ) such that

(body(C1); body(C2); . . . ; body(Ck))(m) = m′.

This assumption can be made without loss of generality, since any subpath πi can

be turned into an equivalent one in which every occurrence of a meta-transition that

can not be replaced by a meta-transition associated to a set of simple cycles has been

replaced by a sequence of acyclic transitions and of other meta-transitions. After

this operation has been performed, we simply prove that multiple occurrences of the

same meta-transition can be deleted from πi. Indeed, suppose that this subpath is

of the form

· · ·

π′
i

︷ ︸︸ ︷

(c1, m1)
t̄
⇒ (c1, m1′)

t̃1⇁ (c2, m2)
t̃2⇁ · · · (ck, mk)

t̃k⇁ (c1, m1′′)
t̄
⇒ (c1, m1′′′) · · · ,

where k ≥ 1, c1, . . . , ck ∈ C, m1, . . . , mk, m1′ , m1′′ , m1′′′ ∈ M , each t̃j is either a

transition (in which case “⇁” should be read as “→”) or a meta-transition (in

which case “⇁” should be read as “⇒”), and π′
i is the subpath of πi beginning and

ending with two successive occurrences in πi of the meta-transition t̄ ∈ T̄ .

Let us show that the second occurrence of t̄ can be deleted from π′
i. For the same

reasons as in the proof of Theorem 5.8, we assume that each t̃j is a transition.

We know that t̄ is a meta-transition associated to a set of simple cycles {C1, C2,

. . . , Ck} (k > 0). Let t̄1, t̄2, . . . , t̄k be the cycle meta-transitions associated to those

simple cycles3. From Definition 3.9, we have that there exist l ≥ 0, i1, i2, . . . , il ∈

{1, 2, . . . , k} and m′
1, m

′
2, . . . , m

′
l−1 ∈M such that

(c1, m1′′)
t̄i1⇒ (c1, m

′
1)

t̄i2⇒ (c1, m
′
2) · · · (c1, m

′
l−2)

t̄il−1
⇒ (c1, m

′
l−1)

t̄il⇒ (c1, m1′′′).

3The meta-transitions t̄1, t̄2, . . . , t̄k are not required to belong to T̄ , and may even be uncom-

putable with respect to the representation system used for sets of memory contents. They are only

introduced for the purpose of the proof.
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We can assume that each meta-transition t̄j in {t̄1, t̄2, . . . , t̄k} appears at least once

in this subpath from (c1, m1′′) to (c1, m1′′′). Indeed, since those are cycle meta-

transitions, we have for every m ∈ M

(c1, m)
t̄j
⇒ (c1, m),

and therefore meta-transitions can be appended at will to the subpath.

We have just established that there is a subpath equivalent to π′
i that is of the

form

(c1, m1)
t̄
⇒ (c1, m1′)

t̃1→ (c2, m2)
t̃2→ · · · (ck, mk)

t̃k→ (c1, m1′′)
t̄i1⇒ (c1, m

′
1)

t̄i2⇒ (c1, m
′
2)

· · · (c1, m
′
l−2)

t̄il−1
⇒ (c1, m

′
l−1)

t̄il⇒ (c1, m1′′′).

We now remove successively each t̄ij from this subpath, for j = 1, 2, . . . l, by

performing the following operations:

1. Let m ∈ M be the memory content reached prior to the occurrence of t̃1 in

the subpath. Before t̃1, we insert into the subpath a dummy occurrence of t̄ij :

(c1, m)
t̄ij
⇒ (c1, m).

2. There is now in π′
i a subpath of the form

(c1, m)
t̄ij
⇒ (c1, m)

t̃1→ (c2, m
′′
2)

t̃2→ · · · (ck, m
′′
k)

t̃k→ (c1, m
′′
k+1)

t̄ij
⇒ (c1, m

′′
k+2),

with m′′
2, m

′′
3, . . . , m

′′
k+2 ∈ M . Applying Corollary 5.7, we remove the second

occurrence of t̄ij from this subpath.

One eventually obtains a subpath equivalent to π′
i in which all the occurrences of

the meta-transition t̄ij appear after the initial t̄ and before t̃1. The initial segment

of meta-transitions can be replaced by a single occurrence of t̄, yielding a subpath

equivalent to π′
i of the form

(c1, m1)
t̄
⇒ (c1, m

′
1′)

t̃1→ (c2, m
′′′
2 )

t̃2→ · · · (ck, m
′′′
k )

t̃k→ (c1, m1′′′),

where m′′′
2 , m

′′′
3 , . . . , m

′′′
k , m

′
1′ ∈M .

By suppressing iteratively redundant meta-transitions from πi, one thus finally

obtains an equivalent subpath containing at most one occurrence of each meta-

transition in T̄ . The subpath is then composed of at most N meta-transition seg-

ments and N + 1 transition segments.

It remains to show that one can always obtain such a subpath in which all the

transition segments are acyclic and all the meta-transition segments are of length

one. The idea is similar to the corresponding part of the proof of Theorem 5.8. One
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replaces every subpath of transitions forming a simple cycle by an occurrence of a

meta-transition associated to a set containing this cycle. In addition, every meta-

transition segment of length greater than one can be replaced by an occurrence of

any meta-transition associated to a superset of the sets of cycles associated with

the meta-transitions of the segment. Alternating those operations, and removing

redundant meta-transitions after each step, one finally obtains a subpath composed

of at most N meta-transition segments of length one and N + 1 acyclic transition

segments. 2

5.4.4 Summary of Conditions

Let us summarize the necessary conditions obtained in Sections 5.4.1, 5.4.2 and 5.4.3.

Definition 5.15 An ESMA with only multicycle meta-transitions is safe if it sat-

isfies Condition 2’, and if each maximal strongly connected component of its control

graph satisfies either Condition 3a or Condition 3b (the satisfied condition may differ

for each strongly connected component).

We are now ready to state the main result of this section.

Theorem 5.16 Let A = (C, c0,M,m0,Op, T, T̄ ) be a safe ESMA with only multi-

cycle meta-transitions. The computation of REACHABLE(A) terminates.

Proof The elements of the proof have already been developed during the discussion

of each condition. Given an exploration path π, one first transforms its transition

segments into acyclic ones, then replaces its meta-transition segments by single

meta-transitions, and finally reduces the total number of segments. The result π′ is

an exploration path equivalent to π, for which:

• The length of each transition segment is less than the total number of control

states in C;

• The length of each meta-transition segment is one;

• The number of segments is less than three times the number of maximal

strongly connected components in the control graph (C, T ).

Each reachable state of A can thus be reached by an exploration path whose length

is bounded by a value depending only on A. According to Theorem 3.5, the com-

putation of REACHABLE(A) terminates. 2
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5.5 LTL Model Checking

In the previous sections, we proposed sufficient conditions for termination of state-

space exploration by the semi-algorithms introduced in Chapter 3. As a corollary,

those conditions also guarantee the termination of semi-algorithms relying upon

state-space exploration, such as the LTL model-checking semi-algorithm proposed

in Section 4.4. Unfortunately, this does not imply that LTL model-checking is

decidable for the class of ESMAs satisfying the sufficient termination conditions,

since the semi-decision procedure introduced in Section 4.4 may sometimes terminate

with a “don’t know” answer.

Here, we go further and show that sufficient conditions can be obtained for a full

decision procedure. Precisely, since LTL model checking relies on a test of emptiness

for Structured-Memory Büchi Automata, we will give sufficient static conditions on

SMBAs that guarantee that the emptiness problem can be decided. In practice,

since the SMBAs which are tested for emptiness are constructed by computing the

product of a system (modeled as an SMA) and of a property (modeled as a Büchi

automaton), this means that the sufficient conditions will be evaluated over pairs of

the forms (system, property).

The methodology we follow in order to obtain the conditions consists of first con-

sidering SMBAs such that their underlying SMA satisfies the terminating conditions

of Sections 5.3 and 5.4 (after having been associated with a set of meta-transitions),

and then examining whether additional restrictions need to be imposed.

5.5.1 Systems with Only Cycle Meta-Transitions

We first consider the case of an SMBA B = (C, c0,M,m0,Op, T, F ) associated with

a finite set of cycle meta-transitions T̄ such that the ESMA (C, c0,M,m0,Op, T, T̄ )

is safe. For any accepting run of B, there exists an accepting control location c ∈

F visited infinitely often by the path π of transitions corresponding to the run.

There are two possible situations, depending on the maximal strongly connected

component S of (C, T ) to which c belongs.

The first situation is when S satisfies Condition 3a. In this case, we know that

there exists c′ ∈ S such that every simple cycle contained in S visits c′. As a

consequence, we have that π is of the form

(c0, m0)
σ
→ (c′, m1)

body(C1)
→ (c′, m2)

body(C2)
→ (c′, m3) · · · ,

where σ is an acyclic sequence of transitions of T , m1, m2, . . . ∈ M , and C1, C2, . . .

are simple cycles of (C, T ). Since there are only finitely many such cycles, there

must exist a Cj that visits an accepting control location, and that occurs an infinite

number of times in the development of π. The question is to know whether this Cj
can be repeatedly followed an unbounded number of times from a memory content
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(x1)0 = 0
(x2)0 = 0

x1++

c1 c2

x2++

x2 < x1

Figure 5.1: SMBA accepting a nonempty language.

reachable at c′ (in other words, whether there exists an accepting run that will be

discovered by the semi-algorithm SMBA-EMPTY? of Figure 4.2).

The answer to that question is unfortunately negative, as it is illustrated by the

SMBA depicted in Figure 5.1. Indeed, let C1 = (c1, x1++, c1) and C2 = (c1, x2 <

x1, c2); (c2, x2++; c1) in that figure. The SMBA admits the accepting run

(c1, (0, 0)), (c1, (1, 0)), (c2, (1, 0)), (c1, (1, 1)), (c1, (2, 1)), (c2, (2, 1)), (c1, (2, 2)), . . .

corresponding to the path

(c1, (0, 0))
C1→ (c1, (1, 0))

C2→ (c1, (1, 1))
C1→ (c1, (2, 1))

C2→ (c1, (2, 2))
C1→ (c1, (3, 2)) · · · ,

in which C2 appears an infinite number of times. However, there is no memory con-

tent (v1, v2) ∈ Z2 from which C2 can be followed repeatedly an unbounded number

of times.

We must therefore impose an additional restriction. A simple solution consists

of strengthening the condition on the meta-transitions beginning and ending in the

control location visited by all the simple cycles. Instead of requiring serializability

between the sequences of operations labeling those cycles, we impose that each such

sequence precedes favorably all of them. Formally, the condition is the following.

Condition 3a” The strongly connected component S ⊆ C in the control graph of A

must be such that there exists a control location c ∈ S such that for every simple cycle

C = (c1, θ1, c2), (c2, θ2, c3), . . . , (ck, θk, c1) (k ≥ 1, c1, . . . , ck ∈ S, θ1, . . . , θk ∈ Op),

there exists i ∈ {1, 2, . . . , k} such that ci = c. In addition, for every pair (C1, C2) of

simple cycles starting at c, we must have body(C1) ⊳ body(C2) ∧ body(C2) ⊳ body(C1).

The correctness of this condition is established as follows. We consider an ex-

ploration path of the form

π = (c0, m0)
σ
→ (c′, m1)

body(C1)
→ (c′, m2)

body(C2)
→ (c′, m3) · · · ,

where c′ ∈ C, σ is an acyclic sequence of transitions of T , m1, m2, . . . ∈ M , and

C1, C2, . . . are simple cycles of (C, T ).
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Let us show that if c′ belongs to a maximal strongly connected component of

(C, T ) that satisfies Condition 3a”, then every Cj occurring an infinite number of

times in π is repeatedly executable from at least one reachable memory content.

The idea is to prove that for any n ≥ 0, Cj can be followed at least n times from the

state (c′, m1). Indeed, let π′ be a subpath of π starting at (c′, m1) and containing

n occurrences of Cj (not necessarily consecutive). By repeatedly permuting every

occurrence of Cj in π′ with all the occurrences of other simple cycles appearing before

(this can be done because the sequences of operations labeling the cycles precede

favorably each other), one eventually obtains a subpath equivalent to π′ beginning

with n consecutive occurrences of Cj . The cycle Cj can thus be followed n times

from the state (c′, m1).

From an algorithmic point of view, Condition 3a” can be evaluated directly from

its definition with the cost O(N⊳(NC)
2), where NC is the number of simple cycles in

the strongly connected component, and N⊳ is the maximum cost of comparing two

sequences of operations with respect to “⊳”.

Let us now study the case of a maximal strongly connected component of (C, T )

satisfying Condition 3b. In this case, there is no need for imposing additional restric-

tions, since Condition 3b is sufficient for ensuring that the algorithm of Figure 4.2

will always find an accepting run whenever one exists. This result is a consequence

of the following theorem.

Theorem 5.17 Let B = (C, c0,M,m0,Op, T, F ) be an SMBA associated with a

finite set of cycle meta-transitions T̄ such that the ESMA (C, c0,M,m0,Op, T, T̄ ) is

safe, π be a path of transitions corresponding to an accepting run of B, and πi be a

subpath of π entirely contained in a maximal strongly connected component of (C, T )

satisfying Condition 3b (let S denote this strongly connected component). If there

exists an accepting control location c ∈ S ∩ F visited infinitely many times by πi,

then there exists a meta-transition (c, f, c) ∈ T̄ which is iterable from some memory

content m ∈M reachable at the location c.

Proof Suppose that there exists an accepting control location c ∈ S ∩ F visited

infinitely many times by πi. Since there are only finitely many meta-transitions in

T̄ , it is sufficient to show that there exists a memory content m ∈ M such that

(c,m) is reachable, and for every n ∈ N there exists a meta-transition t̄ ∈ T̄ whose

corresponding cycle C can be followed at least n times from (c,m).

Let Cπi
be the set of all the control locations visited infinitely many times by πi.

We split πi into two paths of transitions π′ and π′′ such that πi = π′π′′ (π′ is thus

finite), and π′ visits at least once every control location belonging to Cπi
.

Let n ∈ N, and let Nc be the number of meta-transitions in T̄ beginning at

c. Since c appears an infinite number of times in π′′, there exists a finite prefix

π′′′ of π′′ in which c appears at least nNc + 1 times. We now apply the following
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transformation to πi: to the leftmost subpath of π′′′ (if one exists) of the form

(c1, m1)
t1→ (c2, m2)

t2→ · · · (ck, mk)
tk→ (c1, m1′),

where k ≥ 1, c1, . . . , ck ∈ S, m1, . . . , mk ∈ M and t1, . . . , tk ∈ T , cj 6= c for every

j ∈ {1, 2, . . . , k} and t1; t2; . . . ; tk is a simple cycle C of (C, T ), we apply Lemma 5.6

and move this occurrence of C just after the rightmost appearance of c1 in π′. In

other words, we transform

πi =

π′

︷ ︸︸ ︷

(c′1, m
′
1)

t′1→ · · ·
t′
l−1
→ (c1, m1′′)

t′
l→ · · ·

π′′′

︷ ︸︸ ︷

· · ·
t′
l′−1
→ (c1, m1)

body(C)
→ (c1, m1′)

t′
l′→ · · · · · · ,

where l, l′ ∈ N0, c
′
1, . . . ∈ S, m1′′ , m

′
1, . . . ∈ M and t′1, t

′
2, . . . ∈ T , into an equivalent

path of the form

π′

︷ ︸︸ ︷

(c′1, m
′
1)

t′1→ · · ·
t′
l−1
→ (c1, m1′′)

body(C)
→ (c1, m1′′′)

t′
l→ · · ·

π′′′

︷ ︸︸ ︷

· · ·
t′
l′−1
→ (c1, m1′′′′)

t′
l′→ · · · · · · ,

wherem1′′′ , m1′′′′ ∈M . Repeating this operation until a fixpoint is reached (i.e., until

πi does not change when the operation is subsequently performed), one eventually

obtains a subpath equivalent to πi containing at least nNc successive occurrences

of simple cycles beginning at c. This implies that there exists a simple cycle Ci
starting at c that occurs at least n times in the subpath. Repeating again the move

operation so as to shift left all the occurrences of simple cycles different from Ci in

the subpath, we finally obtain a subpath equivalent to πi in which Ci can repeatedly

be followed at least n times from a reachable state. Applying Lemma 5.6 n times,

one can move left the n occurrences of Ci just right of the leftmost appearance of

c in the subpath, obtaining an equivalent subpath in which Ci can repeatedly be

followed n times from a reachable state that does not depend on n. 2

5.5.2 Summary of Conditions

Let us summarize the necessary conditions obtained in Section 5.5.1.

Definition 5.18 An SMBA associated with a finite set of cycle meta-transitions

is safe if it satisfies Conditions 1 and 2, and if each maximal strongly connected

component of its control graph satisfies either Condition 3a” or Condition 3b (the

satisfied condition may differ for each strongly connected component).

We are now ready to state the main result of this section.

Theorem 5.19 Let B be an SMBA which is safe when associated with a set of cycle

meta-transitions T̄ . The problem which consists of determining whether B has an

accepting run is decidable.
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function SMBA-EMPTY-SC?(SMBA (C, c0, M, m0,Op, T, F ), set of cycles SC) : {T,F}

1: var QR : set of states;

2: T̄ : set of meta-transitions;

3: c : control location;

4: begin

5: T̄ := {(c, σ∗, c) ∈ C × Op∗ × C | (∃C ∈ SC)(σ = body(C) ∧ c = first(C)))};

6: QR :=REACHABLE((C, c0, M, m0,Op, T, T̄ ));

7: for each c ∈ C such that values(QR, c) 6= ∅ do

8: for each (c1, θ1, c2), (c2, θ2, c3), . . . , (ck, θk, c1) ∈ SC such that c = c1

and {c1, c2, . . . , ck} ∩ F 6= ∅ do

9: if values(QR, c) ∩ ITERABLE(θ1; θ2; . . . ; θk) 6= ∅ then

10: return F;

11: return T

12: end.

Figure 5.2: Test of emptiness for safe SMBAs (with only cycle meta-transitions).

Proof The problem can be decided by the algorithm of Figure 5.2, which is a

variant of the semi-algorithm presented in Figure 4.2 to which the following minor

modifications have been applied:

• The set T̄ of meta-transitions associated to B is computed from a set of cycles

supplied as an argument (instead of being an actual argument);

• The function OPEN-SET is implemented with the help of ITERABLE;

• The cycles that are checked are required to visit an accepting control location

instead of beginning at such a location.

2

The first two changes are motivated by the fact that we are here dealing with

cycle meta-transitions, as opposed to arbitrary ones. The purpose of the third

modification is to take into account Condition 3a”.

The correctness of this algorithm is established as follows. Let SC be the set of

cycles to which the meta-transitions in T̄ are associated. The termination of the com-

putation of SMBA-EMPTY-SC?(B, SC) is a consequence of (C, c0,M,m0,Op, T, T̄ )

being a safe ESMA. It remains to show that SMBA-EMPTY-SC?(B, SC) returns F

if and only if B has an accepting run.
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One direction is trivial. Indeed, if the algorithm returns F, then there is a

reachable state from which there exists a cycle that can be followed an unbounded

number of times and that visits an accepting control location. This defines a path

of transitions corresponding to an accepting run of B.

Reciprocally, if B has an accepting run, then we have established in Section 5.5.1

that there exists such a run in which the same simple cycle is repeatedly followed

from a reachable state, with this cycle visiting an accepting control location. Since

B is safe, this simple cycle must correspond to a meta-transition, hence must belong

to SC, and thus an accepting run will be detected by the algorithm. 2

5.5.3 Systems with Only Multicycle Meta-Transitions

We now consider an SMBA B = (C, c0,M,m0,Op, T, F ) associated with a finite

set of multicycle meta-transitions T̄ , such that the ESMA (C, c0,M,m0,Op, T, T̄ ) is

safe. For any accepting run of B, there exists an accepting control location c ∈ F

visited infinitely often by the path of transitions π corresponding to the run. Like

in Section 5.5.1, we distinguish two possible situations depending on the maximal

strongly connected component of (C, T ) to which c belongs (let S be this strongly

connected component).

The first situation is when S satisfies Condition 3a. In this case, we know that

there exists c′ ∈ S such that every simple cycle contained in S visits c′. As a

consequence, we have that π is of the form

(c0, m0)
σ
→ (c′, m1)

body(C1)
→ (c′, m2)

body(C2)
→ (c′, m3) · · · ,

where σ is an acyclic sequence of transitions of T , m1, m2, . . . ∈ M , and C1, C2, . . .

are simple cycles of (C, T ). Since Condition 2’ is satisfied, there is a meta-transition

t̄ ∈ T̄ which is associated to a superset of {C1, C2, . . .}. From Definition 4.9, it

follows that t̄ is iterable for the memory content m1. As a consequence, if B has an

accepting run, then it has a meta-transition which is iterable from a reachable state

and such that its associated set contains at least one cycle that visits an accepting

control location.

Unfortunately, the reciprocal is not true. Indeed, let t̄ be a meta-transition

associated to the set of cycles {C1, C2, . . . , Ck} (k > 1). Assume that C1 visits an

accepting control location and that t̄ is iterable from the reachable state (c,m) ∈

C ×M . This does not imply that there exists a run of B in which C1 appears an

unbounded number of times. Actually, C2 may very well be the only Cj that can

be followed from a reachable state of B, and might visit only non-accepting control

locations.

It is therefore necessary to introduce an additional requirement. We simply im-

pose that if a maximal strongly connected component of (C, T ) satisfies Condition 3a
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and does not satisfy Condition 3b, then it must be such that if it contains an ac-

cepting control location, it also contains such a location visited by all the simple

cycles of the component. Formally, this is expressed by the following condition.

Condition 4 The strongly connected component S ⊆ C in the control graph of

A must be such that if S ∩ F 6= ∅, then there exists c ∈ S ∩ F such that for

every simple cycle C = (c1, θ1, c2), (c2, θ2, c3), . . . , (ck, θk, c1) (k ≥ 1, c1, . . . , ck ∈ C,

θ1, . . . , θk ∈ Op), there exists i ∈ {1, 2, . . . , k} such that ci = c.

If this condition is satisfied by a strongly connected component S, then the

SMBA admits an exploration path π that visits infinitely many accepting control

locations in S if and only if S contains an accepting control location for which there

is a reachable memory content as well as a meta-transition repeatedly open from

that memory content.

From an algorithmic point of view, Condition 4 is easily checked by computing

the intersection of the sets of control locations visited by every simple cycle and

the set of accepting control locations of the strongly connected component. The

condition is satisfied if and only if this intersection is not empty.

Let us now study the case of a maximal strongly connected component S satisfy-

ing Condition 3b. In this case, there is no need for imposing additional restrictions,

since Condition 3b is sufficient for ensuring that the algorithm of Figure 4.2 will

always find an accepting run whenever one exists. This result is formalized by the

following theorem.

Theorem 5.20 Let B = (C, c0,M,m0,Op, T, F ) be an SMBA associated with a fi-

nite set of multicycle meta-transitions T̄ such that the ESMA (C, c0,M,m0,Op, T, T̄ )

is safe, π be a path of transitions corresponding to an accepting run of B, and πi be a

subpath of π entirely contained in a maximal strongly connected component of (C, T )

satisfying Condition 3b (let S denote this strongly connected component). If there

exists an accepting control location c ∈ S ∩ F visited infinitely many times by πi,

then there exists a meta-transition (c, f, c) ∈ T̄ which is iterable for some memory

content m ∈M reachable at the location c.

Proof The proof is similar to the one of Theorem 5.17. Suppose that there exists an

accepting control location c ∈ S ∩F visited infinitely many times by πi. Since there

are only finitely many meta-transitions in T̄ , it is sufficient to show that there exists

a memory content m ∈ M such that (c,m) is reachable and for every n ∈ N, there

exists a meta-transition t̄ ∈ T̄ such that its corresponding cycles can be followed at

least n times from (c,m) (the cycle that is followed may differ from one iteration to

the other).

Let Cπi
be the set of all the control locations visited infinitely many times by πi.

We split πi into two paths of transitions π′ and π′′ such that πi = π′π′′ (π′ is thus

finite) and π′ visits at least once every control location belonging to Cπi
.
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Let n ∈ N. Since c appears an infinite number of times in π′′, there exists a

finite prefix π′′′ of π′′ in which c appears at least n + 1 times. We now apply the

following transformation to πi: to the leftmost subpath of π′′′ (if one exists) of the

form

(c1, m1)
t1→ (c2, m2)

t2→ · · · (ck, mk)
tk→ (c1, m1′),

where k ≥ 1, c1, . . . , ck ∈ S, m1, . . . , mk ∈ M , t1, . . . , tk ∈ T , cj 6= c for every

j ∈ {1, 2, . . . , k} and t1; t2; . . . ; tk is a simple cycle C of (C, T ), we apply Lemma 5.6

and move the occurrence of C just after the rightmost appearance of c1 in π′. In

other words, we transform

πi =

π′

︷ ︸︸ ︷

(c′1, m
′
1)

t′1→ · · ·
t′
l−1
→ (c1, m1′′)

t′
l→ · · ·

π′′′

︷ ︸︸ ︷

· · ·
t′
l′−1
→ (c1, m1)

body(C)
→ (c1, m1′)

t′
l′→ · · · · · · ,

where l, l′ ∈ N0, c
′
1, . . . ∈ S, m1′′ , m

′
1, . . . ∈ M and t′1, t

′
2, . . . ∈ T , into an equivalent

path of the form

π′

︷ ︸︸ ︷

(c′1, m
′
1)

t′1→ · · ·
t′
l−1
→ (c1, m1′′)

body(C)
→ (c1, m1′′′)

t′
l→ · · ·

π′′′

︷ ︸︸ ︷

· · ·
t′
l′−1
→ (c1, m1′′′′)

t′
l′→ · · · · · · ,

wherem1′′′ , m1′′′′ ∈M . Repeating this operation until a fixpoint is reached (i.e., until

πi does not change when the operation is subsequently performed), one eventually

obtains a subpath equivalent to πi containing at least n successive occurrences of

simple cycles starting at c. Applying Lemma 5.6, one can move left the n occurrences

of these cycles just right of the leftmost appearance of c in the subpath, obtaining

an equivalent subpath in which the cycles can be followed n times from a reachable

state that does not depend on n. 2

As a consequence of this theorem, we have that if a maximal strongly connected

component S satisfies Condition 3b, then the SMBA admits an exploration path π

visiting infinitely often an accepting control location in S if and only if S contains

an accepting control location for which there exist a reachable memory content as

well as a meta-transition iterable from that memory content.

5.5.4 Summary of Conditions

Let us summarize the necessary conditions obtained in Section 5.5.3.

Definition 5.21 An SMBA associated with a finite set of multicycle meta-transi-

tions is safe if it satisfies Conditions 1 and 2, and if each maximal strongly connected

component of its control graph satisfies either Conditions 3a” and 4, or Condition 3b

(the satisfied condition(s) may differ for each strongly connected component).

We are now ready to state the main result of this section.
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function SMBA-EMPTY-MC?(SMBA (C, c0, M, m0,Op, T, F ), set of sets of cycles U) : {T,F}

1: var QR : set of states;

2: T̄ : set of meta-transitions;

3: SC : set of cycles;

4: c : control location;

5: begin

6: T̄ := {(c, S∗
C, c) ∈ C × Op∗ × C | (∃SC ∈ U)(∀C ∈ SC)(c = first(C)))};

7: QR :=REACHABLE((C, c0, M, m0,Op, T, T̄ ));

8: for each c ∈ F such that values(QR, c) 6= ∅ do

9: for each SC ∈ U such that(∀C ∈ SC)(first(C) = c) do

10: if values(QR, c) ∩ MULTI-ITERABLE({body(Ci) | Ci ∈ SC})

6= ∅ then

11: return F;

12: return T

13: end.

Figure 5.3: Test of emptiness for safe SMBAs (multicycle meta-transitions).

Theorem 5.22 Let B be an SMBA which is safe when associated with a set of

multicycle meta-transitions T̄ . The problem which consists of determining whether

B has an accepting run is decidable.

Proof The problem can be decided by the algorithm of Figure 5.3, which is an

adaptation of the algorithm of Figure 5.2 to the case of multicycle meta-transitions.

The correctness of this algorithm is established as follows. Let U be the set of sets

of cycles to which the meta-transitions in T̄ correspond. The termination of the com-

putation of SMBA-EMPTY-MC?(B, U) is a consequence of (C, c0,M,m0,Op, T, T̄ )

being a safe ESMA. It remains to show that SMBA-EMPTY-MC?(B, U) returns F

if and only if B has an accepting run.

One direction is trivial. Indeed, if the algorithm returns F, then there exists a

reachable state whose control location is accepting, and from which there is a group

of cycles that can be followed an unbounded number of times. This defines an path

of transitions corresponding to an accepting run of B.

Reciprocally, if B has an accepting run, then we have established in Section 5.5.3

that there exists such a run in which a group of simple cycles is repeatedly followed

from a reachable state whose control location is accepting. Since B is safe, a set

containing those simple cycles must correspond to a meta-transition of T̄ , hence
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must belong to U , and thus will be detected by the algorithm. 2

5.6 Control Graph Optimization

In Sections 5.3, 5.4 and 5.5, two types of decidable conditions were obtained: condi-

tions on the shape of the control graph (Conditions 3a, 3a” and 4), and conditions

on the memory operations labeling transitions or meta-transitions (Conditions 1,

2, 3b, 1’ and 2’). Conditions of the latter type depend strongly on the memory

domain that is used, and are not very restrictive whenever this domain leads to a

great amount of independence between memory operations. There are even domains

for which those conditions are always trivially satisfied regardless of the particular

system that is considered. On the other hand, conditions of the former type are

more easily fulfilled whenever the formalism used for specifying models imposes re-

strictions on the shape of the control graph. For instance, this is the case of some

structured languages for which loops can only be nested within each other rather

than arbitrarily intertwined.

In this section, we go further and show that it is sometimes possible to modify the

control graph of an SMA or SMBA in such a way that their behavior is not affected

(i.e., their set of accepting states or the emptiness or their accepting language stays

unchanged), so as to guarantee that sufficient conditions for termination are satisfied,

or at least facilitate state-space exploration.

5.6.1 Introduction

The type of optimization proposed here concerns nested loops, i.e., loops containing

loops. Roughly speaking, the idea is that the effect of following repeatedly a cycle

in the control graph of an SMA or SMBA is sometimes equivalent to following a

single transition. If the parameters of this transition can be computed, replacing the

cycle by its equivalent transition may make it possible to obtain new simple cycles,

and thus possibly new simple-cycle meta-transitions. Another advantage (which will

appear later) is that cycle replacement splits the strongly connected components of

the control graph. This increases the possibility of satisfying Conditions 3a, 3a”

and 4.

Let us illustrate on a simple example how meta-transitions can be associated

to cycles containing other cycles. The program given in Figure 5.4 is composed of

two nested loops. Its control graph is depicted in Figure 5.5 (in this figure, the

indices of control locations correspond to line numbers in the program). The only

useful simple-cycle meta-transitions that can be created correspond to the cycle

(c4′ , j ≤ i, c5), (c5, k := k + 1, c5′), (c5′, j := j + 1, c4′) (or one of its rotations).

Indeed, since there is no reachable memory content from which the cycle (c3′, i ≤
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program NESTED-LOOPS()

1: var i, j, k : integers;

2: begin

3: k := 0;

4: for i := 1 to 1000 do

5: for j := 1 to i do

6: k := k + 1

7: end.

Figure 5.4: Example of program with nested loops.

1000, c4), (c4, j := 1, c4′), (c4′ , j > i, c4′′), (c4′′ , i := i+ 1, c3′) can be followed, meta-

transitions corresponding to this cycle or its rotations would be useless for state-

space exploration.

It is however easy to show that the overall effect of the inner loop at Lines 5–6,

i.e., the transformation undergone by the variables values whenever those lines are

completely executed, is equivalent to the sequence of instructions

if j <= i then

begin

j := i + 1;

k := k + i

end

As a consequence, any subpath in the graph of Figure 5.5 that begins with the

transition (c3′ , i ≤ 1000, c4), then visits states belonging to {c4, c4′ , c4′′, c5, c5′}, and

finally ends with the transition (c4′′ , i := i+1, c3′) is equivalent to the cycle depicted

at Figure 5.6. One can therefore associate with the SMA of Figure 5.5 the meta-

transition

(c3′, (i ≤ 1000; j := 1; j ≤ i; j := i+ 1; k := k + i; j > i; i := i+ 1)∗, c3′)

corresponding to that equivalent cycle.

5.6.2 Loop Optimization

The idea behind loop optimization is to replace in the control graph of an SMA or

SMBA some cycles by their equivalent transition. The first step is to characterize

precisely the cycles that can be replaced.



94 CHAPTER 5. TERMINATION
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i ≤ 1000
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i > 1000
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j ≤ i

k := k + 1

c5′

j > i

c4′

c3′

i := i + 1

j := j + 1

i = ⊥

j = ⊥

k = ⊥

Figure 5.5: Control graph of program with nested cycles.
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c4′

c c′

c′′

c4′′c4

c3′

j := 1 j > i

j ≤ i k := k + i

j := i + 1

i ≤ 1000 i := i + 1

Figure 5.6: Cycle equivalent to nested loops.

Definition 5.23 Let A = (C, c0,M,m0,Op, T ) be an SMA or A = (C, c0,M,m0,

Op, T, F ) be an SMBA and C be a simple cycle in the control graph of A. The cycle

C is optimizable if the following conditions are satisfied:

• The cycle C can be associated with a meta-transition;

• Each control location visited by C except first(C) has exactly one incoming

transition;

• The control location first(C) has exactly two outgoing transitions;

• There exists a function f : M → M over the memory domain such that for

any m ∈M , we have

{m′ ∈M | (∃k ∈ N0)(m
′ = θ(body(C)k(m)))} = {f(m)},

where θ is the memory operation labeling the outgoing transition from first(C)

that does not belong to C. The corresponding function

g : 2M → 2M : U 7→ {f(m) | m ∈ U}

is computable with respect to the representation system used for sets of memory

contents. In addition, an algorithm for applying g can be obtained algorithmi-

cally from the specifications of C and θ.
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function OPTIMIZE-CYCLE-SMBA(SMBA (C, c0, M, m0,Op, T, F ), cycle C) : SMBA

1: var ca, cb, c1, c, c
′ : control locations;

2: θ : memory operation;

3: begin

4: C := C ∪ {ca, cb};

5: c1 := first(C);

6: for each (c, θ, c′) ∈ T \ C such that c′ = c1 do

7: T := (T \ {(c, θ, c′)}) ∪ {(c, θ, ca)};

8: for each (c, θ, c′) ∈ T \ C such that c = c1 do

9: T := T ∪ {(ca, (body(C)+; θ), cb), (cb, id, c′), (ca, θ, c′)};

10: T := T ∪ {(ca, id, c1)};

11: if (∃(c, θ, c′) ∈ C)(c ∈ F ) then F := F ∪ {cb};

12: if c0 = c1 then c0 := ca;

13: return (C, c0, M, m0,Op, T, F )

14: end.

Figure 5.7: Loop optimization for SMBAs.

Intuitively, a cycle is optimizable if it has exactly one entry and one exit, and

if the overall effect of entering the cycle, following it an arbitrary number of times,

and then exiting it is equivalent to a transition whose parameters can be computed.

If a cycle is optimizable, then optimizing it consists of modifying the control

graph of the SMA or SMBA in such a way that repeated occurrences of this cycle in

exploration paths are transformed into one occurrence of its equivalent transition.

The difficulty is to ensure that the optimized state machine has the same reachable

states as the original one (if the machine is an SMA) or is equivalent with respect

to the emptiness of its accepted language (if the machine is an SMBA).

The optimization algorithms are given in Figures 5.7 and 5.8. Intuitively, they

proceed by replacing the only transition that allows to exit the cycle (let t denote this

transition) by a transition equivalent to repeated executions of the cycle followed

by t. The replacement operation is illustrated in Figure 5.9. The correctness of

the algorithms is established by two theorems. The first one expresses that the

optimized state machine has the same reachable states as the original one, provided

that the control locations added during the optimization are not taken into account.

Theorem 5.24 Let A = (C, c0,M,m0,Op, T ) be an SMA, C be an optimizable

cycle in its control graph (C, T ), and A′ be the SMA returned by the function
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function OPTIMIZE-CYCLE-SMA(SMA (C, c0, M, m0,Op, T, F ), cycle C) : SMA

1: var (C′, c′0, M
′, m′

0,Op′, T ′, F ′) : SMBA;

2: begin

3: (C′, c′0, M
′, m′

0,Op′, T ′, F ′) :=

OPTIMIZE-CYCLE-SMBA((C, c0, M, m0,Op, T, ∅), C);

4: return (C′, c′0, M
′, m′

0,Op′, T ′)

5: end.

Figure 5.8: Loop optimization for SMAs.

call OPTIMIZE-CYCLE-SMA(A, C). The sets QR and Q′
R of reachable states of

A and A′ (respectively) are such that for every c ∈ C, we have values(QR, c) =

values(Q′
R, c).

Proof The proof is in two parts. We first show that for every exploration path of A,

there exists a corresponding path of A′. Then, we show that for every exploration

path of A′ ending in a control location that belongs to C, there exists a corresponding

path of A.

• Let c ∈ C and m ∈ M . If there exists a path π of A leading from (c0, m0)

to (c,m), then there exists a path π′ of A′ leading from (c0, m0) to (c,m).

Let c1 = first(C) and t = (c1, θ, c
′
3) be the outgoing transition from c1 that

does not belong to C. The only transitions of A that are modified during the

optimization operation are those ending in c1 and t. One can transform π into

π′ as follows (ca and cb denote the control locations created at Line 4 of the

algorithm):

1. For every occurrence of t in π, one performs the following operations. Let

l ≥ 0 be the number of occurrences of the sequence of transitions labeling

C immediately left of t in π, and let t′ be the transition immediately left

of those occurrences of body(C) (or of t if l = 0) in π, if such a transition

exists. We thus have that π is of the form

π = · · · (c′2, m)
t′
→ (c1, m

′)
body(C)

l

→ (c1, m
′′)

t
→ (c′3, m

′′′) · · · ,

with c′2, c
′
3 ∈ C, m′, m′′, m′′′ ∈M , and t′ = (c′2, θ

′, c1). If l = 0, one simply

replaces the subpath between (c′2, m) and (c′3, m
′′′) by

(c′2, m)
θ′
→ (ca, m

′)
θ
→ (c′3, m

′′′).
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c′3
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id
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c1

θ

body(C)+; θ

Figure 5.9: Illustration of loop optimization.



5.6. CONTROL GRAPH OPTIMIZATION 99

If l > 0, one replaces that subpath by

(c′2, m)
θ′
→ (ca, m

′)
body(C)

+
;θ

⇒ (cb, m
′′′)

id
→ (c′3, m

′′′).

If t′ does not exist, i.e., if c1 is the initial control location of A and there is

no transition preceding the occurrence of C in π, then the same operations

are performed without t′ appearing in the original and modified subpaths.

2. For every occurrence in π of the first transition t1 of C which is not

contained in a sequence of complete occurrences of C followed by t, one

performs the following operation. Let t′ be the transition immediately

left of t1 in π (if this transition exists). We thus have that π is of the

form

π = · · · (c′2, m)
t′
→ (c1, m

′)
t1→ (c2, m

′′),

with c′2, c2 ∈ C, m′, m′′ ∈ M . One replaces the subpath between (c′2, m)

and (c1, m
′) by

(c′2, m)
θ′
→ (ca, m

′)
id
→ (c1, m

′).

If t′ does not exist, then the same operation is performed without t′

appearing in the original and modified subpaths.

• Let c ∈ C and m ∈ M . If there exists a path π′ of A′ leading from (c0, m0)

to (c,m), then there exists a path π of A leading from (c0, m0) to (c,m). Let

c1 = first(C). The only transitions of A′ that are not transitions of A are

those ending in c1, t1 = (ca, body(C)+; θ, cb), t2 = (ca, θ, c
′
3) t3 = (ca, id, c1) and

t4 = (cb, id, c
′
3), with c′3 ∈ C. One applies the following modifications to π′:

– Each occurrence of a transition ending in ca is replaced by an identical

transition ending in c1;

– Each occurrence of t1 is replaced by the appropriate number of occur-

rences of body(C), followed by one occurrence of the only transition t of

A that goes from c1 and does not belong to C;

– Each occurrence of t2 is replaced by t;

– All the occurrences of t3 and t4 are deleted.

The result is a path π of A equivalent to π′.

2

The second theorem establishes that loop-optimizing an SMBA does not influ-

ence the emptiness of its accepted language.
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Theorem 5.25 Let B = (C, c0,M,m0,Op, T, F ) be an SMBA, C be an optimizable

cycle in (C, T ), and B′ be the SMBA returned by OPTIMIZE-CYCLE-SMBA(B, C).

The language accepted by B is empty if and only if the language accepted by B′ is

empty.

Proof Let π be an exploration path corresponding to an (infinite) run of B. The

transformation introduced in the proof of Theorem 5.24 allows to transform this path

into a path π′ corresponding to an infinite run of B′. The reciprocal transformation

is possible as well. It remains to show that π visits infinitely many accepting control

locations if and only if π′ visits infinitely many accepting control locations. Let

c1 = first(C), t = (c1, θ, c
′
3) be the only outgoing transition from c1 that does not

belong to C, and ca, cb be the control locations created by the optimization algorithm

at Line 4 of OPTIMIZE-CYCLE-SMA.

• If π visits infinitely many accepting control locations, then π′ visits infinitely

many accepting control locations. The only control locations that do not nec-

essarily appear in π′ each time they are visited in π are those visited by C.

Indeed, repeated occurrences of C in π may correspond to a single occurrence

of (ca, body(C)+; θ, cb) in π′. However, since cb is accepting provided that C

visits at least one accepting control location, we have that any finite num-

ber of visits of accepting control locations by π within successive occurrences

of C corresponds to one visit of the accepting control location cb in π′. The

transformation thus preserves the accepting nature of the path.

• If π′ visits infinitely many accepting control locations, then π visits infinitely

many accepting control locations. The only accepting control location that

does not appear in π each time it appears in π′ is cb. Since each occurrence of

cb in π′ corresponds to at least one complete occurrence of C in π, and since

C visits at least one accepting control location provided that cb is accepting,

we have that the transformation of π′ into π preserves the accepting nature of

the path.

2

5.6.3 Implementation

Here, we study how one can use the loop optimization algorithms proposed in Sec-

tion 5.6.2 in an actual implementation.

The first problem concerns an operation performed by the algorithms. Given

a sequence of memory operations σ ∈ Op∗ and a memory operation θ ∈ Op, one

should be able to decide whether a computable operation equivalent to (σ+; θ) can
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function OPTIMIZABLE?(SMA (C, c0, M, m0,Op, T ) or SMBA (C, c0, M, m0,Op, T, F ),

simple cycle C) : {T,F}

1: var c, c′, c′′, c′′′ : control locations;

2: θ, θ′ : memory operations;

3: begin

4: if ¬(META?(body(C))) then

5: return F;

6: c1 := first(C);

7: if (∃(c, θ, c′) ∈ C, (c′′, θ′, c′′′) ∈ T )((c, θ, c′) 6= (c′′, θ′, c′′′) ∧ c′ 6= c1

∧ c′ = c′′′) then

8: return F;

9: if (∃(c, θ, c′), (c′′, θ′, c′′′) ∈ T \ C)((c, θ, c′) 6= (c′′, θ′, c′′′) ∧ c = c′′ = c1) then

10: return F;

11: for each (c, θ, c′) ∈ T \ C such that c = c1 do

12: return EXISTS-LOOP-EQUIV?(body(C), θ);

13: return F

14: end.

Figure 5.10: Decision procedure for optimizability of a simple cycle.

be obtained. We therefore require the existence of a computable predicate EXISTS-

LOOP-EQUIV? : Op∗ × Op → {T,F} and a computable function LOOP-EQUIV-

OP : Op∗ × Op → Op such that for any σ ∈ Op∗ and θ ∈ Op such that EXISTS-

LOOP-EQUIV?(σ, θ) = T, LOOP-EQUIV-OP(σ, θ) returns a memory operation

θ′ ∈ Op equivalent to (σ+; θ). In practice, those predicate and function strongly

depend on the representation system used for sets of memory contents. Implemen-

tations of EXISTS-LOOP-EQUIV? and LOOP-EQUIV-OP for two important mem-

ory domains will be given in Chapters 7 and 8. An algorithm for deciding whether

a simple cycle is optimizable based on the predicate EXISTS-LOOP-EQUIV? is

given in Figure 5.10. The correctness of this algorithm is a direct consequence of

Definition 5.23.

The second problem is to integrate loop optimization together with cycle detec-

tion. Indeed, since loop optimization modifies the control graph and therefore its

set of cycles, performing the optimization operation more than once requires to re-

compute the set of cycles of the control graph after each optimization. An easy way

of carrying out this recomputation consists of updating after each optimization only

the cycles that have been influenced by this optimization. The advantage is that
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those cycles are usually in very small number and are quite easy to distinguish from

the others, since each loop optimization only modifies a very small number of tran-

sitions in the control graph. Algorithms implementing repeated loop optimizations

for SMBAs and SMAs are given in Figures 5.11, 5.12 and 5.13. Their correctness is

established by the following results.

Theorem 5.26 Let B = (C, c0,M,m0,Op, T, F ) be a SMBA, S be a finite set of

simple cycles in (C, T ), and B′ be the SMBA returned by OPTIMIZE-SET-SMBA(B,

S). The language accepted by B is empty if and only if the language accepted by B′

is empty.

Theorem 5.27 Let A = (C, c0,M,m0,Op, T ) be an SMA, S be a finite set of simple

cycles in its control graph (C, T ), and A′ be the SMA returned by the function call

OPTIMIZE-SET-SMA(A, S). The sets QR and Q′
R of reachable states of A and A′

(respectively) are such that for every c ∈ C, we have values(QR, c) = values(Q′
R, c).

Proofs The SMA or SMBA A′ is obtained from A by applying OPTIMIZE-CYCLE-

SMBA (at Line 11 of OPTIMIZE-SET-SMBA) as many times as there are optimiz-

able cycles in S. The purpose of the subsequent part of the main loop (Lines 12–29)

is to update S so as to satisfy the invariant “every element of S is a simple cycle

of (C, T )” at Line 11. We simply show that this modification of S is performed

correctly. When a loop optimization is performed on the current state machine with

the optimizable simple cycle C ∈ S, the only elements of S that are not neces-

sarily cycles in the control graph of the optimized state machine are those visiting

c1 = first(C). This is a consequence of the way loop optimization is performed. The

purpose of Line 13 is precisely to enumerate each cycle C′ in S that needs to be

updated. There are two possibilities:

• After visiting c1, C
′ follows the first transition of C. In this case, the update

consists of transforming the subsequence of transitions

(c, θ, c1), (c1, θ1, c2)

in C′, where c, c2 ∈ C and θ, θ1 ∈ Op, into

(c, θ, ca), (ca, id, c1), (c1, θ1, c2),

where ca denotes the control location of the same name created during the

loop optimization.

• After visiting c1, C
′ follows a transition that does not belong to C. Here, the

update simply consists of transforming the control location c1 into ca in every

transition of C′ beginning or ending at that location.

In both cases, the updated cycle does correspond to C′ in the control graph of the

optimized machine. 2
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function OPTIMIZE-SET-SMBA(SMBA (C, c0, M, m0,Op, T, F ), set of simple cycles S)

: SMBA

1: var C, C′ : cycles;

2: c1, c, c
′, c′′, c′′′, ca, c′a, c1, c2, c3 : control locations;

3: θ, θ′, θ′′, θa : memory operations;

4: (C′, c′0, M
′, m′

0,Op′, T ′, F ′) : SMBA;

5: σ, σ′ : sequences of memory operations;

6: begin

7: for each C ∈ S such that OPTIMIZABLE?((C, c0, M, m0,Op, T, F ), C) do

8: begin

9: c1 := first(C);

10: let (c, θ, c′) ∈ T \ C such that c = c1;

11: (C′, c′0, M
′, m′

0,Op′, T ′, F ′) :=

OPTIMIZE-CYCLE-SMBA((C, c0, M, m0,Op, T, F ), C);

12: let (ca, θa, c′a) ∈ T ′ \ C such that c′a = c1;

13: for each C′ ∈ S such that (∃(c2, θ
′, c3) ∈ C′)(c2 = c1) do

14: if (c, θ, c′) ∈ C′ then

15: begin

16: S := S \ {C′};

17: for each σ, σ′ ∈ (T ′)∗, (c′′, θ′′, c′′′) ∈ T ′ such that

c′′′ = c1 ∧ C′ = σ, (c′′, θ′′, c′′′), σ′ do

18: C′ := σ, (c′′, θ′′, ca), σ′;

19: let σ, σ′ ∈ (T ′)∗ such that C′ = σ, (c, θ, c′), σ′;

20: C′ := σ, (ca, θ, c′), σ′;

21: S := S ∪ {C′}

22: end

(. . . )

Figure 5.11: Repeated loop optimizations for SMBAs.
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(. . . )

23: else

24: begin

25: S := S \ {C′};

26: for each σ, σ′ ∈ (T ′)∗, (c′′, θ′′, c′′′) ∈ T ′ such that

c′′′ = c1 ∧ C′ = σ, (c′′, θ′′, c′′′), σ′ do

27: C′ := σ, (c′′, θ′′, ca), (ca, id, c1), σ
′;

28: S := S ∪ {C′}

29: end;

30: (C, c0, M, m0,Op, T, F ) := (C′, c′0, M
′, m′

0,Op′, T ′, F ′)

31: end;

32: return (C, c0, M, m0,Op, T, F )

33: end.

Figure 5.12: Repeated loop optimizations for SMBAs (continued).

function OPTIMIZE-SET-SMA(SMA (C, c0, M, m0,Op, T ), set of simple cycles S) : SMA

1: var (C′, c′0, M
′, m′

0,Op′, T ′, F ′) : SMBA;

2: begin

3: (C′, c′0, M
′, m′

0,Op′, T ′, F ′) :=

OPTIMIZE-SET-SMBA((C, c0, M, m0,Op, T, ∅), C);

4: return (C′, c′0, M
′, m′

0,Op′, T ′)

5: end.

Figure 5.13: Repeated loop optimizations for SMAs.



Chapter 6

Finite-State Representation

Systems

This chapter introduces a general technique for designing representation systems

for sets of memory contents. The idea consists of encoding memory contents as

words over some finite alphabet, and then representing a set as a finite automaton

accepting the encodings of the contents of the set. This approach can easily be

followed for a large number of domains, since memory contents admit most of the

time natural encodings consisting of a string of bits. Moreover, we will show that

the operations that one must be able to perform on representable sets of memory

contents translate naturally into operations on automata.

The chapter is organized as follows. First, we introduce finite-state automata as

well as a few associated notions. Then, we give algorithms for performing elementary

operations on automata. Next, after defining the notion of encoding, we show that

automata can be used as representations of sets of memory contents. Finally, we

show that elementary operations on representable sets can be carried out by simply

performing the corresponding operations on their representations.

6.1 Finite-State Automata

Intuitively, a finite-state automaton is a state machine recognizing a set of words by

using only a finite amount of memory. Formally, we have the following definition.

Definition 6.1 A finite-state automaton is a tuple (Σ, S,∆, I, F ), where

• Σ is a finite alphabet;

• S is a finite set of states;

• ∆ ⊆ S × Σ∗ × S is a transition relation. For each transition (s, w, s′) ∈ ∆, s

is the origin, s′ is the end, and w is the label of the transition;

105
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• I ⊆ S is a set of initial states;

• F ⊆ S is a set of accepting states.

Let A = (Σ, S,∆, I, F ) be an automaton. Given two states s, s′ ∈ S and a

word w ∈ Σ∗, we write (s, w, s′) ∈ ∆∗ if there exist k ∈ N, s0, s1, . . . , sk ∈ S

and w0, w1, . . . , wk−1 ∈ Σ∗ such that s0 = s, sk = s′, w = w0w1 · · ·wk−1, and

(si, wi, si+1) ∈ ∆ for every i ∈ {0, 1, . . . , k − 1}. The sequence of transitions

(s0, w0, s1), (s1, w1, s2), . . . , (sk−1, wk−1, sk) is a path leading from s to s′, labeled

by w. The word w is accepted by A if there exists a path labeled by w leading from

a state of I to a state of F . The set of all the words accepted by A is the language

accepted by A and is denoted L(A). If the label of every transition of A has a

length less or equal to one, then A is said to be in normal form. If the label of every

transition of A has a length exactly equal to one, then A is said to be in strong

normal form. If A has at most one initial state, and does not have two transitions

(s1, w1, s
′
1), (s2, w2, s

′
2) such that s1 = s2 and either w1 ∈ pre(w2) or w2 ∈ pre(w1),

where pre(w) denotes the set of the prefixes of the word w ∈ Σ∗, then A is said to

be deterministic. Intuitively, A is deterministic if for every state s ∈ S and word

w ∈ Σ∗, there is at most one transition in ∆ labeled by a prefix of w that has the

origin s. The following theorem is a well-known result of automata theory:

Theorem 6.2 For every automaton A, there exists a deterministic automaton A′

in strong normal form such that L(A) = L(A′).

Proof A constructive proof can be found in [HU79] or [Per90]. An algorithm for

computing A′ given A will be presented in Section 6.2. 2

Theorem 6.2 implies that the languages that can be accepted by finite-state

automata do not depend on the deterministic nature of these automata. Such lan-

guages can easily be described by simple formulas called regular expressions. We

have the following definition, inspired by [HU79]:

Definition 6.3 Let Σ be a finite alphabet. The regular expressions over Σ and the

subsets of Σ∗ that they denote are defined recursively as follows:

• ∅ is a regular expression and denotes the empty language ∅;

• ε is a regular expression and denotes the language {ε} whose only element is

the empty word ε;

• For each a ∈ Σ, a is a regular expression and denotes the language {a};

• If e1 is a regular expression denoting the language L1 ∈ Σ∗, then (e∗1) is a

regular expression and denotes the language

L∗
1 = {w ∈ Σ∗ | (∃k ∈ N, w1, w2, . . . , wk ∈ L1)(w = w1w2 · · ·wk)}.

This language is called the Kleene closure of L1;
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• If e1 and e2 are regular expressions denoting respectively the languages L1, L2 ∈

Σ∗, then

– (e1 + e2) is a regular expression and denotes the language L1 ∪ L2;

– (e1 · e2) is a regular expression and denotes the language

L1 · L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}.

This language is called the concatenation of L1 and L2.

In writing regular expressions, one may delete many pairs of parentheses by

assuming that “∗” has an higher precedence than “·” and “+”, and that “·” has an

higher precedence than “+”. If e is a regular expression, then e+ is a shorthand for

e · e∗.

Any language that can be denoted by a regular expression is said to be regular.

The following theorem states that regular languages are exactly those than can be

accepted by finite-state automata.

Theorem 6.4 Let Σ be a finite alphabet, and L ⊆ Σ∗ be a language. There exists

a finite-state automaton accepting L if and only if there exists a regular expression

over Σ denoting L.

Proof A constructive proof can be found in [HU79] or [Per90]. 2

Because of the equivalence between regular languages and regular expressions,

we will often use the same notation for denoting both. For instance, if L1 and L2 are

languages, then (L1 ·L2)
∗ will be used as a shorthand for “the language denoted by

the regular expression (E1 ·E2)
∗, where E1 and E2 are regular expressions denoting

respectively L1 and L2”.

6.2 Operations on Automata

An advantage of automata over other representations of regular languages is that it is

easy to write algorithms for manipulating automata. In this section, we define some

operations that can be performed on automata, and give algorithms for carrying out

these operations. The algorithms are not fully described in this thesis. They are only

included for completeness, since they will be used extensively in the sequel. Detailed

descriptions of those algorithms can be found in [HU79], [Per90] and [Hop71].

6.2.1 Determinization

The goal of the determinization operation is to compute, given an automaton A,

an automaton DETERMINIZE(A) which is complete, in strong normal form, and
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function NORMALIZE(automaton (Σ, S, ∆, I, F )) : automaton

1: var (s, w, s′) : transition;

2: s1, s2, . . . : states;

3: begin

4: for each (s, w, s′) ∈ ∆ such that |w| > 1 do

5: begin

6: let s1, s2, . . . , s|w|−1 6∈ S;

7: S := S ∪ {s1, s2, . . . , s|w|−1};

8: ∆ := (∆ \ {(s, w, s′)}) ∪ {(s, w[1], s1), (s|w|−1, w[|w|], s′)}

∪ {(si−1, w[i], si) | 1 < i < |w|}

9: end;

10: return (Σ, S, ∆, I, F )

11: end.

Figure 6.1: Normalization of an automaton.

accepts exactly the same language as A. The determinization operation proceeds

by first normalizing A, i.e., converting it into an automaton NORMALIZE(A) that

accepts the same language, but is in normal form. Normalizing an automaton can

be done by replacing each transition whose label has a length greater than one by a

succession of transitions labeled by a single symbol, creating as many intermediate

new states as necessary. An algorithm1 implementing this operation is given in

Figure 6.1.

After normalizing the input automaton A, obtaining an automaton A′, the deter-

minization procedure creates an automaton A′′ whose states correspond to subsets

of states of A′. The set of initial states of A′′ contains only one element, correspond-

ing to the set of all the states of A′ that can be reached without reading any symbol

(in other words, all the states that can be reached by reading the empty word).

Whenever it is possible to go from a set Q of states of A′ to another such set Q′ by

reading a symbol a, one creates a transition of A′′ labeled by a with its origin and

end corresponding respectively to Q and to Q′. The creation of transitions can be

seen as the exploration of a finite graph and can thus be performed according to a

depth-first strategy. Finally, a state of A′′ is accepting if and only if it corresponds

to a set of states of A′ containing at least one accepting state. Following those rules,

one eventually obtains an automaton A′′ which is deterministic and in strong nor-

1In this algorithm, the notations |w| and w[i] denote respectively the length of the word w, i.e.,

the number of symbols composing w, and the i-th symbol of w (1 ≤ i ≤ |w|).
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mal form (by construction), and such that L(A′′) = L(A). An algorithm formalizing

this determinization procedure is given in Figure 6.2. The time and space cost of

determinizing an automaton can be as high as O(2|∆|), where |∆| denotes the sum

of the lengths of the labels of all the transitions.

6.2.2 Minimization

The purpose of the minimization operation is to compute, given an automaton A

that is deterministic and in strong normal form, the smallest automaton (with re-

spect to the number of states) that accepts the same language as A and is determin-

istic and in strong normal form as well (this automaton is denoted MINIMIZE(A)).

According to a well-known result [Har65, McC65, HU79], MINIMIZE(A) always

exists and is unique up to isomorphism.

An efficient algorithm for computing MINIMIZE(A) has been given by Hopcroft

[Hop71]. This algorithm can be found in Figures 6.3 and 6.4. It proceeds by first

partitioning the states of A according to the coarsest equivalence relation such that

for every equivalent states s, s′ of A and symbol a, if s and s′ both have outgoing

transitions labeled by a, then the ends of those transitions belong to the same equiv-

alence class. The automaton MINIMIZE(A) is then obtained by creating one state

for each equivalence class, and linking those states by the same transitions as those

linking the elements of the equivalence classes to each other. A complete description

of the algorithm as well as a proof of its correctness can be found in [Hop71]. The

time and space cost of the algorithm is O(|S| log |S|), where |S| denotes the number

of states of A.

Algorithms have also been developed for minimizing transition systems with

respect to finer equivalence relations than language equivalence [PT87, BFH91]. We

do not describe them in this thesis.

6.2.3 Closure and Concatenation

The goal of the closure operation is to compute an automaton A′ accepting the

language L∗, given an automaton A accepting the language L. This is done by

building A′ in such a way that each of its accepting paths corresponds to a succession

of accepting paths of A. The construction is illustrated in Figure 6.5. An algorithm

implementing the closure operation is given in Figure 6.6. The time and space cost

of this operation is O(|I| + |F |), where |I| and |F | denote respectively the number

of initial and of accepting states of A.

The concatenation operation aims at computing, given two automata A1 and

A2, an automaton A′ accepting the language L(A1) · L(A2). It is performed by

constructing A′ in such a way that each of its accepting paths corresponds to an

accepting path of A1 followed by an accepting path of A2. The construction is
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function DETERMINIZE(automaton A) : automaton

1: var (Σ, S, ∆, I, F ) (Σ′, S′, ∆′, I ′, F ′) : automata;

2: Q0 : set of states;

3: procedure generate(set of states Q)

4: var Q′ : set of states;

5: a : symbol;

6: begin

7: S′ := S′ ∪ {Q};

8: for each a ∈ Σ such that (∃(s, a′, s′) ∈ ∆∗)(s ∈ Q ∧ a′ = a) do

9: begin

10: Q′ := {s′ ∈ S | (∃s ∈ Q)((s, a, s′) ∈ ∆∗)};

11: ∆′ := ∆′ ∪ {(Q, a, Q′)};

12: if Q′ 6∈ S′ then generate(Q′)

13: end

14: end;

15: begin

16: (Σ, S, ∆, I, F ) := NORMALIZE(A);

17: Σ′ := Σ;

18: S′ := ∅;

19: ∆′ := ∅;

20: Q0 := {s ∈ S | (∃s0 ∈ I)((s0, ε, s) ∈ ∆∗)};

21: generate(Q0);

22: I ′ := {Q0};

23: F ′ := {Q ∈ S′ | Q ∩ F 6= ∅};

24: return (Σ′, S′, ∆′, I ′, F ′)

25: end.

Figure 6.2: Determinization of an automaton.
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function MINIMIZE(deterministic automaton (Σ, S, ∆, I, F )) : deterministic automaton

1: var (Σ′, S′, ∆′, I ′, F ′) : automaton;

2: s′′ : state;

3: function partition(automaton (Σ, S, ∆, I, F )) : set of sets of states

4: var class : array[1, 2, . . .] of sets of states;

5: image-class : array[1, 2, . . . ; Σ] of sets of states;

6: part1, part2 : sets of states;

7: split-list : array[Σ] of sets of integers;

8: i, j, k, l : integers;

9: a : symbol;

10: begin

11: class[1] := F ;

12: class[2] := S \ F ;

13: for each a ∈ Σ, i ∈ {1, 2} do

14: image-class[i, a] := {s ∈ class[i] | (∃(s1, a1, s2) ∈ ∆)

(s2 = s ∧ a1 = a)};

15: for each a ∈ Σ do

16: if |image-class[1, a]| ≤ |image-class[2, a]| then split-list[a] := {1}

17: else split-list[a] := {2};

18: k := 3;

19: while (∃a ∈ Σ)(split-list[a] 6= ∅) do

20: begin

21: let a ∈ Σ such that split-list[a] 6= ∅;

22: let i ∈ split-list[a];

23: split-list[a] := split-list[a] \ {i};

24: for each j such that 1 ≤ j < k ∧ (∃s ∈ class[j],

(s1, a
′, s2) ∈ ∆)(s1 = s ∧ a′ = a ∧ s2 ∈ image-class[i, a]) do

25: begin

26: part1 := {s ∈ S | (∃(s1, a
′, s2) ∈ ∆)(s1 = s

∧ a′ = a ∧ s2 ∈ image-class[i, a])};

(. . . )

Figure 6.3: Minimization of a deterministic automaton.
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(. . . )

27: part2 := class[j] \ part1;

28: class[j] := part1;

29: class[k] := part2;

30: for each a ∈ Σ, l ∈ {j, k} do

31: image-class[l, a] := {s ∈ class[l] |

(∃(s1, a1, s2) ∈ ∆)(s2 = s ∧ a1 = a)};

32: for each a ∈ Σ do

33: if j 6∈ split-list[a] ∧ |image-class[j, a]|

≤ |image-class[k, a]| then

34: split-list[a] := split-list[a] ∪ {j}

35: else split-list[a] := split-list[a] ∪ {k};

36: k := k + 1

37: end

38: end;

39: return {class[l] | 1 ≤ l < k ∧ class[l] 6= ∅}

40: end;

41: begin

42: S := {s ∈ S | (∃s0 ∈ I, w ∈ Σ∗)((s0, w, s) ∈ ∆∗)};

43: let s′′ 6∈ S;

44: S := S ∪ {s′′};

45: for each s1 ∈ S, a ∈ Σ such that (6 ∃(s′, a′, s′′′) ∈ ∆)(s′ = s1 ∧ a′ = a) do

46: ∆ := ∆ ∪ {(s1, a, s′′)};

47: Σ′ := Σ;

48: S′ := partition((Σ, S, ∆, I, F ));

49: ∆′ := {(Q, a, Q′) ∈ S′ × Σ′ × S′ | (∃s ∈ Q, s ∈ Q′, a ∈ Σ)((s, a, s′) ∈ ∆)};

50: I ′ := {Q ∈ S′ | I ⊆ Q};

51: F ′ := {Q ∈ S′ | Q ∩ F 6= ∅};

52: return (Σ′, S′, ∆′, I ′, F ′)

53: end.

Figure 6.4: Minimization of a deterministic automaton (continued).
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Figure 6.5: Computing the closure of an automaton.

function CLOSURE(automaton (Σ, S, ∆, I, F )) : automaton

1: var s : state;

2: begin

3: let s 6∈ S;

4: S := S ∪ {s};

5: ∆ := ∆ ∪ {(s, ε, s′) | s′ ∈ I} ∪ {(s′, ε, s) | s′ ∈ F};

6: return (Σ, S, ∆, {s}, {s})

7: end.

Figure 6.6: Closure of an automaton.
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A1

A2

ε

ε

ε ε

ε

Figure 6.7: Concatenating two automata.

illustrated in Figure 6.7. An algorithm implementing the concatenation operation

is given in Figure 6.8. Its time and space cost of is O(|F1|+ |I2|), where |F1| and |I2|

denote respectively the number of accepting states of A1 and the number of initial

states of A2.

6.2.4 Set-Theory Operators

The synchronous product operation takes as arguments two automata A1 and A2

of respective alphabets Σ1 and Σ2, in normal form, and computes an automaton A′

accepting the language

{(a1, a
′
1)(a2, a

′
2) · · · (ak, a

′
k) | k ∈ N ∧ a1a2 · · ·ak ∈ L(A1) ∧ a′1a

′
2 · · ·a

′
k ∈ L(A2)}.

It is performed by constructing an automaton whose set of states is the Cartesian

product of the sets of states of A1 and of A2. Each transition of A′ labeled by a pair

of symbols (a, a′) ∈ Σ1 × Σ2 corresponds to a transition of A1 labeled by a and a

transition of A2 labeled by a′ followed simultaneously. Each transition of A′ labeled

by ε corresponds either to a transition of A1 labeled by ε, or to a transition of A2

labeled by ε. An algorithm implementing this operation is given in Figure 6.9. The

time and space cost of this algorithm is O(|∆1||∆2|).
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function CONCATENATE(automata (Σ1, S1, ∆1, I1, F1), (Σ2, S2, ∆2, I2, F2)

such that S1 ∩ S2 = ∅) : automaton

1: var (Σ, S, ∆, I, F ) : automaton;

2: s : state;

3: begin

4: let s 6∈ S1 ∪ S2;

5: Σ := Σ1 ∪ Σ2;

6: S := S1 ∪ S2 ∪ {s};

7: ∆ := ∆ ∪ {(s′, ε, s) | s′ ∈ F1} ∪ {(s, ε, s′) | s′ ∈ I2};

8: I := I1;

9: F := F2;

10: return (Σ, S, ∆, I, F )

11: end.

Figure 6.8: Concatenation of two automata.

function PRODUCT(automata (Σ1, S1, ∆1, I1, F1), (Σ2, S2, ∆2, I2, F2)) : automaton

1: var (Σ, S, ∆, I, F ) : automaton;

2: begin

3: (Σ1, S1, ∆1, I1, F1) := NORMALIZE((Σ1, S1, ∆1, I1, F1));

4: (Σ2, S2, ∆2, I2, F2) := NORMALIZE((Σ2, S2, ∆2, I2, F2));

5: Σ := Σ1 × Σ2;

6: S := S1 × S2;

7: ∆ := {((s1, s2), (a1, a2), (s
′
1, s

′
2)) ∈ S × Σ × S | (s1, a1, s

′
1) ∈ ∆1

∧ (s2, a2, s
′
2) ∈ ∆2}

∪ {((s1, s2), ε, (s
′
1, s

′
2)) ∈ S × {ε} × S | (s1 = s′1 ∧ (s2, ε, s

′
2) ∈ ∆2)

∨ (s2 = s′2 ∧ (s1, ε, s
′
1) ∈ ∆1)};

8: I := I1 × I2;

9: F := F1 × F2;

10: return (Σ, S, ∆, I, F )

11: end.

Figure 6.9: Synchronous product of two automata.
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function INTERSECTION(automata (Σ1, S1, ∆1, I1, F1), (Σ2, S2, ∆2, I2, F2)) : automaton

1: var (Σ, S, ∆, I, F ) : automaton;

2: s, s′ : states;

3: a1, a2 : symbols;

4: begin

5: (Σ, S, ∆, I, F ) := PRODUCT((Σ1, S1, ∆1, I1, F1), (Σ2, S2, ∆2, I2, F2));

6: for each (s, (a1, a2), s
′) ∈ ∆ do

7: if a1 = a2 then

8: ∆ := (∆ \ {(s, (a1, a2), s
′)}) ∪ {(s, a1, s

′)}

9: else

10: ∆ := ∆ \ {(s, (a1, a2), s
′)};

11: Σ := Σ1 ∩ Σ2;

12: return (Σ, S, ∆, I, F )

13: end.

Figure 6.10: Intersection of two automata.

The goal of the intersection operation is to compute, given two automata A1

and A2 of respective alphabets Σ1 and Σ2, an automaton A′ accepting the language

L(A1) ∩ L(A2). This operation is performed by first computing the synchronous

product A of A1 and A2, and then deleting from the set of transitions of A all the

transitions labeled by a pair (a, a′) ∈ Σ1 × Σ2 such that a 6= a′. Each accepting

path of the resulting automaton thus corresponds to an accepting path of A1 and

an accepting path of A2 that both read the same word. An algorithm implementing

this operation is given in Figure 6.10. The time and space cost of this algorithm is

O(|∆1||∆2|).

The union operation consists of computing, given two automata A1 and A2,

an automaton A′ accepting the language L(A1) ∪ L(A2). It is performed by con-

structing A′ in such a way that each of its accepting paths corresponds either to

an accepting path of A1 or to an accepting path of A2. The construction is illus-

trated in Figure 6.11. An algorithm implementing the union operation is given in

Figure 6.12. The time and space cost of this operation is O(|I1| + |I2|).

The complement operation consists of computing an automaton A′ accepting the

complement L(A) of the language accepted by an automaton A over its alphabet.

This operation is performed by first determinizing A and then completing its set

of transitions so as to have at each state and for every symbol of the alphabet

an outgoing transition labeled by that symbol. The complemented automaton is
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Figure 6.11: Computing the union of two automata.

function UNION(automata (Σ1, S1, ∆1, I1, F1), (Σ2, S2, ∆2, I2, F2)

such that S1 ∩ S2 = ∅) : automaton

1: var (Σ, S, ∆, I, F ) : automaton;

2: s : state;

3: begin

4: let s 6∈ S1 ∪ S2;

5: Σ := Σ1 ∪ Σ2;

6: S := S1 ∪ S2 ∪ {s};

7: ∆ := ∆ ∪ {(s, ε, s′) | s′ ∈ I1 ∪ I2};

8: I := {s};

9: F := F1 ∪ F2;

10: return (Σ, S, ∆, I, F )

11: end.

Figure 6.12: Union of two automata.
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function COMPLEMENT(automaton A) : automaton

1: var (Σ, S, ∆, I, F ) : automaton;

2: s, s1 : states;

3: a : symbol;

4: begin

5: (Σ, S, ∆, I, F ) := DETERMINIZE(A);

6: let s 6∈ S;

7: S := S ∪ {s};

8: for each s1 ∈ S, a ∈ Σ such that (6 ∃(s′, a′, s′′) ∈ ∆)(s′ = s1 ∧ a′ = a) do

9: ∆ := ∆ ∪ {(s1, a, s)};

10: F := S \ F ;

11: return (Σ, S, ∆, I, F )

12: end.

Figure 6.13: Complement of an automaton.

then obtained by exchanging the accepting and non-accepting states. An algorithm

implementing this operation is given in Figure 6.13. Its time and space cost is

O(2|∆|) if the automaton is non-deterministic, and O(|S|) if it is deterministic.

The difference operation consists of computing, given two automata A1 and A2,

an automaton accepting the language L(A1) \L(A2). This operation can simply be

performed by computing the intersection of A1 and of the complement of A2. An

algorithm implementing this operation is given in Figure 6.14. Its time and space

cost is O(|∆1|2
|∆2|) if A2 is non-deterministic, and O(|∆1||∆2|) is A2 is deterministic.

The next operation is to test whether the language accepted by an automaton

is empty or not. This is equivalent to checking whether the automaton admits at

function DIFFERENCE(automata A1,A2) : automaton

1: begin

2: return INTERSECTION(A1, COMPLEMENT(A2))

3: end.

Figure 6.14: Difference between two automata.
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function EMPTY?(automaton (Σ, S, ∆, I, F )) : {T,F}

1: var states : set of states;

2: s : state;

3: function accepting-path(state s′) : {T,F}

4: var (s1, a, s2) : transition;

5: begin

6: if s′ ∈ F do return T;

7: states := S ∪ {s′};

8: for each (s1, a, s2) ∈ ∆ such that s1 = s′ ∧ s2 6∈ states do

9: if accepting-path(s2) then return T;

10: return F

11: end;

12: begin

13: states := ∅;

14: for each s ∈ I do

15: if accepting-path(s) then return F;

16: return T

17: end.

Figure 6.15: Test of emptiness of the language accepted by an automaton.

least one accepting path, which can simply be done by performing a depth-first

search for an accepting state. An algorithm implementing this operation is given in

Figure 6.15. Its time and space cost is O(|∆|).

Let us now address the problem that consists of testing whether the language

accepted by an automaton A1 is included in the language accepted by an automaton

A2. This test can be carried out by simply checking the emptiness of the difference

between A1 and A2. An algorithm implementing this operation is given in Fig-

ure 6.16. Its time and space cost is O(|∆1|2
|∆2|) if A2 is non-deterministic, and

O(|∆1||∆2|) is A2 is deterministic.

The last operation studied in this section is the application of an homomor-

phism. Let Σ be an alphabet. An homomorphism over Σ is a function f : Σ∗ → Σ∗

such that for any two words w1, w2 ∈ Σ∗, f(w1 · w2) = f(w1) · f(w2) (in other

words, an homomorphism is a function that is distributive over the concatenation

of words). It follows from this definition that an homomorphism f can simply be

defined by the mapping {(a, f(a)) | a ∈ Σ} of the symbols of the alphabet. Applying
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function INCLUDED?(automata A1,A2) : {T,F}

1: begin

2: return EMPTY?(DIFFERENCE(A1,A2))

3: end.

Figure 6.16: Test of inclusion between two languages accepted by automata.

an homomorphism f to an automaton A consists of computing an automaton A′

accepting {f(w) | w ∈ L(A)}. This can be done by simply applying the homomor-

phism to each transition label of A. An algorithm implementing this operation is

given in Figure 6.17. In particular, this algorithm allows to compute an automaton

accepting the projection L(A)|Σ′ of the language accepted by a given automaton

A = (Σ, S,∆, I, F ) over a subset Σ′ of its alphabet by applying to A the homo-

morphism fΣ′ such that for every a ∈ Σ, fΣ′(a) = a if a ∈ Σ′ and fΣ′(a) = ε if

a 6∈ Σ′. The time and space cost of applying an homomorphism to an automaton is

O(C|∆|), where C is the cost of computing the image of a transition label by the

homomorphism.

6.3 Automata as Representations of Sets

Let M be a memory domain and Σ be a finite alphabet. An encoding scheme for the

elements of M over Σ is a relation that associates to each memory content m ∈ M

one or several words over Σ such that each of them describes unambiguously m.

Formally, we have the following definition.

Definition 6.5 An encoding scheme for the elements of M over Σ is a relation

E ⊆M × V , where V ⊆ Σ∗ is a set of valid encodings, such that

• For each m ∈M , there exists (m1, w1) ∈ E such that m1 = m (the relation is

complete over M), and

• For each w ∈ V , there exists exactly one (m1, w1) ∈ E such that w1 = w (the

relation is complete and unambiguous over V ).

Since encoding schemes associate words to memory contents, they can be used

for transforming a set of memory contents into a language. Given a memory domain

M , an alphabet Σ and an encoding scheme E, we define the encoding E(U) of a set
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function APPLY-HOMOMORPHISM(automaton (Σ, S, ∆, I, F ), function f) : automaton

1: begin

2: ∆ := {(s1, f(w), s2) | (s1, w, s2) ∈ ∆};

3: return (Σ, S, ∆, I, F )

4: end.

Figure 6.17: Application of an homomorphism to an automaton.

of memory contents U ⊆ M as the language2

E(U) = {w ∈ Σ∗ | (∃m ∈ U, (m1, w1) ∈ E)(m1 = m ∧ w1 = w)}.

Reciprocally, given a language L ⊆ Σ∗, we define the decoding D(L) of L as the set

of memory contents

D(L) = {m ∈M | (∃w ∈ L, (m1, w1) ∈ E)(m1 = m ∧ w1 = w)}.

As a consequence of the requirements of Definition 6.5, we have D(E(U)) = U for

every set of memory contents U ⊆ M . This shows that the encoding of a set of

memory contents describes unambiguously this set.

The next step is to represent the encoding of a set of memory contents, i.e., to

associate to such a set a finite object containing sufficient information for describing

this set unambiguously. We have the following definition.

Definition 6.6 Let M be a memory domain, Σ be a finite alphabet, and E be an

encoding scheme for the elements of M over Σ. A finite-state representation of a

set U ⊆ M of memory contents with respect to E is a finite-state automaton A of

alphabet Σ, such that L(A) = E(U).

If M is infinite, then it is not possible to represent each of its subsets. The reason

is that there are uncountably many subsets of memory contents but only countably

many finite-state representations. Following Theorem 6.4, the next definition char-

acterizes the sets of memory contents that have a finite-state representation.

Definition 6.7 A set of memory contents U ⊆ M is recognizable with respect to

an encoding scheme E if the language E(U) is regular.

The advantages of finite-state representations over other representation systems

are that they are quite expressive, i.e., they allow to represent a large class of sets,

2By extension, if m ∈ M and w ∈ E({m}), then w is called an encoding of m.
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and that there are a lot of useful operations that can be performed on finite-state

automata. In the next section, we study how to reduce operations on representable

sets of memory contents to the operations on finite-state automata presented in

Section 6.2. The problem of characterizing precisely the expressiveness of finite-state

representations will be addressed for two particular memory domains in Chapters 7

and 8.

6.4 Operations on Representable Sets

Thanks to the following theorem, applying set-theory operators over recognizable

sets of memory contents can simply be done by performing the corresponding oper-

ations over their finite-state representation.

Theorem 6.8 Let M be a memory domain, E be an encoding scheme and θ ∈

{∪,∩, \} be a set-theory operation. For every recognizable sets U1, U2 ⊆M of mem-

ory contents, we have E(U1 θ U1) = E(U1) θ E(U2).

Proof

• We have E(U1 ∪ U2) ⊆ E(U1) ∪ E(U2). If w ∈ E(U1 ∪ U2), then there exist

m ∈ U1 ∪ U2 and (m1, w1) ∈ E such that m1 = m ∧ w1 = w. If m ∈ U1, then

w ∈ E(U1). If m ∈ U2, then w ∈ E(U2).

• We have E(U1) ∪ E(U2) ⊆ E(U1 ∪ U2). If w ∈ E(U1) ∪ E(U2), there there

exists (m1, w1) ∈ E such that w1 = w and m1 belongs to U1 ∪ U2. Thus,

w ∈ E(U1 ∪ U2).

• We have E(U1 ∩ U2) ⊆ E(U1) ∩ E(U2). If w ∈ E(U1 ∩ U2), then there exist

m ∈ U1 ∩ U2 and (m1, w1) ∈ E such that m1 = m ∧ w1 = w. Since m ∈ U1

and m ∈ U2, it follows that w ∈ E(U1) ∩ E(U2).

• We have E(U1) ∩ E(U2) ⊆ E(U1 ∩ U2). If w ∈ E(U1) ∩ E(U2), there there

exist (m1, w1), (m2, w2) ∈ E such that w1 = w2 = w, m1 ∈ U1, and m2 ∈ U2.

Since w ∈ E(U1), we have E({m2}) ⊆ E(U1), from which we deduce m2 ∈ U1.

Since (m2, w2) belongs to E and is such that m2 ∈ U1 ∩ U2 and w2 = w, it

follows that w ∈ E(U1 ∩ U2).

• We have E(U1 \ U2) ⊆ E(U1) \ E(U2). If w ∈ E(U1 \ U2), then there exists

(m1, w1) ∈ E such that w1 = w, m1 ∈ U1, and m1 6∈ U2. It follows that

E({m1}) ⊆ E(U1) and E({m2}) ∩ E(U2) = ∅. Since w ∈ E({m1}), this

implies w ∈ E(U1) \ E(U2).
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• We have E(U1) \ E(U2) ⊆ E(U1 \ U2). If w ∈ E(U1) \ E(U2), then there

exists (m1, w1) ∈ E such that w1 = w and m1 ∈ U1, and there does not exist

(m2, w2) ∈ E such that w2 = w and m2 ∈ U2. It follows that m1 6∈ U2, hence

that m1 ∈ U1 \ U2, which implies w ∈ E(U1 \ U2).

2

Similarly, testing the emptiness of a set or the inclusion of a set into another

can also be done by performing the corresponding operation on the finite-state

representations of the sets. This is expressed by the following theorem.

Theorem 6.9 Let M be a memory domain and E be an encoding scheme whose set

of valid encodings V is not empty. For every recognizable set U1 ⊆ M , U1 is empty

if and only if E(U1) is empty. Moreover, for every recognizable sets U1, U2 ⊆ M , we

have U1 ⊆ U2 if and only if E(U1) ⊆ E(U2).

Proof The first result is a direct consequence of the fact that E is complete over

M and over V . The second result can be reduced to the first by remarking that

we have U1 ⊆ U2 if and only if U1 \ U2 is empty. Applying Theorem 6.8 twice, we

obtain that U1 \ U2 is empty if and only if E(U1) \ E(U2) is empty, hence the result.

2
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Chapter 7

Systems Using FIFO Channels

Chapters 3–6 introduced a general technique for analyzing properties of infinite-state

systems, as well as a general method for designing a representation system for pos-

sibly infinite sets of memory contents. In this chapter, we particularize these results

to an important class of infinite-state systems: those whose memory is composed of

a finite set of unbounded FIFO channels on which send and receive operations are

performed [BZ83, MF85, Pac86]. Such machines are a popular model for represent-

ing and reasoning about communication protocols, and are also used for defining

the semantics of standardized protocol specification languages such as SDL [CCI88]

and Estelle [DAAC89]. Indeed, unbounded FIFO channels provide a useful abstrac-

tion that simplifies the semantics of specification languages and frees the protocol

designer from implementation details related to buffering policies and limitations.

The chapter is organized as follows. First, it introduces systems using unbounded

FIFO channels (also called queues) and defines their syntax, semantics, and elemen-

tary memory operations. After showing that such systems are Turing-expressive, it

then proposes an encoding scheme for queue-set contents which leads to a powerful

finite-state representation system for sets of queue-set contents, the Queue Deci-

sion Diagram (QDD). Then, it gives algorithms implementing with QDDs all the

predicates and functions required by Chapters 3–6.

7.1 Basic Notions

7.1.1 Queue SMAs

Let Σ be a finite alphabet. A FIFO channel, or queue, is an object whose value is

a finite word over Σ and on which two elementary operations are defined:

• The send operation consists of appending a specified word to the queue con-

tent. Formally, the send operation is defined by the function

q!u : Σ∗ → Σ∗ : w 7→ w · u,

125
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where q denotes the queue undergoing the operation, u ∈ Σ∗ is the word being

sent, and “·” denotes the concatenation of words;

• The receive operation consists of removing a specified word from the beginning

of the queue content. Formally, the receive operation is defined by the function

q?u : Σ∗ → Σ∗ : u · w 7→ w,

where q denotes the queue undergoing the operation and u ∈ Σ∗ is the word

being received.

The domains of those functions are extended to sets of queue contents in the

usual way, i.e., we define

q!u : 2Σ∗

→ 2Σ∗

: U 7→ {q!u(w) | w ∈ U};

q?u : 2Σ∗

→ 2Σ∗

: U 7→ {q?u(w) | w ∈ U}.

We are now ready to define the class of SMAs that will be studied in this chapter.

Definition 7.1 A Queue SMA (QSMA) is an SMA (C, c0,M,m0,Op, T ) such that

• Its memory domain M is of the form Σ∗
1 × Σ∗

2 × · · · × Σ∗
n, where n ≥ 0

is the number of queues of the QSMA, and each Σi (1 ≤ i ≤ n) is the

queue alphabet of the i-th queue qi of the QSMA. Each memory content

m = (m1, m2, . . . , mn) ∈ M is called a queue-set content, and associates a

queue content mi to each qi;

• Its set of memory operations Op contains only send and receive operations.

Formally, we have

Op = {qi!u | 1 ≤ i ≤ n ∧ u ∈ Σ∗
i } ∪ {qi?u | 1 ≤ i ≤ n ∧ u ∈ Σ∗

i }.

The notion of Extended QSMA (EQSMA) is defined similarly.

Definition 7.2 An Extended QSMA (EQSMA) is an ESMA (C, c0,M,m0,Op, T,

T̄ ) such that its underlying SMA (C, c0,M,m0,Op, T ) is a QSMA.

7.1.2 Turing Expressiveness

Brand and Zafiropoulo have shown that state machines with unbounded FIFO chan-

nels can simulate arbitrary Turing machines. The following theorem is inspired

by [BZ83].

Theorem 7.3 Let n > 0, and Σ1,Σ2, . . . ,Σn be finite queue alphabets such that

|Σi| > 1 for at least one i ∈ {1, 2, . . . , n}. The class of all the QSMAs that have the

memory domain M = Σ∗
1 × Σ∗

2 × · · · × Σ∗
n is Turing-expressive.
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Proof The idea is to show that QSMAs can simulate arbitrary two-counter ma-

chines, which are SMAs that have two positive integer variables, and whose memory

operations can increment or decrement the value of a variable as well as test whether

the value of a variable is equal to zero. It is indeed well known [HU79] that two-

counter machines can simulate arbitrary Turing machines.

Let us show that an arbitrary two-counter machine M can be simulated by a

QSMA A that has the memory domain M . Let a and b be two different symbols in

Σi. We build A in such a way that the content of the queue qi is always composed

of a concatenation of words belonging to {aa, ab, bb}. The other queues are not

used and their contents can be left empty. The idea is to make the number of

occurrences of aa in the content of qi correspond to the value of the first counter x1

of M. Similarly, the number of occurrences of ab will correspond to the value of the

second counter x2. The special word bb is used as a delimiter and will always appear

once in the content of qi. The SMA A is constructed according to the following

rules:

• The initial content of qi is (aa)n1(ab)n2(bb), where n1 and n2 denote respectively

the initial values of x1 and x2;

• Every increment operation of M is simulated by a send operation qi!w, where w

is either aa or ab depending on the counter involved in the increment operation.

• Every decrement operation of M is simulated by a loop in which the following

operations are performed. First, a non-deterministic choice is made between

the three operations qi?aa, qi?ab and qi?bb. According to our rules, exactly

one of them can succeed. If the operation qi?u corresponding to the counter

concerned by the decrement (i.e., u = aa for x1 and u = ab for x2), then

the decrement operation is complete and the loop exits. If the operation

qi?u corresponding to the other counter succeeds, then the loop resumes its

execution after performing the operation qi!u. Finally, if qi?bb succeeds, then

the operation qi!bb is first performed. Then, the loop resumes its execution if

it was the first time that qi?bb succeeded during the simulation of the current

decrement operation, and blocks otherwise (since that would mean that the

value of the counter involved in the decrement operation is equal to zero).

• Every test operation of M is simulated by a loop in which the following op-

erations are performed. First, a non-deterministic choice is made between the

three operations qi?u, with u ∈ {aa, ab, bb}, each of these operations being fol-

lowed by the corresponding send operation qi!u. If the operation that succeeds

corresponds to the counter involved in the test, then the loop exits and the

test concludes that the value of the counter is different from zero. Otherwise,

the second time that the successful operation receives bb, the loop exits and

the test concludes that the value of the counter is equal to zero.
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2

As it has been shown in Chapter 4, a consequence of this theorem is that the

emptiness problem is undecidable for QSMAs associated with a set of accepting

control locations.

7.1.3 Queue Decision Diagrams

According to the results of Chapter 6, the first step towards obtaining a representa-

tion system for sets of queue-set contents that is well suited for QSMAs is to define

an encoding scheme for queue-set contents. We use the following scheme.

Definition 7.4 Let n ≥ 0, and Σ1,Σ2, . . . ,Σn be finite queue alphabets such that

Σi ∩ Σj = ∅ for every i, j ∈ {1, 2, . . . , n} such that i 6= j (the fact that the alphabets

are disjoint can always be assumed without loss of generality). The sequential encod-

ing scheme ES is the relation that associates to a queue-set content the concatenation

of each individual queue content. Formally, we have

ES ⊆M ×VS = {((w1, w2, . . . , wn), w1 ·w2 · · ·wn) | w1 ∈ Σ∗
1, w2 ∈ Σ∗

2, . . . , wn ∈ Σ∗
n},

where M = Σ∗
1 × Σ∗

2 × · · · × Σ∗
n and VS = Σ∗

1 · Σ
∗
2 · · ·Σ

∗
n.

The sequential encoding scheme satisfies the requirements of Definition 6.5. In-

deed, by definition, ES is complete over M , and is complete and unambiguous over

VS. The corresponding decoding function DS is given by the formula

DS : 2VS → 2M : L 7→ {(w|1, w|2, . . . , w|n) | w ∈ L},

where for each i ∈ {1, 2, . . . , n}, w|i is the projection of the word w over the alphabet

Σi, i.e., the word obtained from w by deleting all the symbols that do not belong to

Σi.

We are now ready to define the representation system for sets of queue-set con-

tents.

Definition 7.5 A Queue Decision Diagram (QDD) is a finite-state representation

of a set U ⊆M of queue-set contents based on the sequential encoding ES.

In other words, a QDD representing a set U ⊆ M of queue-set contents is simply

a finite-state automaton accepting the sequential encodings of the elements of U .

QDDs were originally introduced in [BG96b]. In [BGWW97], it is shown that

the class of sets of queue-set contents that can be represented as QDDs contains

exactly all the sets that can be expressed as a finite union of Cartesian products

of regular languages over the queue alphabets. This property is expressed by the

following theorem.
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Theorem 7.6 Let n ≥ 0, and Σ1,Σ2, . . . ,Σn be finite disjoint queue alphabets. A

set U ⊆ Σ∗
1 × Σ∗

2 × · · · × Σ∗
n of queue-set contents is recognizable with respect to the

sequential encoding ES over the alphabets Σ1,Σ2, . . . ,Σn if and only if there exist

k ∈ N and a regular set Uij ⊆ Σ∗
i for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , k}

such that

U =
⋃

1≤j≤k

∏

1≤i≤n

Uij .

Proof Let A = (Σ, S,∆, I, F ) be a QDD in strong normal form, with Σ = Σ1 ∪ Σ2 ∪

· · · ∪ Σn. For each i ∈ {1, 2, . . . , n}, we define the automaton Ai = (Σi, Si,∆i, Ii, Fi)

as follows:

• The alphabet Σi is the queue alphabet of qi;

• The set of states Si is the set of states S of A;

• The set of transitions ∆i contains all the transitions of A labeled by words

over the queue alphabet of qi. Formally, we have ∆i = ∆ ∩ (S × Σ∗
i × S);

• The accepting states of Ai are all the states of A that are reachable from an

initial state by reading only symbols in Σ1 ∪ Σ2 ∪ · · · ∪ Σi. Formally, we have

Fi = {s ∈ S | (∃s0 ∈ I, w ∈ (
⋃

1≤j≤i

Σj)
∗)((s0, w, s) ∈ ∆∗)};

• The initial states of Ai are the accepting states of Ai−1 if i > 0, or the initial

states of A if i = 0. Formally,

Ii =

{

I if i = 0,

Fi−1 if i > 0.

Given n + 1 states s1 ∈ I1, s2 ∈ I2, . . ., sn ∈ In, sn+1 ∈ Fn ∩ F , the language

Ls1,...,sn+1 is defined as the Cartesian product L(A′
1) × · · · × L(A′

n), where each A′
i

is a copy of the automaton Ai with only si as initial state and si+1 as accepting

state. By definition of the QDDs, each word w accepted by L(A) is of the form

w = w|1 · w|2 · · ·w|n. For every i ∈ {1, 2, . . . , n}, each path of A accepting w visits

a state si in Ii and a state si+1 in Fi between which the word w|i is read. It follows

that (w|1, w|2, . . . , w|n) ∈ Ls1,...,sn+1, which implies that L(A) is the (finite) union of

all the possible Ls1,...,sn+1. Since each Ls1,...,sn+1 is a product of regular languages over

the queue alphabets Σ1, . . . ,Σn, we have that L(A) is a finite union of Cartesian

products of regular languages over these alphabets.

The other direction of the theorem is immediate since regular languages are

closed under concatenation and finite union. 2

Let us now show that the QDD is a representation system well suited for QSMAs.

According to Definition 3.3, the first requirement is the ability to represent the sets
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∅, M and {(w1, w2, . . . , wn)} for each (w1, w2, . . . , wn) ∈ M , where M = Σ∗
1 × Σ∗

2 ×

· · · × Σ∗
n. Since the sequential encodings of these sets are respectively denoted by

the regular expressions ∅, Σ∗
1 · Σ

∗
2 · · ·Σ

∗
n and w1 · w2 · · ·wn, they are regular and are

therefore representable by QDDs. The next requirements are that representations

of the sets U1 ∪ U2, U1 ∩ U2, U1 \ U2 are computable and that the inclusion

U1 ⊆ U2 and the test of emptiness of U1 are decidable given the representations

of U1 and U2. This is a direct consequence of the results of Section 6.4. Finally,

it is required that one can compute the image of sets represented as QDDs by the

memory function labeling any transition or meta-transition. The case of transitions

will be addressed in Section 7.2. The requirement on the meta-transitions will be

enforced by restricting the set of potential memory functions to those that can

be applied algorithmically to sets of memory contents represented as QDDs. The

appropriate definitions of the predicate META? and of the function MULTI-META-

SET expressing this restriction will be given in Sections 7.3 and 7.4.

QDDs are defined with respect to the sequential encoding scheme ES. One should

be aware that there are other ways of encoding queue-set contents. For instance,

the interleaved encoding scheme is defined as follows.

Definition 7.7 Let n ≥ 0, and Σ1,Σ2, . . . ,Σn be disjoint finite queue alphabets.

The interleaved encoding scheme EI is the relation that associates to a queue-set

content the word obtained by first concatenating the symbols located at the same

position in each individual queue content, and then concatenating the resulting words

together. Formally, we have

EI ⊆M × VI = {((w1, w2, . . . , wn), w1[1] · w2[1] · · ·wn[1] · w1[2] · w2[2] · · ·wn[2] ·

· · ·w1[l] · w2[l] · · ·wn[l]) | w1 ∈ Σ∗
1, w2 ∈ Σ∗

2, . . . , wn ∈ Σ∗
n},

where

• M = Σ∗
1 × Σ∗

2 × · · · × Σ∗
n;

• VI = ((Σ1 ∪ {β}) · (Σ2 ∪ {β}) · · · (Σn ∪ {β}) \ {βn})∗;

• β 6∈ Σ1 ∪ Σ2 ∪ · · · ∪ Σn is a blank symbol;

• For any word w and i ∈ N0, w[i] is equal to the i-th symbol of w if i ≤ |w|,

and to β if i > |w|;

• l ∈ N is the length of the longest wi, for i ∈ {1, 2, . . . , n}.

The sequential and interleaved encoding schemes have different expressivenesses,

i.e., the classes of sets of queue-set contents that they allow to represent do not

coincide. Intuitively, the sequential encoding scheme allows to represent sets of

queue-set contents in which the contents of individual queues are loosely coupled,
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while the interleaved encoding scheme imposes a tight correlation between those

contents.

Let us give an example. Consider a QSMA with two queues q1 and q2 such that

Σ1 = {a} and Σ2 = {b}. The set of queue-set contents

U = {(an, bn) | n ∈ N},

in which the contents of q1 and q2 are tightly correlated, cannot be represented by

a QDD. Indeed, we have

ES(U) = {anbn | n ∈ N},

which is not regular (since any finite-state automaton with p states accepting a word

of the form anbn with n > p would also have to accept the word an+kbn for some

k > 0). On the other hand, the language

EI(U) = {(ab)n | n ∈ N}

can be denoted by the regular expression (a · b)∗ and is hence regular.

The choice of the sequential rather than interleaved encoding scheme in the

definition of QDDs is motivated by the nature of the meta-transitions that the

two schemes allow to consider. Inspired by [BG96b], we qualify as acceptable an

encoding scheme according to which the transitive closure of a single elementary

operation can be computed over representable sets. This is equivalent to stating that

it must be possible to associate a cycle meta-transition to each cycle whose body is

labeled by a single elementary operation. It will be shown in Section 7.3 that this

requirement is met by the sequential encoding scheme (and, in addition, that a class

of cycle meta-transitions much broader than those corresponding to single memory

operations can be considered in this case). Contrariwise, the transitive closure of a

single receive operation is not always computable over sets represented according to

the interleaved encoding scheme. Indeed, let us consider a QSMA with two queues

q1 and q2 such that Σ1 = {a, b} and Σ2 = {c, d}, and the set of queue-set contents

U = {(anbm, cndm) | n,m ∈ N}.

Since the language

EI(U) = {(ac)n(bd)m | n,m ∈ N}

is denoted by the regular expression (a · c)∗ · (b · d)∗, we have that U is representable

with respect to the interleaved encoding scheme. Applying to U the transitive

closure of the receive operation q1?a yields the set

U ′ = (q1?a)
∗(U) = {(anbm, cn

′

dm) | n, n′, m ∈ N ∧ n′ ≥ n},
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for which we have

EI(U
′) = {(ac)n(bc)m(βc)n

′−n−m(βd)m | n, n′, m ∈ N ∧ n′ ≥ n+m}

∪ {(ac)n(bc)n
′−n(bd)n+m−n′

(βd)n
′−n | n, n′, m ∈ N ∧ n′ ≤ n +m}.

The language EI(U
′) is not regular. Indeed, any finite-state automaton with p states

accepting a word of the form (bc)m(βc)m
′

(βd)m with m > p and m′ ∈ N would also

accept the word (bc)m+k(βc)m
′

(βd)m for some k > 0, despite the fact that this word

does not belong to the language. It follows that U ′ cannot be represented according

to the interleaved encoding scheme.

7.1.4 Notations

Let us recall some notations introduced in Chapter 3 and present some new defi-

nitions that will be used throughout this chapter. If θ1, θ2, . . . , θp are elementary

queue operations (of the form qi!u or qi?u), then σ = θ1; θ2; . . . ; θp is a sequence of

operations. The effect of a sequence of operations σ = θ1; θ2; . . . ; θp on a queue-set

content u is σ(u) = θp(· · · θ2(θ1(u)) · · ·). The effect of a sequence of operations σ on

a set U of queue-set contents is σ(U) = {σ(u) | u ∈ U}. The sum of the lengths

of the words involved in the elementary queue operations composing σ is denoted

|σ|. We denote by σ! (resp. σ?) the subsequence of σ consisting of all the send

(resp. receive) operations. The projection of σ over the queue qi, which is denoted

σ|i, is the subsequence of σ consisting of all the operations involving qi. We write

µ(σ) to represent the word obtained from σ by extracting the message symbols from

the queue operations, i.e., by replacing each qi!u and qi?u by u. If p ∈ N, then σp

denotes the sequence obtained by repeating σ p times. Let Σ1,Σ2, . . . ,Σn be finite

queue alphabets. The projection of a word w ∈ (Σ1 ∪ Σ2 ∪ · · · ∪ Σn)
∗ over the

alphabet Σi is denoted w|i and is defined as the word obtained from w by deleting all

the symbols that do not belong to Σi. We define w|>i as the word obtained from w

by deleting all the symbols that do not belong to Σi+1 ∪ Σi+2 ∪ · · · ∪ Σn. The nota-

tions w|<i, w|≥i, w|≤i, w| 6=i are defined similarly. Projections are extended naturally

to languages by defining L|i, with L ⊆ (Σ1 ∪ Σ2 ∪ · · · ∪ Σn)
∗, as {w|i | w ∈ L}.

The notations L|>i, L|<i, L|≥i, L|≤i, L| 6=i are defined similarly.

7.2 Elementary Queue Operations

The problem addressed here consists of computing the image of a set of queue-set

contents represented as a QDD by the function labeling a transition of a QSMA.

Since such a function is equivalent to a finite sequence of send and receive operations

involving a single symbol, it is sufficient to obtain algorithms for computing the effect

of these two operations on sets represented as QDDs. We first consider the case of

a QSMA with only one queue, and then reduce the general problem to that case.
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function APPLY-RECEIVE-ONE(QDD (Σ, S, ∆, I, F ), symbol a) : QDD

1: begin

2: (Σ, S, ∆, I, F ) := NORMALIZE((Σ, S, ∆, I, F ));

3: I := {s′ ∈ S | (∃s ∈ I)(s, a, s′) ∈ ∆∗};

4: return (Σ, S, ∆, I, F )

5: end.

Figure 7.1: Receive operation for a single-queue QDD.

7.2.1 Systems with One Queue

Let q be a queue of alphabet Σ. If q is the only queue of the system, then sets of

queue-set contents (actually, sets of queue contents) coincide with the languages of

the encodings of their elements, i.e., we have U = ES(U) for every U ⊆ Σ∗.

The first problem consists of computing a QDD representing (q?a)(U) given a

QDD representing a set U ⊆ Σ∗ and a symbol a ∈ Σ. We present here the solution

that is given in [BG96b]. Let A be a finite-state automaton accepting U . We can

assume that A is in normal form. In order to compute the set (q?a)(U), one has

simply to remove from U all the words that do not begin with a, and then delete

the initial symbol from all the remaining words. An automaton accepting (q?a)(U)

can thus be obtained by moving all the initial states of A along transitions labeled

by a. An algorithm implementing this operation is given in Figure 7.1.

Theorem 7.8 Let q be a queue of alphabet Σ, a ∈ Σ be a symbol, and A be a QDD

representing the set U ⊆ Σ∗. APPLY-RECEIVE-ONE(A, a) is a QDD representing

the set (q?a)(U).

Proof Let A′ = APPLY-RECEIVE-ONE(A, a). The automaton A′ has the accept-

ing path π if and only if the automaton A has an accepting path of the form π′π,

where the only symbol read by π′ is a. 2

The second problem consists of computing a QDD representing (q!a)(U) given a

QDD representing a set U ⊆ Σ∗ and a symbol a ∈ Σ. Once again, we present here

the solution given in [BG96b]. Let A be a finite-state automaton accepting U . In

order to compute the set (q!a)(U), one simply has to append the symbol a to each

word belonging to U . An automaton accepting (q!a)(U) can thus be obtained by

creating a new state s, adding transitions labeled by a leading from all the accepting

states of A to s, and finally keeping s as the only accepting state. An algorithm

implementing this operation is given in Figure 7.2.
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function APPLY-SEND-ONE(QDD (Σ, S, ∆, I, F ), symbol a) : QDD

1: begin

2: let s 6∈ S;

3: S := S ∪ {s};

4: ∆ := ∆ ∪ {(s′, a, s) | s′ ∈ F};

5: F := {s};

6: return (Σ, S, ∆, I, F )

7: end.

Figure 7.2: Send operation for a single-queue QDD.

Theorem 7.9 Let q be a queue of alphabet Σ, a ∈ Σ be a symbol, and A be a QDD

representing the set U ⊆ Σ∗. APPLY-SEND-ONE(A, a) is a QDD representing the

set (q!a)(U).

Proof Let A′ = APPLY-SEND-ONE(A, a). The automaton A′ has the accepting

path π if and only if the automaton A has an accepting path π′ such that π = π′π′′,

where the only symbol read by π′′ is a. 2

The algorithms proposed in this section can easily be extended to sequences of

queue operations by simply performing one by one the operations composing the se-

quence. Send and receive operations involving more than one symbol can also be per-

formed in this way since for any word w, the operations q!w and q?w are respectively

equivalent to the sequences q!(w[1]); q!(w[2]);. . . ; q!(w[|w|]) and q?(w[1]); q?(w[2]);

. . . ; q?(w[|w|]). An algorithm for computing the image by an arbitrary sequence

of queue operations of a set of queue contents represented as a QDD is given in

Figure 7.3.

Theorem 7.10 Let q be a queue of alphabet Σ, σ be a sequence of elementary

operations on q, and A be a QDD representing the set U ⊆ Σ∗. APPLY-ONE(A, σ)

is a QDD representing the set σ(U).

Proof Immediate. 2

7.2.2 Systems with Any Number of Queues

The problem addressed here is to compute the image by a send or a receive opera-

tion of a set of queue-set contents involving an arbitrary number n ≥ 0 of queues.

We present here the solution given in [BGWW97], which consists of reducing the

problem to the case of a system with only one queue. The idea is to show that
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function APPLY-ONE(QDD A, sequence of queue operations θ1; θ2; . . . ; θm) : QDD

1: var i, j : integer;

2: var f : function;

3: begin

4: for i := 1 to m do

5: begin

6: if θi is a send operation then

7: f := APPLY-SEND-ONE

8: else

9: f := APPLY-RECEIVE-ONE;

10: for j := 1 to |µ(θi)| do

11: A := f(A, µ(θi)[j])

12: end;

13: return A

14: end.

Figure 7.3: Image of a single-queue QDD by a sequence of queue operations.
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any algorithm applying an operation to the set of contents of a single queue can be

turned into an algorithm performing the same operation on a specified queue of a

set of queue-set contents with an arbitrary number of queues.

Formally, let Σ1,Σ2, . . . ,Σn be the alphabets of the queues q1, q2, . . . , qn and let

M = Σ∗
1 × Σ∗

2 × · · · × Σ∗
n. We consider a particular queue qi (1 ≤ i ≤ n), and a

function fi : Σ∗
i → 2Σ∗

i transforming the content of qi into a set of image contents.

The function fi can be extended into a function f̄i defined over the sets of contents

of qi:

f̄i : 2Σ∗
i → 2Σ∗

i : U 7→
⋃

w∈U

fi(w).

Given an algorithm for computing the image by f̄i of a representable set of queue

contents, the problem consists of deriving an algorithm for applying the function

f̄ ′
i : 2M → 2M : U 7→ {(w1, . . . , wi−1, w

′
i, wi+1, . . . , wn) |

(∃(w1, . . . , wn) ∈ U)(w′
i ∈ fi(wi))}

to representable sets of queue-set contents.

Intuitively, turning an algorithm for performing f̄i into one for performing f̄ ′
i can

be done in the following way. Let A be a QDD representing the set of queue-set

contents U ⊆ M . Since queue-set contents are encoded sequentially, each path of

A reading the queue-set content (w1, w2, . . . , wn) is composed of three successive

subpaths reading respectively the queue contents w1 to wi−1, wi, and wi+1 to wn.

Since A has a finite number of states, there are only a finite number of possible

starting and ending states for each of those subpaths. Taking into account all the

possibilities, we obtain that the language accepted by A can be expressed as a

finite union of languages of the form L<i · L=i · L>i, where L<i, L=i and L>i are

regular languages defined respectively over the alphabets Σ1 ∪ · · · ∪ Σi−1, Σi, and

Σi+1 ∪ · · · ∪ Σn. One can apply f̄ ′
i to the set represented by A by first computing

automata accepting the L<i, L=i and L>i involved in the expression of L(A), and

then applying the algorithm implementing f̄i (which is available by hypothesis) to

each automaton accepting an L=i. An algorithm1 implementing this method is given

in Figure 7.4.

Theorem 7.11 Let Σ1,Σ2, . . . ,Σn be finite disjoint queue alphabets, M = Σ∗
1×Σ∗

2×

· · · × Σ∗
n, i ∈ {1, 2, . . . , n} and fi : Σ∗

i → 2Σ∗
i . Let f̄i and f̄ ′

i be functions derived

from fi as previously explained in this section. Let g be a computable function

1The argument p of the function PERFORM-FUNCTION implemented by this algorithm is

used as a convenience parameter. It is not used by the function, but simply transmitted to the al-

gorithm implementing f̄i. For instance, if f̄i is implemented by the algorithm APPLY-SEND-ONE

introduced in Section 7.2.1, then the value of p represents the symbol being sent. This parameter

is introduced here for compatibility with future applications of PERFORM-FUNCTION, and may

be ignored in this section.
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function PERFORM-FUNCTION(QDD (Σ, S, ∆, I, F ), function f , integer i,

parameter p) : QDD

1: var A,A′,A1,A2,A3 : QDDs;

2: s, s′ : states;

3: begin

4: A := (Σ, S, ∆, I, F ) := NORMALIZE((Σ, S, ∆, I, F ));

5: A′ := (Σ, ∅, ∅, ∅, ∅);

6: for each (s, s′) ∈ S2 such that

(∃s0 ∈ I, w ∈ L(A))((s0, w|<i, s) ∈ ∆∗ ∧ (s, w|i, s′) ∈ ∆∗) do

7: begin

8: A1 := (Σ|<i, S, ∆ ∩ (S × (Σ|<i)
∗ × S), I, {s});

9: A2 := f((Σ|i, S, ∆ ∩ (S × (Σ|i)∗ × S), {s}, {s′}), p);

10: A3 := (Σ|>i, S, ∆ ∩ (S × (Σ|>i)
∗ × S), {s′}, F );

11: A′ := UNION(A′, CONCATENATE(

CONCATENATE(A1,A2),A3))

12: end;

13: return A′

14: end.

Figure 7.4: Application of a QDD operation to a specified queue.



138 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

and p be a value such that for every set Ui ⊆ Σ∗
i and QDD Ai representing this

set, g(Ai, p) is a QDD representing the set f̄i(Ui). For every set U ⊆ M and QDD

A = (Σ, S,∆, I, F ) representing this set, PERFORM-FUNCTION(A, g, i, p) returns

a QDD representing the set f̄ ′
i(U).

Proof Assume that A is in normal form. Let {(s1, s
′
1), (s2, s

′
2), . . . , (sm, s

′
m)} (m ≥ 0)

be the set of all the pairs (s, s′) of states of A satisfying the condition at Line 6 of

the algorithm. For each pair (sk, s
′
k), we define the automata Ak,< = (Σ|<i, S,∆ ∩

(S × (Σ|<i)
∗ × S), I, {sk}), Ak,= = (Σ|i, S,∆ ∩ (S × (Σ|i)

∗ × S), {sk}, {s
′
k}) and

Ak,> = (Σ|>i, S,∆ ∩ (S × (Σ|>i)
∗ × S), {s′k}, F ). We have

L(A) =
⋃

1≤j≤m

L(Aj,<) · L(Aj,=) · L(Aj,>),

with L(Ak,<) ⊆ (Σ1 ∪ · · · ∪ Σi−1)
∗, L(Ak,=) ⊆ Σ∗

i and L(Ak,>) ⊆ (Σi+1 ∪ · · · ∪ Σn)
∗

for every k ∈ {1, 2, . . . , m}. Let A′ be the QDD returned at Line 11. We have

L(A′) =
⋃

1≤j≤m

L(Aj,<) · f̄i(L(Aj,=)) · L(Aj,>)

=
⋃

w∈L(A)

{w|<i} · fi(w|i) · {w|>i}.

The QDD A′ thus represents the set f̄ ′
i(U). 2

The first application of the algorithm of Figure 7.4 is to compute the effect

of an elementary operation on a set of queue-set contents represented as a QDD.

Algorithms for performing the send and the receive operation are respectively given

in Figures 7.5 and 7.6.

Theorem 7.12 Let q1, q2, . . . , qn be queues of alphabets Σ1,Σ2, . . . ,Σn, M = Σ∗
1 ×

Σ∗
2×· · ·×Σ∗

n, i ∈ {1, 2, . . . , n}, a ∈ Σi and A be a QDD representing the set U ⊆ M .

APPLY-SEND(A, i, a) is a QDD representing the set (qi!a)(U).

Proof The result is a direct consequence of Theorems 7.9 and 7.11. 2

Theorem 7.13 Let q1, q2, . . . , qn be queues of alphabets Σ1,Σ2, . . . ,Σn, M = Σ∗
1 ×

Σ∗
2×· · ·×Σ∗

n, i ∈ {1, 2, . . . , n}, a ∈ Σi and A be a QDD representing the set U ⊆ M .

APPLY-RECEIVE(A, i, a) is a QDD representing the set (qi?a)(U).

Proof The result is a direct consequence of Theorems 7.8 and 7.11. 2

The property expressed by Theorem 7.11 is very general and is not limited to

elementary queue operations. It will be used several times in the rest of this chapter

in order to obtain algorithms for operations involving an arbitrary number of queues

from algorithms involving only one queue.
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function APPLY-SEND(QDD A, integer i, symbol a) : QDD

1: begin

2: return PERFORM-FUNCTION(A, APPLY-SEND-ONE, i, a)

3: end.

Figure 7.5: Send operation for an arbitrary QDD.

function APPLY-RECEIVE(QDD A, integer i, symbol a) : QDD

1: begin

2: return PERFORM-FUNCTION(A, APPLY-RECEIVE-ONE, i, a)

3: end.

Figure 7.6: Receive operation for an arbitrary QDD.

function APPLY(QDD A, sequence of queue operations σ,

alphabets Σ1, Σ2, . . . , Σn) : QDD

1: var i : integer;

2: begin

3: for i := 1 to n do

4: A := PERFORM-FUNCTION(A, APPLY-ONE, i, σ|i);

5: return A

6: end.

Figure 7.7: Image of an arbitrary QDD by a sequence of queue operations.
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7.2.3 Sequence of Elementary Operations

As in the case of single-queue QDDs, the algorithms for performing elementary queue

operations on arbitrary QDDs can easily be generalized to sequences of queue opera-

tions. A simple way of performing this generalization consists of remarking that two

operations involving different queues are independent, i.e., that the result of applying

those operations to a queue-set content does not depend on the order in which they

are applied. It follows that for every sequence σ of operations involving the queues

q1, q2, . . . , qn and set of queue-set contents U , we have σ(U) = (σ|1; σ|2; . . . ; σ|n)(U).

Applying σ to U can thus be done by applying successively to U the projections of

σ onto the different queues of the system. An algorithm formalizing this method is

given in Figure 7.7.

Theorem 7.14 Let q1, q2, . . . , qn be queues of alphabets Σ1,Σ2, . . . ,Σn, σ be a se-

quence of elementary operations on these queues, and A be a QDD representing the

set U ⊆ Σ∗
1 × Σ∗

2 × · · · × Σ∗
n. APPLY(A, σ,Σ1,Σ2, . . . ,Σn) is a QDD representing

the set σ(U).

Proof Immediate, as a consequence of Theorems 7.10 and 7.11. 2

7.3 Creation of Cycle Meta-Transitions

As it has been shown in Section 3.4.1, the creation of cycle meta-transitions is

controlled by:

• A computable predicate META? defined over the set of potential sequences

of operations, whose purpose is to decide whether the meta-transition corre-

sponding to a given sequence can be created, i.e., whether the closure of the

sequence can always be applied to arbitrary sets of memory contents;

• An algorithm for computing the image of any representable set of memory

contents by the closure of a sequence of operations satisfying META?.

This section aims at providing algorithms for computing a suitable predicate

META? over sequences of queue operations, and for applying closures of such se-

quences to sets of queue-set contents represented by QDDs. We will give here the

most general solution to this problem, in the sense that it will always be possible

to compute the closure σ∗ of a sequence σ provided that the image by σ∗ of any

representable set is representable. Computing the truth value of META? for a par-

ticular sequence σ will thus amount to deciding whether the image by σ∗ of any

representable set of queue-set contents is representable.



7.3. CREATION OF CYCLE META-TRANSITIONS 141

7.3.1 Systems with One Queue

In the case of systems with only one queue, a somewhat surprising result is that for

any sequence σ of queue operations and recognizable set U of queue contents, σ∗(U)

is recognizable. Moreover, a finite-state representation of σ∗(U) is computable given

σ and a representation of U . We establish this result constructively, i.e., in the form

of an algorithm for computing the image by σ∗ of an arbitrary set represented as a

QDD.

Let q be a queue of alphabet Σ, U ⊆ Σ∗ be a recognizable set of queue contents,

A be a QDD representing U , and σ be a finite sequence of operations on q. We

assume that A is in normal form. We have σ∗(U) = L(A0) ∪ L(A1) ∪ L(A2) ∪ · · ·,

where A0,A1,A2, . . . are QDDs such that:

• A0 = A;

• Ai+1 = APPLY-ONE(Ai, σ) for every i ∈ N.

For each i ∈ N, we denote (Σi, Si,∆i, Ii, Fi) the components of Ai.

The goal of the algorithm we are about to develop is to construct a finite au-

tomaton accepting exactly all the words accepted by any of the Ai. The idea is that

there is some redundancy among the transitions of the different Ai, and that this

redundancy can be captured within a finite structure. The first step is to charac-

terize the relationship between the sets of states and of transitions of the different

Ai.

Let i ∈ N. The computation of APPLY-ONE(Ai, σ) proceeds by applying suc-

cessively to Ai each elementary queue operation composing σ. The effect of a receive

operation is to modify the set of initial states of the automaton. The effect of a send

operation is to create a new state which becomes the only accepting state, as well

as to add some transitions ending in that new accepting state. Thus, the sets of

states and of transitions of Ai+1 are identical to those of Ai, except for a series of

new states and transitions depending on σ!. The situation is depicted in Figure 7.8.

The set of all the states that have been created during the first i applications

of APPLY-ONE is called the tail of Ai, and is denoted tail(i). If i > 0, we thus

have Si = Si−1 ∪ tail(i). The set tail(i) contains exactly i|σ!| states which are

denoted tail(i, 1), tail(i, 2), . . . , tail(i, i|σ!|), in the order of their creation. For every

s ∈ tail(i), the integer j such that s = tail(i, j) is called the rank of s and is denoted

rank(s).

During the applications of APPLY-ONE, the effect of each receive operation is

to move the initial states along transitions labeled by the symbol being received.

Since Si ⊆ Si+1 and ∆i ⊆ ∆i+1, we have that for every s′ ∈ Ii+1 there exists s ∈ Ii
such that (s, µ(σ?), s

′) ∈ ∆∗
i+1. We say that the initial state s′ is a shift of s. The

set Ii+1 is thus the set of all the shifts of the elements of Ii. If s′ ∈ Ii+1 ∩ tail(i+ 1)

is a shift of s ∈ Ii ∩ tail(i), then rank(s′) = rank(s) + |σ?|.
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A0 :

A

A

A1 :

A

A2 :

.

.

.

µ(σ!)

µ(σ!) µ(σ!)

µ(σ!)[1]

µ(σ!)[2] . . . µ(σ!)[2]µ(σ!)[1] . . .

. . .µ(σ!)[2]

µ(σ!)[1]

µ(σ!)[1]

µ(σ!)[1]

Figure 7.8: Effect of repeated applications of APPLY-ONE.

Let us divide Ii into two subsets, containing respectively the states that belong

to tail(i) and those that do not. We first consider the latter set, which we denote

Iαi . We have Iαi = Ii ∩ S0. By construction, there is no path of transitions of Ai

leading from a state in tail(i) to a state in S0. It follows that Iαi contains only shifts

of states belonging to Iαi−1 (if i > 0), which implies that the value of Iαi depends only

on the value of Iαi−1. Since this holds for every i ∈ N0 and since the size of each Iαi
is bounded by the number of states in S0, we have that the sequence Iα0 , I

α
1 , I

α
2 , . . .

is ultimately periodic, i.e., that there exist b ∈ N and p ∈ N0 such that for every

i ≥ b, Iαi = Iαi+p. The numbers b and p are respectively called the base and the

period of the sequence of the Iαi . Without loss of generality, we can choose p and

b among the multiples of |σ!| (the purpose of this requirement is to simplify future

computations).

Computing the values of b and of p is the first step towards capturing the reg-

ularity of the infinite sequence of the Ai. Indeed, considering only one Ai out

of p eliminates the need to take into account the changes occurring among the

initial states that do not belong to the tail. We define the QDDs A′
0,A

′
1,A

′
2, . . .

such that for every i ∈ N, A′
i = Ab+ip. The components of each A′

i are denoted

(Σ′
i, S

′
i,∆

′
i, I

′
i, F

′
i ). The problem which consists of computing the infinite union of

the L(Ai) is easily reduced to the computation of the infinite union of the L(A′
i),

thanks to the following result.
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Theorem 7.15 The language
⋃

i∈N L(Ai) can be expressed in terms of
⋃

i∈N L(A′
i)

and of a finite number of individual L(Ai) using finite union and applying σ a finite

number of times.

Proof

⋃

i∈N

L(Ai) =
⋃

i<b

L(Ai) ∪
⋃

i≥b

L(Ai)

=
⋃

i<b

L(Ai) ∪
⋃

0≤j<p

⋃

i∈N

L(Ab+j+ip)

=
⋃

i<b

σi(L(A0)) ∪
⋃

0≤j<p

σj




⋃

i∈N

L(Ab+ip)





=
⋃

i<b

σi(L(A0)) ∪
⋃

0≤j<p

σj




⋃

i∈N

L(A′
i)



 .

2

If the sequence σ is such that |σ!| = 0, then the tail of each A′
i is empty, and

thus we have A′
i = A′

j for every i, j ∈ N. In this case, we have

⋃

i∈N

L(A′
i) = L(A′

0).

From now on, we assume that |σ!| > 0. For each i ∈ N, the tail of A′
i is

denoted tail ′(i) (we thus have tail ′(i) = tail(b+ ip)). The tail of A′
i contains

exactly |tail ′(i)| = (b + ip)|σ!| states which are denoted tail ′(i, 1), tail ′(i, 2), . . . ,

tail ′(i, |tail ′(i)|), in the order of their creation. If i > 0, then the initial states of A′
i

are obtained by shifting p times those of A′
i−1. We have the following definition.

Definition 7.16 Let i ∈ N0. An initial state s′ ∈ I ′i of A′
i is a p-shift of an initial

state s ∈ I ′i−1 of A′
i−1 if we have (s, µ(σ?)

p, s′) ∈ (∆′
i)
∗.

The initial states of A′
i are p-shifts of initial states of A′

i−1. A crucial point is

that this property does not imply that for every initial state s of A′
i−1, there exists

an initial state s′ of A′
i that is a p-shift of s. Indeed, during the p applications of σ

that allow to obtain A′
i from A′

i−1, initial states are shifted (by receive operations)

and transitions are created (by send operations) in an order depending on the place

of the different operations in σ. If the transitions that are needed in order to shift

a state are not yet created when the receive operation is performed, then the state

cannot be shifted. On the other hand, if the necessary transitions are available prior

to executing the receive operation, then the state can be shifted. Those observations

allow us to write a sufficient condition on initial states that can be p-shifted.

Definition 7.17 Let i ∈ N0. An initial state s ∈ I ′i of A′
i is robust if either:
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• There exists s′ ∈ S ′
i such that (s, µ(σ?)

p, s′) ∈ (∆′
i)
∗, or

• |σ!| ≥ |σ?| and there exists s′′ ∈ tail ′(i− 1) such that (s′′, µ(σ?)
p, s) ∈ (∆′

i)
∗.

The sufficient condition is expressed by the following theorem.

Theorem 7.18 Let i ∈ N0 and s ∈ I ′i. If s is robust, then there exists an initial

state s′ ∈ I ′i+1 such that s′ is a p-shift of s.

Proof

• If there exists s′ ∈ S ′
i such that (s, µ(σ?)

p, s′) ∈ (∆′
i)
∗, then s′ ∈ I ′i+1 and the

result is immediate.

• If |σ!| ≥ |σ?| and there exists s′′ ∈ tail ′(i− 1) such that (s′′, µ(σ?)
p, s) ∈ (∆′

i)
∗,

then s′′ ∈ I ′i−1 and s is a p-shift of s′′. During the p executions of APPLY-

ONE that compute A′
i from A′

i−1, the state s of A′
i is obtained from the state

s′′ of A′
i−1 by following a sequence of transitions labeled by µ(σ?)

p. Since

the tail of A′
i has a greater length than the one of A′

i−1, and since for any

subpath outgoing from s′′ in A′
i−1 labeled by a word w ∈ Σ∗, there exists a

subpath outgoing from s in A′
i labeled by w, following an identical sequence

of transitions is possible and allows to go from the state s of A′
i to some state

s′ of A′
i+1.

2

Applying this sufficient condition to the initial states present on the tail of each

Ai yields the following result.

Theorem 7.19 Let i ≥ 0 and s ∈ tail ′(i) ∩ I ′i. If rank(s) > p|σ?|, and either

|σ!| ≥ |σ?| or rank(s) ≤ |tail ′(i)| − p|σ?|, then s is a robust state of A′
i.

Proof Since rank(s) > p|σ?|, we have that i > 0 and that s is a p-shift of a state s′

of A′
i−1 such that rank(s′) = rank(s)−p|σ?|. Therefore, there exists in the tail of A′

i

a path π composed of p|σ?| transitions leading from s′ to s and labeled by µ(σ?)
p.

If |σ!| ≥ |σ?|, then s is robust by definition since s′ ∈ tail ′(i− 1). If |σ!| < |σ?|, then

rank(s) ≤ |tail ′(i)|−p|σ?|. There exists in the tail of A′
i a path π′ composed of p|σ?|

transitions leading from s to a state s′′ such that rank(s′′) = rank(s) + p|σ?|. By

construction of the tail of A′
i, the transitions composing π′ are labeled by the same

word as those composing π. Thus, we have (s, µ(σ?)
p, s′′) ∈ ∆′

i. Hence, s is robust.

2

The effect of Theorem 7.19 is illustrated in Figures 7.9 and 7.10, in which the

grey area contains the states that satisfy the hypotheses of the theorem. In these

figures, dashed diagonal arrows represent p-shifts of initial states, and dashed ovals

are used to group initial states that are shifted together.



7.3. CREATION OF CYCLE META-TRANSITIONS 145

����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������

����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������
����������������������������������������������

mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)

mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)mnµ(σ!)

mn. . .

mnA

mnA

mnA

mnA

mnµ(σ!) mnµ(σ!) mnµ(σ!) mnµ(σ!)

mnp|σ?|

mnµ(σ!) mnµ(σ!) mnµ(σ!) mnµ(σ!) mnµ(σ!) mnµ(σ!)

mnp|σ!|

mnµ(σ!)

mnA′
i
:

mnA′
i+1

:

mnA′
i+2

:

mnA′
i+3

:

Figure 7.9: Initial states that are provably robust (|σ!| ≥ |σ?|).
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Figure 7.10: Initial states that are provably robust (|σ!| < |σ?|).
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The notion of robustness allows to capture a part of the redundancy between

the initial states that are present on the tails of the different A′
i. Indeed, since for

every i ∈ N0, all the robust initial states of A′
i can be p-shifted in order to become

initial states of A′
i+1, there will be similar patterns of initial states repeated on the

tails of the A′
i. In order to analyze precisely the nature of those patterns, it is useful

to define a lower bound on the indices of the A′
i that will be considered: the initial

index i0 is defined as the lowest nonzero integer such that |tail ′(i0 − 1)| ≥ p|σ?|,

|tail ′(i0)| ≥ 2p|σ?|, and |tail ′(i0 + 1)| ≥ 3p|σ?|.

The set of initial states I ′i of each A′
i such that i ≥ i0 can be partitioned into

five subsets:

Iα
′

i : The initial states that belong to S0;

Iβ
′

i : The initial states that belong to tail ′(i) and whose rank is less

or equal to p|σ?|;

Iγ
′

i : The initial states that belong to tail ′(i) and whose rank is

greater than p(i− i0 + 1)|σ?|;

Iδ
′

i : The initial states that do not belong to Iα
′

i , Iβ
′

i or Iγ
′

i and that

satisfy the hypotheses of Theorem 7.19;

Iǫ
′

i : The remaining initial states.

This partitioning is illustrated in Figures 7.11 and 7.12.

For each i ≥ i0 and ξ ∈ {α, β γ, δ, ǫ}, we define Aξ′

i as an automaton identical to

A′
i, except for its set of initial states which is made equal to Iξ

′

i (formally, we have

Aξ′

i = (Σ′
i, S

′
i,∆

′
i, I

ξ′

i , Fi)). Computing the infinite union of the L(A′
i) can easily be

reduced to computing the infinite union of the L(Aξ′

i ) for each ξ ∈ {α, β γ, δ, ǫ}, as

a consequence of the following theorem.

Theorem 7.20 The language
⋃

i∈N L(A′
i) can be expressed in terms of the languages

⋃

i≥i0 L(Aξ′

i ), where ξ ∈ {α, β γ, δ, ǫ}, and of a finite number of individual L(A′
i),

using finite union.

Proof

⋃

i∈N

L(A′
i) =

⋃

i<i0

L(A′
i) ∪

⋃

i≥i0

L(A′
i)

=
⋃

i<i0

L(A′
i) ∪

⋃

ξ∈{α,β γ,δ,ǫ}

⋃

i≥i0

L(Aξ′

i ).

2

It remains to show how to compute finite-state representations of the different
⋃

i≥i0 L(Aξ′

i ). We address each case separately.

The definition of the A′
i implies

Iα
′

i0−1 = Iα
′

i0
= Iα

′

i0+1 = Iα
′

i0+2 = · · · .
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Figure 7.11: Initial states partitioning (|σ!| ≥ |σ?|).
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Figure 7.12: Initial states partitioning (|σ!| < |σ?|).
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µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)

µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)

. . .

A

A

Iα′
Iβ′

A

µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!)

A

µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!)

Aα′

i0
∪ A

β′

i0
:

Aα′

i0+1
∪ A

β′

i0+1
:

Aα′

i0+2
∪ A

β′

i0+2
:

⋃

i≥i0

(A
α′

i
∪ A

β′

i
):

µ(σ!)
p

Figure 7.13: Automaton accepting
⋃

i≥i0(L(Aα′

i ) ∪ L(Aβ′

i )).

Since for each i ≥ i0, the set Iβ
′

i is the set of all the p-shifts that do not already

belong to Iα
′

i of the elements of Iα
′

i−1 that can be p-shifted, this result implies

Iβ
′

i0 = Iβ
′

i0+1 = Iβ
′

i0+2 = Iβ
′

i0+3 = · · · .

Hence, for ξ ∈ {α, β}, the only difference between the Aξ′

i is the length of their tail.

For each i ∈ N, the tail of A′
i+1 contains p|σ!| more states than the one of A′

i, and

the sequence of transitions visiting those additional states is labeled by µ(σ!)
p. It

follows that we have

⋃

i≥i0

(

L(Aα′

i ) ∪ L(Aβ′

i )
)

=
(

L(Aα′

i0
) ∪ L(Aβ′

i0 )
)

· (µ(σ!)
p)∗.

An automaton accepting
⋃

i≥i0(L(Aα′

i ) ∪ L(Aβ′

i )) can easily be constructed by ap-

pending a cycle labeled by µ(σ!)
p to an automaton accepting L(Aα′

i0
) ∪ L(Aβ′

i0 ). A

possible construction is depicted in Figure 7.13.

In order to compute the infinite union of the Aγ′

i , we distinguish two situations.

First, if |σ!| ≥ |σ?|, then for every i ≥ i0, all the elements of Iγ
′

i are robust as a



7.3. CREATION OF CYCLE META-TRANSITIONS 149

µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)

µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)µ(σ!)

. . .

A

A

A

µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!)

A

µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!) µ(σ!)

Iγ′

A
γ′

i0
:

A
γ′

i0+1
:

A
γ′

i0+2
:

⋃

i≥i0

A
γ′

i
:

µ(σ!)
d

Figure 7.14: Automaton accepting
⋃

i≥i0 L(Aγ′

i ) (with |σ!| ≥ |σ?|).

consequence of Theorem 7.19. This means that Iγ
′

i+1 is the set of the p-shifts of the

elements of Iγ
′

i . It follows that L(Aγ′

i+1) = L(Aγ′

i )·µ(σ!)
d, with d = (|σ!|−|σ?|)(p/|σ!|).

Therefore, we have
⋃

i≥i0

L(Aγ′

i ) = L(Aγ′

i0 ) · (µ(σ!)
d)∗.

An automaton accepting
⋃

i≥i0 L(Aγ′

i ) can be constructed by appending a cycle la-

beled by µ(σ!)
d to an automaton accepting L(Aγ′

i0 ). A possible construction is de-

picted in Figure 7.14.

If |σ!| < |σ?|, then there exists i1 ≥ i0 such that for every j ≥ i1, I
γ′

j = ∅. Indeed,

for every i ≥ i0, computing Aγ′

i+1 from Aγ′

i increases the rank of each initial state of

the tail by p|σ?| while the length of the tail is only increased by p|σ!|. An automaton

accepting
⋃

i≥i0 L(Aγ′

i ) can be constructed by first determining the value of i1, and

then building an automaton accepting the language
⋃

i≥i0

L(Aγ′

i ) =
⋃

i0≤i<i1

L(Aγ′

i ).

Let us now discuss the computation of the union of the L(Aδ′

i ). We have Iδ
′

i0
= ∅.
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For every i > i0, all the initial states that belong to Iδ
′

i are robust by definition.

Moreover, each of these initial states is a p-shift of an initial state belonging either to

Iβ
′

i−1 or to Iδ
′

i−1. Since all the Iβ
′

i such that i > i0 are equal to each other and contain

only robust states, we have that for every i > i0, I
δ′

i ⊆ Iδ
′

i+1. Let us distinguish two

cases. If |σ!| ≥ |σ?|, then all the initial states in Iδ
′

i+1 that do not belong to Iδ
′

i are

exactly the states obtained as a result of p-shifting i − i0 + 1 times the states in

Iδ
′

i0+1. It follows that

L(Aδ′

i+1) = L(Aδ′

i ) · µ(σ!)
d ∪ L(Aδ′

i ) · µ(σ!)
p,

with d = (|σ!| − |σ?|)(p/|σ!|). Therefore, we have
⋃

i≥i0

L(Aδ′

i ) = L(Aδ′

i0+1) · (µ(σ!)
d)∗ · (µ(σ!)

p)∗.

An automaton accepting
⋃

i≥i0 L(Aδ′

i ) can be constructed by appending successively

cycles labeled by µ(σ!)
d and then by µ(σ!)

p to an automaton accepting L(Aδ′

i0+1). A

possible construction is depicted in Figure 7.15.

If |σ!| < |σ?|, then the situation is more tricky. Even though all the initial states

that belong to Iδ
′

i can be p-shifted for i > i0, their p-shifts do not necessarily belong

to Iδ
′

i+1 (as it is the case when |σ!| ≥ |σ?|).

For each i > i0, all the elements of Iδ
′

i have a rank between p|σ?|+1 and li, where

li = min(|tail ′(i)| − p|σ?|, p(i− i0 + 1)|σ?|). We define the right index ri of i as the

greatest integer such that rip|σ?| ≤ li, and the right block I
δ′
R
i of Iδ

′

i as the set

I
δ′
R

i = {s ∈ Iδ
′

i | (ri − 1)p|σ?| < rank(s) ≤ rip|σ?|}.

Intuitively, this corresponds to slicing the tail of A′
i into groups of p|σ?| consecutive

states. The right block of Aδ′

i is the subset of initial states belonging to the rightmost

group in which each state satisfies the hypotheses of Theorem 7.19. The notion of

right block is illustrated in Figure 7.16. The automaton A
δ′
R
i is defined as being

identical to Aδ′

i except for its set of initial states which is made equal to the right

block of Aδ′

i . Formally, we have A
δ′
R

i = (Σ′
i, S

′
i,∆

′
i, I

δ′
R

i , F ′
i ).

The usefulness of the notion of right block is that for every i > i0, each element

of Iδ
′

i+1 either belongs to Iδ
′

i , or is a p-shift of a state belonging to I
δ′
R
i . Moreover, for

each state s in Iǫ
′

i+1, there exists j ∈ {1, 2} such that s can be obtained by p-shifting

j times an element of I
δ′
R
i−j+1. Therefore, we have

L(Aδ′

i+1) ∪ L(Aǫ′

i+1) = L(Aδ′

i ) · µ(σ!)
p ∪ σp

(

L(A
δ′
R
i )
)

∪ σ2p
(

L(A
δ′
R
i )
)

.

From this expression, we deduce

⋃

i≥i0

(

L(Aδ′

i ) ∪ L(Aǫ′

i )
)

=
⋃

i>i0

L(A
δ′
R
i ) · (µ(σ!)

p)∗ ∪ σp




⋃

i>i0

L(A
δ′
R
i )





∪ σ2p




⋃

i>i0

L(A
δ′
R
i )



 ,
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Figure 7.15: Automaton accepting
⋃

i≥i0 L(Aδ′

i ) (with |σ!| ≥ |σ?|).
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Figure 7.16: Right blocks.
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which reduces the problem of computing the infinite unions of the Aδ′

i and of the

Aǫ′

i to the computation of the infinite union of the A
δ′
R
i .

Let us show how to solve the latter problem. For every i > i0, we have

L(A
δ′
R
i ) =







L(Aδ′

i ) if i = i0 + 1;

σp
(

L(A
δ′
R
i−1)

)

if i0 + 1 < i < i2;

L(A
δ′
R
i−1) · µ(σ!)

p if i ≥ i2 and
⌊

|tail ′

(i)|
p|σ?|

⌋

=
⌊

|tail ′

(i−1)|
p|σ?|

⌋

;

σp
(

L(A
δ′
R
i−1)

)

if i ≥ i2 and
⌊

|tail ′

(i)|
p|σ?|

⌋

=
⌊

|tail ′

(i−1)|
p|σ?|

⌋

+ 1,

(7.1)

where i2 is the smallest integer such that i2 > i0 and |tail ′(i2)| < (i2 − i0 + 2)p|σ?|.

Intuitively, i2 is the smallest integer such that I
δ′
R
i2 is different from the result of

p-shifting i2 − i0 − 1 times the states in I
δ′
R
i0+1.

The infinite sequence of languages L(A
δ′
R
i0+1), L(A

δ′
R
i0+2), L(A

δ′
R
i0+3), . . . is ultimately

periodic. Indeed, for every i ≥ i2, applying p times Equation 7.1 yields L(A
δ′
R
i+p) =

L(A
δ′
R
i ). As a consequence, we have

⋃

i>i0

L(A
δ′
R
i ) =

⋃

i0<i<i2+p

L(A
δ′
R
i ).

An algorithm2 summarizing the different steps of the computation of σ∗(U) is

given in Figures 7.18, 7.19 and 7.20. This algorithm relies on a subroutine which

is given in Figure 7.17. The correctness of the subroutine and of the algorithm is

established by the following theorems.

Theorem 7.21 Let q be a queue of alphabet Σ, w ∈ Σ∗ be a word, and A be a QDD

representing the set U ⊆ Σ∗. APPEND-LOOP(A, w) is a QDD representing the set

U · w∗.

Proof Immediate. 2

Theorem 7.22 Let q be a queue of alphabet Σ, σ be a sequence of elementary

operations involving q, and A be a QDD representing the set U ⊆ Σ∗. APPLY-

STAR-ONE(A, σ) is a QDD representing the set σ∗(U).

Proof The algorithm of Figures 7.18, 7.19 and 7.20 is a straightforward implementa-

tion of the method described in this section. There is however a small optimization:

a variable l is introduced in Lines 47–59 in order to simplify the computation of the

right blocks. The principle of this optimization is to ensure that at any time, the

current right block may be p-shifted inside the region containing Iδ
′

if and only if

2In this algorithm, the union operator “∪” applied to QDDs denotes repeated calls to the

function UNION introduced in Section 6.2.4.
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function APPEND-LOOP(QDD (Σ, S, ∆, I, F ), word a1a2 · · · am) : QDD

1: var s1, s2, . . . , sm : states;

2: begin

3: if m = 0 then return (Σ, S, ∆, I, F );

4: let s1, s2, . . . , sm 6∈ S;

5: S := S ∪ {s1, s2, . . . , sm};

6: ∆ := ∆ ∪ {(s, a1, s1) | s ∈ F} ∪ {(si−1, ai, si) | 1 < i ≤ m} ∪ {(sm, a1, s1)};

7: F := F ∪ {sm};

8: return (Σ, S, ∆, I, F )

9: end.

Figure 7.17: Subroutine APPEND-LOOP.

l ≥ 0. Intuitively, the value of l is related to the distance (in terms of rank difference)

between the current right block and the leftmost edge of that region. 2

There is an important corollary to Theorem 7.22.

Corollary 7.23 Let q be a queue of alphabet Σ, σ be a sequence of elementary

operations involving q, and U ⊆ Σ∗ be a recognizable set of queue contents. The set

σ∗(U) is recognizable.

7.3.2 Systems with Any Number of Queues

In the case of systems having more than one queue, one cannot hope to obtain a

result similar to Corollary 7.23. The reason is that iterating sequences of elementary

operations involving more than one queue can generate non-recognizable sets of

queue-set contents. For instance, in the case of a system with two queues q1 and

q2 whose alphabets are respectively {a1} and {a2}, the closure of the sequence

q1!a1; q2!a2 transforms the set of queue-set contents U = {(ε, ε)} into the set U ′ =

{(an1 , a
n
2 ) | n ∈ N}, whose sequential encoding is not regular.

The first step is to characterize precisely the sequences of queue operations whose

closure preserves the recognizability of sets of queue-set contents (and therefore the

possibility of representing these sets by QDDs). Our characterization is based on

the following notion.

Definition 7.24 Let σ be a sequence of queue operations involving only one queue

q, and let Σ be the alphabet of q. The sequence σ is counting if one of the following

conditions is satisfied:
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function APPLY-STAR-ONE(QDD (Σ, S, ∆, I, F ), sequence of queue operations σ) : QDD

1: var A : array[0, 1, . . .] of QDDs;

2: Iα : array[0, 1, . . .] of sets of states;

3: S0, S1, S2 : sets of states;

4: A′
i0

,A′
i0+1,A

αβ′

i0
,Aαβ′

,Aγ′

i0
,Aγ′

,Aγ′′

,Aδ′

i0+1,A
δǫ′ ,Aδ′

R ,Aδ′′
R ,A′,A′′ : QDDs;

5: (Σ′
i0

, S′
i0

, ∆′
i0

, I ′i0 , F
′
i0

), (Σ′
i0+1, S

′
i0+1, ∆

′
i0+1, I

′
i0+1, F

′
i0+1) : QDDs;

6: n1, n2, p, b, d, i, i0, i1, i2, l : integers;

7: begin

8: A[0] := (Σ, S, ∆, I, F ) := NORMALIZE((Σ, S, ∆, I, F ));

9: if |σ?| = 0 then return APPEND-LOOP(A[0], µ(σ!));

10: Iα[0] := I;

11: S0 := S;

12: n1 := 0;

13: repeat

14: n1 := n1 + 1;

15: A[n1] := (Σ, S, ∆, I, F ) := APPLY-ONE(A[n1 − 1], σ);

16: Iα[n1] := I ∩ S0

17: until there exists n2 such that 0 ≤ n2 < n1 ∧ Iα[n1] = Iα[n2];

18: if |σ!| = 0 then return
⋃

0≤i≤n1

A[i];

19: p := lcm(n1 − n2, |σ!|);

20: b := |σ!|⌈n2/|σ!|⌉;

21: i0 :=

⌈

3
|σ?|

|σ!|
−

b

p

⌉

+ 1;

22: A′
i0

:= (Σ′
i0

, S′
i0

, ∆′
i0

, I ′i0 , F
′
i0

) := APPLY-ONE(A[n1], σ
b−n1+i0p);

23: A′
i0+1 := (Σ′

i0+1, S
′
i0+1, ∆

′
i0+1, I

′
i0+1, F

′
i0+1) := APPLY-ONE(A′

i0
, σp);

24: S1 := {s′ ∈ S′
i0
| (∃s ∈ S0, w ∈ Σ∗)((s, w, s′) ∈ ∆

′∗

i0
∧ |w| ≤ p|σ?|)};

25: S2 := {s′ ∈ S′
i0+1 | (∃s ∈ S0, w ∈ Σ∗)((s, w, s′) ∈ ∆

′∗

i0+1 ∧ |w| ≤ 2p|σ?|)};

26: Aαβ′

i0
:= (Σ′

i0
, S′

i0
, ∆′

i0
, I ′i0 ∩ S1, F

′
i0

);

27: Aαβ′

:= APPEND-LOOP(Aαβ′

i0
, µ(σ!)

p);

(. . . )

Figure 7.18: Image of a single-queue QDD by the closure of a sequence of queue

operations.
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(. . . )

28: Aγ′

i0
:= (Σ′

i0
, S′

i0
, ∆′

i0
, I ′i0 \ S1, F

′
i0

);

29: Aδ′

i0+1 := (Σ′
i0+1, S

′
i0+1, ∆

′
i0+1, I

′
i0+1 ∩ (S2 \ S1), F

′
i0+1);

30: if |σ!| ≥ |σ?| then

31: begin

32: d :=
p

|σ!|
(|σ!| − |σ?|);

33: Aγ′

:= APPEND-LOOP(Aγ′

i0
, µ(σ!)

d);

34: Aδǫ′ := APPEND-LOOP(APPEND-LOOP(Aδ′

i0+1, µ(σ!)
d), µ(σ!)

p)

35: end

36: else

37: begin

38: i1 :=

⌈
(b/p)|σ!| + (i0 − 1)|σ?|

|σ?| − |σ!|

⌉

;

39: Aγ′

:= Aγ′′

:= Aγ′

i0
;

40: for i := i0 + 1 to i1 − 1 do

41: begin

42: Aγ′′

:= APPLY-ONE(Aγ′′

, σp);

43: Aγ′

:= UNION(Aγ′

,Aγ′′

)

44: end;

45: i2 := 1 + max(i0,

⌈
(b/p)|σ!| + (i0 − 2)|σ?|

|σ?| − |σ!|

⌉

);

46: Aδ′
R := Aδ′′

R := Aδ′

i0+1;

47: l := (b + (i0 + 2)p)|σ!| − 4p|σ?|;

48: for i := i0 + 2 to i2 + p − 1 do

49: if l ≥ 0 then

50: begin

51: Aδ′′
R := APPLY-ONE(Aδ′′

R , σp);

52: Aδ′
R := UNION(Aδ′

R ,Aδ′′
R);

53: l := l + p(|σ!| − |σ?|)

54: end

(. . . )

Figure 7.19: Image of a single-queue QDD by the closure of a sequence of queue

operations (continued).
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(. . . )

55: else

56: begin

57: Aδ′′
R := APPLY-ONE(Aδ′′

R , σp
! );

58: Aδ′
R := UNION(Aδ′

R ,Aδ′′
R);

59: l := l + p|σ!|

60: end;

61: Aδǫ′ := APPEND-LOOP(Aδ′
R , µ(σ!)

p);

62: Aδǫ′ := UNION(Aδǫ′ , APPLY-ONE(Aδ′
R , σp));

63: Aδǫ′ := UNION(Aδǫ′ , APPLY-ONE(Aδ′
R , σ2p))

64: end;

65: A′ := UNION(
⋃

0≤i<i0

APPLY-ONE(A[n1], σ
b−n1+pi),

⋃

ξ∈{αβ,γ,δǫ}

Aξ′

);

66: A′′ := UNION(
⋃

0≤i<b

APPLY-ONE(A[0], σi),
⋃

0≤i<p

APPLY-ONE(A′, σi));

67: return A′′

68: end.

Figure 7.20: Image of a single-queue QDD by the closure of a sequence of queue

operations (continued).
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• |Σ| > 1 and |σ!| > 0,

• |Σ| = 1 and |σ!| > |σ?|.

Intuitively, a sequence σ of operations that satisfies the previous definition is

called counting since in that case, there are sets U of queue contents for which

the number k of applications of σ to U can be determined by examining the lan-

guage σk(U), for every k ≥ 0. Formally, this property is expressed by the following

theorem.

Theorem 7.25 Let σ be a sequence of queue operations involving only one queue

q, and let Σ be the alphabet of q. The sequence σ is counting if and only if there

exists a recognizable set U ⊆ Σ∗ of queue contents such that σk1(U) 6= σk2(U) for all

k1, k2 ∈ N such that k1 6= k2.

Proof

• If σ is counting, then there exists U ⊆ Σ∗ such that U is recognizable and

σk1(U) 6= σk2(U) for all k1, k2 ∈ N such that k1 6= k2. If |Σ| = 1, then let a

denote the only symbol in Σ. Choosing U = {µ(σ?)} yields for every k ∈ N

σk(U) = {a(1−k)|σ?|+k|σ!|)}.

If |Σ| > 1, then let a ∈ Σ be a symbol different from µ(σ?)[1]. Choosing

U = µ(σ?)
∗ · a yields for every k ∈ N

σk(U) = µ(σ?)
∗ · a · µ(σ!)

k.

• If σ is not counting, then for all the recognizable sets U ⊆ Σ∗, there exist

k1, k2 ∈ N such that k1 6= k2 and σk1(U) = σk2(U). If |Σ| = 1, then we

must have |σ!| ≤ |σ?|. The set U is a context-free language over a one-letter

alphabet. It is well known [Mat94] that such languages can be expressed as a

finite union of languages Ui of the form ali · (al
′
i)∗, where a is the only symbol

of Σ, and li, l
′
i ∈ N. For every k ∈ N, the language σk(Ui) is either empty or

of the form al
′′
i · (al

′
i)∗, with l′′i ≤ max(li, |σ?|+ l′i) (this is easily established by

induction on k). The set of possible σk(Ui) is thus finite, hence such is the set

of possible σk(U).

If |Σ| > 1, then we must have σ = σ?. Let A0 be a QDD representing U .

For every k > 0, let Ak be the QDD returned by APPLY-ONE(Ak−1, σ). For

every k ∈ N, the QDD Ak is identical to A0 except (possibly) for its set of

initial states. As there are only a finite number of possible sets of initial states,

the infinite sequence A0,A1,A2, . . . is ultimately periodic, and therefore there

exist k1, k2 ∈ N such that L(Ak1) = L(Ak2) and k1 6= k2.



7.3. CREATION OF CYCLE META-TRANSITIONS 159

2

The notion of counting sequences leads to a necessary condition on sequences of

operations σ (involving any number of queues) whose closure preserves the recog-

nizable nature of sets of queue-set contents. Roughly speaking, the idea is that if σ

admits two projections σ|i and σ|j (i 6= j) that are both counting, then there exists

a set U of queue-set contents such that for every k ∈ N, the sequential encoding of

σk(U) represents the value of k twice (once in σk(U)|i and once in σk(U)|j). Since

k is unbounded, it is impossible for a finite-state machine to check whether the two

represented values coincide, which implies that σk(U) is not recognizable. Formally,

we have the following theorem.

Theorem 7.26 Let σ be a sequence involving the queues q1, q2, . . . , qn (n ≥ 1) and

let Σ1,Σ2, . . . ,Σn be the alphabets of those queues. If for every recognizable set

U ⊆ Σ∗
1 × Σ∗

2 × · · · × Σ∗
n, the set σ∗(U) is recognizable, then there do not exist

i, j ∈ N such that 1 ≤ i < j ≤ n and such that σ|i and σ|j are counting sequences.

Proof The proof is by contradiction. Suppose that there exist i, j ∈ N such that

1 ≤ i < j ≤ n and such that σ|i and σ|j are counting. We show that there exists a

recognizable set U ⊆ Σ∗
1 × Σ∗

2 × · · · × Σ∗
n such that σ∗(U) is not recognizable. For

each k ∈ {1, 2, . . . , n}, we define the recognizable set of queue contents Uk ⊆ Σ∗
k as

follows:

• If k ∈ {i, j} and |Σk| > 1, then Uk = µ(σ|k?)
∗ · ak, where ak ∈ Σk is a symbol

different from µ(σ|k?)[1];

• If k ∈ {i, j} and |Σk| = 1, then Uk = {µ(σ|k?)};

• If k 6∈ {i, j}, then Uk = Σ∗
k.

Let U = U1 × U2 × · · · ×Un and U ′ = σ∗(U). Let us prove by contradiction that U ′

is not recognizable. If U ′ is recognizable, then its sequential encoding L′ = ES(U
′)

is regular. Let L′
ij = L′|i · L

′|j. We have

L′
ij = {ui · (vi)

l · uj · (vj)
l | l ∈ N ∧ ui ∈ Vi ∧ uj ∈ Vj},

where for each k ∈ {i, j}, Vk and vk are defined as follows:

• If |Σk| > 1, then Vk = µ(σ|k?)
∗ · ak and vk = µ(σ|k!);

• If |Σk| = 1, then Vk = {µ(σ|k?)} and vk = (a′k)
mk , where a′k is the only symbol

in Σk and mk = |(σ|k!)| − |(σ|k?)|.

Since L′
ij is not regular, L′ is not regular. Therefore, U ′ is not recognizable. 2

The next step is to show that the condition expressed by Theorem 7.26 is not

only necessary but also sufficient, i.e., that for any sequence σ satisfying the hy-

potheses of this theorem and recognizable set U of queue-set contents, the set σ∗(U)
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is recognizable. Our proof of this result is constructive and can be translated into an

algorithm for computing a QDD representing σ∗(U), given σ and a QDD represent-

ing U . Roughly speaking, the proof is based on the fact that for every queue qi such

that σ|i is not counting, applying an unbounded number of times the sequence σ|i to

an arbitrary subset of Σ∗
i is always equivalent to applying it only a bounded number

of times (as a consequence of Theorem 7.25). Applying an unbounded number of

times the sequence σ to U can thus be reduced to applying a bounded number of

times each σ|i that is not counting and applying an unbounded number of times

the only (if any) σ|i that is counting. The latter problem can then be solved as a

consequence of Theorem 7.22.

Formally, the sufficient condition is stated as follows.

Theorem 7.27 Let σ be a sequence involving the queues q1, q2, . . . , qn (n ≥ 1) and

let Σ1,Σ2, . . . ,Σn be the alphabets of those queues. If there exists at most one i ∈ N

such that 1 ≤ i ≤ n and such that σ|i is counting, then for every recognizable set

U ⊆ Σ∗
1 × Σ∗

2 × · · · × Σ∗
n, the set σ∗(U) is recognizable.

Proof If U ⊆ Σ∗
1 ×Σ∗

2 ×· · ·×Σ∗
n is recognizable, then it can be expressed as a finite

union
⋃

1≤j≤q Uj0 where q ≥ 0, each Uj0 is of the form Uj01 × Uj02 × · · · × Uj0n, and

for every l ∈ {1, 2, . . . , n}, Uj0l is a regular subset of Σ∗
l . We define U0 = U and for

every k ∈ N0, Uk = σ(Uk−1). For every k ∈ N, we have

Uk =
⋃

1≤j≤q

(σ|1)
k(Uj01) × (σ|2)

k(Uj02) × · · · × (σ|n)
k(Uj0n).

Let i be the only integer such that σ|i is counting (if any), and let i = n+1 if there is

no such integer. Applying Theorem 7.25, we obtain that for every l ∈ {1, 2, . . . , n}

such that l 6= i and j ∈ {1, 2, . . . , q}, there exist bjl ∈ N and pjl ∈ N0 such

that for every k ≥ bjl, (σ|l)
k(Uj0l) = (σ|l)

k+pjl(Uj0l). Defining b = maxj,l 6=i bjl and

p = lcmj,l 6=ipjl, we obtain that for every j ∈ {1, 2, . . . , q}, k ≥ b and l ∈ {1, 2, . . . , n}

such that l 6= i, (σ|l)
k(Uj0l) = (σ|l)

k+p(Uj0l). There are two possible situations.

• If i > n. Then, for every k > b, we have Uk+p = Uk. The set σ∗(U) can thus

be expressed as a finite union of recognizable sets:

σ∗(U) =
⋃

0≤k<b+p

Uk.

• If 1 ≤ i ≤ n. Then, we have

σ∗(U) =
⋃

0≤k<b

σk(U) ∪
⋃

0≤k′<p

σk
′




⋃

k∈N

σb+kp(U)



 ,
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function META?(sequence of queue operations σ, alphabets Σ1, Σ2, . . . , Σn) : {T,F}

1: var i, j : integers;

2: begin

3: j := 0;

4: for i := 1 to n do

5: if (|Σi| > 1 ∧ |(σ|i!)| > 0) ∨ (|Σi| = 1 ∧ |(σ|i!)| > |(σ|i?)|) then

6: if j = 0 then j := 1

7: else return F;

8: return T

9: end.

Figure 7.21: Implementation of META? for sequences of queue operations.

and
⋃

k∈N

σb+kp(U) =
⋃

1≤j≤q

(σ|1)
b(Uj01) × · · · × (σ|i−1)

b(Uj0(i−1))

× ((σ|i)
p)∗

(

(σ|i)
b(Uj0i)

)

× (σ|i+1)
b(Uj0(i+1)) × · · · × (σ|n)

b(Uj0n).

As a consequence of Corollary 7.23, the sets ((σ|i)
p)∗((σ|i)

b(Uj0i)) are recog-

nizable. Therefore, the set σ∗(U) is also recognizable.

2

Theorems 7.26 and 7.27 can be combined into a necessary and sufficient condi-

tion:

Corollary 7.28 Let σ be a sequence involving the queues q1, q2, . . . , qn (n ≥ 1) and

let Σ1,Σ2, . . . ,Σn be the alphabets of those queues. The set σ∗(U) is recognizable

for every recognizable set U ⊆ Σ∗
1 × Σ∗

2 × · · · × Σ∗
n if and only if there do not exist

i, j ∈ N such that 1 ≤ i < j ≤ n and such that σ|i and σ|j are counting sequences.

This corollary makes it possible to decide whether the closure of a sequence σ

of queue operations preserves the recognizability of sets of queue-set contents, i.e.,

to decide whether a cycle meta-transition can be associated to σ. An algorithm

implementing the decision procedure is given in Figure 7.21.

Theorem 7.29 Let σ be a sequence involving the queues q1, q2, . . . , qn (n ≥ 1) and

Σ1,Σ2, . . . ,Σn be the alphabets of those queues. The set σ∗(U) is recognizable for ev-

ery recognizable set U ⊆ Σ∗
1×Σ∗

2×· · ·×Σ∗
n if and only if META?(σ,Σ1,Σ2, . . . ,Σn) =

T.
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Proof The result is a direct consequence of Definition 7.24 and of Corollary 7.28.

2

The proof of Theorem 7.27 provides a way of constructing a QDD representing

σ∗(U) given a sequence σ of queue operations such that META?(σ,Σ1,Σ2, . . . ,Σn) =

T and a QDD representing the set U . An algorithm3 implementing this construction

is given in Figure 7.22.

Theorem 7.30 Let σ be a sequence involving the queues q1, q2, . . . , qn (n ≥ 1),

Σ1,Σ2, . . . ,Σn be the alphabets of those queues, and A be a QDD representing the

set of queue set contents U ⊆ Σ∗
1 × Σ∗

2 × · · · × Σ∗
n. If META?(σ,Σ1, . . . ,Σn) = T,

then APPLY-STAR(A, σ,Σ1, . . . ,Σn) is a QDD representing the set σ∗(U).

Proof The algorithm of Figure 7.22 is a direct implementation of the computation

method described in the proof of Theorem 7.27. 2

7.4 Creation of Multicycle Meta-Transitions

This section is aimed at providing the algorithms that are needed in order to be

able to associate multicycle meta-transitions to systems using FIFO queues. As

it has been shown in Section 3.4.2, the creation of multicycle meta-transitions is

governed by a computable function MULTI-META-SET that takes as arguments a

finite number of sequences of operations, and returns a finite number of memory

functions defining multicycle meta-transitions that can be associated to the cycles

labeled by those sequences of operations.

Regrettably, one cannot hope here to obtain results similar to those of Section 7.3,

in which it was always possible to create a meta-transition whenever the memory

function of this meta-transition preserved the recognizability of sets of queue-set

contents. Indeed, there are classes of systems such as lossy systems [AJ93, AJ94]

that can be modeled as QSMAs and for which it is known [CFI96] that their set of

reachable queue-set contents is always recognizable but generally not computable.

Since every QSMA A can be simulated by a QSMA A′ with only one control lo-

cation (for instance, by creating an additional queue whose content encodes the

control location of A), the existence of an algorithm for computing the effect of ev-

ery multicycle meta-transition whose memory function preserves the recognizability

of sets of queue-set contents would make it possible to compute the set of reachable

queue-set contents of an arbitrary lossy system.

The solution we propose is based on an algorithm for computing the image of

a representable set by a multicycle meta-transition, provided that the sequences

of queue operations that characterize this meta-transition satisfy some conditions.

3In this algorithm, the test of equality of the languages accepted by two QDDs can be imple-

mented by two calls to the function INCLUDED? presented in Section 6.2.4.
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function APPLY-STAR(QDD (Σ, S, ∆, I, F ), sequence of queue operations σ,

alphabets Σ1, Σ2, . . . , Σn) : QDD

1: var A : array[0, 1, . . .] of QDDs;

2: A0,A′ : QDDs;

3: i, b, p : integers;

4: f : function;

5: begin

6: i := 1;

7: while i ≤ n do

8: if (|Σi| > 1 ∧ |(σ|i!)| > 0) ∨ (|Σi| = 1 ∧ |(σ|i!)| > |(σ|i?)|) then

goto break

9: else i := i + 1;

10: break:

11: f := Σ∗
1 · Σ

∗
2 · · ·Σ

∗
n → Σ∗

1 · Σ
∗
2 · · ·Σ

∗
n : w 7→ w|6=i;

12: j := 0;

13: A′ := A0 := (Σ, S, ∆, I, F );

14: A[0] := APPLY-HOMOMORPHISM(A′, f);

15: repeat

16: j := j + 1;

17: A′ := APPLY(A′, σ, Σ1, Σ2, . . . , Σn);

18: A[j] := APPLY-HOMOMORPHISM(A′, f)

19: until there exists b such that 0 ≤ b < j ∧ L(A[j]) = L(A[b]);

20: if i > n then return
⋃

0≤k<j

A[k];

21: p := j − b;

22: A′ := PERFORM-FUNCTION(A′, APPLY-STAR-ONE, i, (σ|i)p);

23: return
⋃

0≤k<b

APPLY(A0, σ
k, Σ1, Σ2, . . . , Σn)

∪
⋃

0≤k<p

APPLY(A′, σk, Σ1, Σ2, . . . , Σn)

24: end.

Figure 7.22: Image of a QDD by the closure of a sequence of queue operations.
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These conditions will be chosen so as to allow a simple generalization of the function

APPLY introduced in Section 7.3 to the case of multicycle meta-transitions. We

consider successively systems with one and then with an arbitrary number of queues.

7.4.1 Systems with One Queue

The function APPLY-STAR-ONE discussed in Section 7.3.1 proceeds by construct-

ing a finite structure equivalent to the infinite union of all the automata that can

be obtained by repeated applications of a given sequence of operations. Roughly

speaking, the idea behind the construction was to capture some periodicity among

the sets of states of the different automata.

The same approach is followed here. Let q be a queue of alphabet Σ, and

σ1, σ2, . . . , σm (m ≥ 0) be sequences of elementary queue operations involving q. The

set σ̄ = {σ1, σ2, . . . , σm} is called the multisequence characterized by σ1, σ2, . . . , σm.

The image by σ̄ of a set U ⊆ Σ∗ of queue contents is defined as the set

σ̄(U) = σ1(U) ∪ σ2(U) ∪ · · · ∪ σm(U).

The goal of this section is thus to provide an algorithm for computing a QDD

representing

σ̄∗(U) =
⋃

k∈N

σ̄k(U)

given a QDD representing a recognizable set U ⊆ Σ∗, under some restrictions on

σ̄. If σ̄ = {σ1, σ2, . . . , σm} is a multisequence, then σ̄! denotes the multisequence

{σ1!, σ2!, . . . , σm!}. If qi is a queue, then σ̄|i denotes the multisequence obtained by

removing from the sequences composing σ̄ all the operations which do not involve

qi.

The first restriction concerns the receive operations that can be performed by

the sequences composing σ̄. In order to be able to exploit some results already es-

tablished in Section 7.3.1, we restrict the class of multisequences that are considered

to those whose components all share the same sequence of receive operations. This

restriction is formalized by the following definition.

Definition 7.31 The multisequence {σ1, σ2, . . . , σm} is receive-deterministic if it is

such that σ1? = σ2? = · · · = σm?.

If σ̄ = {σ1, σ2, . . . , σm} is receive-deterministic, then σ̄? denotes the sequence

σi?, where i is arbitrarily chosen in {1, 2, . . . , m}. A positive property of receive-

deterministic multisequences is that they allow a simple generalization of the func-

tion APPLY-ONE introduced in Section 7.2.1. Indeed, computing the image of a

QDD A by a such a multisequence σ̄ can be done by computing separately the im-

age of A by each sequence composing σ̄, and then joining together the tails of the

resulting QDDs. An algorithm formalizing this construction is given in Figure 7.23.
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function APPLY-MULTI-ONE(QDD A, multisequence of

queue operations {σ1, σ2, . . . , σm}) : QDD

1: var (Σ, S, ∆, I, F ), (Σ′, S′, ∆′, I ′, F ′) : QDDs;

2: i : integer;

3: s : state;

4: begin

5: (Σ, S, ∆, I, F ) := A;

6: let s 6∈ S;

7: S := S ∪ {s};

8: F := {s};

9: for i := 1 to m do

10: begin

11: (Σ′, S′, ∆′, I ′, F ′) := APPLY-ONE(A, σi);

12: S := S ∪ S′;

13: ∆ := ∆ ∪ ∆′;

14: ∆ := ∆ ∪ {(s′, w, s) ∈ S′ × Σ′∗ × {s} | (∃(s1, w1, s2) ∈ ∆′)

(s1 = s′ ∧ w1 = w ∧ s2 ∈ F ′)};

15: if |σi!| > 0 then ∆ := ∆ \ (S′ × Σ′∗ × F ′);

16: I := I ′;

17: if I ′ ∩ F ′ 6= ∅ then I := I ∪ {s}

18: end;

19: return (Σ, S, ∆, I, F )

20: end.

Figure 7.23: Image of a single-queue QDD by a receive-deterministic multisequence

of queue operations.
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Theorem 7.32 Let q be a queue of alphabet Σ, σ̄ = {σ1, σ2, . . . , σm} be a receive-

deterministic multisequence of elementary operations on q, and A be a QDD repre-

senting the set U ⊆ Σ∗. APPLY-MULTI-ONE(A, σ̄) is a QDD representing the set

σ̄(U).

Proof Each execution of Line 11 computes a QDD Ai representing σi(U), with

i ∈ {1, 2, . . . , m}. The sets of states and of transitions of the QDD A′ returned

by the algorithm are respectively the union of the sets of states and of the sets of

transitions of all the Ai. Since σ̄ is receive-deterministic, all the Ai are identical

except for their tail. It follows that A′ accepts a word w if and only if w is accepted

by one of the Ai (the QDD A′ can actually be seen as an automaton with m disjoint

tails). There is one small optimization at Lines 14–15, in which the accepting states

of the Ai are grouped into a single state. This optimization, which is introduced

in order to facilitate future applications of the algorithm, does not influence the

language accepted by the returned automaton. 2

Let q be a queue of alphabet Σ, U ⊆ Σ∗ be a recognizable set of queue contents,

A be a QDD representing U , and σ̄ be a receive-deterministic multisequence of

operations on q. We assume that A is in normal form. We have σ̄∗(U) = L(A0) ∪

L(A1) ∪ · · ·, where A0,A1, . . . are QDDs such that:

• A0 = A;

• Ai+1 = APPLY-MULTI-ONE(Ai, σ̄) for every i ≥ 0.

One can apply the same reasoning as in Section 7.3.1 in order to capture the re-

dundancy among the sets of states and of transitions of the Ai into a finite structure.

For each i ∈ N, we denote (Σi, Si,∆i, Ii, Fi) the components of Ai. The set of all the

states that have been created during the first i applications of APPLY-MULTI-ONE

is called the multitail of Ai and is denoted mtail(i). The multitail of Ai is actually

composed of m parallel tails created by the calls to APPLY-ONE (these tails are

called the component tails of Ai). The situation is depicted in Figure 7.24.

In order to be able to apply straightforwardly the technique developed in Sec-

tion 7.3.1 to multitails, we need to impose an additional restriction. Roughly

speaking, this restriction consists of requiring that during each successive call to

APPLY-MULTI-ONE, the initial states belonging to different component tails of an

automaton are shifted together, i.e., that they are moved by the same amount of

transitions. Formally, we have the following definition.

Definition 7.33 Let q be a queue of alphabet Σ and σ̄ = {σ1, σ2, . . . , σm} be a mul-

tisequence of elementary operations on q. The multisequence σ̄ is send-synchronized

if it is receive-deterministic, and if for every i, j ∈ {1, 2, . . . , m}, |σi!| = |σj !|.



7.4. CREATION OF MULTICYCLE META-TRANSITIONS 167
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Figure 7.24: Effect of repeated applications of APPLY-MULTI-ONE.

If σ̄ = {σ1, σ2, . . . , σm} is send-synchronized, then |σ̄!| denotes the length |σi!|,

where i is arbitrarily chosen in {1, 2, . . . , m}. Computing the image of a recognizable

set of queue contents by the closure of σ̄ can be done by performing essentially the

same operations as in Function APPLY-STAR-ONE to each component tail of the

Ai. There are however two minor differences:

• The subroutine APPEND-LOOP must be replaced by a subroutine APPEND-

MULTI-LOOP, whose purpose is to apply the closure of a multisequence only

composed of send operations;

• Applying k times (k ≥ 0) the multisequence {σ1, σ2, . . . , σm} is in general

not equivalent to applying once the multisequence {σk1 , σ
k
2 , . . . , σ

k
m}. Two sub-

routines APPLY-N-MULTI-ONE and APPEND-N-MULTI-LOOP must be in-

troduced in order to generalize APPLY-MULTI-ONE and APPEND-MULTI-

LOOP to repetitions of multisequences of operations.

The generalization of the function APPLY-STAR-ONE to send-synchronized

multisequences of queue operations is given in Figures 7.28, 7.29 and 7.30. For

convenience, the function implemented by this algorithm has an additional integer

parameter k that allows to apply the closure of σ̄k (rather than the closure of σ̄).

The three subroutines upon which this algorithm relies are given in Figures 7.25,
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function APPLY-N-MULTI-ONE(QDD A, multisequence of

queue operations σ̄, integer k) : QDD

1: var i : integer;

2: begin

3: for i := 1 to k do

4: A := APPLY-MULTI-ONE(A, σ̄);

5: return A

6: end;

Figure 7.25: Image of a single-queue QDD by repetitions of a receive-deterministic

multisequence of queue operations.

7.26 and 7.27. The correctness of the subroutines and of the algorithm is established

by the following theorems.

Theorem 7.34 Let q be a queue of alphabet Σ, σ̄ be a receive-deterministic mul-

tisequence of elementary operations on q, k ∈ N be an integer, and A be a QDD

representing the set U ⊆ Σ∗. APPLY-N-MULTI-ONE(A, σ̄, k) is a QDD represent-

ing the set σ̄k(U).

Proof Immediate. 2

Theorem 7.35 Let q be a queue of alphabet Σ, w1, w2, . . . , wm ∈ Σ∗ (m ≥ 0)

be same-length words, k ∈ N be an integer, and A be a QDD representing the

set U ⊆ Σ∗. APPEND-MULTI-LOOP(A, w1, w2, . . . , wm) is a QDD representing

the set (σ̄)∗(U), where σ̄ is the multisequence {q!w1, q!w2, . . . , q!wm}. APPEND-N-

MULTI-LOOP(A, w1, w2, . . . , wm, k) is a QDD representing the set (σ̄k)∗(U).

Proof Immediate. 2

Theorem 7.36 Let q be a queue of alphabet Σ, σ̄′ be a send-synchronized multi-

sequence of elementary operations on q, k ∈ N be an integer, and A be a QDD

representing the set U ⊆ Σ∗. APPLY-N-MULTI-STAR-ONE(A, σ̄, k) is a QDD

representing the set σ̄∗(U), where σ̄ = (σ̄′)k.

Proof The proof follows the same lines as the construction presented in Section 7.3.1.

For every i ∈ N, the rank of a state s ∈ mtail(Ai) is defined as the length of the

shortest path leading from an accepting state of A0 to s. The base b, the period p

and the automata A′
i are computed exactly as in Section 7.3.1, the multitail of each
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function APPEND-N-MULTI-LOOP(QDD (Σ, S, ∆, I, F ),

words a1,1a1,2 · · · a1,l, a2,1a2,2 · · ·a2,l, . . . , am,1am,2 · · · am,l, integer k) : QDD

1: var s : array[1 . . . k, 1 . . .m, 1 . . . l] of states;

2: begin

3: if m = 0 ∨ k = 0 then return (Σ, S, ∆, I, F );

4: let {s[i1, i2, i3] | 1 ≤ i1 ≤ k ∧ 1 ≤ i2 ≤ m ∧ 1 ≤ i3 ≤ l} ∩ S = ∅;

5: S := S ∪ {s[i1, i2, i3] | 1 ≤ i1 ≤ k ∧ 1 ≤ i2 ≤ m ∧ 1 ≤ i3 ≤ l};

6: ∆ := ∆ ∪ {(s′, ai2,1, s[1, i2, 1]) | s′ ∈ F ∧ 1 ≤ i2 ≤ m}

∪ {(s[i1, i2, i3], ai2,i3+1, s[i1, i2, i3 + 1]) | 1 ≤ i1 ≤ k

∧ 1 ≤ i2 ≤ m ∧ 1 ≤ i3 ≤ l − 2}

∪ {(s[i1, i2, l − 1], ai2,l, s[i1, 1, l]) | 1 ≤ i1 ≤ k ∧ 1 ≤ i2 ≤ m}

∪ {(s[i1, 1, l], ai2,1, s[i1 + 1, i2, 1]) | 1 ≤ i1 ≤ k − 1 ∧ 1 ≤ i2 ≤ m}

∪ {(s[k, 1, l], ai2,1, s[1, i2, 1]) | 1 ≤ i2 ≤ m};

7: F := F ∪ {s[k, 1, l]};

8: return (Σ, S, ∆, I, F )

9: end.

Figure 7.26: Subroutine APPEND-N-MULTI-LOOP.

function APPEND-MULTI-LOOP(QDD A, words w1, w2, . . . , wm) : QDD

1: begin

2: return APPEND-N-MULTI-LOOP(A, w1, w2, . . . , wm, 1)

3: end.

Figure 7.27: Subroutine APPEND-MULTI-LOOP.
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function APPLY-N-MULTI-STAR-ONE(QDD (Σ, S, ∆, I, F ), multisequence of

queue operations σ̄ = {σ1, σ2, . . . , σm}, integer k) : QDD

1: var A : array[0, 1, . . .] of QDDs;

2: Iα : array[0, 1, . . .] of sets of states;

3: S0, S1, S2 : sets of states;

4: A′
i0

,A′
i0+1,A

αβ′

i0
,Aαβ′

,Aγ′

i0
,Aγ′

,Aγ′′

,Aδ′

i0+1,A
δǫ′ ,Aδ′

R ,Aδ′′
R ,A′,A′′ : QDDs;

5: (Σ′
i0

, S′
i0

, ∆′
i0

, I ′i0 , F
′
i0

), (Σ′
i0+1, S

′
i0+1, ∆

′
i0+1, I

′
i0+1, F

′
i0+1) : QDDs;

6: n1, n2, p, b, d, i, i0, i1, i2, l : integers;

7: begin

8: A[0] := (Σ, S, ∆, I, F ) := NORMALIZE((Σ, S, ∆, I, F ));

9: if |σ̄?| = 0 ∨ k = 0 then return APPEND-N-MULTI-LOOP(A[0],

µ(σ1!), µ(σ2!), . . . , µ(σm!), k);

10: Iα[0] := I;

11: S0 := S;

12: n1 := 0;

13: repeat

14: n1 := n1 + 1;

15: A[n1] := (Σ, S, ∆, I, F ) := APPLY-N-MULTI-ONE(A[n1 − 1], σ̄, k);

16: Iα[n1] := I ∩ S0

17: until there exists n2 such that 0 ≤ n2 < n1 ∧ Iα[n1] = Iα[n2];

18: if |σ̄!| = 0 then return
⋃

0≤i≤n1

A[i];

19: p := lcm(n1 − n2, k|σ̄!|);

20: b := k|σ̄!|⌈n2/(k|σ̄!|)⌉;

21: i0 :=

⌈

3
|σ̄?|

|σ̄!|
−

b

p

⌉

+ 1;

22: A′
i0

:= (Σ′
i0

, S′
i0

, ∆′
i0

, I ′i0 , F
′
i0

) := APPLY-N-MULTI-ONE(A[n1], σ̄,

k(b − n1 + i0p));

23: A′
i0+1 := (Σ′

i0+1, S
′
i0+1, ∆

′
i0+1, I

′
i0+1, F

′
i0+1) := APPLY-N-ONE(A′

i0
, σ̄, kp);

24: S1 := {s′ ∈ S′
i0
| (∃s ∈ S0, w ∈ Σ∗)((s, w, s′) ∈ ∆

′∗

i0
∧ |w| ≤ kp|σ̄?|)};

25: S2 := {s′ ∈ S′
i0+1 | (∃s ∈ S0, w ∈ Σ∗)((s, w, s′) ∈ ∆

′∗

i0+1 ∧ |w| ≤ 2kp|σ̄?|)};

(. . . )

Figure 7.28: Image of a single-queue QDD by the closure of a send-synchronized

multisequence of queue operations.
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(. . . )

26: Aαβ′

i0
:= (Σ′

i0
, S′

i0
, ∆′

i0
, I ′i0 ∩ S1, F

′
i0

);

27: Aαβ′

:= APPEND-N-MULTI-LOOP(Aαβ′

i0
, µ(σ1!), . . . , µ(σm!), kp);

28: Aγ′

i0
:= (Σ′

i0
, S′

i0
, ∆′

i0
, I ′i0 \ S1, F

′
i0

);

29: Aδ′

i0+1 := (Σ′
i0+1, S

′
i0+1, ∆

′
i0+1, I

′
i0+1 ∩ (S2 \ S1), F

′
i0+1);

30: if |σ̄!| ≥ |σ̄?| then

31: begin

32: d :=
p

|σ̄!|
(|σ̄!| − |σ̄?|);

33: Aγ′

:= APPEND-N-MULTI-LOOP(Aγ′

i0
, µ(σ1!), . . . , µ(σm!), kd);

34: Aδǫ′ := APPEND-N-MULTI-LOOP(

APPEND-N-MULTI-LOOP(Aδ′

i0+1, µ(σ1!), . . . ,

µ(σm!), kd), µ(σ1!), . . . , µ(σm!), kp)

35: end

36: else

37: begin

38: i1 :=

⌈
(b/p)|σ̄!| + (i0 − 1)|σ̄?|

|σ̄?| − |σ̄!|

⌉

;

39: Aγ′

:= Aγ′′

:= Aγ′

i0
;

40: for i := i0 + 1 to i1 − 1 do

41: begin

42: Aγ′′

:= APPLY-N-MULTI-ONE(Aγ′′

, σ̄, kp);

43: Aγ′

:= UNION(Aγ′

,Aγ′′

)

44: end;

45: i2 := 1 + max(i0,

⌈
(b/p)|σ̄!| + (i0 − 2)|σ̄?|

|σ̄?| − |σ̄!|

⌉

);

46: Aδ′
R := Aδ′′

R := Aδ′

i0+1;

47: l := (b + (i0 + 2)p)k|σ̄!| − 4pk|σ̄?|;

(. . . )

Figure 7.29: Image of a single-queue QDD by the closure of a send-synchronized

multisequence of queue operations (continued).
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(. . . )

48: for i := i0 + 2 to i2 + p − 1 do

49: if l ≥ 0 then

50: begin

51: Aδ′′
R := APPLY-N-MULTI-ONE(Aδ′′

R , σ̄, kp);

52: Aδ′
R := UNION(Aδ′

R ,Aδ′′
R);

53: l := l + kp(|σ̄!| − |σ̄?|)

54: end

55: else

56: begin

57: Aδ′′
R := APPLY-N-MULTI-ONE(Aδ′′

R , {σ1!, σ2!,

. . . , σm!}, kp);

58: Aδ′
R := UNION(Aδ′

R ,Aδ′′
R);

59: l := l + kp|σ̄!|

60: end;

61: Aδǫ′ := APPEND-N-MULTI-LOOP(Aδ′
R , µ(σ1!), . . . , µ(σm!), kp);

62: Aδǫ′ := UNION(Aδǫ′ , APPLY-N-MULTI-ONE(Aδ′
R , σ̄, kp));

63: Aδǫ′ := UNION(Aδǫ′ , APPLY-N-MULTI-ONE(Aδ′
R , σ̄, 2kp))

64: end;

65: A′ := UNION(
⋃

0≤i<i0

APPLY-N-MULTI-ONE(A[n1], σ̄, k(b − n1 + pi)),

⋃

ξ∈{αβ,γ,δǫ}

Aξ′

);

66: A′′ := UNION(
⋃

0≤i<b

APPLY-N-MULTI-ONE(A[0], σ̄, ki),

⋃

0≤i<p

APPLY-N-MULTI-ONE(A′, σ̄, ki));

67: return A′′

68: end.

Figure 7.30: Image of a single-queue QDD by the closure of a a send-synchronized

multisequence of queue operations (continued).
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A′
i being denoted mtail ′(i). The notion of robustness and the partitioning of the

initial states stay unchanged (except for the transformation of tail ′(i) into mtail ′(i)),

as are the definitions of right blocks and of the indices i0, i1 and i2. Adapting the

calculations made in Section 7.3.1, we now obtain

⋃

i≥i0

(

L(Aα′

i ) ∪ L(Aβ′

i )
)

= ((σ̄!)
p)∗

(

L(Aα′

i0 ) ∪ L(Aβ′

i0 )
)

;

⋃

i≥i0

L(Aγ′

i ) = ((σ̄!)
d)∗

(

L(Aγ′

i0 )
)

if |σ̄!| ≥ |σ̄?|;

⋃

i≥i0

L(Aγ′

i ) =
⋃

i0≤i<i1

L(Aγ′

i ) if |σ̄!| < |σ̄?|,

⋃

i≥i0

L(Aδ′

i ) = ((σ̄!)
p)∗

(

((σ̄!)
d)∗

(

L(Aδ′

i0+1)
))

if |σ̄!| ≥ |σ̄?|;

⋃

i≥i0

(

L(Aδ′

i ) ∪ L(Aǫ′

i )
)

=
⋃

i>i0

((σ̄!)
p)∗

(

L(A
δ′
R

i )
)

∪ σ̄p




⋃

i>i0

L(A
δ′
R

i )





∪ σ̄2p




⋃

i>i0

L(A
δ′
R

i )



 if |σ̄!| < |σ̄?|,

with d = (|σ̄!| − |σ̄?|)(p/|σ̄!|). The computation of the union of the L(A
δ′
R

i ) is un-

changed. 2

7.4.2 Systems with Any Number of Queues

Let us now generalize the results of Section 7.3.2 to multisequences of queue opera-

tions. The first step is to generalize the algorithm for computing the image of a rec-

ognizable set of queue-set contents. Like in Section 7.2.3, we remark that two opera-

tions involving different queues are independent, i.e., that the result of applying such

operations to a queue-set content does not depend on the order in which they are

applied. It follows that for every multisequence σ̄ of operations involving the queues

q1, q2, . . . , qn and set of queue-set contents U , we have σ̄(U) = (σ̄|1; σ̄|2; . . . ; σ̄|n)(U).

Applying σ̄ to U can thus be done by applying successively the projections of σ̄

onto the different queues of the system. An algorithm formalizing this method is

given in Figure 7.31. A generalization of this algorithm to repeated applications of

a multisequence of queue operations is given in Figure 7.32.

Theorem 7.37 Let q1, q2, . . . , qn be queues of respective alphabets Σ1,Σ2, . . . ,Σn,

σ̄ be a multisequence of elementary operations on these queues such that for every

i ∈ {1, . . . , n}, the multisequence σ̄|i is send-synchronized, and let A be a QDD

representing the set U ⊆ Σ∗
1 ×Σ∗

2 × · · · ×Σ∗
n. APPLY-MULTI(A, σ̄,Σ1,Σ2, . . . ,Σn)

is a QDD representing the set σ̄(U).

Proof Immediate, as a consequence of Theorems 7.11 and 7.32. 2
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function APPLY-MULTI(QDD A, multisequence of queue operations σ̄,

alphabets Σ1, Σ2, . . . , Σn) : QDD

1: var i : integer;

2: begin

3: for i := 1 to n do

4: A := PERFORM-FUNCTION(A, APPLY-MULTI-ONE, i, σ̄|i);

5: return A

6: end.

Figure 7.31: Image of an arbitrary QDD by multisequence of queue operations.

function APPLY-N-MULTI(QDD A, multisequence of queue operations σ̄,

alphabets Σ1, Σ2, . . . , Σn, integer k) : QDD

1: var i : integer;

2: begin

3: for i := 1 to k do

4: A := APPLY-MULTI(A, σ̄, Σ1, Σ2, . . . , Σn);

5: return A

6: end.

Figure 7.32: Image of an arbitrary QDD by repeated applications of a multisequence

of queue operations.
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Theorem 7.38 Let q1, q2, . . . , qn be queues of respective alphabets Σ1,Σ2, . . . ,Σn,

σ̄ be a multisequence of elementary operations on these queues such that for every

i ∈ {1, . . . , n}, the multisequence σ̄|i is send-synchronized, let k ≥ 0 be an integer,

and let A be a QDD representing the set U ⊆ Σ∗
1 × Σ∗

2 × · · · × Σ∗
n. APPLY-N-

MULTI(A, σ̄,Σ1,Σ2, . . . ,Σn, k) is a QDD representing the set σ̄k(U).

Proof Immediate. 2

The next step is to show that the concept of counting multisequences of queue

operations can be introduced as a direct generalization of counting sequences of

operations.

Definition 7.39 Let q be a queue of alphabet Σ, and σ̄ = {σ1, σ2, . . . , σm} (m ≥ 0)

be a send-synchronized multisequence of operations on q. The multisequence σ̄ is

counting if one of the following conditions is satisfied:

• |Σ| > 1 and |σ̄!| > 0,

• |Σ| = 1 and |σ̄!| > |σ̄?|.

Theorem 7.40 Let q be a queue of alphabet Σ, and σ̄ = {σ1, σ2, . . . , σm} (m ≥ 0) be

a send-synchronized multisequence of operations on q. The sequence σ̄ is counting

if and only if there exists a recognizable set U ⊆ Σ∗ of queue contents such that

σ̄k1(U) 6= σ̄k2(U) for all k1, k2 ∈ N such that k1 6= k2.

Proof If either |Σ| > 1 and σ̄ is not counting, or |Σ| = 1, then there exists a

sequence σ of operations involving q that is equivalent to σ̄ and that is counting if

and only if σ is counting. The result is then a consequence of Theorem 7.25.

It thus remains to show that if |Σ| > 1 and σ̄ is counting, then there exists

a recognizable set U ⊆ Σ∗ of queue contents such that σ̄k1(U) 6= σ̄k2(U) for all

k1, k2 ∈ N such that k1 6= k2. Let a ∈ Σ be a symbol different from σ̄?[1]. Choosing

U = µ(σ̄?)
∗ · a yields for every k ∈ N

σk(U) = µ(σ̄?)
∗ · a · (µ(σ1!) ∪ µ(σ2!) ∪ · · · ∪ µ(σm!))

k.

2

We are now able to characterize precisely the send-synchronized multisequences

whose closure preserves the recognizability of sets of queue-set contents.

Theorem 7.41 Let σ̄ be a multisequence of operations involving the queues q1, q2,

. . . , qn (n ≥ 1) such that σ̄|1, σ̄|2, . . . , σ̄|n are all send-synchronized, and let Σ1,Σ2,

. . . ,Σn be the alphabets of q1, q2, . . . , qn. The set σ∗(U) is recognizable for every

recognizable set U ⊆ Σ∗
1 × Σ∗

2 × · · · × Σ∗
n if and only if there do not exist i, j ∈ N

such that 1 ≤ i < j ≤ n and such that σ̄|i and σ̄|j are counting multisequences.
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Proof The proof is along the same lines as the ones of Theorems 7.26 and 7.27. If

there exist i, j ∈ N such that 1 ≤ i < j ≤ n and such that σ̄|i and σ̄|j are counting,

one builds a recognizable set U of queue-set contents exactly like in the proof of

Theorem 7.26, and then observes that σ̄∗(U) is not recognizable. If there do not

exist i, j ∈ N such that 1 ≤ i < j ≤ n and such that σ̄|i and σ̄|j are counting, then

the operations performed in the proof of Theorem 7.27 directly yield a formula for

computing a finite-state representation of σ̄∗(U). The only required modification is

to replace σ by σ̄ in the proof. 2

This proof provides a way of constructing a QDD representing σ̄∗(U) given a

multisequence σ̄ of queue operations that satisfies the requirements of Theorem 7.41.

An algorithm implementing this construction is given in Figure 7.33.

Theorem 7.42 Let σ̄ = {σ1, σ2, . . . , σm} (m ≥ 0) be a multisequence of operations

involving the queues q1, q2, . . . , qn (n ≥ 1), Σ1,Σ2, . . . ,Σn be the alphabets of those

queues, and A be a QDD representing the set of queue set contents U ⊆ Σ∗
1 × Σ∗

2 ×

· · · ×Σ∗
n. If σ̄ is such that for every i such that 1 ≤ i ≤ n, σ̄|i is send-synchronized,

and if there exists at most one i such that 1 ≤ i ≤ n and σ̄|i is counting, then

APPLY-MULTI-STAR(A, σ̄,Σ1, . . . ,Σn) is a QDD representing the set σ̄∗(U).

Proof The algorithm of Figure 7.33 is a direct implementation of the computation

method described in the proofs of Theorems 7.27 and 7.41. 2

It remains to give an implementation of the function MULTI-META-SET that

is used for creating multicycle meta-transitions. Recall that this function takes as

arguments a finite set of sequences of queue operations, and returns a finite num-

ber of memory functions corresponding to multicycle meta-transitions that can be

created. The function MULTI-META-SET can be evaluated by first discarding all

the input sequences that have more than one counting projection. Then, one parti-

tions the remaining sequences according to their subsequences of receive operations

and to the lengths of their subsequences of send operations. Indeed, the operations

studied in this section require multisequences to be receive-deterministic and send-

synchronized. The last step is to create a multisequence for each set of sequences

belonging to the partition. The set of memory functions returned by MULTI-META-

SET then contains the closures of those multisequences. An algorithm implementing

this construction is given in Figure 7.34.

7.5 Creation of Other Meta-Transitions

In this section, we show that the results presented in Sections 7.2, 7.3 and 7.4

can easily be adapted to lossy systems , which are systems whose FIFO queues are

unreliable and can non-deterministically lose messages [AJ93, AJ94, CFI96]. This
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function APPLY-MULTI-STAR(QDD (Σ, S, ∆, I, F ), multisequence of queue operations σ̄,

alphabets Σ1, Σ2, . . . , Σn) : QDD

1: var A : array[0, 1, . . .] of QDDs;

2: A0,A′ : QDDs;

3: i, b, p : integers;

4: f : function;

5: begin

6: i := 1;

7: while i ≤ n do

8: if (|Σi| > 1 ∧ |(σ̄|i!)| > 0) ∨ (|Σi| = 1 ∧ |(σ̄|i!)| > |(σ̄|i?)|) then

goto break

9: else i := i + 1;

10: break:

11: f := Σ∗
1 · Σ

∗
2 · · ·Σ

∗
n → Σ∗

1 · Σ
∗
2 · · ·Σ

∗
n : w 7→ w|6=i;

12: j := 0;

13: A′ := A0 := (Σ, S, ∆, I, F );

14: A[0] := APPLY-HOMOMORPHISM(A′, f);

15: repeat

16: j := j + 1;

17: A′ := APPLY-MULTI(A′, σ̄, Σ1, Σ2, . . . , Σn);

18: A[j] := APPLY-HOMOMORPHISM(A′, f)

19: until there exists b such that 0 ≤ b < j ∧ L(A[j]) = L(A[b]);

20: if i > n then return
⋃

0≤k<j

A[k];

21: p := j − b;

22: A′ := PERFORM-FUNCTION(A′, APPLY-N-MULTI-STAR-ONE, i,

σ̄|i, p);

23: return
⋃

0≤k<b

APPLY-N-MULTI(A0, σ̄, Σ1, Σ2, . . . , Σn, k)

∪
⋃

0≤k<p

APPLY-N-MULTI(A′, σ, Σ1, Σ2, . . . , Σn, k)

24: end.

Figure 7.33: Image of a QDD by the closure of a multisequence of queue operations

whose projections are send-synchronized.
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function MULTI-META-SET(set of sequences of queue operations S,

alphabets Σ1, Σ2, . . . , Σn) : set of functions;

1: var S′, S′′ sets of sequences of queue operations;

2: T : set of functions;

3: σ̄ : multisequence of queue operations;

4: begin

5: T := ∅;

6: S := S \ {σ ∈ S | (∃i, j ∈ {1, . . . , n})(i 6= j ∧

((|Σi| = 1 ∧ |(σ|i!)| > |(σ|i?)|) ∨ (|Σi| > 1 ∧ |(σ|i!)| > 0))∧

((|Σj | = 1 ∧ |(σ|j !)| > |(σ|j?)|) ∨ (|Σj | > 1 ∧ |(σ|j !)| > 0)))};

7: for each (l1, . . . , ln) ∈ Nn such that

{σ ∈ S | (∀i ∈ {1, . . . , n})(|(σ|i)| = li)} 6= ∅ do

8: begin

9: S′ := {σ ∈ S | (∀i ∈ {1, . . . , n})(|(σ|i)| = li)};

10: for each (w1, . . . , wn) ∈ Σ∗
1 × · · · × Σ∗

n such that

{σ ∈ S′ | (∀i ∈ {1, . . . , n})(σ|i? = qi?wi)} 6= ∅ do

11: begin

12: σ̄ := {σ ∈ S′ | (∀i ∈ {1, . . . , n})(σ|i? = qi?wi)};

13: T := T ∪ {σ̄∗}

14: end

15: end;

16: return T

17: end.

Figure 7.34: Creation of multicycle meta-transitions.
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adaptation simply consists of adding a new type of meta-transition. The definition

of a lossy system is based on the following notion.

Definition 7.43 Let Σ be a finite alphabet. The word u ∈ Σ∗ is a subword of the

word v ∈ Σ∗, which is denoted u � v, if there exist m ∈ N0 and u1, u2, . . . , um, w0,

w1, . . . , wm ∈ Σ∗ such that u = u1 · u2 · · ·um and v = w0 · u1 ·w1 · u2 ·w2 · · ·um ·wm.

We are now ready to define lossy systems.

Definition 7.44 A Lossy QSMA (LQSMA) is an ESMA (C, c0,M,m0,Op, T, T̄ )

such that

• Its memory domain M is of the form Σ∗
1 × Σ∗

2 × · · · × Σ∗
n, where n ≥ 0 is

the number of queues of the LQSMA, and each Σi (1 ≤ i ≤ n) is the queue

alphabet of the i-th queue qi of the LQSMA;

• Its set of memory operations Op contains only send and receive operations.

Formally, we have

Op = {qi!u | 1 ≤ i ≤ n ∧ u ∈ Σ∗
i } ∪ {qi?u | 1 ≤ i ≤ n ∧ u ∈ Σ∗

i }.

• Its set of meta-transitions T̄ contains for every control location c ∈ C a meta-

transition (c, fl, c), where fl is the function

fl : 2M → 2M : U 7→ {(u1, . . . , un) | (∃(v1, . . . , vn) ∈ U)

(u1 � v1 ∧ · · · ∧ un � vn)},

with M = Σ∗
1 × · · · × Σ∗

n. Intuitively, those meta-transitions are introduced in

order to model the losses that can occur in each control location.

Transforming a non-lossy system into a lossy one can thus be done by simply

adding at each control location c ∈ C a meta-transition (c, fl, c). In order to be able

to compute the image of a set of states by such a meta-transition, it is therefore

necessary to dispose of an algorithm for applying the function fl to a set of queue-set

contents represented as a QDD. Such an algorithm is easily obtained by remarking

that the effect of fl is to choose non-deterministically between removing or keeping

unchanged each symbol composing queue contents, this choice being allowed to differ

between symbols. A QDD representing the set fl(U) can be computed from a QDD

representing a set of queue-set contents U ⊆ M by bypassing each transition of

the QDD by an additional transition labeled by the empty word. An algorithm

formalizing this construction is given in Figure 7.35.

Theorem 7.45 Let q1, q2, . . . , qn be queues of respective alphabets Σ1,Σ2, . . . ,Σn

and A be a QDD representing the set U ⊆ Σ∗
1 × Σ∗

2 × · · · × Σ∗
n. APPLY-LOSS(A)

is a QDD representing the set fl(U).

Proof Immediate. 2
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function APPLY-LOSS(QDD (Σ, S, ∆, I, F )) : QDD

1: begin

2: (Σ, S, ∆, I, F ) := NORMALIZE((Σ, S, ∆, I, F ));

3: ∆ := ∆ ∪ {(s, ε, s′) ∈ S × {ε} × S | (∃(s1, w, s2) ∈ ∆)(s1 = s ∧ s2 = s′)};

4: return (Σ, S, ∆, I, F )

5: end.

Figure 7.35: Image of a QDD by the memory function modeling loss.

7.6 Model Checking with Cycle Meta-Transitions

This section is aimed at providing an algorithm for applying to sequences of queue

operations the function ITERABLE required by the algorithms introduced in Chap-

ter 4. In the present context, the purpose of ITERABLE is to determine, given a

sequence σ of queue operations, a representation of the set of all the queue-set con-

tents to which σ can be applied infinitely many times. A similar problem, consisting

of deciding whether a sequence can be repeatedly applied an infinite number of times

to a given queue-set content, is addressed in [JJ93, FM96]. We consider successively

the cases of systems with one and then with an arbitrary number of queues.

7.6.1 Systems with One Queue

Let q be a queue of alphabet Σ, and let σ be a sequence of elementary queue

operations on q. We first assume that σ is of the form σ = (σ?; σ!), i.e., that the

sequence begins with all its receive operations.

If there exists a queue content u ∈ Σ∗ to which σ can be applied infinitely

many times, then σ is such that |σ!| ≥ |σ?| (otherwise, the length of the queue

content would decrease at each application of σ). Therefore, if |σ!| < |σ?|, then

ITERABLE(σ) = ∅.

If σ is such that σ = σ!, then we have ITERABLE(σ) = Σ∗. It thus remains to

study the case for which |σ!| ≥ |σ?|.

Assume that |σ!| ≥ |σ?|, and let u ∈ Σ∗ be a queue content to which σ can be

applied infinitely many times. We consider the greatest integer k ≥ 0 such that

µ(σ?)
k ∈ pre(u). The word u is thus of the form u = µ(σ?)

k · u′, with u′ ∈ Σ∗ and

µ(σ?) 6∈ pre(u′). Applying k times σ to u, we obtain the word u2 = σk(u) = u′·µ(σ!)
k.

By hypothesis, σ can be applied one more time to u2, which implies that we have

u′ ∈ pre(µ(σ?)) \ {µ(σ?)}.

Let g = gcd(|σ!|, |σ?|). By hypothesis, σ can be applied an arbitrary number of
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times to u2. We choose to apply it exactly l = |σ!|/g times. We thus have

µ(σ?)
l ∈ pre(u2 · µ(σ!)

l),

which implies

µ(σ?)
l ∈ pre(u′ · µ(σ!)

l).

Reasoning on the lengths of the words, we obtain u′ · µ(σ!)
l′ = µ(σ?)

l · u′, with

l′ = |σ?|/g.

Reciprocally, if w ∈ Σ∗ is such that there exists u′ ∈ pre(µ(σ?)) \ {µ(σ?)} such

that

• w ∈ (µ(σ?))
+ · u′, and

• u′ · µ(σ!)
l′ = µ(σ?)

l · u′ for l = |σ!|/gcd(|σ!|, |σ?|) and l′ = |σ?|/gcd(|σ!|, |σ?|),

then σ can be applied infinitely many times to w. It follows that we have

ITERABLE(σ) = (µ(σ?))
+ · U,

where U = {u′ ∈ pre(µ(σ?)) | u
′ 6= µ(σ?) ∧ u′ · µ(σ!)

l′ = µ(σ?)
l · u′}.

The problem is thus fully solved when σ = (σ?; σ!). Let us now generalize our

solution to arbitrary sequences of operations involving q.

Let σ be such a sequence. An interesting property is that σ can always be

applied to a queue content w ∈ Σ∗ to which the sequence (σ?; σ!) can be applied. As

a consequence, the set ITERABLE(σ) is a superset of the set ITERABLE((σ?; σ!)).

Computing the former set can thus be reduced to computing the set of all the queue

contents to which σ can be applied infinitely many times and to which (σ?; σ!)

cannot.

Let w be such a word. Its existence implies |σ!| ≥ |σ?|. The sequences σ and

(σ?; σ!) are indistinguishable when applied to words whose length is greater or equal

to |σ?|. This yields |w| < |σ?|. Since, by hypothesis, σ can be applied to w, we have

w ∈ pre(µ(σ?)) \ {µ(σ?)}.

Reciprocally, if w ∈ pre(µ(σ?)) \ {µ(σ?)}, then there are two possible situations:

• If |σ!| = |σ?|. Then, σ can be applied infinitely many times to w if and only if

σ(w) = w;

• If |σ!| > |σ?|. Then, σ can be applied infinitely many times to w if and only if

after applying σ a sufficiently large number of times k to w (the exact condition

being |σk(w)| ≥ |σ?|), one obtains a queue content σk(w) that belongs to

ITERABLE((σ?; σ!)).

An algorithm4 formalizing the computation developed in this section is given in

Figure 7.36.

4In this algorithm, QDDs representing simple languages are denoted by the corresponding

regular expressions.
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function ITERABLE-ONE(sequence of queue operations σ, alphabet Σ) : QDD

1: var g, k, l, l′ : integers;

2: U : set of words;

3: A,A′ : QDDs;

4: begin

5: if |σ!| < |σ?| then return ∅;

6: if |σ?| = 0 then return Σ∗;

7: if σ = (σ?; σ!) then

8: begin

9: g := gcd(|σ?|, |σ!|);

10: l := |σ!|/g;

11: l′ := |σ?|/g;

12: U := {u ∈ pre(µ(σ?)) | u 6= µ(σ?) ∧ u · µ(σ!)
l′ = µ(σ?)

l · u};

13: return
⋃

u∈U

(µ(σ?))
+ · u

14: end

15: else

16: begin

17: A := A′ := ITERABLE-ONE((σ?; σ!), Σ);

18: for each u ∈ pre(µ(σ?)) \ {µ(σ?)} do

19: begin

20: if |σ!| = |σ?| ∧ σ(u) = u then

21: A′ := UNION(A′, u);

22: if |σ!| > |σ?| then

23: begin

24: k = ⌈(|σ?| − |u|)/(|σ!| − |σ?|)⌉;

25: if INCLUDED?(APPLY-ONE(σk, u),A)

26: then A′ := UNION(A′, u)

27: end

28: end

29: end;

30: return A′

31: end.

Figure 7.36: Set of queue contents to which a sequence can be applied infinitely

many times (one queue).



7.6. MODEL CHECKING WITH CYCLE META-TRANSITIONS 183

function ITERABLE(sequence of queue operations σ, alphabets Σ1, Σ2, . . . , Σn) : QDD

1: var i : integer;

2: A : QDD;

3: begin

4: A := ε;

5: for i := 1 to n do

6: A := CONCATENATE(A, ITERABLE-ONE(σ|i, Σi));

7: return A

8: end.

Figure 7.37: Set of queue-set contents to which a sequence can be applied infinitely

many times (any number of queues).

Theorem 7.46 Let q be a queue of alphabet Σ, and σ be a sequence of operations

involving q. ITERABLE-ONE(σ,Σ) is a QDD representing the set of all the queue

contents w ∈ Σ∗ such that σ can be applied infinitely many times to w.

Proof The algorithm of Figure 7.36 is a direct implementation of the computation

method described in this section. 2

7.6.2 Systems with Any Number of Queues

The results of Section 7.6.1 can be straightforwardly generalized to sequences of

operations involving more than one queue. Indeed, the sequence σ involving the

queues q1, q2, . . . qn can be applied infinitely many times to a queue-set content

(w1, w2, . . . , wn) if and only if for every i ∈ {1, 2, . . . , n}, the sequence σ|i can be

applied infinitely many times to the queue content wi. The set of queue-set contents

to which σ can be applied infinitely many times is thus the Cartesian product of

the sets of contents of each queue to which the corresponding projection of σ can

be applied infinitely many times. An algorithm formalizing this method is given in

Figure 7.37.

Theorem 7.47 Let q1, q2, . . . , qn be queues of respective alphabets Σ1,Σ2, . . . ,Σn,

and σ be a sequence of operations involving those queues. ITERABLE(σ,Σ1,Σ2, . . . ,

Σn) is a QDD representing the set of all the queue-set contents u ∈ Σ∗
1 × · · · × Σ∗

n

such that σ can be applied infinitely many times to u.

Proof Immediate. 2
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7.7 Model Checking with Multicycle Meta-Tran-

sitions

The computation of ITERABLE by the method exposed in Sections 7.6.1 and 7.6.2

can be generalized to send-synchronized multisequences of queue operations. The

basic idea consists of replacing each reference to the send operations composing a

sequence by a non-deterministic choice between the sequences of send operations

composing the multisequence of interest.

7.7.1 Systems with One Queue

Let q be a queue of alphabet Σ, and let σ̄ = {σ1, σ2, . . . , σm} (m ≥ 0) be a send-

synchronized multisequence of elementary queue operations on q. We first assume

that each component σi of σ̄ is of the form σi = (σi?; σi!).

For the same reasons as in Section 7.6.1, if |σ̄!| < |σ̄?|, then ITERABLE(σ̄) = ∅.

Moreover, if |σ̄?| = 0, then ITERABLE(σ̄) = Σ∗.

Assume that |σ̄!| ≥ |σ̄?|, and let u ∈ Σ∗ be a queue content to which σ̄ can be

applied infinitely many times. We consider the greatest integer k ∈ N such that

µ(σ̄?)
k ∈ pre(u). The word u is thus of the form u = µ(σ̄?)

k · u′, with u′ ∈ Σ∗

and µ(σ̄?) 6∈ pre(u′). Applying k times σ̄ to u, we obtain the word u2 = σ̄k(u) =

u′ ·w1 ·w2 · · ·wk, where w1, . . . , wk ∈ {v ∈ µ(σi!) | 1 ≤ i ≤ m}. By hypothesis, σ̄ can

be applied one more time to u2, which implies that we have u′ ∈ pre(µ(σ̄?))\{µ(σ̄?)}.

Let g = gcd(|σ̄!|, |σ̄?|). Applying σ̄ exactly l = |σ̄!|/g times to u2 and reasoning

on the lengths of the words, we obtain u′ ·w1 ·w2 · · ·wl′ = µ(σ̄?)
l ·u′, with l′ = |σ̄?|/g

and w1, . . . , wl′ ∈ {v ∈ µ(σi!) | 1 ≤ i ≤ m}.

Reciprocally, if w ∈ Σ∗ is such that there exist u′ ∈ pre(µ(σ̄?)) \ {µ(σ̄?)} and

w1, w2, . . . , wl′ ∈ {v ∈ µ(σi!) | 1 ≤ i ≤ m}, where l′ = |σ̄?|/gcd(|σ̄!|, |σ̄?|), such that

• w ∈ (µ(σ̄?))
+ · u′, and

• u′ · w1 · w2 · · ·wl′ = µ(σ̄?)
l · u′ for l = |σ̄!|/gcd(|σ̄!|, |σ̄?|),

then σ̄ can be applied infinitely many times to w.

It follows that we have

ITERABLE(σ̄) = (µ(σ̄?))
+ · U,

where U = {u′ ∈ pre(µ(σ̄?)) | (∃w1, . . . , wl′ ∈ {v ∈ µ(σi!) | 1 ≤ i ≤ m})(u′ 6=

µ(σ̄?) ∧ u′ · w1 · w2 · · ·wl′ = µ(σ̄?)
l · u′}.

Like in Section 7.6.1, computing the value of ITERABLE for an arbitrary mul-

tisequence σ̄ of queue operations can be reduced to computing the set of all the

queue contents to which σ̄ can be applied infinitely many times and to which

{(σ1?; σ1!), (σ2?; σ2!), . . . , (σm?; σm!)} cannot.
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Let w be such a queue content. Its existence implies |σ!| ≥ |σ̄?| and |w| < |σ̄?|.

Since, by hypothesis, σ̄ can be applied to w, we deduce w ∈ pre(µ(σ̄?)) \ {µ(σ̄?)}.

Reciprocally, if w ∈ pre(µ(σ̄?)) \ {µ(σ̄?)}, then there are two possible situations:

• If |σ̄!| = |σ̄?|. Then, σ̄ can be applied infinitely many times to w if and only if

w ∈ σ̄(w);

• If |σ̄!| > |σ̄?|. Then, σ̄ can be applied infinitely many times to w if and only if

after applying σ̄ a sufficiently large number of times k to w (the exact condition

being |σ̄k(w)| ≥ |σ̄?|), one obtains a set of queue contents σ̄k(w) that contains

at least one element of ITERABLE({(σ1?; σ1!), (σ2?; σ2!), . . . , (σm?; σm!)}).

An algorithm formalizing the computation developed in this section is given in

Figures 7.38 and 7.39.

Theorem 7.48 Let q be a queue of alphabet Σ, and σ̄ be a send-synchronized multi-

sequence of operations involving q. MULTI-ITERABLE-ONE(σ̄,Σ) is a QDD repre-

senting the set of all the queue contents w ∈ Σ∗ such that σ̄ can be applied infinitely

many times to w.

Proof The algorithm of Figures 7.38 and 7.39 is a direct implementation of the

computation method described in this section. 2

7.7.2 Systems with Any Number of Queues

For multisequences involving more than one queue, the situation is similar to the

one of Section 7.6.2. The multisequence σ̄ involving the queues q1, q2, . . . qn can be

applied infinitely many times to a queue-set content (w1, w2, . . . , wn) if and only if for

every i ∈ {1, 2, . . . , n}, the multisequence σ̄|i can be applied infinitely many times to

the queue content wi. An algorithm computing a representation of the set of queue-

set contents to which a multisequence σ̄ whose components are send-synchronized

can be applied infinitely many times is given in Figure 7.40. Its correctness is

expressed by the following theorem.

Theorem 7.49 Let q1, q2, . . . , qn be queues of respective alphabets Σ1,Σ2, . . . ,Σn

and σ̄ = {σ1, σ2, . . . , σm} (m ≥ 0) be a multisequence of operations involving those

queues, such that for every i ∈ {1, 2, . . . , m}, the sequence σ|i is send-synchronized.

MULTI-ITERABLE(σ̄,Σ1,Σ2, . . . ,Σn) returns a QDD representing the set of all the

queue-set contents u ∈ Σ∗
1×· · ·×Σ∗

n such that σ̄ can be applied infinitely many times

to u.

Proof Immediate. 2
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function MULTI-ITERABLE-ONE( multisequence of queue operations σ̄ = {σ1, . . . , σm},

alphabet Σ) : QDD

1: var g, k, l, l′ : integers;

2: U : set of words;

3: A,A′ : QDDs;

4: begin

5: if |σ̄!| < |σ̄?| then return ∅;

6: if |σ̄?| = 0 then return Σ∗;

7: if (∀i ∈ {1, . . . , m})(σi = (σi?; σi!)) then

8: begin

9: g := gcd(|σ̄?|, |σ̄!|);

10: l := |σ̄!|/g;

11: l′ := |σ̄?|/g;

12: U := {u ∈ pre(µ(σ̄?)) | (∃w1, . . . wl′ ∈ {v ∈ µ(σi!) | 1 ≤ i ≤ m})

(u 6= µ(σ̄?) ∧ u · w1 · · ·wl′ = µ(σ̄?)
l · u)};

13: return
⋃

u∈U

(µ(σ̄?))
+ · u

14: end

15: else

16: begin

17: A := A′ := MULTI-ITERABLE-ONE({(σ1?; σ1!), (σ2?; σ2!),

. . . , (σm?; σm!)}, Σ);

18: for each u ∈ pre(µ(σ̄?)) \ {µ(σ̄?)} do

19: begin

20: if |σ̄!| = |σ̄?| ∧ u ∈ σ̄(u) then

21: A′ := UNION(A′, u);

(. . . )

Figure 7.38: Set of queue contents to which a send-synchronized multisequence can

be applied infinitely many times (one queue).
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(. . . )

22: if |σ̄!| > |σ̄?| then

23: begin

24: k = ⌈(|σ̄?| − |u|)/(|σ̄!| − |σ̄?|)⌉;

25: if ¬(EMPTY?(INTERSECTION(

APPLY-N-ONE(σ̄, u, k),A))) then

26: A′ := UNION(A′, u)

27: end

28: end

29: end;

30: return A′

31: end.

Figure 7.39: Set of queue contents to which a send-synchronized multisequence can

be applied infinitely many times (one queue, continued).

function MULTI-ITERABLE( multisequence of queue operations σ̄,

alphabets Σ1, Σ2, . . . , Σn) : QDD

1: var i : integer;

2: A : QDD;

3: begin

4: A := ε;

5: for i := 1 to n do

6: A := CONCATENATE(A, MULTI-ITERABLE-ONE(σ̄|i, Σi));

7: return A

8: end.

Figure 7.40: Set of queue-set contents to which a multisequence can be applied

infinitely many times (any number of queues).
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7.8 Termination

The goal of this section is to give algorithms for computing over QSMAs the truth

value of the predicates required by Sections 5.1 to 5.5. Specifically, we implement

the predicates FINITE?, whose purpose is to decide the finiteness of a set of queue-

set contents represented as a QDD, and PRECEDES?, which checks whether two

sequences σ1 and σ2 of queue operations are such that σ1 ⊳ σ2. We address each

problem separately.

7.8.1 Finiteness of Sets of Queue-Set Contents

Deciding the finiteness of a set of queue-set contents represented as a QDD is easy.

Since the sequential encoding of queue-set contents is one-to-one, i.e., since it asso-

ciates exactly one encoding to each queue-set content, this can be done by testing

whether the language accepted by the QDD is infinite. A simple way of performing

this test is to use a variant of the depth-first search algorithm of Figure 3.6 used

for detecting simple cycles in the control graph of SMAs. The adapted algorithm is

given in Figure 7.41.

Theorem 7.50 Let q1, q2, . . . , qn (n ≥ 0) be queues of respective alphabets Σ1,Σ2,

. . . ,Σn, and A be a QDD representing the set U ⊆ Σ∗
1 × Σ∗

2 × · · · × Σ∗
n. We have

FINITE?(A) = T if and only if U is finite.

Proof A finite-state automaton accepts an infinite language if and only if there

exists in its transition graph at least one simple cycle C such that:

• The body of C is not labeled by the empty word;

• The states visited by C are reachable from at least one initial state of the

automaton;

• There exists at least one accepting state of the automaton that is reachable

from the states visited by C.

The goal of Lines 26–28 is to compute the set S of all the reachable states of A. This

is done by a depth-first search algorithm analogous to the one in Figure 3.2. Then,

at Lines 29–30, a search for a simple cycle satisfying the abovementioned conditions

is carried out. This search is a simple variant of the algorithm in Figure 3.6. 2

7.8.2 Precedence Relation

Let q1, q2, . . . , qn (n ≥ 0) be queues of respective alphabets Σ1,Σ2, . . . , Σn. The

problem addressed here consists of deciding whether two sequences of queue op-

erations σ1 and σ2 involving those queues are such that σ1 ⊳ σ2, i.e., whether

(σ2; σ1)(U) ⊆ (σ1; σ2)(U) for every set of queue-set contents U ⊆ Σ∗
1 × · · · × Σ∗

n.
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function FINITE?(automaton (Σ, S, ∆, I, F )) : {T,F}

1: var node : array[0, 1, . . .] of states;

2: edge : array[0, 1, . . .] of words;

3: S′ : set of states;

4: s : state;

5: procedure explore-fw(state s)

6: begin

7: S′ := S′ ∪ {s};

8: for each (s′, w, s′′) ∈ ∆ such that s′ = s do

9: if s′′ 6∈ S′ then explore-fw(s′′)

10: end;

11: procedure explore-bw(state s, integer depth)

12: begin

13: node[depth] := s;

14: for each (s′′, w, s′) ∈ ∆ such that s′ = s ∧ s′′ ∈ S′ do

15: begin

16: edge[depth] := w;

17: if (∃i, 0 ≤ i ≤ depth) such that node[i] = s′′ then

18: begin

19: if edge[i] · edge[i + 1] · · · edge[depth] 6= ε then

20: return F

21: end

22: else explore-bw(s′′, depth + 1)

23: end

24: end;

25: begin

26: S′ := ∅;

27: for each s ∈ I do

28: explore-fw(s);

29: for each s ∈ F do

30: explore-bw(s, 0);

31: return T

32: end.

Figure 7.41: Test of finiteness of the language accepted by an automaton.
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An noteworthy property is that two queue operations that are adjacent within a

sequence and that involve different queues can be permuted. In other words, if the

sets of queues involved in two sequences of queue operations σ and σ′ are disjoint,

then (σ; σ′)(U) = (σ′; σ)(U) for every set of queue-set contents U ⊆ Σ∗
1 × · · · × Σ∗

n.

It follows that we have σ1 ⊳ σ2 if and only if (σ1|i) ⊳ (σ2|i) for every i ∈ {1, 2, . . . , n}.

We can therefore reduce the problem and assume that σ1 and σ2 contain only

operations involving a single queue q of alphabet Σ.

If σ1 and σ2 are such that σ1 ⊳σ2, then we have µ(σ1?; σ2?) = µ(σ2?; σ1?). Indeed,

choosing U = {µ(σ2?; σ1?)}, we have

(σ2; σ1)(U) ⊆ (σ1; σ2)(U)

{µ(σ2!; σ1!)} ⊆ (σ1; σ2)({µ(σ2?; σ1?)}),

which implies the result since the right-hand side must be nonempty. Furthermore,

developing the previous equation yields

µ(σ1!; σ2!) = µ(σ2!; σ1!).

Hence, if σ1 and σ2 are such that µ(σ1?; σ2?) 6= µ(σ2?; σ1?) or such that µ(σ1!; σ2!)

6= µ(σ2!; σ1!), then we have σ1 6⊳ σ2.

Assume now that σ1 and σ2 are such that µ(σ1?; σ2?) = µ(σ2?; σ1?) and µ(σ1!; σ2!)

= µ(σ2!; σ1!). For every queue content w ∈ Σ∗, if (σ1; σ2)({w}) and (σ2; σ1)({w})

are both nonempty, then there must be equal to each other. Indeed, both of them

then contain the word obtained by removing the first |σ1?|+ |σ2?| symbols from the

word w · µ(σ1!; σ2!).

As a consequence, it is sufficient to check whether there exist words w such

that (σ2; σ1)({w}) is nonempty and (σ1; σ2)({w}) is empty. The only words that are

worth checking are those of length less than |σ2?; σ1?| (otherwise (σ2; σ1)({w}) would

be identical to (σ1; σ2)({w})) and that belong to the set of prefixes of µ((σ2?; σ1?))

(otherwise, (σ2; σ1)({w}) would be empty). Since there are finitely many such words,

a simple solution consists of testing them one by one.

An algorithm formalizing this construction is given in Figure 7.42. Its correctness

is established by the following theorem.

Theorem 7.51 Let q1, q2, . . . , qn be queues of respective alphabets Σ1,Σ2, . . . ,Σn,

and let σ1, σ2 be two sequences of operations involving those queues. We have PRE-

CEDES? (σ1, σ2,Σ1,Σ2, . . . ,Σn) = T if and only if σ1 ⊳ σ2.

Proof The algorithm directly implements the decision procedure developed in this

section. 2
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function PRECEDES?( sequences of queue operations σ1, σ2,

alphabets Σ1, Σ2, . . . , Σn) : {T,F}

1: var σ, σ′ : sequences of queue operations;

2: i : integer;

3: w : word;

4: begin

5: for i := 1 to n do

6: begin

7: σ := (σ1; σ2)|i;

8: σ′ := (σ2; σ1)|i;

9: if σ! 6= σ′
! ∨ σ? 6= σ′

? then

10: return F;

11: for each w ∈ pre(µ(σ′
?)) such that w 6= µ(σ′

?) do

12: if ¬INCLUDED?(APPLY(w, σ′, Σ1, Σ2, . . . , Σn),

APPLY(w, σ, Σ1, Σ2, . . . , Σn)) then

13: return F

14: end;

15: return T

16: end.

Figure 7.42: Precedence test for sequences of queue operations.



192 CHAPTER 7. SYSTEMS USING FIFO CHANNELS

7.9 Loop Optimization

Regrettably, loop optimization cannot be applied to systems using FIFO queues

on which only send and receive operations are performed. The main reason is the

relative lack of expressiveness of send and receive operations. Indeed, even though

it has been shown that QSMAs are Turing-expressive, it is impossible in general to

simulate the effect of a loop with a single sequence of send and receive operations.

Let us illustrate this phenomenon in the case of a system with only one queue q

whose alphabet is Σ. Let σ be a nonempty sequence of queue operations labeling

a cycle, and θ be an elementary queue operation labeling the exit transition from

this cycle. Assume that there exists a sequence σ′ of queue operations such that

for every queue content w ∈ Σ∗, (σ+; θ)({w}) = σ′({w}) 6= ∅. The existence of σ′

implies |σ?| > 0 (indeed, if σ = σ!, then (σ+; θ)({w}) contains more than one element

and is thus different from σ′({w})). Let us add the prefix µ(σ?) to w. We obtain

(σ+; θ)(µ(σ?) · w) = σ′(w) · µ(σ!) which is, in general, different from σ′(µ(σ?) · w).

This proves that σ′ cannot be made equivalent to (σ+; θ). As a consequence, we

have EXISTS-LOOP-EQUIV? ≡ F for the systems studied in this chapter.



Chapter 8

Systems Using Integer Variables

In this chapter, we particularize the results of Chapters 3–6 to a specific class of

infinite-state systems: those whose memory is composed of a finite number of un-

bounded integer variables on which linear operations are performed. Such systems

form a very flexible model for reasoning about computer programs and hardware

circuits. A particular subset of those systems, the Petri net [Pet81, Rei85], is ex-

tensively used for modeling various types of hardware and software systems. Like in

the case of the FIFO channels studied in Chapter 7, considering unbounded rather

than bounded integer variables provides a useful abstraction that allows to reason

about systems without being influenced by their implementation details or physical

limitations.

The structure of this chapter is similar to the one of Chapter 7. First, we intro-

duce systems using unbounded integer variables and define their syntax, semantics,

and elementary memory operations. Then, we show that such systems are Turing-

expressive, and propose an encoding scheme which leads to a powerful finite-state

representation system for sets of integer-vector values, the Number Decision Diagram

(NDD). Finally, we give algorithms implementing with NDDs all the predicates and

functions required by Chapters 3 to 6. In particular, we will present an original

decision procedure for determining whether the closure of a linear transformation

preserves the representability by NDDs of sets of memory contents.

8.1 Basic Notions

8.1.1 Integer SMAs

Let n ∈ N be a finite dimension. An integer vector (or simply vector) of dimension

n is an object whose value is an element of Zn. We define one elementary operation

over integer vectors, the linear operation, which consists of applying a linear trans-

formation to the value of the vector, provided that this value satisfies a condition

193
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expressed as a system of linear inequations. Formally, a linear operation is charac-

terized by an integer m ∈ N, two matrices A ∈ Zn×n and P ∈ Zm×n, two vectors
~b ∈ Zn and ~q ∈ Zm, and is denoted P~x ≤ ~q → ~x := A~x+~b. Its semantics is defined

by the function

(P~x ≤ ~q → ~x := A~x+~b) : Zn → Zn : ~v 7→ A~v +~b if P~v ≤ ~q.

Let θ = (P~x ≤ ~q → ~x := A~x +~b) be a linear operation. The system of linear

inequations P~x ≤ ~q, which expresses the condition that must be satisfied by the

vector values in order to perform the operation, is called the guard of θ. If that

system is trivial, i.e., if it is satisfied by every vector value in Zn, then θ is said

to be guardless and the trivial guard can be omitted in the expression of θ. The

assignment ~x := A~x + ~b that characterizes the modification undergone by vector

values is called the transformation of θ. If this transformation is trivial, i.e., if A is

an identity matrix and if ~b = ~0, then it can be omitted in the expression of θ. The

matrix A and the vector ~b are respectively called the transformation matrix and the

transformation offset of θ.

The domain of linear operations is extended to sets of vector values in the usual

way, i.e., we define

(P~x ≤ ~q → ~x := A~x+~b) : 2Z
n

→ 2Z
n

: U 7→ {A~v +~b | ~v ∈ U ∧ P~v ≤ ~q}.

We are now ready to define the class of SMAs that will be studied in this chapter.

Definition 8.1 An Integer SMA (ISMA) is an SMA (C, c0,M,m0,Op, T ) such that

• Its memory domain M is equal to Zn, where n ≥ 0 is the dimension of the

ISMA. This is equivalent to saying that the SMA has n integer variables. Each

memory content ~v = (v1, v2, . . . , vn) is a vector value. Each component vi ∈ Z

(with i ∈ {1, 2, . . . , n}) of this vector value can be seen as the value of the i-th

variable xi of the ISMA;

• Its set of memory operations Op contains only linear operations. Formally, we

have

Op = {(P~x ≤ ~q → ~x := A~x+~b) |

(∃m ∈ N)(A ∈ Zn×n ∧ ~b ∈ Zn ∧ P ∈ Zm×n ∧ ~q ∈ Zm)}.

The notion of Extended ISMA (EISMA) is defined similarly.

Definition 8.2 An Extended ISMA (EISMA) is an ESMA (C, c0,M,m0,Op, T, T̄ )

such that its underlying SMA (C, c0,M,m0,Op, T ) is an ISMA.
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An interesting property of linear operations is that they are closed under the

sequential composition, i.e., that every finite sequence of linear operations is always

equivalent to a single linear operation. Indeed, if we have

θ1 = (P1~x ≤ ~q1 → ~x := A1~x+~b1)

and

θ2 = (P2~x ≤ ~q2 → ~x := A2~x+~b2),

with m1, m2 ∈ N, A1, A2 ∈ Zn×n, ~b1,~b2 ∈ Zn, P1 ∈ Zm1×n, P2 ∈ Zm2×n, ~q1 ∈ Zm1

and ~q2 ∈ Zm2 , then we have

(θ1; θ2) = (P~x ≤ ~q → ~x := A~x+~b),

where

P ∈ Z(m1+m2)×n =

[

P1

P2A1

]

,

~q ∈ Z(m1+m2) =

[

~q1
~q2 − P2

~b1

]

,

A ∈ Zn×n = A2A1,

and
~b ∈ Zn = A2

~b1 +~b2.

8.1.2 Turing Expressiveness

It is well known that state machines using at least two unbounded integer variables

can simulate arbitrary Turing machines. This result is expressed by the following

theorem.

Theorem 8.3 Let n ≥ 2 be a dimension. The class of all the ISMAs that have the

memory domain Zn is Turing-expressive.

Proof According to [HU79], it is sufficient to prove that ISMAs having at least two

variables can simulate arbitrary two-counter machines. This result is immediate,

since the values of the two counters can be directly represented by the values of

two dedicated variables x1 and x2, and the operations involving the counters can be

translated into linear operations involving x1 and x2:

• An increment operation on the counter i (with i ∈ {1, 2}) is simulated by the

linear operation ~x := A~x + ~b, where A ∈ Zn×n is an identity matrix, and
~b = (b1, b2, . . . , bn) ∈ Zn is such that bi = 1 and bj = 0 for every j 6= i;
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• A decrement operation on the counter i (with i ∈ {1, 2}) is simulated by the

linear operation P~x ≤ ~q → ~x := A~x + ~b, where P = [p1; p2; . . . ; pn] ∈ Z1×n

is such that pi = −1 and pj = 0 for every j 6= i, ~q ∈ Z1 is equal to (−1),

A ∈ Zn×n is an identity matrix, and ~b = (b1, b2, . . . , bn) ∈ Zn is such that

bi = −1 and bj = 0 for every j 6= i;

• A test operation on the counter i (with i ∈ {1, 2}) is simulated by the linear

operation P~x ≤ ~q, where P = [p1; p2; . . . ; pn] ∈ Z1×n is such that pi = 1 and

pj = 0 for every j 6= i, and ~q ∈ Z1 is equal to (0). The operation succeeds if

and only if the value of the counter is 0.

2

As it has been shown in Chapter 4, a consequence of this theorem is that the

emptiness problem is undecidable for ISMAs associated with a set of accepting

control locations if their dimension is at least equal to 2.

8.1.3 Number Decision Diagrams

The first step towards obtaining a representation system for sets of integer vector

values that is well suited for ISMAs is to define an encoding scheme for vector

values. The encoding scheme we propose for vectors is based on an encoding scheme

for integers, which consists of expressing an integer as a finite sequence of digits

belonging to a finite alphabet. Let us define precisely this encoding of integers.

Let r ∈ N, with r > 1, be a numeration basis (or simply basis). Any positive

integer z can be encoded as a finite word w = ap−1 · ap−2 · · ·a1 · a0 (p ≥ 0) of digits

belonging to {0, 1, . . . , r − 1}, such that z =
∑

0≤i<p air
i. The encoding of z is not

unique. Indeed, its length can be increased at will by adding an arbitrary number

of leading “0” digits. This encoding scheme is easily generalized to all the integers

in Z by requiring that the encoding of an integer z ∈ Z such that −rp−1 ≤ z < rp−1,

where p > 0, has at least p digits. If z < 0, then the encoding of z consists of the

last p digits of the encoding of rp+z (the number rp+z is called the r’s complement

of z). As a consequence, the first digit of the encoding of an integer will be equal

to 0 if the number is greater or equal to zero, and to r− 1 otherwise (this first digit

is called the sign digit). The fact that the word w ∈ {0, 1, . . . , r − 1}∗ encodes the

integer z ∈ Z in basis r is denoted w ∈ [z]r.

In order to represent a vector value, we encode each of its components with an

identical number of digits and we group together the digits that share the same po-

sition. Any element of Zn (n > 0) thus has an infinite number of possible encodings,

the shortest of which having the length required by the component with the highest

magnitude. Precisely, the encoding scheme is defined as follows.

Definition 8.4 Let n ≥ 0 be a dimension and r > 1 be a basis. The synchronous

encoding scheme ES(r) is the relation that associates to a vector of Zn the tuples
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composed of the same-length encodings in basis r of the components of this vector.

Formally, we have

ES(r) ⊆M × VS(r) = {((v1, . . . , vn), (w1, . . . , wn)) | |w1| = |w2| = · · · = |wn|

∧w1 ∈ [v1]r ∧ w2 ∈ [v2]r ∧ · · · ∧ wn ∈ [vn]r},

where M = Zn is the domain, and VS(r) =
⋃

k∈N

({0, r − 1} · {0, . . . , r − 1}k)n is the

set of valid encodings.

An encoding of an element of Zn can indifferently be viewed either as a tuple of

n words of identical length over the alphabet {0, 1, . . . , r − 1}, or as a single word

over the alphabet {0, 1, . . . , r − 1}n.

The synchronous encoding scheme satisfies the requirements of Definition 6.5.

Indeed, by definition, ES(r) is complete over M , and is complete and unambiguous

over VS(r). The corresponding decoding function DS(r) is given by the formula

DS(r) : 2VS(r) → 2M : L 7→ {(v1, . . . , vn) ∈M | (∃(w1, w2, . . . , wn) ∈ L)

(w1 ∈ [v1]r ∧ w2 ∈ [v2]r ∧ · · · ∧ wn ∈ [vn]r)}.

We are now ready to define the representation system for sets of vector values.

Definition 8.5 Let n ≥ 0 be a dimension and r > 1 be a basis. A Number Decision

Diagram (NDD) is a finite-state representation of a set U ⊆ Zn of vector values

based on the synchronous encoding scheme ES(r).

In other words, an NDD representing a set of vector values U ⊆ Zn is simply a

finite-state automaton accepting the synchronous encodings of the elements of U .

8.1.4 Representable Sets of Vector Values

Finite-state representations of sets of integer vector values have been studied for a

long time [BHMV94]. In [Büc60], Büchi gave the first characterization of recogniz-

able sets of vector values in terms of logic. A flaw was discovered in Büchi’s proof

by MacNaughton [Mac63], and a correct characterization was proposed in [Mac63]

and [Bru85]. Simplified proofs of this characterization can be found in [MP86]

and [Vil92]. Precisely, the characterization is expressed as the conjunction of a

necessary and of a sufficient conditions. The necessary condition is given by the

following theorem.

Theorem 8.6 Let n ≥ 0 be a dimension, r > 1 be a basis, and U ⊆ Zn be a

set of vector values. If U is recognizable with respect to the synchronous encoding

scheme ES(r), then U is definable in the first-order theory 〈Z,≤,+, Vr〉, where Vr is

a function defined as

Vr : Z → N : z 7→

{

the greatest power of r dividing z if z 6= 0,

1 if z = 0.
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Proof Our proof is inspired by the one proposed by Villemaire [Vil92]. Let A =

(Σ, S,∆, I, F ) be an NDD representing U . We assume that A is in strong normal

form. The idea of the proof is to give a method for constructing from A a formula

ψ of 〈Z,≤,+, Vr〉 denoting the set U .

The construction is as follows. By definition of NDDs, A has a finite number

of states. Therefore, there exists l ∈ N0 such that |S| < rl. It follows that each

state s ∈ S can be unambiguously identified by l digits d1(s), d2(s), . . . , dl(s) taken

in {0, 1, . . . , r − 1}. This assignment of unique tuples of digits to states can be

chosen arbitrarily provided that no state is associated with the tuple (0, 0, . . . , 0)

(the purpose of this restriction is to simplify future computations). A finite sequence

of states s0, s1, . . . , sm ∈ S (m ≥ 0) can then be identified by a tuple of words

(w1, w2, . . . , wl) ∈ ({0, 1, . . . , r − 1}m+1)l, such that

w1 = d1(sm) · d1(sm−1) · · ·d1(s1) · d1(s0),

w2 = d2(sm) · d2(sm−1) · · ·d2(s1) · d2(s0),
...

wl = dl(sm) · dl(sm−1) · · ·dl(s1) · dl(s0).

Since each wi (1 ≤ i ≤ l) is a word over the alphabet {0, 1, . . . , r − 1}, the word

wi prefixed by any nonzero number of “0” digits encodes a number zi ∈ N. It

follows that every finite sequence of states of A can be unambiguously identified by

a single vector value ~z ∈ Nl. The essence of the construction of ψ is to express in

〈Z,≤,+, Vr〉 the fact that ~z identifies an accepting path of A.

Precisely, the formula ψ : Zn → {T,F} denoting U can be expressed as

ψ(~v) ≡ (∃~z ∈ Zl)(~z ≥ ~0 ∧ ~z 6= ~0 ∧ ψ′(~z, ~v)),

where

ψ′ : Nl × Zn : (~z, ~v) 7→







T if z corresponds to a path of A that accepts a

synchronous encoding of ~v,

F otherwise.

It remains to define the predicate ψ′ in 〈Z,≤,+, Vr〉. We use the decomposition

ψ′(~z, ~v) ≡ ψ1(~z) ∧ ψ2(~z, ~v) ∧ ψ3(~z),

where

• ψ1(~z) = T if and only if ~z identifies a sequence of states of A beginning in an

initial state;

• ψ2(~z, ~v) = T if and only if there exists a path of A that visits the sequence of

states identified by ~z and that reads a synchronous encoding of ~v;
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• ψ3(~z) = T if and only if ~z identifies a sequence of states of A ending in an

accepting state.

In order to simplify the expressions of ψ1, ψ2 and ψ3, it is useful to introduce the

auxiliary predicate Xr : Z3 → {T,F}, such that Xr(z, u, k) = T if and only if u is

a power of r and the coefficient of this power of r in the development of z in basis

r is k. Formally, we have

Xr(z, u, k) ≡ Vr(u) = u ∧
∧

0≤i<r

(k = i ⇒ X i
r(z, u)),

where for each i ∈ {0, 1, . . . , r − 1},

X i
r(z, u) ≡ (∃z1, z2 ∈ Z)(0 ≤ z1 < u ∧ Vr(z2) > u ∧ z = z1 + iu+ z2)

∨ (∃z1 ∈ Z)(0 ≤ z1 < u ∧ z = z1 + iu).

We are now ready to give the expressions of ψ1, ψ2 and ψ3. We have

ψ1(z1, z2, . . . , zl) ≡
∨

s0∈I

(
∧

1≤i≤l

Xr(zi, 1, di(s0))),

ψ2(z1, z2, . . . , zl, v1, v2, . . . , vn) ≡ (∀u ∈ Z)(((Vr(u) = u ∧
∨

1≤i≤l

ru ≤ zi) ⇒

∨

(s1,(a1,...,an),s2)∈∆

(
∧

1≤i≤l

(Xr(zi, u, di(s1)) ∧ Xr(zi, ru, di(s2)))

∧
∧

1≤i≤n

Xr(vi, u, ai)))

∧ ((Vr(u) = u ∧
∧

1≤i≤l

ru > zi) ⇒
∧

1≤i≤n

∨

k∈{0,r−1}

(Xr(vi, u, k)

∧ (u = 1 ∨ Xr(vi, u/r, k))))),

and

ψ3(z1, z2, . . . , zl) ≡ (∃u ∈ Z)(
∨

s∈F

(Vr(u) = u ∧
∧

1≤i≤l

Xr(zi, u, di(s))∧

(∀u′ ∈ Z)((Vr(u
′) = u′ ∧ u′ > u) ⇒

∧

1≤i≤l

Xr(zi, u
′, 0)))).

(In these expressions, ru is a shorthand for u + u + · · · + u, in which u appears r

times, and u/r represents an integer z such that rz = u.) 2

The second part of the characterization of the sets of vector values that are rec-

ognizable with respect to the synchronous encoding scheme consists of establishing

that the condition expressed by Theorem 8.6 is also sufficient, i.e., that all the sub-

sets of Zn that are definable in the first-order theory 〈Z,≤,+, Vr〉 are recognizable.

We follow the same approach as in [BHMV94]. Intuitively, if a set U ⊆ Zn of

vector values is definable in the theory 〈Z,≤,+, Vr〉, then it can be expressed in

terms of basic vector sets which correspond to the atomic formulas of that theory,
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(0, 0)

(r − 1, r − 1)

{(i, i) | 0 ≤ i < r}

Figure 8.1: NDD representing U=.

and of basic set operations which correspond to Boolean operators and first-order

quantifiers. The sufficient condition is then proved by showing that the basic vector

sets are recognizable, and that the basic set operations preserve the recognizable

nature of sets, and can be computed on vector sets represented as NDDs. These

two results are established by the four following lemmas.

Lemma 8.7 Let r > 1 be a basis. The vector sets

U= = {(v1, v2) ∈ Z2 | v1 = v2},

U≤ = {(v1, v2) ∈ Z2 | v1 ≤ v2},

U+ = {(v1, v2, v3) ∈ Z3 | v3 = v1 + v2},

UVr
= {(v1, v2) ∈ Z2 | v2 = Vr(v1)}.

are recognizable with respect to the synchronous encoding scheme ES(r).

Proof NDDs1 representing those sets are given in Figures 8.1, 8.2, 8.3 and 8.4. Let

w1, w2, w3 ∈ {0, 1, . . . , r−1}∗ be synchronous encodings of (respectively) v1, v2, v3 ∈

Z. The principles of operation of the NDDs are the following.

• The NDD representing U= checks that w1 and w2 have the same valid sign

digits, and that all their remaining digits are pairwise identical;

• The NDD representing U≤ first compares the sign digits of w1 and w2 and

checks that they are valid. If v1 < 0 and v2 ≥ 0, then the pair (w1, w2)

is accepted regardless of the remaining digits. If v1 ≥ 0 and v2 < 0, then

the pair (w1, w2) is not accepted. If v1 and v2 have the same sign, then the

automaton looks for the leftmost digit that differs between w1 and w2. The

pair (w1, w2) is accepted if the smaller digit is the one in w1, or if w1 is identical

to w2;

• The NDD representing U+ first compares the sign digits of w1 and w2 and

checks that they are valid. Then, it jumps either to a carry or to a non-carry

state. The transitions of the automata are labeled so as to meet the following

requirements:

1In these automata, sets of transition labels are introduced as a shorthand for sets of transitions

sharing the same origin and end.
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{(i, i) | 0 ≤ i < r}

{(i, j) | 0 ≤ i < r ∧ 0 ≤ j < r}

{(i, j) | 0 ≤ i < j < r}

(0, 0)

(r − 1, r − 1)

(r − 1, 0)

Figure 8.2: NDD representing U≤.

(r − 1, 0, r − 1)

(0, r − 1, r − 1)

(0, 0, 0)

(0, r − 1, 0)

(r − 1, r − 1, r − 1)

(r − 1, 0, 0)

{(i, j, i + j) | 0 ≤ i < r ∧ 0 ≤ j < r ∧ 0 ≤ i + j < r}

{(i, j, i + j + 1 − r) | 0 ≤ i < r ∧ 0 ≤ j < r ∧ r ≤ i + j + 1 < 2r}

{(i, j, i + j + 1) | 0 ≤ i < r ∧ 0 ≤ j < r ∧ 0 ≤ i + j + 1 < r}

(⋆) (⋆) : {(i, j, i + j − r) | 0 ≤ i < r ∧ 0 ≤ j < r ∧ r ≤ i + j < 2r}

Figure 8.3: NDD representing U+.
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(0, 1)(0, 0)

(0, 0)

{(i, 1) | 0 < i < r}

{(i, 1) | 0 < i < r}

{(i, 0) | 0 ≤ i < r} (0, 0)

(r − 1, 0)

(⋆) : {(i, 0) | 0 < i < r}
(⋆)

Figure 8.4: NDD representing UVr
.

– If the automaton reaches the carry state after having read the triple

(w′
1, w

′
2, w

′
3), then there exist v′1, v

′
2, v

′
3 ∈ Z such that w′

1 ∈ [v′1]r, w
′
2 ∈ [v′2]r,

w′
3 ∈ [v′3]r and v′3 = v′1 + v′2 + 1,

– If the automaton reaches the non-carry state after having read the triple

(w′
1, w

′
2, w

′
3), then there exist v′1, v

′
2, v

′
3 ∈ Z such that w′

1 ∈ [v′1]r, w
′
2 ∈ [v′2]r,

w′
3 ∈ [v′3]r and v′3 = v′1 + v′2. The non-carry state is thus accepting;

• The NDD representing UVr
first checks that v2 is positive, and that w1 has a

valid sign digit. Then, it tests whether w2 is composed of exactly one 1 digit

and of remaining 0 digits. The other restrictions are that either the digit of w1

at the same position as the 1 in w2 is different from zero and all the subsequent

digits of w1 are equal to zero, or v1 = 0 and v2 = 1.

2

Lemma 8.8 Let r > 1 be a basis, n1, n2 ∈ N be dimensions, and U1 ⊆ Zn1,

U2 ⊆ Zn2 be two sets of vector values. If U1 and U2 are recognizable with respect

to the synchronous encoding scheme, then the sets U1 ∪ U2, U1 ∩ U2, U1 \ U2 and

U1×U2 are also recognizable if they are defined. Moreover, NDDs representing those

sets can be computed from NDDs representing U1 and U2.

Proof Immediate, as a consequence of Theorem 6.8. If A1 and A2 are NDDs

representing respectively U1 and U2, then representations of U1 ∪U2, U1 ∩U2, U1 \U2

and U1 × U2 are respectively given by UNION(A1,A2), INTERSECTION(A1,A2),

DIFFERENCE(A1,A2), and PRODUCT(A1,A2). 2
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Lemma 8.9 Let r > 1 be a basis, n ∈ N0 be a dimension, U ⊆ Zn be a set of vector

values, and i ∈ N be such that 1 ≤ i ≤ n. If U is recognizable with respect to the

synchronous encoding scheme, then the set

∃i(U) = {(v1, . . . , vi−1, vi+1, . . . , vn) ∈ Zn−1 | (∃vi ∈ Z)((v1, . . . , vn) ∈ U)},

called the projection of U with respect to the vector component xi, is also recog-

nizable. Moreover, an NDD representing ∃i(U) can be computed from an NDD

representing U .

Proof Let A be an NDD representing U . The vector value (v1, . . . , vi−1, vi+1, . . . , vn)

belongs to ∃i(U) if and only if there exist vi ∈ Z and a path π of A such that π

is labeled by an encoding in basis r of (v1, . . . , vn). Let f be the homomorphism

that maps every symbol in {0, 1, . . . , r− 1}n onto the symbol of {0, 1, . . . , r− 1}n−1

obtained by deleting its i-th component. Formally, we have

f : ({0, 1, . . . , r − 1}n)∗ → ({0, 1, . . . , r − 1}n−1)∗

:







ε 7→ ε,

(a1, . . . , an) 7→ (a1, . . . , ai−1, ai+1, . . . , an),

w1 · w2 7→ f(w1) · f(w2).

The automaton A′ = APPLY-HOMOMORPHISM(A, f) is such that the set of

vector values encoded by its accepted language is exactly ∃i(U). This does not

imply that A′ is an NDD representing ∃i(U), since for every element ~v of ∃i(U), A′

may accept some encodings of ~v but not all of them.

An NDD representing ∃i(U) can be obtained by building an automaton A′′

that accepts all the encodings of the vector values such that at least one of their

encodings is accepted by A′. This can be done as follows. If two encodings

w1, w2 ∈ ({0, 1, . . . , r − 1}n)∗ of the same vector value ~v differ, then there exist

a ∈ {0, r−1}n and k ∈ N0 such that either w1 = ak ·w2 and a = w2[1] or w2 = ak ·w1

and a = w1[1]. Intuitively, this means that the two words only differ by the number

of leading copies of the sign digits of the vector components. The automaton A′′

can thus be built in such a way that each of its accepted words corresponds to a

word accepted by A′ to which the leading symbol has been prefixed an arbitrary

number of times, or from which this symbol has been removed an arbitrary number

of times if it was repeated more than once. An algorithm formalizing the overall

construction of an NDD representing ∃i(U) is given in Figure 8.5. 2

Lemma 8.10 Let r > 1 be a basis, n ∈ N be a dimension, U ⊆ Zn be a set of

vector values, and (i1, i2, . . . , in) ∈ Nn be a permutation of {1, 2, . . . , n}. If U is

recognizable with respect to the synchronous encoding scheme, then the set

ρ(i1,...,in)(U) = {(vi1 , vi2 , . . . , vin) ∈ Zn | (v1, v2, . . . , vn) ∈ U},
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function PROJECT-NDD(basis r, dimension n, NDD A, integer i) : NDD

1: var f : function;

2: (Σ, S, ∆, I, F ) : automaton;

3: a : symbol;

4: s′, s′′ : states;

5: S′ : set of states;

6: begin

7: A := NORMALIZE(A);

8: f := ({0, 1, . . . , r − 1}n)∗ → ({0, 1, . . . , r − 1}n−1)∗

:







ε 7→ ε,

(a1, . . . , an) 7→ (a1, . . . , ai−1, ai+1, . . . , an),

w1 · w2 7→ f(w1) · f(w2);

9: (Σ, S, ∆, I, F ) := APPLY-HOMOMORPHISM(A, f);

10: let s′ 6∈ S;

11: S := S ∪ {s′};

12: for each a ∈ {0, r − 1}n−1 do

13: begin

14: let s′′ 6∈ S;

15: S := S ∪ {s′′};

16: S′ := {s ∈ S | (∃s0 ∈ I, k ∈ N0)((s0, a
k, s) ∈ ∆∗)};

17: ∆ := ∆ ∪ {(s′, a, s′′)} ∪ {(s′′, a, s′′)} ∪ {(s′′, ε, s) | s ∈ S′}

18: end;

19: I := {s′};

20: return (Σ, S, ∆, I, F )

21: end.

Figure 8.5: Projection of an NDD with respect to a vector component.
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function REORDER-NDD(basis r, dimension n, NDD A, permutation (i1, i2, . . . , in)) : NDD

1: var (Σ, S, ∆, I, F ) : NDD;

2: begin

3: (Σ, S, ∆, I, F ) := NORMALIZE(A);

4: ∆ := {(s, (ai1 , ai2 , . . . , ain
), s′) | (s, (a1, a2, . . . , an), s′) ∈ ∆} ∪ {(s, ε, s′) ∈ ∆};

5: return (Σ, S, ∆, I, F )

6: end.

Figure 8.6: Reordering of an NDD.

called the reordering of U with respect to the indices i1, i2, . . . , in, is also recogniz-

able. Moreover, an NDD representing ρ(i1,...,in)(U) can be computed from an NDD

representing the set U .

Proof Immediate, since an NDD A′ representing ρ(i1,...,in)(U) can be computed from

an NDD A′ representing U by replacing every symbol (a1, a2, . . . , an) ∈ {0, 1, . . . , r−

1}n labeling the transitions of A by the symbol (ai1 , ai2, . . . , ain). An algorithm

formalizing the construction of A′ is given in Figure 8.6. 2

We are now ready to state the sufficient condition on sets of vector values that

are recognizable with respect to the synchronous encoding scheme.

Theorem 8.11 Let r > 1 be a basis, n ∈ N be a dimension, and U ⊆ Zn be a set

of vector values. If U is definable in the first-order theory 〈Z,≤,+, Vr〉, then U is

recognizable with respect to the synchronous encoding scheme ES(r). Moreover, an

NDD representing U can be computed from a formula of 〈Z,≤,+, Vr〉 defining U .

Proof If U is definable in the theory 〈Z,≤,+, Vr〉, then there exists in this theory

a formula ϕ : Zn → {T,F} such that

U = {(v1, v2, . . . , vn) ∈ Zn | ϕ(v1, v2, . . . , vn)}.

We then say that ϕ denotes U . The variables v1, v2, . . . , vn are the free variables of ϕ.

The principle of the proof is to translate the formula ϕ into an NDD A representing

the set U denoted by ϕ. The construction proceeds by induction on ϕ.

The atomic formulas of 〈Z,≤,+, Vr〉 are the equality x = y, the inequality x ≤ y

and the equations z = x + y and y = Vr(x), where x, y and z are variables. By

introducing as many additional variables as necessary, we can rewrite ϕ as a formula

in which each variable does not appear more than once in a given atomic formula (for

instance, the formula x = Vr(x) can be rewritten as (∃x′ ∈ Z)(x′ = Vr(x) ∧ x = x′),
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where x′ is an auxiliary variable). The atomic formulas can be translated into NDDs

representing the sets U=, U≤, U+ and UVr
that they denote, thanks to Lemma 8.7.

The inductive formulas of 〈Z,≤,+, Vr〉 are the conjunction ϕ1 ∧ ϕ2, the dis-

junction ϕ1 ∨ ϕ2, the negation ¬ϕ1, the existential quantification (∃x)(ϕ1) and the

universal quantification (∀x)(ϕ1), where ϕ1 and ϕ2 are formulas and x is a variable.

Since ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2) and (∀x)(ϕ1) ≡ ¬(∃x)(¬ϕ1), it is sufficient to

consider the conjunction, negation, and existential quantification of formulas.

If the free variables of ϕ1 and ϕ2 are identical and appear in the same order,

then the formula ϕ1 ∧ ϕ2 denotes the set U1 ∩ U2, where U1 and U2 are respectively

denoted by ϕ1 and ϕ2. An NDD representing U1 ∩ U2 can be computed thanks to

Lemma 8.8. If the free variables of ϕ1 and ϕ2 are not identical, then the sets of

free variables of each formula can be extended so as to include the free variables of

the other one. Formally, adding a free variable to the formula ϕ1 : Zn1 → {T,F},

where n1 ≥ 0, yields the formula

ϕ′
1 : Zn1+1 → {T,F} : (v1, . . . , vn1+1) 7→ ϕ(v1, . . . , vn1).

If U1 ⊆ Zn1 is the set denoted by ϕ1, then the set U1 ⊆ Zn1+1 denoted by ϕ′
1 is

such that U ′
1 = U1 × Z. Since Z = ∃1(U=), an NDD A′

1 representing U ′
1 can be

computed from an NDD A1 representing U1 as a consequence of Lemmas 8.7, 8.8

and 8.9. Finally, if the free variables of ϕ1 and ϕ2 are identical but appear in a

different order, then thanks to Lemma 8.10, the free variables of one of the formulas

can be reordered so as to match those of the other one. This is done by applying

the reordering operator ρ to the NDD representing the set denoted by the formula.

The formula ¬ϕ1 denotes the set U ′
1 = Zn1\U1, where U1 ⊆ Zn1 is the set denoted

by ϕ1. Since Zn1 = Z×Z× · · · ×Z, an NDD representing U ′
1 can be obtained from

an NDD representing U1 thanks to Lemmas 8.7, 8.8 and 8.9. The formula (∃x)(ϕ1)

denotes the set U ′′
1 = ∃i(U1), where i ∈ N is such that x is the i-th free variable of

ϕ1. An NDD representing U ′′
1 can be obtained from an NDD representing U1 thanks

to Lemma 8.10. 2

Theorems 8.6 and 8.11 can be combined into a necessary and sufficient condition

which characterizes precisely the sets of vector values that can be represented as

NDDs.

Theorem 8.12 Let n ∈ N be a dimension, r > 1 be a basis, and U ⊆ Zn be a set

of vector values. The set U is recognizable with respect to the synchronous encoding

scheme ES(r) if and only if U is definable in the first-order theory 〈Z,≤,+, Vr〉.

Moreover, an NDD representing U can be computed from a formula of 〈Z,≤,+, Vr〉

defining U .

Proof The result is a direct consequence of Theorems 8.6 and 8.11. 2
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In the sequel, we will denote by NDD(U) any NDD that represents the set of

vector values U ⊆ Zn. Reciprocally, the set of vector values represented by the

NDD A will be denoted SET(A). Since the emptiness of sets represented as NDDs

is decidable (as a consequence of Theorem 6.9), Theorem 8.12 has the following

corollary.

Corollary 8.13 The first-order theory 〈Z,≤,+, Vr〉 is decidable.

Proof Immediate, since for every closed formula ϕ of 〈Z,≤,+, Vr〉, we have ϕ = T

if and only if2 EMPTY?(NDD({~x ∈ Zn | ϕ(~x)})) = F. 2

8.1.5 Sets that are Representable in Any Basis

The results presented in Section 8.1.4 give an exact characterization of the sets of

vector values that can be represented as NDDs in a given basis r > 1. The question

addressed here is to characterize the sets that are representable in any basis r > 1,

with respect to the synchronous encoding scheme.

The problem has been solved by Cobham [Cob69] for subsets of Z, and then gen-

eralized to subsets of Zn for any n > 0 by Semenov [Sem77]. Their characterization,

usually referred to as the theorem of Cobham-Semenov, can be stated as follows3.

Theorem 8.14 Let n > 0 be a dimension, U ⊆ Zn be a set of vector values, and

r1, r2 > 1 be two bases. If r1 and r2 are such that there do not exist i, j ∈ N0 for

which ri1 = rj2 (r1 and r2 are then said to be multiplicatively independent), and

if U is both definable in 〈Z,≤,+, Vr1〉 and in 〈Z,≤,+, Vr2〉, then U is definable in

〈Z,≤,+〉.

Proof The proof is quite technical and its presentation is well beyond the scope

of this thesis. A comprehensible proof can be found in [MV93] and [MV96]. An

elegant proof due to Muchnik [Muc91] and based on an original criterion is presented

in [BHMV94]. 2

The theorem of Cobham-Semenov has an important corollary that allows to

characterize exactly the sets that are representable as NDDs in any basis.

Corollary 8.15 Let n > 0 be a dimension, and U ⊆ Zn be a set of vector values.

The set U is recognizable in every basis r > 1 with respect to the synchronous

encoding scheme ES(r) if and only if U is definable in the first-order theory 〈Z,≤,+〉.

Moreover, an NDD representing U can be computed from a formula of 〈Z,≤,+〉

defining U .

2The dimension of NDD({~x ∈ Zn | ϕ(~x)}) is equal to 0, which means that all the transitions of

this NDD are labeled by the empty word. This NDD is actually an inputless automaton.
3The results of Cobham and Semenov actually apply to subsets of Nn. The generalization to

subsets of Zn is immediate.
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Proof One direction is a direct consequence of Theorem 8.14. The other follows

from Theorem 8.12, since 〈Z,≤,+〉 is a subset of 〈Z,≤,+, Vr〉 for any r > 1. 2

The theory 〈Z,≤,+〉 has been studied by Presburger [Pre29] and is usually

referred to as Presburger arithmetic. It is known [Opp78, FR79] that deciding Pres-

burger arithmetic is 2EXPSPACE-complete.

An advantage of considering the sets of vector values that are definable in Pres-

burger arithmetic rather than the sets definable in 〈Z,≤,+, Vr〉 for some basis r > 1

is that lots of techniques have been developed for dealing with Presburger arithmetic,

and that efficient implementations of these techniques have been made available. An

example of such an implementation is the Omega Test [Pug92a] which allows to ma-

nipulate formulas of Presburger arithmetic with a surprising efficiency. Another

result of interest, due to Boudet and Comon [BC96], shows that the minimal and

deterministic NDD representing the set of vector values that satisfies a system of

linear equations and inequations is very compact and can be computed efficiently.

On the other hand, there are applications for which using the theory 〈Z,≤,+, Vr〉

for some basis r > 1 is nonetheless more advantageous than using Presburger arith-

metic. For instance, the model of a hardware circuit performing some arithmetic

operation on unbounded binary numbers might very well have a control location in

which the set of reachable values is the set of the powers of 2. It can be shown that

this set cannot be defined in Presburger arithmetic, even though it is denoted by

the formula ϕ(x) ≡ V2(x) = x which belongs to 〈Z,≤,+, V2〉.

Since both theories have advantages, the approach followed in the rest of this

chapter is to stay as general as possible. Each result dealing with the possibility of

representing a set of vector values as an NDD will thus be expressed twice: once with

respect to the theory 〈Z,≤,+, Vr〉 for any r > 1, and once with respect to Presburger

arithmetic. Intuitively, the former case consists of choosing the numeration basis

used by the NDD, and the latter one consists of requiring that the result has to hold

in any basis. We will make use of the following definitions.

Definition 8.16 Let r > 1 be a basis, n ∈ N be a dimension, and U ⊆ Zn be a set

of vector values. The set U is r-recognizable if it is recognizable with respect to the

synchronous encoding ES(r).

Definition 8.17 Let n ∈ N be a dimension and U ⊆ Zn be a set of vector values.

The set U is Presburger-definable if for every basis r > 1, it is recognizable with

respect to the synchronous encoding ES(r).

In the rest of this chapter, we will only consider bases r > 1 for which there does

not exist j ∈ N, with j ≥ 2, such that r(1/j) ∈ N. This can be done without loss of

generality thanks to the following result.
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Theorem 8.18 Let n ∈ N be a dimension, r > 1 be a basis and U ⊆ Zn be a

set of vector values. For every k ∈ N0, U is r-recognizable if and only if U is

rk-recognizable.

Proof An automaton Ak in normal form representing the set U with respect to ES(rk)

can easily be turned into an automaton A1 representing U with respect to ES(r) by

transforming each of its transitions (s, (a1, a2, . . . , an), s
′) into (s, (a′1,1, a

′
1,2, . . . , a

′
1,n)·

(a′2,1, a
′
2,2, . . . , a

′
2,n) · · · (a

′
k,1, a

′
k,2, . . . , a

′
k,n), s

′), where for each i ∈ {1, 2, . . . , n}, a′1,i,

a′2,i, . . . , a
′
k,i ∈ {0, 1, . . . , r − 1} and ai =

∑

0≤j<k r
ja′(k−j),i. The resulting automaton

A′ does not necessarily accept all the encodings of the elements of U , and the

construction proposed in the proof of Lemma 8.9 can be used to obtain A1 from A′.

The reciprocal transformation is also possible. Given an automaton A1, one

first computes an automaton A in strong normal form that accepts the language

L(A1) ∩
⋃

i∈N{0, 1, . . . , r − 1}ik. Then, one constructs Ak as follows:

• The set of states of Ak contains the states of A that are reachable by reading

a word w whose length is an integer multiple of k;

• There is a transition (s, (a1, a2, . . . , an), s
′) between the states s and s′ of Ak if

and only if there exist a′1,1, a
′
1,2, . . . , a

′
1,n, a

′
2,1, a

′
2,2, . . . , a

′
2,n, a

′
k,1, a

′
k,2, . . . , a

′
k,n ∈

{0, 1, . . . , r−1} such that A admits a path from s to s′ labeled by (a′1,1, a
′
1,2, . . . ,

a′1,n) · (a′2,1, a
′
2,2, . . . , a

′
2,n) · · · (a

′
k,1, a

′
k,2, . . . , a

′
k,n), and such that for each i ∈

{1, 2, . . . , n}, ai =
∑

0≤j<k r
ja′(k−j),i;

• The sets of initial and of accepting states of Ak are identical to those of A.

2

8.1.6 Other Encoding Schemes

Of course, the synchronous encoding scheme is not the only scheme that can be used

for encoding vector values. Following [BHMV94], we qualify as “good” an encoding

scheme that allows to represent every set that is definable in Presburger arithmetic.

In this section, we define two new “good” encoding schemes for vector values, and

study how they relate to the synchronous encoding scheme.

The first encoding scheme that we introduce simply consists of reading the digits

of the vector components from the least significant one to the most significant one

rather than the other way around. We have the following definition.

Definition 8.19 Let n ≥ 0 be a dimension and r > 1 be a basis. The reverse

synchronous encoding scheme ER(r) is the relation that associates to a vector of Zn
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the tuple of the same-length encodings in basis r of the components of this vector

written backwards. Formally, we have

ER(r) ⊆M × VR(r) = {((v1, . . . , vn), (w1, . . . , wn)) | |w1| = |w2| = · · · = |wn|

∧wR1 ∈ [v1]r ∧ wR2 ∈ [v2]r ∧ · · · ∧ wRn ∈ [vn]r},

where M = Zn and VR(r) =
⋃

k∈N

({0, 1, . . . , r − 1}k · {0, r − 1})n, and for every

i ∈ {1, 2, . . . , n}, wRi denotes the word wi written from right to left.

The sets of vector values that are recognizable with respect to the reverse syn-

chronous encoding scheme are exactly the ones that are recognizable with respect

to the synchronous encoding scheme. Indeed, an automaton AS representing the set

U ⊆ Zn (n ≥ 0) with respect to ES(r) (r > 1) can easily be turned into an automa-

ton AR representing U with respect to ER(r) by transforming each of its transitions

(s, w, s′) into (s′, wR, s), where wR denotes the word w written from right to left,

and by exchanging the sets of initial and of accepting states. The reciprocal trans-

formation can be performed identically.

It is worth mentioning that this result does not imply that the synchronous

and reverse synchronous encoding schemes are equivalent in practice. Indeed, if

one chooses to represent sets of vector values as minimal deterministic finite-state

automata, then there exist sets whose representations will be more concise with one

scheme than with its counterpart. For instance, representing in basis 2 the set of

all the integers whose binary expansion has the coefficient of 2k (k ≥ 0) equal to 1

yields a minimal deterministic automaton of size O(2k) if the synchronous encoding

scheme is used, but only of size O(k) with the reverse synchronous encoding scheme.

The encoding scheme used in a particular application must therefore be carefully

selected with respect to the sets of vector values that will be potentially represented.

The other encoding scheme studied here consists of reading the digits of the

vector components successively, rather than simultaneously, in increasing order of

position. This encoding scheme is formally defined as follows.

Definition 8.20 Let n ∈ N be a dimension and r > 1 be a basis. The synchronous

interleaved encoding scheme EI(r) is the relation

EI(r) ⊆M × VI(r) = {((v1, . . . , vn), w) | (∃l ∈ N)(|w| = l.n

∧w[1] · w[1 + n] · · ·w[1 + (l − 1)n] ∈ [v1]r
∧w[2] · w[2 + n] · · ·w[2 + (l − 1)n] ∈ [v2]r

...

∧w[n] · w[n+ n] · · ·w[n+ (l − 1)n] ∈ [vn]r)},

where M = Zn and VI(r) = {0, r − 1}n ·
⋃

k∈N

{0, 1, . . . , r − 1}kn.
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The sets of vector values that are recognizable with respect to the synchronous

interleaved encoding scheme are exactly the ones that are recognizable with respect

to the synchronous encoding scheme. Indeed, an automaton AS in normal form

representing the set U ⊆ Zn (n ≥ 0) with respect to ES(r) (r > 1) can easily be

turned into an automaton AI representing U with respect to EI(r) by transforming

each of its transitions (s, (a1, a2, . . . , an), s
′) into (s, a1 · a2 · · ·an, s

′). The reciprocal

transformation is also possible. Given an automaton AI in strong normal form, the

corresponding AS can be constructed as follows:

• The set of states of AS contains the states of AI that are reachable by reading

a word w whose length is a multiple of the dimension n;

• There is a transition (s, (a1, a2, . . . , an), s
′) between the states s and s′ of AS

if and only if AI admits a path from s to s′ labeled by a1 · a2 · · ·an;

• The sets of initial and of accepting states of AS are identical to those of AI .

Once again here, even though the synchronous and the synchronous interleaved

encoding schemes have the same expressiveness, they are not equivalent in practice

from the point of view of conciseness. For instance, representing the set Zk, with

k ≥ 0, yields a minimal deterministic automaton of size O(2k) if the synchronous

encoding scheme is used, but only of size O(k) with the synchronous interleaved

encoding scheme. The size of the minimal deterministic finite-state representa-

tions obtained with the synchronous interleaved encoding scheme is actually always

asymptotically smaller than what can be obtained with the synchronous encoding

scheme. The drawback of the synchronous interleaved encoding scheme is that the

algorithms implementing set operations are slightly more complex than their syn-

chronous counterpart.

The synchronous encoding scheme is used in the rest of this chapter for simplic-

ity. The algorithms that will be developed can however be adapted to the reverse

synchronous or the interleaved synchronous encoding schemes with little difficulty.

8.2 Linear Operations

The problem addressed here consists of computing the image of a set of vector values

represented as an NDD by the linear operation labeling a transition of an ISMA.

Given an NDD A representing the set of vector values U ⊆ Zn (n ≥ 0) in the basis

r > 1 and a linear operation P~x ≤ ~q → ~x := A~x +~b, where m ∈ N, P ∈ Zm×n,

~q ∈ Zm, A ∈ Zn×n and ~b ∈ Zn, the problem thus consists of computing an NDD A′

representing the set

U ′ = {A~v +~b | ~v ∈ U ∧ P~v ≤ ~q}.
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This problem can be solved by first constructing two NDDs A1 and A2 represent-

ing respectively the sets U1 ⊆ Zn and U2 ⊆ Z2n such that U1 = {~v ∈ Zn | P~v ≤ ~q}

and U2 = {(~v,~v ′) | ~v ′ = A~v +~b}. Indeed, we have

U ′ = ∃1∃2 · · · ∃n((U ∩ U1) × Zn ∩ U2),

which yields a way of computing A′ from A, A1 and A2.

It remains to show how to build A1 and A2. A simple solution consists of

translating into NDDs the formulas

ϕ1 : Zn → {T,F} : ~v 7→ P~v ≤ ~q

and

ϕ2 : Z2n → {T,F} : (~v,~v ′) 7→ ~v ′ = A~v +~b,

denoting respectively U1 and U2, by applying Theorem 8.11. The requirement stating

that ϕ1 and ϕ2 must be expressed in the theory 〈Z,≤,+, Vr〉 can easily be fulfilled.

The only difficulty is to convert a formula of the form y = cx, where c ∈ Z is a

constant and x and y are variables, into a formula of 〈Z,≤,+, Vr〉.

This conversion can be carried out as follows. First, we assume that c ∈ N.

Indeed, if c < 0, then y = cx is equivalent to (∃y′ ∈ Z)(y + y′ = 0 ∧ y′ = (−c)x).

Let cp−1, cp−2, . . . , c1, c0 ∈ {0, 1} (p > 0) be the digits of the binary expansion of c,

i.e., let cp−1 · cp−2 · · · c1 · c0 ∈ [c]2. We define q ≥ 0 and i1, i2, . . . iq ∈ {0, 1, . . . , p− 1}

such that {i1, i2, . . . , iq} = {i ∈ {0, 1, . . . , p − 1} | ci = 1}. The formula y = cx is

equivalent to

(∃x0, x1, . . . xp−1, y0, y1, . . . , yq ∈ Z)(x0 = x ∧ x1 = x0 + x0 ∧ x2 = x1 + x1 ∧

· · · ∧ xp−1 = xp−2 + xp−2 ∧ y0 = y0 + y0 ∧ y1 = y0 + xi1 ∧ y2 = y1 + xi2 ∧

· · · ∧ yq = yq−1 + xiq ∧ y = yq),

which belongs to 〈Z,≤,+, Vr〉. The size of the converted formula is O(log2 c), which

means that the cost of the conversion is linear in the size of the original formula. In

the rest of this chapter, we will allow integer variable coefficients in formulas of 〈Z,≤

,+, Vr〉, and assume that the conversion method outlined above is systematically

used.

An algorithm formalizing the construction of A′ as a function of A, A1 and A2

is given in Figure 8.7.

Theorem 8.21 Let n ≥ 0 be a dimension, r > 1 be a basis, A be an NDD rep-

resenting the set of vector values U ⊆ Zn, and θ be a linear operation over Zn.

APPLY-LINEAR(r, n,A, θ) is an NDD representing the set θ(U).

Proof The algorithm in Figure 8.7 is a direct implementation of the computation

method developed in this section. 2
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function APPLY-LINEAR(basis r, dimension n, NDD A,

operation (P~x ≤ ~q → ~x := A~x +~b)) : NDD

1: var A1,A2,A′ : NDDs;

2: i : integer;

3: begin

4: A1 := NDD({~v ∈ Zn | P~v ≤ ~q });

5: A2 := NDD({(~v,~v ′) ∈ Z2n | ~v ′ = A~v +~b});

6: A′ := INTERSECTION(PRODUCT(INTERSECTION(A,A1),

NDD(Zn)),A2);

7: for i := 1 to n do

8: A′ := PROJECT-NDD(r, n,A′, 1);

9: return A′

10: end.

Figure 8.7: Application of a linear operation to an NDD.

8.3 Creation of Cycle Meta-Transitions

As it has been shown in Section 3.4.1, the creation of cycle meta-transitions is

controlled by

• A computable predicate META? defined over the set of potential sequences

of operations, whose purpose is to decide whether the meta-transition corre-

sponding to a given sequence can be created, i.e., whether the closure of the

sequence can always be applied to sets of memory contents;

• An algorithm for computing the image of any representable set of memory

contents by the closure of a sequence of operations satisfying META?.

It has been seen that a finite sequence of linear operations is always equivalent

to a single linear operation, whose parameters can be computed. In this section, we

provide algorithms for computing a suitable predicate META? over linear operations,

and for applying closures of such operations to sets of vector values represented as

NDDs. Each result will successively be stated in the context of sets representable

in a given basis r > 1, and then of sets representable in any basis.

8.3.1 Overview

This section is organized as follows. First, we define some notions of algebra and

combinatorics that will be extensively used, and recall some known results. Next,
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we extend in an original way the notion of recognizability to sets of vectors with

complex components. This generalized notion of recognizability is then used as

a powerful tool for establishing necessary and sufficient conditions over guardless

linear operations whose closure preserves the recognizability of sets. We will give

the most general solution to this problem, in the sense that it will always be possible

to compute the closure θ∗ of a guardless linear operation θ provided that the image

by θ∗ of any recognizable set of vector values is recognizable. Computing the truth

value of META? for a particular linear operation θ will thus amount to deciding

whether the image by θ∗ of any recognizable set of vector values is recognizable.

In the next part, we will present algorithms implementing with NDDs the decision

procedures expressed by the necessary and sufficient conditions. Next we will give

a simple extension of the results obtained so far that allows to apply those results

to linear operations with guards. Finally, we will conclude the section with some

proofs that are omitted from the main text for clarity.

8.3.2 Algebra and Combinatorics Basics

The sets of rational numbers and of complex numbers are respectively denoted by Q

and by C. For every n ∈ N0, In denotes the identity matrix In = diag(1, 1, . . . , 1) of

dimension n. The successive columns of In are denoted ~e1, ~e2, . . . , ~en. Let A ∈ Cn×n

be a complex matrix. If S ⊆ Cn is a set of vector values, then AS is a shorthand

for {A~x | ~x ∈ S}. Similarly, if ~v ∈ Cn, then S + ~v denotes the set {~x + ~v | ~x ∈ S}.

The sets of rows and of columns of A are respectively denoted row(A) and col(A).

The maximum number of linearly independent rows or columns of A is the rank

of A. Any λ ∈ C and ~x ∈ (Cn \ {~0}) such that A~x = λ~x are respectively called

an eigenvalue and an eigenvector of A. The eigenvalues of A are the roots of the

characteristic polynomial of A, defined as Π(λ) = det(A − λIn). They are also the

roots of the minimal polynomial of A, which is defined as the polynomial Π′(λ) of

lowest degree such that Π′(A) = (0). If λ1, λ2, . . . , λm are the eigenvalues of A,

then λp1, λ
p
2, . . . , λ

p
m are the eigenvalues of Ap for any p ∈ N0. For every n ∈ N0

and λ ∈ C, the Jordan block of dimension n associated to λ is the matrix

Jn,λ =










λ 1

λ 1
. . . 1

λ










.

A matrix A ∈ Cn×n only composed of Jordan blocks on its main diagonal, in other

words such that A = diag(Jn1,λ1 , Jn2,λ2 , . . .), is said to be in Jordan form. For every

A ∈ Cn×n, there exists a nonsingular matrix U ∈ Cn×n such that A = UAJU
−1,

with AJ being in Jordan form (U is said to transform A into its Jordan form AJ).

The Jordan form AJ of A is unique up to the reordering of its diagonal blocks. For
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each diagonal block Jni,λi
composing AJ , the corresponding λi is an eigenvalue of A.

Reciprocally, for every eigenvalue λi of A, there exists a (possibly non unique) Jordan

block Jni,λi
that belongs to the set of diagonal blocks of AJ . If the components of

A and its eigenvalues belong to Q, then there exists U ∈ Qn×n transforming A into

AJ . If the Jordan form of A is diagonal (in other words, if all its Jordan blocks are

of size 1), then A is said to be diagonalizable.

Let p, q ∈ N with p ≤ q. The binomial coefficient Cp
q ∈ N is defined as

Cp
q =

q!

(q − p)! p!
.

Binomial coefficients are related to Jordan blocks in the following way. If λ ∈ C

and n, m ∈ N with 0 < n ≤ m, then the m-th power of the Jordan block Jn,λ is

such that

Jmn,λ =













λmC0
m λm−1C1

m λm−2C2
m . . . λm−n+1Cn−1

m

λmC0
m λm−1C1

m . . . λm−n+2Cn−2
m

λmC0
m . . . λm−n+3Cn−3

m
. . .

...

λmC0
m













.

We now define some notions related to cyclotomic fields. It is known that every

polynomial with integer coefficients can be factorized into a product of indivisible

polynomials with integer coefficients. This factorization is unique up to multiplica-

tive constants. For every n ∈ N0, the indivisible factors of the polynomial xn − 1

are called cyclotomic polynomials. There is a cyclotomic polynomial Φm associated

to every integer m ∈ N0, defined as

Φm(x) =
∏

[k,m]

(x− e
2ikπ

m ),

where [k,m] stands for 1 ≤ k < m ∧ gcd(k,m) = 1. Actually, we have

xn − 1 =
∏

k|n

Φk(x),

where k|n means “k divides n”. For every m ∈ N0, the degree of Φm(x) is equal to

φ(m), where φ is the Euler function. This function is defined as

φ : N0 → N0 : x 7→ x

(

1 −
1

p1

)(

1 −
1

p2

)

· · ·

(

1 −
1

pq

)

,

where p1, p2, . . . , pq are the (distinct) prime factors of x. Intuitively, φ(m) is the

number of integers in {1, 2, . . . , m} that are relatively prime to m.
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8.3.3 Recognizability of Sets of Complex Vector Values

Let n ∈ N be a dimension. In this section, we generalize the notion of recognizable

set of vector values to subsets of Cn. The reason why sets of complex vector values

are considered is that Jordan forms of matrices will be heavily used, and that trans-

forming a matrix into its Jordan form is generally not possible within R. Intuitively,

the idea behind the generalization of recognizability is the following. Let S ⊆ Zn be

a set of vector values and let θ = (~x := A~x+~b), where A ∈ Zn×n and ~b ∈ Zn, be a

guardless linear operation. If the transformation matrix A is nonsingular, then the

set S is recognizable (either with respect to a given basis r > 1 or to all of them) if

and only if the set θ(S) is recognizable. This shows that the recognizable nature of

a set of integer vector values is not influenced by nonsingular linear transformations.

It is therefore natural to define a set of complex vector values as “recognizable” if it

can be expressed as the image of a recognizable set of integer vector values by some

linear transformation. Formally, we have the following definition.

Definition 8.22 Let n, r ∈ N0 with r > 1. A set of complex vector values S ⊆ Cn

is r-definable if and only if there exist m ∈ N0, S
′ ⊆ Zm and U ∈ Cn×m such that

S ′ is r-recognizable and S = US ′.

The following result shows that the notion of r-definability is indeed an gener-

alization of r-recognizability, i.e., that the two notions coincide for sets of integer

vector values.

Theorem 8.23 Let n, r ∈ N0 with r > 1. A set S ⊆ Zn is r-definable if and only

if it is r-recognizable.

Proof The proof is given in Section 8.3.8. 2

The next step is to show how to obtain definable sets of complex vector values.

The following theorem establishes the definability of some elementary sets, and

presents operations that can be used for combining definable sets.

Theorem 8.24 Let r ∈ N with r > 1, n1, n2 ∈ N0, S1 ⊆ Cn1, S2 ⊆ Cn2 such that

S1 and S2 are r-definable, ~v ∈ Cn1, p, q ∈ N0, and T ∈ Cp×n1. The following sets

are r-definable:

• Any finite subset of Cn1,

• S1 + ~v,

• TS1,

• S1 ∪ S2, provided that n1 = n2,

• S1 ∩ S2, provided that n1 = n2,
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• S1 × S2,

•













~x

ℜ(~x)

ℑ(~x)






| ~x ∈ S1







,

• expand(S1, r
q) = {rqk~x | ~x ∈ S1 ∧ k ∈ N}.

Proof The proof is given in Section 8.3.8. 2

It is surprising that the intersection and union of two definable sets are always

definable themselves. Indeed, S1 and S2 are images of recognizable sets of integer

vector values by two linear transformations which might be different. It is worth

noticing that their intersection or union can always be expressed as the image of

a single set of integer vector values by the same transformation. This observation

strengthens our claim that definable sets of complex vector values are a “good”

generalization of recognizable sets of integer vector values.

Of course, not all sets of complex vector values are definable. The following theo-

rems characterize families of sets that are proved to be undefinable. In Section 8.3.4,

those theorems will be used as tools for establishing that the closure of some linear

operations does not preserve the definable nature of sets.

Theorem 8.25 Let r ∈ N with r > 1, and a, b, c ∈ Z with a 6= 0. The set

S = {ak2 + bk + c | k ∈ N}

is not r-definable.

Proof The proof is given in Section 8.3.8. 2

Theorem 8.26 Let r, p ∈ N0 with r > 1, λ ∈ C such that λp = 1, and a, b, c, d ∈ C

with a 6∈ R \ Q. The set

S =

{

λk
[

(j + a)(k + b) + c

j + d

]

| j, k ∈ N

}

is not r-definable.

Proof The proof is given in Section 8.3.8. 2

Theorem 8.27 Let r ∈ N with r > 1, λ ∈ C such that there do not exist p ∈ N0

and m ∈ N such that λp = rm. The set

S = {λk | k ∈ N}

is not r-definable.
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Proof The proof is given in Section 8.3.8. 2

Theorem 8.28 Let r, p,m ∈ N0 with r > 1, λ ∈ C such that λp = rm, and a ∈ C

such that a 6∈ R \ Q. The set

S = {λk(k + a) | k ∈ N}

is not r-definable.

Proof The proof is given in Section 8.3.8. 2

Theorem 8.29 Let r, p,m ∈ N0 with r > 1, and λ ∈ C such that λp = rm. The set

S =

{[

k

λk

]

| k ∈ N

}

is not r-definable.

Proof The proof is given in Section 8.3.8. 2

Theorem 8.30 Let r, p,m ∈ N0 with r > 1, λ ∈ C such that λp = rm, and a ∈ C.

The set

S =

{[

λk(j + a)

j

]

| j, k ∈ N

}

is not r-definable.

Proof The proof is given in Section 8.3.8. 2

Theorem 8.31 Let r, p1, p2, m1, m2 ∈ N0 with r > 1, and λ1, λ2 ∈ C such that

λp11 = rm1, λp22 = rm2 and |λ1| 6= |λ2|. The set

S =

{[

λk1
λk2

]

| k ∈ N

}

is not r-definable.

Proof The proof is given in Section 8.3.8. 2
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8.3.4 Necessary Conditions

Here, we give conditions that must be verified by A if the guardless linear operation

θ = (~x := A~x + ~b) is such that θ∗ preserves the definable nature of sets. Those

conditions consist of conditions on the eigenvalues of A, and on the size of the blocks

of the Jordan form of A. For clarity sake, each group of conditions is presented

separately. A summary of all the necessary conditions follows.

The idea behind the necessary conditions that will be developed is to show that

the violation of any of them implies that there exists a set that is at the same time

r-definable and not r-definable. The sets that are considered are related to the

Jordan form of the transformation matrix. Precisely, we have the following result.

Theorem 8.32 Let n, r ∈ N0 with r > 1, θ = (~x := A~x +~b) with A ∈ Zn×n and
~b ∈ Zn, U ∈ Cn×n transforming A into its Jordan form AJ , Jm,λ be a Jordan block

of AJ with m ∈ N0, λ ∈ C, π be the projection mapping AJ onto Jm,λ, and S be a

r-definable subset of Zn. If θ∗(S) is r-definable, then the set

S ′ = {Jkm,λ~x+
∑

0≤i<k

J im,λ
~b′ | k ∈ N ∧ ~x ∈ π(U−1S)},

with ~b′ = π(U−1~b), is r-definable.

Proof We have

θ∗(S) = {Ak~x+
∑

0≤i<k

Ai~b | k ∈ N ∧ ~x ∈ S}

= {UAkJU
−1~x+

∑

0≤i<k

UAiJU
−1~b | k ∈ N ∧ ~x ∈ S}.

If this set is r-definable, then applying Theorem 8.24 shows that π(U−1θ∗(S)) is

r-definable. Hence the result. 2

We are now ready to state the necessary conditions on the eigenvalues of the

transformation matrix. The first condition expresses a relationship that must exist

between those eigenvalues and the numeration basis.

Theorem 8.33 Let n, r ∈ N0 with r > 1 and θ = (~x := A~x +~b) with A ∈ Zn×n

and ~b ∈ Zn be such that for every ~v ∈ Zn, the set θ∗({~v}) is r-definable. For every

nonzero eigenvalue λ of A, there exist p ∈ N0 and m ∈ N such that λp = rm.

Proof Let λ be a nonzero eigenvalue of A, AJ be the Jordan form of A, Jm,λ be a

block of AJ associated with λ (m ∈ N0), and π be the projection mapping AJ onto

Jm,λ. From Theorem 8.32, it follows that for every ~v ∈ Zn, the set

S ′ = {Jkm,λ~v
′ +

∑

0≤i<k

J im,λ
~b′ | k ∈ N},
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with ~v ′ = π(U−1~v) and ~b′ = π(U−1~b), is r-definable. Let π′ be the projection

mapping each vector onto its component of highest index. There are two possible

situations.

• If π′(~b′) = 0. We choose ~v ∈ Zn such that π′(π(U−1~v)) 6= 0 (this is always

possible, otherwise U−1 would be singular). According to Theorem 8.24, this

implies that the set

1

π′(π(U−1~v))
π′(S ′) = {λk | k ∈ N}

is r-definable.

• If π′(~b′) 6= 0. We choose ~v = ~0. According to Theorem 8.24, this implies that

the following sets are r-definable:

1

π′(~b′)
π′(S ′) = {

∑

0≤i<k

λi | k ∈ N},

{λk − 1 | k ∈ N},

{λk | k ∈ N}.

We have thus established that the set

{λk | k ∈ N}

is r-definable. The existence of p ∈ N0 and m ∈ N such that λp = rm is then a

consequence of Theorem 8.27. 2

The property expressed by Theorem 8.33 is easily adapted to sets of vector values

that are definable in any basis.

Corollary 8.34 Let n ∈ N0 and θ = (~x := A~x + ~b) with A ∈ Zn×n and ~b ∈ Zn

be such that for every ~v ∈ Zn, the set θ∗({~v}) is Presburger-definable. For every

nonzero eigenvalue λ of A, there exists p ∈ N0 such that λp = 1.

Proof Since every Presburger-definable set of integer vector values is r-definable in

any basis r > 1, the result follows from applying Theorem 8.33 to two relatively

prime bases r1 and r2 (chosen arbitrarily). 2

Now, we go further and establish a correlation between the different eigenvalues

of the transformation matrix.

Theorem 8.35 Let n, r ∈ N0 with r > 1, and θ = (~x := A~x +~b) with A ∈ Zn×n

and ~b ∈ Zn be such that for every ~v ∈ Zn, the sets θ∗({~v}) and θ∗({j~v | j ∈ N}) are

r-definable. Every pair of nonzero eigenvalues (λ1, λ2) of A is such that |λ1| = |λ2|.
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Proof The proof is by contradiction. Let U ∈ Cn×n be a matrix transforming A

into its Jordan form AJ . Let S be either equal to {~v} or to {j~v | j ∈ N}, with

~v ∈ Zn. The set

θ∗(S) = {Ak~x+
∑

0≤i<k

Ai~b | k ∈ N ∧ ~x ∈ S}

= {UAkJU
−1~x+

∑

0≤i<k

UAiJU
−1~b | k ∈ N ∧ ~x ∈ S}

is r-definable. Suppose that A has two nonzero eigenvalues λ1 and λ2 such that

|λ1| 6= |λ2|. Without loss of generality, we may assume that |λ1| < |λ2|. Let Jm1,λ1

and Jm2,λ2 (m1, m2 ∈ N0) be two blocks of AJ respectively associated to λ1 and to

λ2, and let π be the projection onto the two components matching the positions of

the last line of Jm1,λ1 and of the one of Jm2,λ2 in AJ . According to Theorem 8.24,

the set S ′ = π(U−1θ∗(S)) is r-definable. We have

S ′ =







[

λk1 0

0 λk2

] [

x1

x2

]

+
∑

0≤i<k

[

λi1 0

0 λi2

] [

b1
b2

]

|

[

x1

x2

]

∈ S ′′, k ∈ N






,

with S ′′ = π(U−1S) and

[

b1
b2

]

= π(U−1~b). We distinguish several situations.

• If λ1 = 1 and b1 = 0. We have

S ′ =










x1

λk2x2 +
λk
2−1

λ2−1
b2



 |

[

x1

x2

]

∈ S ′′, k ∈ N






.

Let ~v ∈ Zn be such that the two components of π(U−1~v) are different from

zero (such a ~v always exists, otherwise U−1 would be singular). Choosing

S = {j~v | j ∈ N}, we obtain that the set

S ′ =










jv1

jλk2v2 +
λk
2−1

λ2−1
b2



 | j, k ∈ N






,

with

[

v1

v2

]

= π(U−1~v), is r-definable. From Theorem 8.24, it follows that the

set 








λk2
(

j + b2
v2(λ2−1)

)

j



 | j, k ∈ N







is r-definable, which contradicts Theorem 8.30.

• If λ1 = 1 and b1 6= 0. We have

S ′ =










x1 + kb1

λk2x2 +
λk
2−1

λ2−1
b2



 |

[

x1

x2

]

∈ S ′′, k ∈ N






.
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Let ~v ∈ Zn be such that the second component of π(U−1~v) is different from
b2

1−λ2
(such a ~v always exists, otherwise U−1 would be singular). Choosing

S = {~v | j ∈ N}, we obtain that the set

S ′ =










v1 + kb1

λk2v2 +
λk
2−1

λ2−1
b2



 | k ∈ N






,

with

[

v1

v2

]

= π(U−1~v), is r-definable. From Theorem 8.24, it follows that the

set {[

k

λk2

]

| k ∈ N

}

is r-definable, which contradicts Theorem 8.29.

• If λ1 6= 1. We have

S ′ =












λk1x1 +
λk
1−1

λ1−1
b1

λk2x2 +
λk
2−1

λ2−1
b2




 |

[

x1

x2

]

∈ S ′′, k ∈ N







.

Let ~v ∈ Zn be such that the two components of π(U−1~v) are respectively

different from b1
1−λ1

and from b2
1−λ2

(such a ~v always exists, otherwise U−1

would be singular). Choosing S = {~v | j ∈ N}, we obtain that the set

S ′ =












λk1v1 +
λk
1−1

λ1−1
b1

λk2v2 +
λk
2−1

λ2−1
b2




 | k ∈ N







,

with

[

v1

v2

]

= π(U−1~v), is r-definable. From Theorem 8.24, it follows that the

set {[

λk1
λk2

]

| k ∈ N

}

is r-definable, which contradicts Theorem 8.31.

2

Before establishing the conditions that involve the Jordan blocks of the trans-

formation matrix, we need to give a few lemmas.

Lemma 8.36 Let n, r ∈ N0 with n > 1, r > 1, λ ∈ C such that λ 6= 1, p ∈ N0,

m ∈ N such that λp = rm, q ∈ N with 1 < q ≤ n, V ∈ Cq×n of rank q, and ~b ∈ Zn.

There exists a r-definable set S ⊆ Zn such that the set

S ′ = {Jkq,λ~x+
∑

0≤i<k

J iq,λ
~b′ | ~x ∈ V S ∧ k ∈ N},

where ~b′ = V~b, is not r-definable.
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Proof The proof is given in Section 8.3.8. 2

Lemma 8.37 Let n, r ∈ N0 with n > 1, r > 1, q ∈ N with 1 < q ≤ n, V ∈ Qq×n of

rank q, and ~b ∈ Zn. There exists a r-definable set S ⊆ Zn such that the set

S ′ = {Jkq,1~x+
∑

0≤i<k

J iq,1
~b′ | ~x ∈ V S ∧ k ∈ N},

where ~b′ = V~b, is not r-definable.

Proof The proof is given in Section 8.3.8. 2

Lemma 8.38 Let n ∈ N0 and A ∈ Zn×n. There exists a nonsingular matrix U ∈

Cn×n transforming A into its Jordan form AJ , and such that every row of U−1

at the same position as a line of a Jordan block Jq,λ in AJ contains only rational

components provided that λ is rational.

The proof is given in Section 8.3.8. 2

We are now ready to state the necessary condition on the size of the Jordan

blocks of the transformation matrix.

Theorem 8.39 Let n, r ∈ N0 with r > 1 and θ = (~x := A~x+~b) with A ∈ Zn×n and
~b ∈ Zn be such that for every r-definable set S ⊆ Zn, the set θ∗(S) is r-definable. Let

AJ be the Jordan form of A. Every Jordan block of AJ corresponding to a nonzero

eigenvalue of A is of size 1.

Proof The proof is by contradiction. Suppose that AJ has a Jordan block Jm,λ
such that m > 1. Let U ∈ Cn×n transforming A into AJ , and such that its rows

at the same position as a line of Jm,λ in AJ contain only rational components if

λ = 1 (according to Lemma 8.38, such a U always exists). Let π be the projection

mapping AJ onto Jm,λ. Applying Theorem 8.32, we have that for every r-definable

set S ⊆ Zn, the set

S ′ = {Jkm,λ~x+
∑

0≤i<k

J im,λ
~b′ | k ∈ N ∧ ~x ∈ π(U−1S)},

with ~b′ = π(U−1~b), is r-definable. Depending on the value of λ, this contradicts

either Lemma 8.36 or Lemma 8.37. 2

The necessary conditions are now complete. They can be summarized as follows.

Theorem 8.40 Let n, r ∈ N0 with r > 1 and θ = (~x := A~x +~b) with A ∈ Zn×n

and ~b ∈ Zn. If θ is such that for every r-definable set S ⊆ Zn, the set θ∗(S) is

r-definable, then
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1. There exist p ∈ N0 and m ∈ N such that every nonzero eigenvalue λ of A

satisfies λp = rm, and

2. The Jordan form of A is such that all the blocks corresponding to a nonzero

eigenvalue are of size 1.

Proof This result is a direct consequence of Theorems 8.33, 8.35, and 8.39. 2

Corollary 8.41 Let n, r ∈ N0 with r > 1, and θ = (~x := A~x +~b) with A ∈ Zn×n

and ~b ∈ Zn. If θ is such that for every r-definable set S ⊆ Zn, the set θ∗(S) is

r-definable, then there exists p ∈ N0 such that

1. Ap has at most one nonzero eigenvalue λ, and

2. λ (if any) is an integer power of r, and

3. Ap is diagonalizable.

Proof If θ is as required, then Theorem 8.40 implies that there exist p′ ∈ N0 and

m′ ∈ N such that every nonzero eigenvalue λ′ of A satisfies (λ′)p
′

= rm
′

. Moreover,

the Jordan form of A is such that all the blocks corresponding to a nonzero eigenvalue

are of size 1. Let a ∈ N0 be such that a > n/p′, and let p = ap′, m = am′. Since

every eigenvalue λ of Ap is the p-th power of an eigenvalue of A, we have λ = rm.

Furthermore, every matrix transforming A into its Jordan form AJ transforms Ap

into ApJ . This last matrix is diagonal, for any power of a block of size one is of

size one, and the n-th power of a block associated to the eigenvalue zero is only

composed of zeroes. 2

Theorem 8.42 Let n ∈ N0 and θ = (~x := A~x +~b) with A ∈ Zn×n and ~b ∈ Zn. If

θ is such that for every Presburger-definable set S ⊆ Zn the set θ∗(S) is Presburger-

definable, then there exists p ∈ N0 such that

1. The eigenvalues of Ap belong to {0, 1}, and

2. Ap is diagonalizable.

Proof The result is obtained by applying the same reasoning as in the proofs of

Theorems 8.33, 8.35, 8.39 and 8.40 with two relatively prime bases r1 and r2 (chosen

arbitrarily). This can be done only because the sets {~v} and {j~v | j ∈ N} used

in the proof of Theorem 8.35 and in the ones of Lemmas 8.36 and of 8.37 are

Presburger-definable. 2
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8.3.5 Sufficient Conditions

Here, we show that the necessary conditions given in Section 8.3.4 are also sufficient.

In other words, if a guardless linear operation satisfies the conditions expressed by

Corollary 8.41, then its closure preserves the definable nature of sets of vector values.

This property is formalized as follows.

Theorem 8.43 Let n, r ∈ N0 with r > 1 and θ = (~x := A~x +~b) with A ∈ Zn×n

and ~b ∈ Zn. If there exists p ∈ N0 such that Ap is diagonalizable, Ap has at most

one nonzero eigenvalue λ, and λ (if any) is an integer power of r, then for any

r-definable set S ⊆ Zn, the set θ∗(S) is r-definable.

Proof Suppose that there exists such a p. For any r-definable set S ⊆ Zn, we have

θ∗(S) =
⋃

0≤j<p, k∈N

θpk+j(S)

=
⋃

0≤j<p

θj




⋃

k∈N

θpk(S)





=
⋃

0≤j<p

θj ((θp)∗(S)) .

According to Theorem 8.24, every θj preserves the r-definable nature of sets, as

does the finite union of sets. Therefore, it is sufficient to prove that (θp)∗ preserves

r-definability. Let S ′ = (θp)∗(S), J be the Jordan form of Ap (we know that it is

diagonal), and U ∈ Qn×n be a matrix transforming Ap into J . We have

S ′ = {Apk~x+
∑

0≤i<k

Api~b′ | ~x ∈ S ∧ k ∈ N},

with ~b′ =
∑

0≤i<p

Ai~b. Hence,

S ′ = {UJkU−1~x+
∑

0≤i<k

UJ iU−1~b′ | ~x ∈ S ∧ k ∈ N}.

We distinguish two situations.

• If all the eigenvalues of Ap belong to {0, 1}. We have

S ′ = S ∪ {UJU−1~x+ (k − 1)UJU−1~b′ +~b′ | ~x ∈ S ∧ k ∈ N0}

= S ∪ {Ap~x+ kAp~b′ +~b′ | ~x ∈ S ∧ k ∈ N}.

Since the last member of this equation is expressed in Presburger arithmetic,

the set denoted by this term is r-definable, and so is S ′.
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• If all the eigenvalues of Ap belong to {0, rm}, with m ∈ N0. We have

S ′ = {UJkU−1~x+
∑

0≤i<k

UJ iU−1~b′ | ~x ∈ S ∧ k ∈ N}

= S ∪ {rm(k−1)UJU−1~x+
∑

0<i<k

rm(i−1)UJU−1~b′ +~b′

| ~x ∈ S ∧ k ∈ N0}

= S ∪ {rmkAp~x+
∑

0≤i<k

rmiAp~b′ +~b′ | ~x ∈ S ∧ k ∈ N}

= S ∪ {rmkAp~x+
rmk − 1

rm − 1
Ap~b′ +~b′ | ~x ∈ S ∧ k ∈ N}

= S ∪
{

1

rm − 1

[

rmk
(

(rm − 1)Ap~x+ Ap~b′
)

− Ap~b′
]

+~b′

| ~x ∈ S ∧ k ∈ N

}

= S ∪
1

rm − 1

[

expand
(

(rm − 1)ApS + Ap~b′, rm
)

−Ap~b′
]

+~b′

According to Theorem 8.24, the last formula denotes a r-definable set.

2

A similar result holds for Presburger-definable sets.

Theorem 8.44 Let n, r ∈ N0 with r > 1 and θ = (~x := A~x +~b) with A ∈ Zn×n

and ~b ∈ Zn. If there exists p ∈ N0 such that Ap is diagonalizable and has its

eigenvalues in {0, 1}, then for any Presburger-definable set S ⊆ Zn, the set θ∗(S) is

Presburger-definable.

Proof The proof is identical to the first part of the proof of Theorem 8.43. 2

8.3.6 Algorithms

The necessary and sufficient conditions given in Sections 8.3.4 and 8.3.5 are not easy

to use in practice. Indeed, they are defined in terms of eigenvalues and of Jordan

blocks, which can in general only be computed up to a limited accuracy. In this

section, we give an algorithm for determining whether a given linear transformation

with integer coefficients satisfies the necessary and sufficient conditions expressed

by Theorem 8.40. This decision procedure is only based on integer arithmetic.

An algorithm is also given for computing a finite-state representation of the set

θ∗(S) given a representation of the set of vector values S ⊆ Zn and a guardless

linear operation θ that satisfies the necessary and sufficient conditions for preserving

definability.

Let r, n ∈ N0 with r > 1, and θ be the guardless linear operation ~x := A~x +~b

with A ∈ Zn×n and ~b ∈ Zn. The first problem consists of checking whether θ∗(S) is
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r-definable for every r-definable set S ⊆ Zn. In addition, if the answer is positive,

we would like to compute m ∈ N and p ∈ N0 such that Ap is diagonalizable and

has all its eigenvalues in {0, rm}.

First, we check whether the eigenvalues of A satisfy the conditions required by

Theorem 8.40. We know that those eigenvalues are the roots of the characteristic

polynomial Π1(x) of A. Since this polynomial has integer coefficients, the product

a of all its roots can easily be computed, as the ratio of its nonzero coefficients of

lowest and of highest degree (this implies a ∈ Q). According to Theorem 8.40, all

the roots of Π1(x) must be of the same magnitude, and this magnitude must be

equal to some rational power of r. Therefore, if |a| is not a rational power of r, then

θ does not preserve the r-definable nature of sets of vector values.

Let us now assume that |a| = r(u/v), with u ∈ Z, v ∈ N0 and gcd(u, v) = 1.

The eigenvalues of A satisfy the conditions expressed by Theorem 8.40 if and only

if every nonzero root of Π1(x) has the magnitude |a|(1/n
′), where n′ is the difference

between the highest and the lowest degrees of the nonzero coefficients of Π1(x). If

n′ = 0, then zero is the only root of Π1(x) and the condition is trivially satisfied.

If n′ > 0, then let z = (n′v)/ gcd(n′v, u) and y = (zu)/(n′v). Every eigenvalue of

Az that is different from zero must have the magnitude ry. Therefore, each root

of the characteristic polynomial Π2(x) of Az must be either equal to zero or of

magnitude ry. Hence, if k ∈ N is the greatest integer such that Π2(x) is divisible

by the polynomial xk, then all the roots of the polynomial Π3(x) = Π′
2(r

yx), where

Π′
2(x) = Π2(x)/x

k, must be complex roots of 1.

The problem consisting of checking whether the eigenvalues of A satisfy the

conditions expressed by Theorem 8.40 has thus been reduced to checking whether

all the roots of Π3(x) are complex roots of 1. This is the case if and only if there

exists l ∈ N0 such that Π3(x) divides xl − 1. Since the polynomial Π3(x) has

integer coefficients, such an integer l exists if and only if Π3(x) is a product of

cyclotomic polynomials. Checking this by trying successively to divide Π3(x) by

Φ1(x),Φ2(x),Φ3(x), . . . introduces two difficulties. First, given an integer i ∈ N0,

computing the coefficients of Φi(x) is tedious. One must therefore find a way of

testing the divisibility of Π3(x) by Φi(x) without computing explicitly Φi(x). Second,

one must find an upper bound on the indices i of the Φi(x) that have to be considered.

The first problem is solved by the following theorem.

Theorem 8.45 Let i ∈ N0 and Π(x) be a polynomial with integer coefficients such

that for every 0 < j < i, Π(x) is not divisible by the cyclotomic polynomial Φj(x).

The polynomial Π(x) is divisible by Φi(x) if and only if the degree of the polynomial

gcd(xi − 1,Π(x)) is at least equal to 1.

Proof We have xi−1 = Φi(x)Φj1(x) · · ·Φjq(x), where each jk is such that 0 < jk < i.

Since the factorization of xi − 1 into cyclotomic polynomials is unique, the result is

immediate. 2
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As a consequence of this theorem, trying successively to divide Π3(x) by Φ1(x),

Φ2(x),Φ3(x), . . . can be done by dividing successively Π3(x) by its common factors

with x− 1, x2 − 1, x3 − 1, . . .. The conditions on the eigenvalues of A are satisfied if

and only if one eventually obtains a polynomial of degree 0.

It remain to give an upper bound on the indices i of the cyclotomic polynomials

Φi(x) that can potentially divide Π3(x). Intuitively, the idea is that it is useless to

consider the Φi(x) whose degree is greater than the one of Π3. We have the following

theorem.

Theorem 8.46 For every integer k ∈ N0 and for every degree d ∈ N such that

k > 210
(
d
48

)log10 11
, we have degree(Φk(x)) > d.

Proof It is known [IR90] that degree(Φk(x)) = φ(k), where φ is the Euler function,

defined as

φ(k) = k

(

1 −
1

p1

)(

1 −
1

p2

)

· · ·

(

1 −
1

pq

)

,

where p1, p2, . . . , pq are the (distinct) prime factors of k.

Assume first that q ≥ 5, i.e., that k has at least five distinct prime factors. We

have p1 ≥ 2, p2 ≥ 3, p3 ≥ 5, p4 ≥ 7, as well as pi ≥ 11 for all i ≥ 5. These

inequalities imply
(

1 −
1

p1

)(

1 −
1

p2

)(

1 −
1

p3

)(

1 −
1

p4

)

≥
(

1 −
1

2

)(

1 −
1

3

)(

1 −
1

5

)(

1 −
1

7

)

(8.1)

and (

1 −
1

p5

)(

1 −
1

p6

)

· · ·

(

1 −
1

pq

)

≥
(

1 −
1

11

)(q−4)

. (8.2)

Moreover, since k ≥ p1 · · · pq, we have k ≥ 2.3.5.7.11(q−4), and hence q − 4 ≤

log11(k/210). Replacing into Equation (8.2), we obtain

(

1 −
1

p5

)(

1 −
1

p6

)

· · ·

(

1 −
1

pq

)

≥
(

1 −
1

11

)log11( k
210 )

. (8.3)

Introducing Equations (8.1) and (8.3) into the expression of φ(k), we obtain

φ(k) ≥ k
(

1 −
1

2

)(

1 −
1

3

)(

1 −
1

5

)(

1 −
1

7

)(

1 −
1

11

)log11( k
210)

.

Now, let us show that the previous inequality also holds if q < 5, i.e., if k does

not have more than four distinct prime factors. Let p′1 = 2, p′2 = 3, p′3 = 5 and

p′4 = 7. We have

φ(k) = k

(

1 −
1

p1

)

· · ·

(

1 −
1

pq

)
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≥ k

(

1 −
1

p′1

)

· · ·

(

1 −
1

p′q

)

= k
(

1 −
1

2

)(

1 −
1

3

)(

1 −
1

5

)(

1 −
1

7

)(

1 −
1

11

)log11( k
210 )

ϕ(k),

with

ϕ(k) =
1

(

1 −
1

p′q+1

)

· · ·

(

1 −
1

p′4

)(

1 −
1

11

)log11( k
210)

.

It is thus sufficient to show that ϕ(k) ≥ 1, i.e., that

(

1 −
1

p′q+1

)

· · ·

(

1 −
1

p′4

)

≤
(

1 −
1

11

)− log11( k
210 )

.

For every i ∈ {q + 1, . . . , 4}, we have

(

1 −
1

p′i

)

≤ 1 −
1

11
≤
(

1 −
1

11

)log11 p
′
i

,

which yields

(

1 −
1

p′q+1

)

· · ·

(

1 −
1

p′4

)

≤
(

1 −
1

11

)(log11 p
′
q+1+···+log11 p

′
4)

=
(

1 −
1

11

)log11(p′q+1···p
′
4)

.

Since k ≥ p′1 · · ·p
′
q and p′1 · · ·p

′
4 = 210, we have

p′q+1 · · · p
′
4 =

210

p′1 · · · p′q
≥

210

k
.

Therefore,

(

1 −
1

11

)log11(p′q+1···p
′
4)

≤
(

1 −
1

11

)log11( 210
k )

=
(

1 −
1

11

)− log11( k
210)

and hence ϕ(k) ≥ 1.

In summary, we have for every k ∈ N0

φ(k) ≥ k
(

1 −
1

2

)(

1 −
1

3

)(

1 −
1

5

)(

1 −
1

7

)(

1 −
1

11

)log11( k
210)

.
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This yields

φ(k) ≥
8k

35
e(log11(10)−1) loge

k
210

=
8k

35

(

k

210

)log11(10)−1

= 48

(

k

210

)log11 10

.

If k is such that k > 210
(
d
48

)log10 11
, then this last expression implies φ(k) > d. 2

Remark that the same reasoning can be followed so as to obtain a better bound

(up to an arbitrary amount of accuracy), by considering a greater number of prime

factors in the expansion of φ(k). The choice of expanding only the first five prime

factors was motivated by an explicit computation of the first few hundred cyclotomic

polynomials, which demonstrated that the bound expressed by Theorem 8.46 is

nearly optimal for these polynomials.

It remains to check whether the sizes of the Jordan blocks of A satisfy the condi-

tions required by Theorem 8.40. We assume that the conditions on the eigenvalues

of A are satisfied. Let i1, i2, . . . , iq (q ∈ N) be all the integers i such that Π3(x) has

common factors with xi − 1. The least common multiple l of i1, i2, . . . , iq is such

that the l-th power of every root of Π3(x) is exactly equal to 1. This means that all

the nonzero eigenvalues of Azl are equal to ryl. Let

l′ =

{

l if zl ≥ n or Π2(x) = Π′
2(x),

l⌈n/(zl)⌉ if zl < n and Π2(x) 6= Π′
2(x),

and let m = yl′, p = zl′. All the eigenvalues of Ap belong to {0, rm}. If Ap has

the eigenvalue 0, then the definition of l′ yields p ≥ n, which implies that the

Jordan blocks of Ap associated to the eigenvalue 0 are only composed of zeroes. The

condition on the size of the Jordan blocks of A will thus be satisfied if and only if

Ap is diagonalizable. This can be checked thanks to the following result.

Theorem 8.47 A square matrix is diagonalizable if and only if its minimal poly-

nomial has only simple roots.

Proof A proof of this well-known result can be found in [Bod59] or [Fra68]. 2

In the present case, we know that the minimal polynomial of Ap has to be either

0, x, x− rm or x(x− rm), depending on the eigenvalues of A. This can be checked

explicitly.

An algorithm formalizing the decision procedure that has just been developed is

given in Figures 8.8 and 8.9. (In this algorithm, the test performed at Line 11 can

easily be carried out by comparing the prime factors of a0, a1 and r.)
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function DEFINABLE-CLOSURE?(basis r, dimension n, integer matrix A) : {T,F}×N×N0

1: var Π1, Π2, Π : polynomials with integer coefficients;

2: d0, d1, a0, a1, a, u, v, n′, z, y, i, m, p, l : integers;

3: M : integer matrix;

4: begin

5: Π1(x) := characteristic polynomial of A;

6: d0 := lowest degree of the nonzero terms of Π1(x);

7: d1 := highest degree of the nonzero terms of Π1(x);

8: a0 := coefficient of Π1(x) with the degree d0;

9: a1 := coefficient of Π1(x) with the degree d1;

10: a := a0/a1;

11: if (r > 1 ∧ logr(|a|) 6∈ Q) ∨ (r = 1 ∧ |a| 6= 1) then return (F, 0, 0);

12: if r = 1 then (u, v) := (1, 1)

13: else let u/v := logr(|a|) such that u ∈ Z ∧ v ∈ N0 ∧ gcd(u, v) = 1;

14: n′ := d1 − d0;

15: if n′ = 0 then return (T, 0, n);

16: z := (n′v)/ gcd(n′v, u);

17: y := (zu)/(n′v);

18: Π2(x) := characteristic polynomial of Az ;

19: n′ := n;

20: while x divides Π2(x) do

21: begin

22: Π2(x) := Π2(x)/x;

23: n′ := n′ − 1

24: end;

25: Π3(x) := Π2(r
yx);

26: l := 1;

(. . . )

Figure 8.8: Decision procedure for the preservation of r-definability by the closure

of a guardless linear operation.
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(. . . )

27: for i := 1 to ⌊210(n′/48)log10 11⌋ do

28: begin

29: Π(x) := gcd(xi − 1, Π3(x));

30: if degree(Π(x)) > 0 then

31: begin

32: l := lcm(l, i);

33: while Π(x) divides Π3(x) do

34: Π3(x) := Π3(x)/Π(x)

35: end

36: end;

37: if degree(Π3(x)) > 0 then return (F, 0, 0);

38: if zl < n ∧ n′ < n then l := l⌈n/(zl)⌉;

39: (m, p) := (yl, zl);

40: M := In;

41: if n′ > 0 then M := (Ap − rmIn)M ;

42: if n′ < n then M := ApM ;

43: if Ap = (0) ∨ M = (0) then return (T, m, p);

44: return (F, 0, 0)

45: end.

Figure 8.9: Decision procedure for the preservation of r-definability by the closure

of a guardless linear operation (continued).
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function META-BASIS?(basis r, dimension n, linear operation ~x := A~x +~b) : {T,F}

1: var m, p : integers;

2: t : boolean;

3: begin

4: (t, m, p) := DEFINABLE-CLOSURE?(r, n, A);

5: return t

6: end.

Figure 8.10: Implementation of META? for guardless linear operations in a given

basis.

Theorem 8.48 Let r, n ∈ N0 and θ be the guardless linear operation ~x := A~x+~b

with A ∈ Zn×n and ~b ∈ Zn. The set θ∗(S) is r-definable for every r-definable set

S ⊆ Zn if and only if DEFINABLE-CLOSURE?(r, n, A) returns a triple of the form

(T, m, p), with m ∈ N and p ∈ N0. If this is the case, then m and p are such that

Ap is diagonalizable and has all its eigenvalues in {0, rm}.

Proof The algorithm in Figures 8.8 and 8.9 is a direct implementation of the com-

putation method discussed in this section. In Lines 41–42, the condition on the

minimal polynomial of Ap is checked by taking advantage of the facts that n′ > 0

if and only if Ap has the eigenvalue rm, and that n′ < n if and only if Ap has the

eigenvalue 0. 2

Theorem 8.49 Let n ∈ N0 and θ be the guardless linear operation ~x := A~x+~b with

A ∈ Zn×n and ~b ∈ Zn. The set θ∗(S) is Presburger-definable for every Presburger-

definable set S ⊆ Zn if and only if DEFINABLE-CLOSURE?(1, n, A) returns a

triple of the form (T, m, p), with m ∈ N and p ∈ N0. If this is the case, then p is

such that Ap is diagonalizable and has all its eigenvalues in {0, 1}.

Proof The result is a direct consequence of Theorems 8.42 and 8.48. 2

Algorithms implementing the predicate META? for guardless linear operations

with respect to sets of vector values representable in a given basis r > 1 or in any

basis are respectively given in Figures 8.10 and 8.11.

It remains to give an algorithm for computing the image of a definable set of

vector values S ⊆ Zn (n ∈ N) by the closure of a guardless linear operation ~x :=

A~x + ~b that satisfies META?. An expression of this image in terms of S and of

operations preserving the definable nature of sets has already been obtained in the

proof of Theorem 8.43. Algorithms based on that result are given in Figures 8.12

and 8.13.
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function META-PRESBURGER?(dimension n, linear operation ~x := A~x +~b) : {T,F}

1: var m, p : integers;

2: t : boolean;

3: begin

4: (t, m, p) := DEFINABLE-CLOSURE?(1, n, A);

5: return t

6: end.

Figure 8.11: Implementation of META? for guardless linear operations in any basis.

function APPLY-STAR-GUARDLESS-BASIS(basis r, dimension n, NDD A,

linear operation ~x := A~x +~b) : NDD

1: var m, p : integers;

2: ~b′ : integer vector;

3: A′ : NDD;

4: begin

5: (T, m, p) := DEFINABLE-CLOSURE?(r, n, A);

6: ~b′ :=
∑

0≤i<p

Ai~b;

7: if m = 0 then

8: A′ := NDD
(

SET(A) ∪ {~y ∈ Zn | (∃k ∈ N, ~x ∈ SET(A))(~y = Ap~x

+kAp~b′ +~b′)}
)

9: else

10: A′ := NDD
(

SET(A) ∪ (1/(rm − 1))
[

expand
(

(rm − 1)Ap SET(A)

+Ap~b′, rm
)

− Ap~b′
]

+~b′
)

;

11: return NDD




⋃

0≤k<p



Ak SET(A′) +
∑

0≤i<k

Ai~b









12: end.

Figure 8.12: Image of an NDD by the closure of a guardless linear operation in a

given basis.
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function APPLY-STAR-GUARDLESS-PRESBURGER(dimension n, NDD A,

linear operation ~x := A~x +~b) : NDD

1: var p : integer;

2: ~b′ : integer vector;

3: A′ : NDD;

4: begin

5: (T, 0, p) := DEFINABLE-CLOSURE?(1, n, A);

6: ~b′ :=
∑

0≤i<p

Ai~b;

7: A′ := NDD
(

SET(A) ∪ {~y ∈ Zn | (∃k ∈ N, ~x ∈ SET(A))

(~y = Ap~x + kAp~b +~b′)}
)

;

8: return NDD




⋃

0≤k<p



Ak SET(A′) +
∑

0≤i<k

Ai~b









9: end.

Figure 8.13: Image of an NDD by the closure of a guardless linear operation in any

basis.

Theorem 8.50 Let r, n ∈ N0 with r > 1 and θ be the guardless linear operation

~x := A~x+~b, with A ∈ Zn×n and ~b ∈ Zn, such that META-BASIS?(r, n, θ) = T. If

A is an NDD representing the set of vector values S ⊆ Zn in basis r, then APPLY-

STAR-GUARDLESS-BASIS(r, n,A, θ) is an NDD representing the set θ∗(S) in basis

r.

Proof The algorithm in Figure 8.12 is a direct implementation of the computation

performed in the proof of Theorem 8.43. 2

Theorem 8.51 Let n ∈ N0 and θ be the guardless linear operation ~x := A~x +~b,

with A ∈ Zn×n and ~b ∈ Zn, such that META-PRESBURGER?(n, θ) = T. If A is

an NDD representing the Presburger-definable set of vector values S ⊆ Zn in some

basis r > 1, then APPLY-STAR-GUARDLESS-PRESBURGER(n,A, θ) is an NDD

representing the Presburger-definable set θ∗(S) in basis r.

Proof The algorithm in Figure 8.13 is a direct implementation of the computation

performed in the proof of Theorem 8.43. 2

8.3.7 Linear Operations with Guard

The problem addressed here consists of checking whether a linear operation θ =

(P~x ≤ ~q → ~x := A~x + ~b), where n,m ∈ N, P ∈ Zm×n, ~q ∈ Zm, A ∈ Zn×n and
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~b ∈ Zn, is such that θ∗(S) is definable for every definable set of vector values S ⊆ Zn.

In addition, we would like to compute an NDD representing θ∗(S) from an NDD

representing S.

We do not provide a general solution to this problem. Instead, we show that

the results developed in Sections 8.3.4, 8.3.5 and 8.3.6 can be adapted with little

difficulty to linear operations with guards, in the form of a sufficient condition for

the preservation of definability by the closure of a linear operation.

Precisely, the sufficient condition is a consequence of a remarkable property: if

θ is such that its underlying guardless operation ~x := A~x+~b satisfies the necessary

and sufficient conditions expressed by Theorem 8.40, then for every definable set

S ⊆ Zn, the set θ∗(S) is definable. Moreover, an NDD representing θ∗(S) can be

computed from an NDD representing S. Formally, we have the following result.

Theorem 8.52 Let n ∈ N, r ∈ N with r > 1, m ∈ N, and θ = (~x := P~x ≤ ~q →

A~x+~b) with P ∈ Zm×n, q ∈ Zm, A ∈ Zn×n and ~b ∈ Zn. If there exists p ∈ N0 such

that Ap is diagonalizable, has at most one nonzero eigenvalue λ, and λ (if any) is an

integer power of r, then for any r-definable set S ⊆ Zn, the set θ∗(S) is r-definable.

Proof Suppose that there exists a suitable p. Let S ⊆ Zn be a r-definable set, θ′ be

the guardless linear operation (~x := A~x+~b), and V = {~x ∈ Zn | P~x ≤ ~q}. We have

θ∗(S) = {(θ′)k(~x) | ~x ∈ S ∧ k ∈ N ∧
∧

0≤i<k

(θ′)i(~x) ∈ V }

= {(θ′)pk+j(~x) | ~x ∈ S ∧ k ∈ N ∧ 0 ≤ j < p

∧
∧

0≤i<j

[(θ′)i(~x) ∈ V ] ∧
∧

0≤i<k

∧

0≤l<p

[(θ′)l((θ′)pi+j(~x)) ∈ V ]}.

Let

V ′ = {~x ∈ Zn|
∧

0≤l<p

[(θ′)l(~x) ∈ V ]}.

The expression of θ∗(S) becomes

θ∗(S) = {(θ′)pk+j(~x) | ~x ∈ S ∧ k ∈ N ∧ 0 ≤ j < p

∧
∧

0≤i<j

[(θ′)i(~x) ∈ V ] ∧
∧

0≤i<k

[(θ′)pi+j(~x) ∈ V ′]}

=
⋃

0≤j<p

Sj,

with for every j ∈ {0, 1, . . . , p− 1},

Sj = {(θ′)pk+j(~x) | ~x ∈ S ∧ k ∈ N ∧
∧

0≤i<j

[(θ′)i(~x) ∈ V ] ∧
∧

0≤i<k

[(θ′)pi+j(~x) ∈ V ′]}.

Let us define

Uj = {~x ∈ Zn|(∃~x ′ ∈ S)(~x = (θ′)j(~x ′) ∧
∧

0≤i<j

[(θ′)i(~x ′) ∈ V ])}.
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We obtain

Sj = {(θ′)pk(~x) | k ∈ N ∧ ~x ∈ Uj ∧
∧

0≤i<k

[(θ′)pi(~x) ∈ V ′]}.

By construction, V ′ is a convex set. Moreover, it follows from the algorithm in

Figure 8.12 that all the the vectors belonging to {(θ′)pi(~x), (θ′)p(i+1)(~x), . . .} are

colinear. It follows that for any k > 1, the condition

∧

0≤i<k

[(θ′)pi(~x) ∈ V ′]

is equivalent to

~x ∈ V ′ ∧ (θ′)p(~x) ∈ V ′ ∧ (θ′)(k−1)p(~x) ∈ V ′.

Therefore, we have

Sj = Uj ∪ {(θ′)p(~x) | ~x ∈ Uj ∩ V ′}

∪ {(θ′)pk(~x) | k ∈ N ∧ k ≥ 2 ∧ ~x ∈ Uj ∩ V
′

∧ (θ′)p(~x) ∈ V ′ ∧ (θ′)p(k−1)(~x) ∈ V ′}

= (θ′)p(Uj ∩ V ′) ∪ (θ′)p((θ′)p([(θ′)p]∗(Uj ∩ V ′ ∩ V ′′)) ∩ V ′),

with V ′′ = {~x ∈ Zn | (θ′)p(~x) ∈ V ′}. Since V ′, V ′′ and every Uj are Presburger-

definable (and thus r-definable), every Sj is r-definable. It follows that θ∗(S) is

r-definable as well. 2

Unfortunately, the reciprocal of Theorem 8.52 is not true. Indeed, there are

guarded linear operations that preserve the r-definable nature of sets of vector val-

ues, but whose underlying guardless operator does not. The conditions expressed by

Theorem 8.52 are thus sufficient, but not necessary. Obtaining necessary and suffi-

cient conditions over guarded linear operations that preserve the r-definable nature

of sets of vector values seems to be a very difficult problem4.

A result similar to Theorem 8.52 holds for Presburger-definable sets.

Theorem 8.53 Let n ∈ N, m ∈ N, and θ = (~x := P~x ≤ ~q → A~x + ~b), with

P ∈ Zm×n, q ∈ Zm, A ∈ Zn×n and ~b ∈ Zn. If there exists p ∈ N0 such that Ap

is diagonalizable, has at most one nonzero eigenvalue λ, and λ = 1, then for any

Presburger-definable set S ⊆ Zn, the set θ∗(S) is Presburger-definable.

4Intuitively, the difficulty originates from the fact that, if a linear operation θ does not satisfy

the hypotheses of Theorem 8.52, then the trajectory {θk(~v) | k ∈ N} of an individual vector

value ~v ∈ Zn to which θ is repeatedly applied is in general non-linear. This makes a manageable

description of θ∗(S), for a subset S of Zn, much more difficult to obtain.
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Identical to the proof of Theorem 8.52. 2

As a consequence of the two previous theorems, the implementations of the

predicate META? for guarded linear operations with respect to a given basis or to

any basis are identical to those developed for guardless linear operations. The two

algorithms have been given in Figures 8.10 and 8.11.

It remains to give an algorithm for computing the image of a definable set of

vector values S ⊆ Zn (n ∈ N) by the closure of a guarded linear operation (P~x ≤

~q → ~x := A~x +~b) that satisfies META?. An expression of this image in terms of

S and of operations preserving the definable nature of sets is given in the proof of

Theorem 8.52. Algorithms based on that result are given in Figures 8.14 and 8.15.

Theorem 8.54 Let r, n ∈ N0 with r > 1, and θ be the linear operation (P~x ≤ ~q →

~x := A~x +~b), with m ∈ N, P ∈ Zm×n, q ∈ Zm, A ∈ Zn×n and ~b ∈ Zn such that

META-BASIS?(r, n, θ) = T. If A is an NDD representing the set of vector values

S ⊆ Zn in basis r, then APPLY-STAR-BASIS(r, n,A, θ) is an NDD representing

the set θ∗(S) in basis r.

Proof The algorithm in Figure 8.14 is a direct implementation of the computation

performed in the proof of Theorem 8.52. 2

Theorem 8.55 Let n ∈ N0 and θ be the linear operation (P~x ≤ ~q → ~x :=

A~x + ~b), with m ∈ N, P ∈ Zm×n, q ∈ Zm, A ∈ Zn×n and ~b ∈ Zn such that

META-PRESBURGER?(n, θ) = T. If A is an NDD representing the Presburger-

definable set of vector values S ⊆ Zn in some basis r > 1, then APPLY-STAR-

PRESBURGER(n,A, θ) is an NDD representing the Presburger-definable set θ∗(S)

in basis r.

Proof The algorithm in Figure 8.15 is a direct implementation of the computation

performed in the proof of Theorem 8.52. 2

8.3.8 Proofs of Auxiliary Results

This section contains the proofs that were omitted from Sections 8.3.3 and 8.3.4 for

clarity. They are presented according to their order of appearance in the main text.

Theorem 8.23 Let n, r ∈ N0 with r > 1. A set S ⊆ Zn is r-definable if and only

if it is r-recognizable.

Proof

• If S is r-definable, then S is r-recognizable. If S is r-definable, then there exist

m ∈ N0, S
′ ⊆ Zm and U ∈ Cn×m such that S ′ is r-recognizable and S = US ′.

Let B ⊂ Zm be a finite generator of S ′, i.e., a finite subset of S ′ such that
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function APPLY-STAR-BASIS(basis r, dimension n, NDD A,

linear operation (P~x ≤ ~q → ~x := A~x +~b)) : NDD

1: var m, p, j : integers;

2: θ′ : guardless linear operation;

3: A′,A′′,A1,A2,A3,A4 : NDDs;

4: begin

5: (T, m, p) := DEFINABLE-CLOSURE?(r, n, A);

6: θ′ := (~x := A~x +~b);

7: A1 := NDD({~x ∈ Zn | P~x ≤ ~q });

8: A2 := NDD({~x ∈ Zn |
∧

0≤l<p

P (θ′)l(~x) ≤ ~q });

9: A3 := NDD({~x ∈ Zn |
∧

0≤l<p

P (θ′)l+p(~x) ≤ ~q });

10: A′ := NDD(∅);

11: for j := 0 to p − 1 do

12: begin

13: A4 := NDD

(

{~x ∈ Zn | (∃~x ′ ∈ SET(A))(~x = (θ′)j(~x ′)

∧
∧

0≤i<j

[(θ′)i(~x ′) ∈ SET(A1)])}

)

;

14: A′ := A′ ∪ A4 ∪ NDD((θ′)p(SET(A4) ∩ SET(A2)));

15: A′′ := APPLY-STAR-GUARDLESS-BASIS?(r, n,

A2 ∩ A3 ∩ A4, A
p,
∑

0≤k<p

Ak~b);

16: A′ := A′ ∪ NDD((θ′)p((θ′)p(SET(A′′)) ∩ SET(A2)))

17: end;

18: return A′

19: end.

Figure 8.14: Image of an NDD by the closure of a linear operation in a given basis.
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function APPLY-STAR-PRESBURGER(dimension n, NDD A,

hfill linear operation (P~x ≤ ~q → ~x := A~x +~b)) : NDD

1: var p, j : integers;

2: θ′ : guardless linear operation;

3: A′,A′′,A1,A2,A3,A4 : NDD;

4: begin

5: (T, 0, p) := DEFINABLE-CLOSURE?(n, A);

6: θ′ := (~x := A~x +~b);

7: A1 := NDD({~x ∈ Zn | P~x ≤ ~q });

8: A2 := NDD({~x ∈ Zn |
∧

0≤l<p

P (θ′)l(~x) ≤ ~q });

9: A3 := NDD({~x ∈ Zn |
∧

0≤l<p

P (θ′)l+p(~x) ≤ ~q });

10: A′ := NDD(∅);

11: for j := 0 to p − 1 do

12: begin

13: A4 := NDD

(

{~x ∈ Zn | (∃~x ′ ∈ SET(A))(~x = (θ′)j(~x ′)

∧
∧

0≤i<j

[(θ′)i(~x ′) ∈ SET(A1)])}

)

;

14: A′ := A′ ∪ A4 ∪ NDD((θ′)p(SET(A4) ∩ SET(A2)));

15: A′′ := APPLY-STAR-GUARDLESS-PRESBURGER(n,

A2 ∩ A3 ∩ A4, A
p,
∑

0≤k<p

Ak~b);

16: A′ := A′ ∪ NDD((θ′)p((θ′)p(SET(A′′)) ∩ SET(A2)))

17: end;

18: return A′

19: end.

Figure 8.15: Image of an NDD by the closure of a linear operation in any basis.
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each vector value in S ′ is a linear combination of vector values in B. There

exists a ∈ N0 such that every vector value in S ′ is a linear combination with

integer coefficients of vector values in (1/a)B. Let p be the number of vector

values in B, and T ∈ Qm×p be a matrix such that col(T ) = (1/a)B. Since S ′

is r-recognizable, the set

S ′′ = {~x ∈ Zp | T~x ∈ S ′}

is r-recognizable as well. We have S ′ = TS ′′, hence S = (UT )S ′′. Every

column ~c of T belongs to (1/a)S ′, and thus is such that U~c belongs to (1/a)S.

It follows that UT ∈ Qn×p, and therefore the equation S = (UT )S ′′ leads

to a definition of S in the first-order theory 〈Z,≤,+, Vr〉 (recall that S ′′ is

r-recognizable). It follows that S is r-recognizable.

• If S is r-recognizable, then S is r-definable. Let U = In and S ′ = S. We have

S = US ′, where S ′ is a r-recognizable subset of Zn, hence S is r-definable.

2

Before proving Theorem 8.24, we introduce the following lemma.

Lemma 8.56 Let r ∈ N with r > 1, n,m1, m2 ∈ N0, U1 ∈ Cn×m1, and U2 ∈

Cn×m2. The set {[

~x1

~x2

]

∈ Zm1+m2 | U1~x1 = U2~x2

}

is r-definable.

Proof It is sufficient to prove that for any m ∈ N0 and ~u ∈ Cm, the set S of all the

vector values ~x ∈ Zm satisfying ~u · ~x = 0 is Presburger-definable. Indeed, applying

this result to m = m1 +m2 and

~u =

[

~u1

−~u2

]

,

where ~u1 and ~u2 are lines at the same position in U1 and in U2, shows that the set

of all the vector values [

~x1

~x2

]

∈ Zm1+m2

such that ~u1 · ~x1 = ~u2 · ~x2 is Presburger-definable. The intersection of the sets

obtained for each pair of matching lines in U1 and U2 is thus Presburger-definable,

and therefore r-definable.

It remains to prove that the set S of all the solutions in Zm of ~u · ~x = 0 is

Presburger-definable. This set is an additive subgroup of Rm. An additive subgroup

of Rm is finitely generable if and only if it is discrete (Theorem 6.1 in [ST79]). Since
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S ⊆ Zm, S is discrete and thus finitely generable. Let ~v1, ~v2, . . . , ~vp be the generators

of S. We have

S = {a1~v1 + · · ·+ ap~vp | a1, . . . , ap ∈ Z}.

This expression can be rewritten as

S = {~x ∈ Zm | (∃a1, . . . , ap ∈ Z)(~x = a1~v1 + · · ·+ ap~vp)},

which is a formula of Presburger arithmetic defining S. 2

Theorem 8.24 Let r ∈ N with r > 1, n1, n2 ∈ N0, S1 ⊆ Cn1, S2 ⊆ Cn2 such that

S1 and S2 are r-definable, ~v ∈ Cn1, p, q ∈ N0, and T ∈ Cp×n1. The following sets

are r-definable:

• Any finite subset of Cn1,

• S1 + ~v,

• TS1,

• S1 ∪ S2, provided that n1 = n2,

• S1 ∩ S2, provided that n1 = n2,

• S1 × S2,

•













~x

ℜ(~x)

ℑ(~x)






| ~x ∈ S1







,

• expand(S1, r
q) = {rqk~x | ~x ∈ S1 ∧ k ∈ N}.

Proof

• Any finite subset of Cn1 is r-definable. Let S1 = {~v1, ~v2, . . . , ~vm}. Defining

U = [~v1; . . . ;~vm] and S ′ = {~e1, ~e2, . . . , ~en}, we obtain S1 = US ′, where S ′ ⊆ Zn

is r-definable. It follows that S1 is r-definable.

• S1 + ~v is r-definable. There exist m ∈ N0, U ∈ Cn×m and S ′ ⊆ Zm such that

S ′ is r-definable and S1 = US ′. Since S1 +~v = [U ;~v] (S ′ ×{1}), the set S1 +~v

is r-definable.

• TS1 is r-definable. There exist m ∈ N0, U ∈ Cn×m and S ′ ⊆ Zm such that S ′

is r-definable and S1 = US ′. Since TS1 = (TU)S ′, the set TS1 is r-definable.

• S1 ∪ S2 is r-definable. There exist m1, m2 ∈ N0, U1 ∈ Cn×m1 , U2 ∈ Cn×m2 ,

S ′
1 ⊆ Zm1 and S ′

2 ⊆ Zm2 such that S ′
1 and S ′

2 are r-definable, S1 = U1S
′
1, and

S2 = U2S
′
2. Since S1 ∪ S2 = [U1;U2] ((S

′
1 × (0)m2) ∪ ((0)m1 × S ′

2)), the set

S1 ∪ S2 is r-definable.
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• S1 ∩ S2 is r-definable. There exist m1, m2 ∈ N0, U1 ∈ Cn×m1 , U2 ∈ Cn×m2 ,

S ′
1 ⊆ Zm1 and S ′

2 ⊆ Zm2 such that S ′
1 and S ′

2 are r-definable, S1 = U1S
′
1, and

S2 = U2S
′
2. Let V ∈ Zm1+m2 be the set

V =

{[

~x1

~x2

]

∈ Zm1+m2 | U1~x1 = U2~x2

}

,

and S ′ be the set

S ′ = {~x1 ∈ Zn1 | ~x1 ∈ S ′
1 ∧ (∃~x2 ∈ S ′

2)(

[

~x1

~x2

]

∈ V )}.

According to Lemma 8.56, V is r-definable. It follows that the set S ′ is also

r-definable. Since S1 ∩ S2 = U1S
′, the set S1 ∩ S2 is r-definable.

• S1 × S2 is r-definable. There exist m1, m2 ∈ N0, U1 ∈ Cn×m1 , U2 ∈ Cn×m2 ,

S ′
1 ⊆ Zm1 and S ′

2 ⊆ Zm2 such that S ′
1 and S ′

2 are r-definable, S1 = U1S
′
1, and

S2 = U2S
′
2. Since S1×S2 = diag(U1, U2)(S

′
1×S

′
2), the set S1×S2 is r-definable.

•













~x

ℜ(~x)

ℑ(~x)






| ~x ∈ S1







is r-definable. There exist m ∈ N0, U ∈ Cn×m and

S ′ ⊆ Zm such that S ′ is r-definable and S1 = US ′. Since












~x

ℜ(~x)

ℑ(~x)






| ~x ∈ S1







=







U

ℜ(U)

ℑ(U)






S ′,

this set is r-definable.

• expand(S1, r
q) is r-definable. There exist m ∈ N0, U ∈ Cn×m and S ′ ⊆ Zm

such that S ′ is r-definable and S1 = US ′. Let L be the language of the shortest

synchronous encodings in basis r of the vector values in S ′, expressed over the

alphabet {0, . . . , r − 1}m. Since S ′ is r-definable, L is regular5. The language

L′ = L · ((0m)q)∗ is thus also regular. It follows that the set S ′′ ⊆ Zm encoded

by L′ is r-definable. Since this set obeys

S ′′ = {rqk~x | ~x ∈ S ′ ∧ k ∈ N},

we have US ′′ = expand(S1, r
q), from which it follows that expand(S1, r

q) is

r-definable.

5Indeed, this language is denoted by the expression

L = ES(r)(S) \
⋃

a∈{0,r−1}n

(a · a · Σ∗),

where Σ = {0, 1, . . . , r − 1}n.
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2

Theorem 8.25 Let r ∈ N with r > 1, and a, b, c ∈ Z with a 6= 0. The set

S = {ak2 + bk + c | k ∈ N}

is not r-definable.

Proof The proof is by contradiction. Suppose that the set S = {ak2 + bk + c |

k ∈ N} is r-definable. This implies that −S = {−x | x ∈ S} is r-definable as well.

Therefore, we may assume that a ≥ 1. Let P be the characteristic predicate of S:

P (y) ≡ (∃k ∈ N)(y = ak2 + bk + c).

Since S is r-definable, P is definable in 〈Z,≤,+, Vr〉. Let n ∈ N be greater than

−b/2a, and F (x, y) be the predicate

F (x, y) ≡ y = ax2 + bx+ c ∧ x ≥ n.

This predicate is definable in 〈Z,≤,+, Vr〉:

F (x, y) ≡ P (y) ∧ P (y + 2ax+ a+ b) ∧ x ≥ n

∧ (∀z)(¬P (z) ∨ z ≤ y ∨ z ≥ y + 2ax+ a+ b).

Indeed, f(x) = ax2 + bx + c is strictly increasing for x ≥ n, and the second line of

the expression of F (x, y) states that y and y+2ax+a+b are two consecutive values

f(z) and f(z + 1) of the function f . Resolving

{

y = az2 + bz + c

y + 2ax+ a + b = a(z + 1)2 + b(z + 1) + c

yields x = z, hence y = f(x). Now, let M(x, y, z) be the predicate

M(x, y, z) ≡ x ≥ 0 ∧ y ≥ 0 ∧ z = xy.

This predicate is definable in 〈Z,≤,+, Vr〉:

M(x, y, z) ≡ (∃z1, z2, z3, z4)(F (x+ y + n, z1)

∧F (x+ n, z2) ∧ F (y + n, z3) ∧ F (n, z4)

∧ 2az = z1 − z2 − z3 + z4).

(8.4)

Indeed,

z1 = a(x+ y + n)2 + b(x+ y + n) + c

z2 = a(x+ n)2 + b(x+ n) + c

z3 = a(y + n)2 + b(y + n) + c

z4 = an2 + bn + c
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implies z1 − z2 − z3 + z4 = 2axy. From Equation (8.4), it follows that the first-order

theory 〈N,+, .〉 is a subset of the theory 〈Z,≤,+, Vr〉. This is clearly a contradiction,

since the latter is decidable (as a consequence of Corollary 8.13) and the former is

not [Chu36]. 2

In order to prove Theorem 8.26, we need to establish the following result.

Theorem 8.57 Let r ∈ N with r > 1, and p, q ∈ Z with p 6= 0. The set

S =

{[

(pj + q)k

j

]

| j, k ∈ N

}

is not r-definable.

Proof The proof is by contradiction. Suppose that S is r-definable. Let P be the

characteristic predicate of S:

P (y, x) ≡ (∃k ∈ N)(y = k(px+ q)).

Since S is r-definable, P is definable in 〈Z,≤,+, Vr〉. The predicate D(y, x) over

Z2 which is true if and only if y is different from 0 and is divisible by px + q is

straightforwardly defined in terms of P :

D(y, x) ≡ y 6= 0 ∧ (P (y, x) ∨ P (−y, x))

For every x ∈ Z, we have gcd(px+ q, p(x+1)+ q) = gcd(p, px+ q) = gcd(p, q), from

which we deduce

lcm(px+ q, p(x+ 1) + q) =
1

gcd(p, q)
(px+ q)(p(x+ 1) + q).

If a number can be divided by two others, then it can be divided by their least

common multiple. Therefore, for every y verifying

D(y, x) ∧ D(y, x+ 1), (8.5)

there exists k ∈ Z such that

y =
k

gcd(p, q)
(px+ q)(p(x+ 1) + q).

Moreover, if we have x > |q/p|+ 1, then the integer y verifying Equation (8.5) that

has the smallest magnitude corresponds to k = 1. From this argument, it follows

that the predicate

Q(y, x) ≡ x >

∣
∣
∣
∣
∣

q

p

∣
∣
∣
∣
∣
+ 1 ∧ D(y, x) ∧ D(y, x+ 1) ∧

(∀z)(|z| ≥ |y| ∨ ¬D(z, x) ∨ ¬D(z, x+ 1)),
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which is definable in 〈Z,≤,+, Vr〉, is such that

Q(y, x) ≡ x >

∣
∣
∣
∣
∣

q

p

∣
∣
∣
∣
∣
+ 1 ∧ y =

1

gcd(p, q)
(px+ q)(p(x+ 1) + q).

Let l ∈ N be such that l > |q/p| + 1, and R(y) be the predicate

R(y) ≡ (∃x, z)(y = gcd(p, q).z ∧ x ≥ 0 ∧ Q(z, x + l)).

This predicate is definable in 〈Z,≤,+, Vr〉, and satisfies

R(y) ≡ (∃k)(k ≥ 0 ∧ y = (p(k + l) + q)(p(k + l + 1) + q)).

It follows that the set

{(p(k + l) + q)(p(k + l + 1) + q) | k ∈ N}

is r-definable, which contradicts Theorem 8.25. 2

Theorem 8.26 Let r, p ∈ N0 with r > 1, λ ∈ C such that λp = 1, and a, b, c, d ∈ C

with a 6∈ R \ Q. The set

S =

{

λk
[

(j + a)(k + b) + c

j + d

]

| j, k ∈ N

}

is not r-definable.

Proof Without loss of generality, we may assume that p is such that λi 6= 1 for

every i ∈ {1, 2, . . . , p − 1}. The proof is by contradiction. We suppose that S is

r-definable. Let us show that this assumption implies that the set

S0 =

{[

(j + a)(k + b) + c

j + d

]

| j,
k

p
∈ N

}

is also r-definable. We have

(∀j, k ∈ N, 0 ≤ k < p)((∃l ∈ N)(λk(j + d) = l + d ∧ l > ⌊2|d|⌋)

⇔ k = 0 ∧ j > ⌊2|d|⌋).

Indeed,

• λk(j + d) = l + d ∧ l > ⌊2|d|⌋ ⇒ |j + d| = |l + d| ∧ l > ⌊2|d|⌋

⇒ j = l ∧ l > ⌊2|d|⌋

⇒ λk(j + d) = j + d ∧ j > ⌊2|d|⌋

⇒ k = 0 ∧ j > ⌊2|d|⌋.
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• k = 0 ∧ j > ⌊2|d|⌋ ⇒ λk(j + d) = l + d ∧ j > ⌊2|d|⌋

⇒ j + d = l + d ∧ j > ⌊2|d|⌋

⇒ λk(j + d) = l + d ∧ l > ⌊2|d|⌋.

It follows that S0 = S01 ∪ S02, with

S01 =

{[

(j + a)(k + b) + c

j + d

]

| j ∈ N ∧ 0 ≤ j ≤ ⌊2|d|⌋ ∧
k

p
∈ N

}

and

S02 =
{[

(j + a)(k + b) + c

j + d

]

| j ∈ N ∧
k

p
∈ N

∧ (∃l ∈ N)(λk(j + d) = l + d ∧ l > ⌊2|d|⌋)
}

.

In order to prove that S0 is r-definable, we show that S01 and S02 are r-definable.

• S01 is r-definable. The set S01 is a finite union of sets of the form

S01j =

{[

(j + a)(k + b) + c

j + d

]

|
k

p
∈ N

}

,

with j ∈ N. Each of those sets is the image of the set {k | k
p
∈ N} by a linear

transformation, and is thus r-definable (Theorem 8.24).

• S02 is r-definable. We have

S02 =

{[

x1

x2

]

∈ S | (∃l ∈ N)(x2 = l + d ∧ l > ⌊2|d|⌋)

}

= S ∩ (π1(S) × {l + d | l ∈ N ∧ l > ⌊2|d|⌋}),

where π1(S) denotes the projection of S over the first vector component. By

Theorem 8.24, S02 is r-definable.

We have thus proved that S0 is r-definable. Applying Theorem 8.24, it follows that

the following sets are also r-definable:
{[

(j + a)(k + b) + c

j

]

| j,
k

p
∈ N

}

,

{[

(j + a)(k + b) − jb− ab

j

]

| j,
k

p
∈ N

}

,

{[

(j + a)k

j

]

| j,
k

p
∈ N

}

,

{[

(j + a)k

j

]

| j, k ∈ N

}

.

Let us show that the fact that the last set is r-definable leads to a contradiction.

There are two possible cases.
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• If a ∈ Q. Let q ∈ N be such that qa ∈ Z. The set

{[

(qj + qa)k

j

]

| j, k ∈ N

}

is r-definable, which contradicts Theorem 8.57.

• If a ∈ C \ R. Applying Theorem 8.24, the following sets are r-definable:












(j + a)k

ℑ((j + a)k)

j






| j, k ∈ N







=













(j + a)k

ℑ(a)k

j






| j, k ∈ N







,













(j + a)k

k

j






| j, k ∈ N







,

{[

jk

j

]

| j, k ∈ N

}

.

The fact that the last set is r-definable contradicts Theorem 8.57. 2

In order to be able to prove Theorem 8.27, we need an additional lemma.

Lemma 8.58 Let n, r ∈ N0 with r > 1, S ⊆ Zn be r-definable, and ~u ∈ Cn. If

{~u · ~x | ~x ∈ S} is infinite, then there exist ~y1, ~y2 ∈ Qn and m ∈ N0 such that

{~y1 + rmk~y2 | k ∈ N} ⊆ S and ~u · ~y2 6= 0.

Proof First, S must be infinite. Since it is r-definable, the language L of the shortest

synchronous encodings of its elements in basis r is regular6. Hence, there exists a

finite-state automaton A accepting L. Let |A| denote the number of states of A.

Every word w ∈ L such that |w| ≥ |A| must be accepted by a path of A that

contains at least one cycle, which can be suppressed or further repeated. One can

thus decompose w into w1 · w2 · w3, with |w2| > 0 and w1 · w
k
2 · w3 ∈ L for every

k ∈ N. The language w1 · w
k
2 · w3 encodes a subset S ′ of S satisfying

S ′ = {~x1 +
∑

0≤i<k

rmi~x2 + rmk~x3 | k ∈ N},

with m = |w2| ∈ N0, ~x1, ~x2, ~x3 ∈ Zn, and ~x2 6= ~0. Indeed, ~x1 is the vector encoded

by 0n · w3, ~x2 is the vector encoded by 0n · w2 multiplied by r|w3|, and ~x3 is the

6Indeed, this language is denoted by the expression

L = ES(r)(S) \
⋃

a∈{0,r−1}n

(a · a · Σ∗),

where Σ = {0, 1, . . . , r − 1}n.
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vector encoded by w1 multiplied by r|w3|. By defining ~y1 = ~x1 − (1/(rm− 1))~x2 and

~y2 = (1/(rm − 1))~x2 + ~x3, we obtain

S ′ = {~y1 + rmk~y2 | k ∈ N},

with ~y1, ~y2 ∈ Qn and ~y2 6= ~0. It remains to prove that it is always possible to

choose w ∈ L such that the corresponding ~y2 verifies ~u · ~y2 6= 0. The proof is by

contradiction. Suppose that for every w ∈ L such that |w| ≥ |A|, we obtain ~u·~y2 = 0.

By removing an occurrence of the cycle labeled by w2 from a path of A accepting

w, we obtain w′ = w1 · w3 ∈ L. Let ~x and ~x ′ be the elements of S respectively

encoded by w and w′. We have ~x = ~y1 + rm~y2 and ~x ′ = ~y1 + ~y2, and therefore

~u · ~x = ~u · ~x ′. One can thus repeat the same operation so as to remove successively

all the occurrences of cycles in w, finally obtaining w′′ such that |w′′| < |A|. The

word w′′ encodes ~x ′′ ∈ S, with ~u · ~x = ~u · ~x ′′. Since there is only a finite set of w′′

such that |w′′| < |A|, the set {~u ·~x | ~x ∈ S} is finite, which contradicts an hypothesis

of the lemma. 2

Theorem 8.27 Let r ∈ N with r > 1, λ ∈ C such that there do not exist p ∈ N0

and m ∈ N such that λp = rm. The set

S = {λk | k ∈ N}

is not r-definable.

Proof The proof is by contradiction. Suppose that S is r-definable. There are two

possible cases.

• If S is finite. Then, there exist k1, k2 ∈ N such that k1 < k2 and λk1 = λk2.

Choosing p = k2 − k1 and m = 0 leads to a contradiction.

• If S is infinite. Since S is r-definable, there exist n ∈ N0, ~u ∈ Cn and a

r-definable set S ′ ⊆ Zn such that S = {~u · ~x | ~x ∈ S ′}. By Lemma 8.58, there

exist ~y1, ~y2 ∈ Cn and m ∈ N0 such that

{~y1 + rmk~y2 | k ∈ N} ⊆ S ′,

and ~u · ~y2 6= 0. Let S ′′ denote the set {~y1 + rmk~y2 | k ∈ N}. Since S ′′ ⊆ S ′, we

have

{~u · ~x | ~x ∈ S ′′} ⊆ {λk | k ∈ N}.

Let g = ~u · ~y2 and h = ~u · ~y1. We have

{grmk + h | k ∈ N} ⊆ {λk | k ∈ N},
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with g 6= 0. Since the left-hand side of this equation is an unbounded set, it

follows that |λ| > 1. We have

lim
k→∞

grm(k+1) + h

grmk + h
= rm,

which gives

(∀ε ∈ R+
0 )(∃k ∈ N)

(∣
∣
∣
∣
∣

grm(k+1) + h

grmk + h
− rm

∣
∣
∣
∣
∣
< ε

)

.

There must exist p1, p2 ∈ N with p1 < p2 such that grmk + h = λp1 and

grm(k+1) + h = λp2 . Therefore, by choosing p = p2 − p1,

(∀ε ∈ R+
0 )(∃p ∈ N)(|λp − rm| < ε),

where R+
0 denotes the set of strictly positive real numbers. Since there can

only be a finite number of integers p ∈ N such that |λp − rm| < 1, taking

ε = 1/2k, k = 1, 2, . . . eventually leads to

λp = rm

for some p ∈ N. This contradicts an hypothesis of the theorem.

2

Before proving Theorem 8.28, we need to establish two auxiliary results.

Lemma 8.59 Let u, v ∈ R with u > 1, p, q ∈ N0 with p > 1, and Π(x) be a

polynomial of degree greater than zero with its coefficients in R. We have

{(upk + v)q | k ∈ N} 6⊆ {uk
′

Π(k′) | k′ ∈ N}.

Proof The proof is by contradiction. Suppose that we have

{(upk + v)q | k ∈ N} ⊆ {uk
′

Π(k′) | k′ ∈ N}.

This is equivalent to

(∀k ∈ N)(∃k′ ∈ N)((upk + v)q = uk
′

Π(k′)). (8.6)

For sufficiently large values of k, the left-hand side of this equation is strictly in-

creasing with respect to k. Since Π is a polynomial, that implies that there exists

m > 0 such that

(∀l2 > l1 > m)(Π(l2) > Π(l1) > 0).
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Let z = max
0≤x≤m

uxΠ(x), and n > 0 be such that (∀k ≥ n)((upk + v)q > z). Equa-

tion (8.6) associates a unique k′ ∈ N to every k ∈ N such that k ≥ n. This k′

satisfies k′ = l(k), where l is a function R → R verifying

(∀x ∈ R, x ≥ n)((upx + v)q = ul(x)Π(l(x))). (8.7)

From this equation, we obtain for x ≥ n

d

dx
((upx + v)q) =

d

dl

(

ulΠ(l)
)

.
d

dx
l(x).

The left-hand side and the first factor of the right-hand side of this equation being

strictly positive for x ≥ n (and thus l ≥ m), the second factor of the right-hand side

is strictly positive as well, from which we deduce that l(x) is strictly increasing for

x ≥ n. Let us compute the derivative l′(x) of l(x) with respect to x. For x ≥ n,

Equation (8.7) gives

(upx + v)q = ul(x)Π(l(x)).

Taking the natural logarithm of both sides, we obtain

q log(upx + v) = l(x) log u+ log Π(l(x)).

Deriving with respect to x, and defining Π′(x) = dΠ(x)/dx, we get

pq(log u)upx

upx + v
= (log u)l′(x) +

Π′(l(x))l′(x)

Π(l(x))
,

from which we extract

l′(x) =
pq

1 +
v

upx
·

1

1 +
1

log u
·

Π′(l(x))

Π(l(x))

.

This result implies that lim
x→+∞

l′(x) = pq, and therefore

(∀ε > 0)(∃n′ ≥ n)(∀x > n′)(pq − ε < l′(x) < pq + ε).

Let us take ε = 1. According to the previous result, there exists n′ ≥ n such that

(∀x > n′)(pq − 1 < l′(x) < pq + 1). (8.8)

For any k ∈ N such that k > n′, we have

l(k + 1) = l(k) +
∫ k+1

k
l′(x)dx,

and it follows from Equation (8.8) that

pq − 1 < l(k + 1) − l(k) < pq + 1.



252 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

Remark that pq, l(k) and l(k + 1) are integer numbers. The only integer number

between pq − 1 and pq + 1 is pq, hence

(∀k > n′)(l(k + 1) − l(k) = pq),

which gives

(∀k > n′)(l(k) = l0 + pqk),

with l0 ∈ Z. Replacing l(k) by its value in (8.7), we obtain for any k > n′

(upk + v)q = ul0+pqkΠ(l0 + pqk),

hence

Π(l0 + pqk) = u−l0(1 +
v

upk
)q.

This is clearly impossible, since

lim
k→+∞

Π(l0 + pqk) = +∞,

and

lim
k→+∞

u−l0(1 +
v

upk
)q = u−l0.

2

Theorem 8.60 Let r, l, a, b ∈ N with r > 1, l > 1 and a ≥ 1, such that ra = lb. If

Π(x) is a polynomial of degree greater than zero with its coefficients in Z, then the

set

S = {lkΠ(k) | k ∈ N}

is not r-definable.

Proof The proof is by contradiction. Suppose that S is r-definable. After applying

Lemma 8.58 with ~u = (1), we obtain that there exist m ∈ N0 and y1, y2 ∈ Q such

that y2 6= 0 and

{y1 + rmky2 | k ∈ N} ⊆ S,

which can be rewritten as

{(rm)k +
y1

y2
| k ∈ N} ⊆ {lkΠ(k) | k ∈ N}.

This result implies

{(rm)ak +
y1

y2
| k ∈ N} ⊆ {lkΠ(k) | k ∈ N},

and thus, since lb = ra,

{((ram)k +
y1

y2
)bm | k ∈ N} ⊆ {(ram)kΠ(k) | k ∈ N}.

Applying Lemma 8.59 to this result directly leads to a contradiction. 2

We are now ready to prove Theorem 8.28.
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Theorem 8.28 Let r, p,m ∈ N0 with r > 1, λ ∈ C such that λp = rm, and a ∈ C

such that a 6∈ R \ Q. The set

S = {λk(k + a) | k ∈ N}

is not r-definable.

Proof Without loss of generality, we assume that p and m are relatively prime,

and that there does not exist j ∈ N0 such that j ≥ 2 and r(1/j) ∈ N (thanks to

Theorem 8.18). The proof is by contradiction. Suppose that S is r-definable. There

are two possible cases, depending on the value of a. For each of them, we will show

that our assumption implies that the set

S ′ = {λk(k + a) |
k

p
∈ N}

is r-definable, and that this result leads to a contradiction. For each k ∈ N, we

define yk = λk(k + a).

• If a ∈ Q. For each k ∈ N such that k > 2|a| and p divides k, we have

ℑ(yk) = 0 ∧ ℜ(yk) > |λ|⌊2|a|⌋(2|a| + a).

Reciprocally, for each k ∈ N such that yk satisfies the previous formula, we

have k > 2|a| and p divides k. It follows that we have S ′ = S ′
1 ∪ S ′

2, with

S ′
1 = {λk(k + a) |

k

p
∈ N, k ≤ 2|a|},

S ′
2 = {yk ∈ S | ℑ(yk) = 0 ∧ ℜ(yk) > l},

and

l = |λ|⌊2|a|⌋(2|a| + a).

The set S ′
1 is finite, hence it is r-definable (Theorem 8.24). In order to prove

that S ′ is r-definable, it remains to show that S ′
2 is r-definable. Let q ∈ N be

such that qa ∈ Z. We have

S ′
2 = S ∩

1

q
{x ∈ N | x > ql},

whose r-definability follows from Theorem 8.24. Let us now show that the fact

that S ′ is r-definable leads to a contradiction. We have

S ′ = {λk(k + a) |
k

p
∈ N}

= {r(
mk
p )(k + a) |

k

p
∈ N}.
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Theorem 8.24 implies that the set

{r(
mk
p )(qk + qa) |

k

p
∈ N}

is also r-definable, which contradicts Theorem 8.60.

• If a ∈ C\R. We can assume without loss of generality that ℑ(a) > 0. Indeed,

Theorem 8.24 implies that the set

S = {λ
k
(k + a) | k ∈ N},

where for every z ∈ C, z denotes the complex conjugate of z, is r-definable

if and only if S is r-definable. Let N ∈ N be such that N > 2|a| and 0 <

arg(N + a) < 2π
p

.

– For every k > N such that p divides k, we have

λk = r(
mk
p ) ⇒ arg(yk) = arg(k + a) ⇒ 0 < arg(yk) <

2π

p
.

– For every k > N such that p does not divide k, we have

arg(yk) >
2π

p
. (8.9)

Let M ∈ N be such thatM > N andM > |λ|N |N+a|, and let α = arg(M+a).

Remark that 0 < arg(α) < π
2
.

– For every k > M such that p divides k, we have 0 < arg(yk) < α ∧

ℑ(yk) > ℑ(a).

– For every k > M such that p does not divide k, we have arg(yk) > α

(according to Inequation (8.9)).

– For every k ≤ M , we have arg(yk) ≥ α ∨ ℑ(yk) ≤ ℑ(a). (Indeed,

0 < arg(yk) < α ∧ ℑ(yk) > ℑ(a) implies k > M .)

In summary, we have for each k ∈ N:

k > M ∧ p divides k ⇔ 0 < arg(yk) < α ∧ ℑ(yk) > ℑ(a).

It follows that we have S ′ = S ′
1 ∪ S ′

2, with

S ′
1 = {λk(k + a) |

k

p
∈ N, k ≤M}

and

S ′
2 = {yk ∈ S | 0 < arg(yk) < α ∧ ℑ(yk) > ℑ(a)}.
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The set S ′
1 is finite, hence it is r-definable (Theorem 8.24). In order to prove

that S ′ is r-definable, it remains to show that S ′
2 is r-definable. Let us consider

the transformation yk → ~x such that

~x =

[

x1

x2

]

= T

[

ℜ(yk)

ℑ(yk)

]

,

with

T =




1 −ℜ(a)

ℑ(a)

0 1
ℑ(a)



 .

This transformation can be inverted as follows.

[

ℜ(yk)

ℑ(yk)

]

=

[

1 ℜ(a)

0 ℑ(a)

] [

x1

x2

]

.

By Theorem 8.24, the set

S ′′
2 =

{

T

[

ℜ(yk)

ℑ(yk)

]

| yk ∈ S ′
2

}

is r-definable if and only if S ′
2 is r-definable. Remark that every yk ∈ S ′

2 is

such that

T

[

ℜ(yk)

ℑ(yk)

]

=

[

λkk

λk

]

∈ N2.

Let S ′′ be the set

S ′′ =

{

T

[

ℜ(yk)

ℑ(yk)

]

| yk ∈ S

}

.

We thus have S ′′ ⊆ N2. From the previous results, we deduce

S ′′
2 =

{[

x1

x2

]

∈ N2 | 0 < arg(x1 + ℜ(a)x2 + iℑ(a)x2) < α

∧ ℑ(a)x2 > ℑ(a)
}

∩ S ′′

=

{[

x1

x2

]

∈ N2 |
ℑ(a)x2

ℜ(a)x2 + x1
<

ℑ(M + a)

ℜ(M + a)
∧ x2 > 1

}

∩ S ′′

=

{[

x1

x2

]

∈ N2 | x2(ℜ(a) +M) < x2ℜ(a) + x1 ∧ x2 > 1

}

∩ S ′′

=

{[

x1

x2

]

∈ N2 | x1 > Mx2 ∧ x2 > 1

}

∩ S ′′.

This set is r-definable (Theorem 8.24), hence S ′
2 and S ′ are r-definable. Let

us now show that the fact that S ′ is r-definable leads to a contradiction. We



256 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

have

S ′ = {λk(k + a) |
k

p
∈ N}

= {r(
mk
p )(k + a) |

k

p
∈ N}.

It follows from Theorem 8.24 that the set
{

ℜ(x) −
ℜ(a)

ℑ(a)
ℑ(x) | x ∈ S ′

}

=

{

r(
mk
p )k |

k

p
∈ N

}

is r-definable, which contradicts Theorem 8.60.

2

Theorem 8.29 Let r, p,m ∈ N0 with r > 1, and λ ∈ C such that λp = rm. The set

S =

{[

k

λk

]

| k ∈ N

}

is not r-definable.

Proof The proof is by contradiction. Without loss of generality, we assume that

there does not exist j ∈ N0 such that j ≥ 2 and r(1/j) ∈ N (thanks to Theorem 8.18).

Suppose that S is r-definable. According to Theorem 8.24, the following sets are

also r-definable:

S ∩ N2 =

{[

pk

rmk

]

| k ∈ N

}

,

S ′ =

{[

k

rmk

]

| k ∈ N

}

.

Let L be the language of the shortest synchronous encodings in basis r of the vector

values in S ′, expressed over the alphabet {0, 1, . . . , r − 1}2. Since S ′ is r-definable,

L is regular. Let A be a finite-state automaton accepting L. Any w ∈ L is of the

form

w = (0, 0) · (0, 1) · w1 · w2,

where w1 = (0, 0)mk−⌊logr k⌋−1, k ∈ N, and w2 is such that (0, 0) · w2 is the shortest

encoding of k~e1 in basis r. For any sufficiently long word w in L, the path of A

that accepts w must encounter an occurrence of a cycle while reading w1. This

cycle can be further iterated, accepting words that do not belong to L. Hence the

contradiction. 2

The proof of Theorem 8.30 requires two additional results.
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Lemma 8.61 Let r,m, p ∈ N0 with r > 1, λ ∈ C such that λp = rm, and a ∈ C.

The set {[

λkj

λk(j + a)

]

| j, k ∈ N

}

is r-definable.

Proof We have

S =
⋃

0≤i<p

{

λi
[

λkj

λk(j + a)

]

| j,
k

p
∈ N

}

.

It is thus sufficient to prove that the set

S ′ =

{[

λkj

λk(j + a)

]

| j,
k

p
∈ N

}

is r-definable. We have

S ′ =

{

rmk
[

j

j + a

]

| j, k ∈ N

}

.

According to Theorem 8.24, the set

S ′′ =

{[

j

j + a

]

| j ∈ N

}

is r-definable. Since S ′ = expand(S ′′, rm), it follows from the same theorem that S ′

is r-definable. 2

Theorem 8.62 Let r,m ∈ N0 with r > 1, and p, q ∈ Z with p 6= 0. The set

S =

{[

rmk(pj + q)

j

]

| j, k ∈ N

}

is not r-definable.

Proof The proof is by contradiction. Suppose that S is r-definable. From Theo-

rem 8.24, it follows that the set

S ′ =

{[

rmk(pj + q)

pj + q

]

| j, k ∈ N

}

is also r-definable. Let L be the language of the shortest synchronous encodings in

basis r of the vector values in S ′, expressed as a set of pairs (w1, w2) of words of

same length over the alphabet {0, . . . , r − 1}∗. Let f be the function

f : Z → Z : x 7→
x

Vr(x)
.
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Intuitively, f(x) is the number obtained by removing all the trailing “0” digits from

the encoding of x in basis r. The value of f(x) stays unchanged when x is multiplied

by r. It follows that we have

(∀

[

x1

x2

]

∈ S ′)(f(x1) = f(x2)). (8.10)

For any l ∈ N, let us define

yl =

{

p(rl + 1) + q if q = 0,

p(rl) + q if q 6= 0.

Remark that Vr(yl) stays bounded with respect to l (in other words, the number

of trailing “0” digits of yl encoded in basis r stays bounded when l increases). Let

n ∈ N0 be such that rn > Vr(yl) for every l ∈ N, and such that n is greater than

the length of the shortest synchronous encodings of p and of q in basis r. Let A

be a finite-state automaton accepting L. There exists l ∈ N such that the shortest

synchronous encoding of yl in basis r has more than |A| + n symbols, where |A|

denotes the number of states of A. Let us take k ∈ N such that mk is greater than

the length of the shortest synchronous encoding of yl in basis r. We know that the

vector value [

rmkyl
yl

]

belongs to S ′. Therefore, its shortest synchronous encoding (w1, w2) in basis r

belongs to L, and is thus accepted by A. This encoding can be decomposed into

(w1 · w
′
1 · w

′′
1 , w2 · w

′
2 · w

′′
2), with |w′

1| = |w′
2| = |A| and |w′′

1 | = |w′′
2 | = n. It follows

that w′
1 and w′

2 only contain the symbol 0. Any subpath of A accepting (w′
1, w

′
2)

must contain a cycle that can be iterated one more time. This allows to transform

a path accepting (w1, w2) into one accepting a different word (u1, u2), from which it

follows that (u1, u2) ∈ L. By construction, w1 and u1 differ only by their number of

trailing “0” digits, whereas u2 and w2 have the same number of trailing “0” digits

and encode different integers. Let x1 and x2 be the integers encoded by u1 and

u2. From the previous results, it follows that f(x1) = f(yl) and f(x2) 6= f(yl), and

therefore that f(x1) 6= f(x2). This contradicts Equation (8.10). Hence, S is not

r-definable. 2

We are now ready to prove Theorem 8.30.

Theorem 8.30 Let r, p,m ∈ N0 with r > 1, λ ∈ C such that λp = rm, and a ∈ C.

The set

S =

{[

λk(j + a)

j

]

| j, k ∈ N

}

is not r-definable.
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Proof Without loss of generality, we assume that p and m are relatively prime,

and that there does not exist j ∈ N0 such that j ≥ 2 and r(1/j) ∈ N (thanks to

Theorem 8.18). The proof is by contradiction. Suppose that S is r-definable. We

distinguish two cases.

• If a ∈ Q. Let p ∈ N0 be such that pa ∈ Z. According to Theorem 8.24, the

two following sets are r-definable:

{[

λk(pj + pa)

j

]

| j, k ∈ N

}

,

{[

λk(pj + pa)

j

]

| j, k ∈ N

}

∩

{[

k sgn(j + a)

j

]

| j, k ∈ N

}

=

{[

rmk(pj + pa)

j

]

| j, k ∈ N

}

.

The fact that the second set is r-definable contradicts Theorem 8.62. It follows

that S is not r-definable.

• If a 6∈ Q. For any k1, k2, j1, j2 ∈ N, we have

λk1(j1 + a) = λk2(j2 + a) ⇔ λk1 = λk2 ∧ j1 = j2.

The set S being r-definable, Theorem 8.24 and Lemma 8.61 imply that the

two following sets are also r-definable:













λk(j + a)

λkj

j






| j, k ∈ N







,

{[

λkj

j

]

| j, k ∈ N

}

.

The fact that the second set is r-definable contradicts Theorem 8.62. It follows

that S is not r-definable.

2

Theorem 8.31 Let r, p1, p2, m1, m2 ∈ N0 with r > 1, λ1, λ2 ∈ C such that λp11 =

rm1, λp22 = rm2 and |λ1| 6= |λ2|. The set

S =

{[

λk1
λk2

]

| k ∈ N

}

is not r-definable.
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Proof Without loss of generality, we can assume that mi and pi are relatively prime

for i ∈ {1, 2}, that m1 < m2, and that there does not exist j ∈ N0 such that j ≥ 2

and r(1/j) ∈ N (thanks to Theorem 8.18). The proof is by contradiction. Suppose

that S is r-definable. Theorem 8.24 implies that the set

S ′ = S ∩ N2 =

{[

rm1k

rm2k

]

| k ∈ N

}

is r-definable as well. Let L be the language of the shortest encodings in basis r of

the vectors in S, expressed over the alphabet {0, 1, . . . , r − 1}2. This language is of

the form

L = {(0, 0) · (0, 1) · (0, 0)k(m2−m1)−1 · (1, 0) · (0, 0)km1 | k ∈ N}.

Since L is not regular, S ′ is not r-definable. It follows that S is not r-definable

either. 2

Lemma 8.36 Let n, r ∈ N0 with n > 1, r > 1, λ ∈ C such that λ 6= 1, p ∈ N0,

m ∈ N such that λp = rm, q ∈ N with 1 < q ≤ n, V ∈ Cq×n of rank q, and ~b ∈ Zn.

There exists a r-definable set S ⊆ Zn such that the set

S ′ = {Jkq,λ~x+
∑

0≤i<k

J iq,λ
~b′ | ~x ∈ V S ∧ k ∈ N},

where ~b′ = V~b, is not r-definable.

Proof Let us project S ′ onto the two vector components that have the highest index.

We obtain

S ′′ =







[

λk kλk−1

0 λk

]

~x+
∑

0≤i<k

[

λi iλi−1

0 λi

]

~b′′ | ~x ∈ V ′S ∧ k ∈ N






,

where V ′ ∈ C2×n is composed of the two last lines of V (and is therefore of rank

2), and ~b′′ = V ′~b. It is sufficient to prove that there exists a r-definable set S ⊆ Zn

such that the corresponding S ′′ is not r-definable. Let

[

b1
b2

]

= ~b′′. We distinguish

four different situations.

• If |λ| = 1 and b2 = 0. We have

S ′′ =

{[

λkx1 + kλk−1x2 + λk−1
λ−1

b1
λkx2

]

|

[

x1

x2

]

∈ V ′S ∧ k ∈ N

}

.

Let ~v ∈ Zn be such that the second component of V ′~v is different from zero

(such a ~v always exists, otherwise the rank of V ′ would be less than 2). Choos-

ing S = {j~v | j ∈ N} yields

S ′′ =

{[

λkjv′1 + kjλk−1v′2 + λk−1
λ−1

b1
λkjv′2

]

| j, k ∈ N

}

,
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with

[

v′1
v′2

]

= V ′~v. If S ′′ is r-definable, then by Theorem 8.24 the following

sets are also r-definable:
{[

kjλk−1v′2 + λk

λ−1
b1

λkj

]

| j, k ∈ N

}

,






λk




kj + λ

λ−1
b1
v′2

j



 | j, k ∈ N






,






λk




kj + j λ

λ−1
b1
v′2

+ λ
λ−1

b1
v′2

j



 | j, k ∈ N






,






λk




j(k + λ

λ−1
b1
v′2

) + λ
λ−1

b1
v′2

j



 | j, k ∈ N






.

By Theorem 8.26, this last set is not r-definable. It follows that S ′′ and S ′ are

not r-definable.

• If |λ| = 1 and b2 6= 0. Let us take S = {j~b | j ∈ N}. We obtain

S ′′ =










λkjb1 + kjλk−1b2 + λk−1

λ−1
b1 + (k−1)λk−kλk−1+1

(λ−1)2
b2

λkjb2 + λk−1
λ−1

b2



 | j, k ∈ N







If S ′′ is r-definable, then by Theorem 8.24 the following sets are also r-

definable:









λkjb1 + kjλk−1b2 + λk

λ−1
b1 + kλk−1

λ−1
b2 −

λk

(λ−1)2
b2

λkjb2 + λk

λ−1
b2



 | j, k ∈ N






,






λk




jb1 + b2

λ
jk + 1

λ−1
b1 + k

λ(λ−1)
b2 −

1
(λ−1)2

b2

jb2 + 1
λ−1

b2



 | j, k ∈ N






,






λk




jk + λ b1

b2
j + λ

λ−1
b1
b2

+ k
λ−1

− λ
(λ−1)2

j + 1
λ−1



 | j, k ∈ N






,






λk




(j + 1

λ−1
)(k + λ b1

b2
) − λ

(λ−1)2

j + 1
λ−1



 | j, k ∈ N






.

Since we have 1
λ−1

6∈ R \ Q, it follows from Theorem 8.26 that the last set is

not r-definable. Therefore, S ′′ and S ′ are not r-definable.

• If |λ| > 1 and b2 = 0. We have

S ′′ =

{[

λkx1 + kλk−1x2 + λk−1
λ−1

b1
λkx2

]

|

[

x1

x2

]

∈ V ′S ∧ k ∈ N

}

.
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Let ~v ∈ Zn be such that the second component of V ′~v is different from zero

(such a ~v always exists, otherwise the rank of V ′ would be less than 2). Choos-

ing S = {~v | j ∈ N} yields

S ′′ =

{[

λkv′1 + kλk−1v′2 + λk−1
λ−1

b1
λkv′2

]

| k ∈ N

}

,

with

[

v′1
v′2

]

= V ′~v. If S ′′ is r-definable, then by Theorem 8.24 the following

sets are also r-definable:

{

λk
[

kv′2 + λv′1 + 1
λ−1

b1
v′2

]

| k ∈ N

}

,

{λkk | k ∈ N}.

According to Theorem 8.28, the last set is not r-definable. It follows that S ′′

and S ′ are not r-definable.

• If |λ| > 1 and b2 6= 0. Let us take S = {~b}. We obtain

S ′′ =










λkb1 + λk−1kb2 + λk−1

λ−1
b1 + (k−1)λk−kλk−1+1

(λ−1)2
b2

λkb2 + λk−1
λ−1

b2



 | k ∈ N






.

If S ′′ is r-definable, then by Theorem 8.24 the following sets are also r-

definable:





λk




b1 + k

λ
b2 + 1

λ−1
b1 + k

λ(λ−1)
b2 −

1
(λ−1)2

b2

b2 + 1
λ−1

b2



 | k ∈ N






,

{λkk | k ∈ N}.

(Remark that |λ| > 1 implies 1 + 1
λ−1

6= 0.) According to Theorem 8.28, the

last set is not r-definable. It follows that S ′′ and S ′ are not r-definable.

2

Lemma 8.37 Let n, r ∈ N0 with n > 1, r > 1, q ∈ N with 1 < q ≤ n, V ∈ Qq×n of

rank q, and ~b ∈ Zn. There exists a r-definable set S ⊆ Zn such that the set

S ′ = {Jkq,1~x+
∑

0≤i<k

J iq,1
~b′ | ~x ∈ V S ∧ k ∈ N},

where ~b′ = V~b, is not r-definable.
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Proof Let us project S ′ onto the two vector components that have the highest index.

We obtain

S ′′ =







[

1 k

0 1

]

~x+
∑

0≤i<k

[

1 i

0 1

]

~b′′ | ~x ∈ V ′S ∧ k ∈ N






,

where V ′ ∈ Q2×n is composed of the two last rows of V (and is therefore of rank 2),

and ~b′′ = V ′~b. It is sufficient to prove that there exists a r-definable S ⊆ Zn such

that the corresponding S ′′ is not r-definable. Let

[

b1
b2

]

= ~b′′. We distinguish two

different situations.

• If b2 = 0. We have

S ′′ =

{[

x1 + kx2 + kb1
x2

]

|

[

x1

x2

]

∈ V ′S ∧ k ∈ N

}

.

Let ~v ∈ Zn be such that the second component of V ′~v is different from zero

(such a ~v always exists, otherwise the rank of V ′ would be less than 2). Choos-

ing S = {j~v | j ∈ N} yields

S ′′ =

{[

jv′1 + jkv′2 + kb1
jv′2

]

| j, k ∈ N

}

,

with

[

v′1
v′2

]

= V ′~v. If S ′′ is r-definable, then by Theorem 8.24 the following

set is also r-definable:









jk + b1

v′2
k

j



 | j, k ∈ N






.

Since b1
v′2

∈ Q (because ~v ∈ Zn and V ′ ∈ Q2×n), Theorem 8.26 implies that

this set is not r-definable. It follows that S ′′ and S ′ are not r-definable.

• If b2 6= 0. We have

S ′′ =

{[

x1 + kx2 + kb1 + 1
2
k(k − 1)b2

x1 + kb2

]

|

[

x1

x2

]

∈ V S ′ ∧ k ∈ N

}

.

Let S = {~0}. We obtain

S ′′ =

{[

kb1 + 1
2
k(k − 1)b2
kb2

]

| k ∈ N

}

.

If S ′′ is r-definable, then by Theorem 8.24 the following sets are also r-

definable: {[
1
2
k(k − 1)b2

k

]

| k ∈ N

}

,



264 CHAPTER 8. SYSTEMS USING INTEGER VARIABLES

{k(k − 1) | k ∈ N}.

By Theorem 8.25, this last set is not r-definable. It follows that S ′′ and S ′ are

not r-definable. 2

Lemma 8.38 Let n ∈ N0 and A ∈ Zn×n. There exists a nonsingular matrix U ∈

Cn×n transforming A into its Jordan form AJ , and such that every row of U−1

at the same position as a line of a Jordan block Jq,λ in AJ contains only rational

components provided that λ is rational.

Proof In order for U to transform A into AJ , we must have AJ = U−1AU . Let J be

a Jordan block in AJ associated to a rational eigenvalue. Without loss of generality,

we may assume that J is the first block of AJ . We have AJU
−1 = U−1A, which can

be decomposed into

[

J 0

0 X

] [

U1 U2

U3 U4

]

=

[

U1 U2

U3 U4

]

A,

where U1, . . . , U4 are parts of U−1 of appropriate sizes. This linear system can be

split into the two equations

J [U1;U2] = [U1;U2]A (8.11)

and

X [U3;U4] = [U3;U4]A.

If U exists, replacing [U1;U2] by any solution of (8.11) whose lines are linearly inde-

pendent from each other and from the lines of [U3;U4] yields a matrix transforming

A into AJ . Since all the coefficients of Equation (8.11) belong to Q, it is always

possible to find a suitable rational solution. 2

8.4 Creation of Multicycle Meta-Transitions

The problem addressed in this section is to design the algorithms that are needed

in order to associate multicycle meta-transitions to systems using integer variables.

As it has been shown in Section 3.4.2, the creation of multicycle meta-transitions is

governed by a computable function MULTI-META-SET that takes as arguments a

finite number of linear operations, and returns a finite number of memory functions

corresponding to multicycle meta-transitions that can be associated to the cycles

labeled by those linear operations.

The problem that consists of deciding whether the closure of a finite set of

linear operations preserves the r-definable nature of sets in a given basis r > 0 is

very tough. To the best of our knowledge, it is presently not known whether this
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problem is decidable or not. A weaker problem, equivalent to deciding whether

the closure of a finite set of linear operations preserves the Presburger-definable

nature of sets, has been successfully solved by Hauschildt [Hau90]. The proof of this

result is constructive, and can be turned into an algorithm for computing an NDD

representing the image of a set of vector values represented as an NDD by the closure

of a finite set of linear operations that preserves the Presburger-definable nature of

sets. Although very elegant, Hauschildt’s result is described in 150 pages, and its

presentation is far beyond the scope of this thesis. A smaller but more intricate

decision procedure has also been developed independently by Lambert [Lam94].

The implementations of MULTI-META-SET that we provide here simply return

the set of all the cycle meta-transitions that can be created from the given set of

linear operations. The algorithms developed with respect to a given basis r > 1 and

to any basis are given in Figures 8.16 and 8.17. The algorithms for computing the

image of a set of vector values represented as an NDD by cycle meta-transitions can

be found in Section 8.3.6.

8.5 Model Checking

This section is aimed at providing algorithms for applying to linear operations the

functions ITERABLE and MULTI-ITERABLE required by the model-checking algo-

rithms introduced in Chapter 4. In the present context, the purpose of ITERABLE

is to determine, given a linear operation θ, a representation of the set of integer

vector values to which it is known that θ can be applied infinitely many times.

We only consider linear operations that satisfy the conditions expressed by The-

orem 8.40, i.e., the linear operations for which it has been established that their

closure preserves the definable nature of sets of vector values. The motivation of this

restriction is twofold. First, it simplifies the computations, by allowing to exploit the

results established in Section 8.3. Second, it does not influence the model-checking

algorithms, since they only apply ITERABLE to operations that can be associated

to cycle meta-transitions.

Let n ∈ N be a dimension, r ∈ N with r > 1 be a basis, and θ = (P~x ≤ ~q →

~x := A~x+~b), where m ∈ N, P ∈ Zm×n, ~q ∈ Zm, A ∈ Zn×n and ~b ∈ Zn be a linear

operation whose transformation matrix A satisfies the hypotheses of Theorem 8.40.

For every vector value ~v ∈ Zn, the guardless linear operation θ′ = (~x := A~x +~b)

can be applied infinitely many times to ~v, producing the set of values (θ′)∗(~v). The

problem is thus reduced to computing the set of all the ~v for which P (θ′)k(~v) ≤ ~q

for every k ∈ N.

By hypothesis, there exist m ∈ N and p ∈ N0 such that all the eigenvalues of

Ap belong to {0, rm}. We distinguish two situations.
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function MULTI-META-SET-BASIS(basis r, dimension n, set of linear operations S) :

set of functions;

1: var T : set of functions;

2: begin

3: T := {(P~x ≤ ~q → ~x := A~x +~b)∗ | (P~x ≤ ~q → ~x := A~x +~b) ∈ S

∧META-BASIS?(r, n, (~x := A~x +~b)) = T};

4: return T

5: end.

Figure 8.16: Creation of multicycle meta-transitions in a given basis.

function MULTI-META-SET-PRESBURGER(dimension n, set of linear operations S) :

set of functions;

1: var T : set of functions;

2: begin

3: T := {(P~x ≤ ~q → ~x := A~x +~b)∗ | (P~x ≤ ~q → ~x := A~x +~b) ∈ S

∧META-PRESBURGER?(n, (~x := A~x +~b)) = T};

4: return T

5: end.

Figure 8.17: Creation of multicycle meta-transitions in any basis.
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• If m = 0. For any ~v ∈ Zn, we have

(θ′)∗(~v) =
⋃

k∈N

(θ′)kp




⋃

0≤j<p

(θ′)j(~v)



 .

According to the proof of Theorem 8.43, this expression can be rewritten as

(θ′)∗(~v) =
⋃

0≤j<p

(θ′)j(~v) ∪
⋃

k∈N



Ap




⋃

0≤j<p

(θ′)j(~v)



+ kAp~b′ +~b′





=
⋃

0≤j<p



(θ′)j(~v) ∪
⋃

k∈N

(

Ap(θ′)j(~v) + kAp~b′ +~b′
)



 ,

with ~b′ =
∑

0≤i<p

Ai~b. We thus have

ITERABLE(θ) =
⋂

0≤j<p

{~v ∈ Zn | P (θ′)j(~v) ≤ ~q ∧ ϕ(Ap(θ′)j(~v))},

where ϕ is the predicate

ϕ : Zn → {T,F} : ~x 7→ (∀k ∈ N)(P (~x+ kAp~b′ +~b′) ≤ ~q ).

The previous formula belongs to the first-order theory 〈Z,≤,+〉 and can there-

fore be translated into an algorithm for constructing an NDD representing the

set {~x ∈ Zn | ϕ(~x)} (and thus for constructing an NDD representing the set

ITERABLE(θ)).

It is however possible to simplify the expression of ϕ. Since the region {~x ∈

Zn | P~x ≤ ~q } is convex, we have for every x ∈ Zn

ϕ(~x) ≡

{

P (~x+~b′) ≤ ~q if PAp~b′ ≤ ~0,

F if PAp~b′ 6≤ ~0.

• If m > 0. For any ~v ∈ Zn, we have

(θ′)∗(~v) =
⋃

k∈N

(θ′)kp




⋃

0≤j<p

(θ′)j(~v)



 .

According to the proof of Theorem 8.43, this expression can be rewritten as

(θ′)∗(~v) =
⋃

0≤j<p

(θ′)j(~v) ∪
⋃

k∈N

(

1

rm − 1

[

rmk
(

(rm − 1)Ap
( ⋃

0≤j<p

(θ′)j(~v)
)

+ Ap~b′
)

−Ap~b′
]

+~b′
)

=
⋃

0≤j<p

(

(θ′)j(~v) ∪
⋃

k∈N

(

1

rm − 1

[

rmk
(

(rm − 1)Ap(θ′)j(~v)

+ Ap~b′
)

−Ap~b′
]

+~b′
))

,
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with ~b′ =
∑

0≤i<p

Ai~b. We thus have

ITERABLE(θ) =
⋂

0≤j<p

{~v ∈ Zn | P (θ′)j(~v) ≤ ~q ∧ ϕ′(Ap(θ′)j(~v))},

where ϕ′ is the predicate

ϕ′ : Zn → {T,F} : ~x 7→ (∀k ∈ N)

(

P

(

1

rm − 1

[

rmk
(

(rm − 1)~x+ Ap~b′
)

−Ap~b′
]

+~b′
)

≤ ~q

)

.

Like in the previous case, it is possible to simplify the expression of ϕ′. Since

the region {~x ∈ Zn | P~x ≤ ~q} is convex, we have for every x ∈ Zn

ϕ′(~x) ≡ (∀k′ ∈ N0)

(

P

(

1

rm − 1

[

k′
(

(rm − 1)~x+ Ap~b′
)

− Ap~b′
]

+~b′
)

≤ ~q

)

≡ P (~x+~b′) ≤ ~q ∧ P
(

~x+
1

rm − 1
Ap~b′

)

≤ ~0.

Algorithms formalizing the computation of an NDD representing ITERABLE(θ)

with respect to a given basis r > 1 and to any basis are given in Figures 8.18

and 8.19.

Theorem 8.39 Let n ∈ N be a dimension, r ∈ N with r > 1 be a basis, and

θ = (P~x ≤ ~q → ~x := A~x +~b), where m ∈ N, P ∈ Zm×n, ~q ∈ Zm, A ∈ Zn×n and
~b ∈ Zn, be a linear operation such that META-BASIS?(r, n, A) = T. ITERABLE-

BASIS(r, n, θ) is an NDD representing in basis r the set of all the vector values

~v ∈ Zn to which θ can be applied an infinite number of times.

Proof The algorithm in Figure 8.18 is a direct implementation of the computation

method discussed in this section. 2

Theorem 8.40 Let n ∈ N be a dimension and θ = (P~x ≤ ~q → ~x := A~x + ~b),

where m ∈ N, P ∈ Zm×n, ~q ∈ Zm, A ∈ Zn×n and ~b ∈ Zn, be a linear operation

such that META-PRESBURGER?(n,A) = T. In any basis r > 1, ITERABLE-

PRESBURGER(n, θ) is an NDD representing the set of all the vector values ~v ∈ Zn

to which θ can be applied an infinite number of times.

Proof The algorithm in Figure 8.19 is a direct implementation of the computation

method discussed in this section. 2

It is worth noticing that all the sets computed during the execution of the algo-

rithms in Figures 8.18 and 8.19 are closed convex polyhedra, i.e., sets whose elements

are the solutions of a linear system of inequations. A possible optimization of these
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function ITERABLE-BASIS(basis r, dimension n,

linear operation (P~x ≤ ~q → ~x := A~x +~b)) : NDD

1: var m, p : integers;

2: ~b′ : integer vector;

3: A1,A2,A3 : NDDs;

4: begin

5: (T, m, p) := DEFINABLE-CLOSURE?(r, n, A);

6: ~b′ :=
∑

0≤i<p

Ai~b;

7: A1 := NDD(
⋂

0≤j<p

{~v ∈ Zn | P (Aj~v +
∑

0≤i<j

Ai~b) ≤ ~q });

8: A2 := NDD(
⋂

0≤j<p

{~v ∈ Zn | P (ApAj~v + Ap
∑

0≤i<j

Ai~b + ~b′) ≤ ~q });

9: if m = 0 then

10: if PAp~b′ 6≤ ~0 then return NDD(∅);

11: else return INTERSECTION(A1,A2)

12: else

13: begin

14: A3 := NDD(
⋂

0≤j<p

{~v ∈ Zn | PAp((rm − 1)(Aj~v

+
∑

0≤i<j Ai~b) +~b′) ≤ ~0});

15: return INTERSECTION(INTERSECTION(A1,A2),A3)

16: end

17: end.

Figure 8.18: Set of vector values to which a linear operation can be applied infinitely

many times (in a given basis).
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function ITERABLE-PRESBURGER(dimension n,

linear operation (P~x ≤ ~q → ~x := A~x +~b)) : NDD

1: begin

2: var p : integers;

3: ~b′ : integer vector;

4: A1,A2 : NDDs;

5: begin

6: (T, 0, p) := DEFINABLE-CLOSURE?(1, n, A);

7: ~b′ :=
∑

0≤i<p

Ai~b;

8: if PAp~b′ 6≤ ~0 then return NDD(∅);

9: A1 := NDD(
⋂

0≤j<p

{~v ∈ Zn | P (Aj~v +
∑

0≤i<j

Ai~b) ≤ ~q });

10: A2 := NDD(
⋂

0≤j<p

{~v ∈ Zn | P (ApAj~v + Ap
∑

0≤i<j

Ai~b +~b′) ≤ ~q });

11: return INTERSECTION(A1,A2)

12: end.

Figure 8.19: Set of vector values to which a linear operation can be applied infinitely

many times (in any basis).
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function MULTI-ITERABLE-BASIS(basis r, dimension n,

set of linear operations {θ1, θ2, . . . , θq}) : NDD

1: begin

2: return
⋃

1≤i≤q

ITERABLE-BASIS(r, n, θi)

3: end.

Figure 8.20: Set of vector values to which a finite set of linear operations can be

applied infinitely many times (in a given basis).

function MULTI-ITERABLE-PRESBURGER(dimension n,

set of linear operations {θ1, θ2, . . . , θq}) : NDD

1: begin

2: return
⋃

1≤i≤q

ITERABLE-PRESBURGER(n, θi)

3: end.

Figure 8.21: Set of vector values to which a finite set of linear operations can be

applied infinitely many times (in any basis).

algorithms would consist of manipulating sets of vector values with the help of pro-

grams specifically designed for handling closed convex polyhedra. The description

of such a program can be found in [LV92].

Since our implementation of MULTI-META-SET for systems with integer vari-

ables simply returns cycle meta-transitions, algorithms for computing the set of

vector values to which it is known that a finite set of linear operations can be ap-

plied infinitely many times can easily be obtained from the ones in Figures 8.18

and 8.19. The resulting algorithms are given in Figures 8.20 and 8.21.

Theorem 8.41 Let n ∈ N be a dimension, r ∈ N with r > 1 be a basis, and

θ1, θ2, . . . , θq (q ∈ N) be linear operations such that META-BASIS?(r, n, Ai) = T

for every i ∈ {1, 2, . . . , q}, where Ai is the transformation matrix of θi. MULTI-

ITERABLE-BASIS(r, n, {θ1, θ2, . . . , θq}) is an NDD representing in basis r a set

S ⊆ Zn such that for every ~v ∈ S, the set of linear operations {θ1, θ2, . . . , θq} can be

applied an infinite number of times to ~v.

Proof Immediate. 2
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function NDD-FINITE?(basis r, dimension n, NDD A) : {T,F};

1: begin

2: A := DIFFERENCE(A,
⋃

a∈{0,r−1}n

a · a · ({0, 1, . . . , r − 1}n)∗);

3: return FINITE?(A)

4: end

Figure 8.22: Test of finiteness of a set represented as an NDD.

Theorem 8.42 Let n ∈ N be a dimension and θ1, θ2, . . . , θq (q ∈ N) be linear

operations such that META-PRESBURGER?(n,Ai) = T for every i ∈ {1, 2, . . . , q},

where Ai is the transformation matrix of θi. For any r > 1, MULTI-ITERABLE-

PRESBURGER(n, {θ1, θ2, . . . , θq}) is an NDD representing a set S ⊆ Zn such that

for every ~v ∈ S, the set of linear operations {θ1, θ2, . . . , θq} can be applied an infinite

number of times to ~v.

Proof Immediate. 2

8.6 Termination

The goal of this section is to give algorithms for computing the truth value of the

predicates required by Sections 5.1 to 5.5 in the context of ISMAs. Specifically, we

implement the predicates FINITE?, whose purpose is to decide the finiteness of a set

of vector values represented as an NDD, and PRECEDES?, which checks whether

two linear operations θ1 and θ2 are such that θ1 ⊳ θ2. We address each problem

separately.

8.6.1 Finiteness of Sets of Vector Contents

Deciding the finiteness of a set of vector contents S ⊆ Zn (n ∈ N) represented

as an NDD A is easy. Since each element of S has exactly one shortest encoding,

this can be done by checking whether the language of the shortest encodings of

the elements of S is finite or not. This language can be expressed as the difference

between L(A) and the language of all the encodings of vectors of Zn in which the sign

digit is repeated. Testing the finiteness of the language accepted by a finite-state

automaton can be done by the algorithm of Figure 7.41. The resulting algorithm

for deciding the emptiness of a set of vector values represented as an NDD is given

in Figure 8.22.
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Theorem 8.43 Let n ∈ N be a dimension, r ∈ N with r > 1 be a basis, and A be

an NDD representing the set S ⊆ Zn in basis r. NDD-FINITE?(r, n,A) = T if and

only if S is finite.

Proof Immediate. 2

8.6.2 Precedence Relation

The problem addressed here consists of deciding whether two linear operations θ1
and θ2 are such that θ1 ⊳ θ2, i.e., whether (θ2; θ1)(S) ⊆ (θ1; θ2)(S) for every subset S

of Zn.

Let n ∈ N be a dimension, r ∈ N with r > 1 be a basis, and let

θ1 = (P1~x ≤ ~q1 → ~x := A1~x+~b1);

θ2 = (P2~x ≤ ~q2 → ~x := A2~x+~b2),

with m1, m2 ∈ N, P1 ∈ Zm1×n, P2 ∈ Zm2×n, ~q1 ∈ Zm1 , ~q2 ∈ Zm2 , A1, A2 ∈ Zn×n and
~b1,~b2 ∈ Zn. We have

(θ1; θ2) = (P~x ≤ ~q → ~x := A~x+~b);

(θ2; θ1) = (P ′~x ≤ ~q ′ → ~x := A′~x+~b′),

with P =

[

P1

P2A1

]

, ~q =

[

~q1
~q2 − P2

~b1

]

, A = A2A1, ~b = A2
~b1 +~b2, P

′ =

[

P2

P1A2

]

,

~q ′ =

[

~q2
~q1 − P1

~b2

]

, A′ = A1A2, and ~b′ = A1
~b2 +~b1. Therefore,

θ1 ⊳ θ2 ≡ (∀S ⊆ Zn)((θ2; θ1)(S) ⊆ (θ1; θ2)(S))

≡ (∀~x ∈ Zn)(P ′~x ≤ ~q ′ ⇒ (P~x ≤ ~q ∧ A~x+~b = A′~x+~b′)).

It follows that we have θ1 ⊳ θ2 if and only if the set

{~x ∈ Zn | P ′~x ≤ ~q ′ }

is included in the set

{~x ∈ Zn | P~x ≤ ~q ∧ A~x+~b = A′~x+~b′}.

This can easily be checked thanks to the results of Chapter 6. An algorithm formal-

izing the decision procedure is given in Figure 8.23.

Theorem 8.44 Let n ∈ N be a dimension and θ1, θ2 be two linear operations over

Zn. LINEAR-PRECEDES?(n, θ1, θ2) = T if and only if θ1 and θ2 are such that

θ1 ⊳ θ2.
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function LINEAR-PRECEDES?(dimension n, linear operations θ1, θ2) : {T,F}

1: var P1, P2, P, P ′, A1, A2, A, A′ : integer matrices;

2: ~q1, ~q2, ~q, ~q
′,~b1,~b2,~b,~b

′ : integer vectors;

3: A1,A2,A3 : NDDs;

4: begin

5: (P1~x ≤ ~q1 → ~x := A1~x +~b1) := θ1;

6: (P2~x ≤ ~q2 → ~x := A2~x +~b2) := θ2;

7: P :=

[
P1

P2A1

]

;

8: ~q :=

[

~q1

~q2 − P2
~b1

]

;

9: A := A2A1;

10: ~b := A2
~b1 +~b2;

11: P ′ :=

[
P2

P1A2

]

;

12: ~q ′ :=

[

~q2

~q1 − P1
~b2

]

;

13: A′ := A1A2;

14: ~b′ := A1
~b2 +~b1;

15: A1 := NDD({~x ∈ Zn | P~x ≤ ~q });

16: A2 := NDD({~x ∈ Zn | P ′~x ≤ ~q ′});

17: A3 := NDD({~x ∈ Zn | A~x +~b = A′~x +~b′});

18: return INCLUDED?(A2, INTERSECTION(A1,A3))

19: end.

Figure 8.23: Precedence test for linear operations.
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Proof The algorithm in Figure 8.23 is the direct implementation of the computation

method discussed in this section. 2

One again here, the sets computed during the execution of the algorithm in

Figure 8.23 are closed convex polyhedra, and specific manipulation routines may be

used.

8.7 Loop Optimization

This section is aimed at providing implementations of the predicate EXISTS-LOOP-

EQUIV? and of the function LOOP-EQUIV-OP required by the loop optimization

technique introduced in Section 5.6. In the present context, the predicate EXISTS-

LOOP-EQUIV? takes as arguments two linear operations θ1 and θ2 corresponding

respectively to the label of the body of a loop to which a cycle meta-transition

can be associated and to the label of the exit transition of that loop. It returns

T if a memory function f equivalent to (θ+
1 ; θ2) can be determined. The purpose

of the function LOOP-EQUIV-OP is to compute f given θ1 and θ2. There is no

need for EXISTS-LOOP-EQUIV? to be complete, i.e., to return T for every pair

(θ1, θ2) such that there exists a computable memory function equivalent to (θ+
1 ; θ2).

Instead, we simply require EXISTS-LOOP-EQUIV? to be easily computable, and to

be such that for every pair (θ1, θ2) such that EXISTS-LOOP-EQUIV?(θ1, θ2) = T,

LOOP-EQUIV-OP(θ1, θ2) returns a memory function equivalent to (θ+
1 ; θ2).

Let n ∈ N be a dimension, r ∈ N with r > 1 be a basis, and θ1 = (P1~x ≤

~q1 → ~x := A1~x + ~b1), θ2 = (P2~x ≤ ~q2 → ~x := A2~x + ~b2), where m1, m2 ∈ N,

P1 ∈ Zm1×n, P2 ∈ Zm2×n, ~q1 ∈ Zm1 , ~q2 ∈ Zm2 , A1, A2 ∈ Zn×n and ~b1,~b2 ∈ Zn, be

linear operations. The loop optimization method that we propose is based on the

following ideas. First, since it must be possible to associate a meta-transition to

the cycle whose body is labeled by θ1, we require that θ1 satisfies the hypotheses of

Corollary 8.41, i.e., that there existm ∈ N and p ∈ N0 such that Ap1 is diagonalizable

and has all its eigenvalues in {0, rm}.

A consequence of the proof of Theorem 8.43 is that for every vector value ~v ∈ Zn,

the set θ+
1 ({~v}) can be expressed as the union of p sets, each of them being composed

of colinear elements. If there exists a linear operation equivalent to (θ+
1 ; θ2), then

the image by (θ+
1 ; θ2) of a single vector value ~v ∈ Zn cannot contain more than one

vector value. A simple way of ensuring that is to require p = 1 and m = 0, which

intuitively means that all the elements of θ+
1 ({~v}) must be colinear and uniformly

spaced. We also require that the guard of θ2 can never be satisfied by more than

one of those elements.

The latter requirement can be formalized by following the approach of [BW94].

Assume that A1 is diagonalizable that all its eigenvalues belong to {0, 1}. Such a

transformation matrix is said to be idempotent ; it is such that A2
1 = A1. Let k ∈ N,
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with k ≥ 2. For every vector value ~v ∈ Zn to which θ1 can be applied k times, we

have θk1(~v) = A1~v + (k − 1)A1
~b1 +~b1. The pairs (~v, k) ∈ Zn ×Z such that k ≥ 2, θ1

can be applied k times to ~v, and θk1(~v) satisfies the guard of θ2 are therefore those

that satisfy the predicate

ψ(~v, k) ≡ P1~v ≤ ~q1 ∧ P1θ1(~v) ≤ ~q1 ∧ . . . ∧ P1θ
k−1
1 (~v) ≤ ~q1

∧ P2θ
k
1(~v) ≤ ~q2 ∧ k ≥ 2

≡ P1~v ≤ ~q1 ∧ P1(A1~v +~b1) ≤ ~q1 ∧ . . .

∧ P1(A1~v + (k − 2)A1
~b1 +~b1) ≤ ~q1

∧ P2(A1~v + (k − 1)A1
~b1 +~b1) ≤ ~q2 ∧ k ≥ 2.

Since the region {~x ∈ Zn | P1~x ≤ ~q1} is convex, this formula can be rewritten as

ψ(~v, k) ≡ P1~v ≤ ~q1 ∧ P1(A1~v +~b1) ≤ ~q1 ∧ P1(A1~v + (k − 2)A1
~b1 +~b1) ≤ ~q1

∧ P2(A1~v + (k − 1)A1
~b1 +~b1) ≤ ~q2 ∧ k ≥ 2

≡ P

[

~v

k

]

≤ ~q,

where P =









P1 0

P1A1 0

P1A1 P1A1
~b1

P2A1 P2A1
~b1









and ~q =










~q1
~q1 − P1

~b1
~q1 + 2P1A1

~b1 − P1
~b1

~q2 + P2A1
~b1 − P2

~b1










.

Assume now that the linear system of inequations defined by P and ~q contains

at least one equation ~α1.~v+αkk = β, with ~α1 ∈ Zn, αk ∈ Z0 and β ∈ Z (Z0 denotes

the set of nonzero integers.) This means that the number of iterations k of θ1 is

determined by the vector value ~v, i.e., that the loop which is labeled by θ1 and whose

exit transition is labeled by θ2 is deterministic. In this situation, k can be expressed

as the linear function

k : Zn → Z : ~v 7→
1

αk
(β − ~α1.~v).

If all the coefficients in this linear function are integers, then for every ~v,~v ′ ∈ Zn

such that ~v ′ = θk(~v)(~v), we have

P

[

~v

k(~v)

]

≤ ~q ∧ ~v ′ = A1~v + (k(~v) − 1)A1
~b1 +~b1.

For every ~v,~v ′ ∈ Zn such that ~v ′ ∈ (θ1, θ
+
1 , θ2)(~v), we thus have

P

[

~v

k(~v)

]

≤ ~q ∧ ~v ′ = A2(A1~v + (k(~v) − 1)A1
~b1 +~b1) +~b2.

Replacing k(~v) by its value, we obtain that the transformation (θ1; θ
+
1 ; θ2) is equiv-

alent to the linear operation θ′ = (P ′~x ≤ ~q ′ → ~x := A′~x+~b′), where
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• P ′ = PL −
1

αk
(~pR~α

T
1 ),

• ~q ′ = ~q −
β

αk
~pR,

• A′ = A2A1 −
1

αk
(A2A1

~b1~α
T
1 ), and

• ~b′ = (
β

αk
− 1)A2A1

~b1 + A2
~b1 +~b2.

In these expressions, T denotes transposition, and ~pR and PL denote respectively

the rightmost column of P , and the matrix composed of all the other columns of P .

In summary, the transformation (θ+
1 ; θ2) is equivalent to the memory function

f : 2Z
n

→ 2Z
n

: S 7→ θ2(θ1(S)) ∪ θ′(S).

The only difficulty in the computation of θ′ is to check whether the system of linear

inequations defined by P and ~q contains an equation, and to determine the coef-

ficients of this equation if one exists. This can be done straightforwardly if the

proper data structures are used for handling systems of linear inequations. Sim-

ple solutions to that problem, which are not described in this thesis, can be found

in [CH78, Hal93, LV92]. If there are more than one suitable equation in the system

defined by P and ~q, then the equation that one considers can be chosen arbitrarily.

An algorithm formalizing the computation of a linear operation equivalent to the

transformation (θ1; θ
+
1 ; θ2) is given in Figure 8.24.

Theorem 8.45 Let n ≥ 0 be a dimension and θ1, θ2 be two linear operations over

subsets of Zn. If LINEAR-EQUIV(n, θ1, θ2) = (T, θ), then θ is a linear operation

equivalent to (θ1; θ
+
1 ; θ2).

Proof The algorithm in Figure 8.24 directly implements the computation developed

in this section. 2

Algorithms implementing the predicate EXISTS-LOOP-EQUIV? and the func-

tion LOOP-EQUIV-OP are given in Figures 8.25 and 8.26.
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function LINEAR-EQUIV(dimension n, linear operations (P1~x ≤ ~q1 → ~x := A1~x +~b1),

(P2~x ≤ ~q2 → ~x := A2~x +~b2)) : ({T,F}, linear operation)

1: var P, P ′, A′, PL : integer matrices;

2: ~α1, ~q, ~q
′,~b′, ~pR : integer vectors;

3: t : boolean;

4: p, αk, β : integers;

5: begin

6: (t, 0, p) := DEFINABLE-CLOSURE?(1, n, A1);

7: if p 6= 1 then return (F,⊥);

8: P :=








P1 0

P1A1 0

P1A1 P1A1
~b1

P2A1 P2A1
~b1







;

9: ~q :=








~q1

~q1 − P1
~b1

~q1 + 2P1A1
~b1 − P1

~b1

~q2 + P2A1
~b1 − P2

~b1







;

10: if (∃~α1 ∈ Zn, αk, β ∈ Z) such that (~α1.~v + αkk = β) ∈ P

[
~v

k

]

≤ ~q

∧
1

αk

~α1 ∈ Zn ∧
β

αk

∈ Z then

11: begin

12: [PL; ~pR] := P ;

13: P ′ := PL −
1

αk
(~pR~αT

1 );

14: ~q ′ := ~q −
β

αk

~pR;

15: A′ := A2A1 −
1

αk
(A2A1

~b1~α
T
1 );

16: ~b′ = (
β

αk

− 1)A2A1
~b1 + A2

~b1 +~b2;

17: return (T, (P ′~x ≤ ~q ′ → ~x := A′~x +~b′))

18: end

19: else return (F,⊥)

20: end.

Figure 8.24: Computation of a linear operation equivalent to (θ1; θ
+
1 ; θ2).
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function EXISTS-LOOP-EQUIV?(dimension n, linear operations θ1, θ2) : {T,F}

1: var θ : linear operation;

2: t : boolean;

3: begin

4: (t, θ) := LINEAR-EQUIV(n, θ1, θ2);

5: return t

6: end.

Figure 8.25: Predicate EXISTS-LOOP-EQUIV? for linear operations.

function LOOP-EQUIV-OP(dimension n, linear operations θ1, θ2) : function

1: var θ : linear operation;

2: begin

3: (T, θ) := LINEAR-EQUIV(n, θ1, θ2);

4: return (θ1; θ2) ∪ θ

5: end.

Figure 8.26: Function LOOP-EQUIV-OP for linear operations.
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Chapter 9

Conclusions

9.1 Summary

The central theme of this thesis is a new approach for performing the state-space

exploration of systems with an infinite state space. The exact class of infinite-

state systems considered are those that can be modeled as a state machine with a

finite control and an infinite data domain. No restrictions are imposed on this data

domain, except the requirement that its structure and algebraic properties make the

computation of a given set of operations possible.

The proposed approach for exploring infinite state spaces extends the classical

state-space search technique for finite-state systems. It relies on two central ideas:

carrying out the state-space exploration with possibly infinite sets of states rather

than with individual states, and the concept of meta-transition. A meta-transition

is a generalization of the notion of transition with which it is possible to deduce

the reachability of an infinite set of states from the reachability of a finite set of

states. Two important types of meta-transitions were considered, those correspond-

ing respectively to cycles and to finite sets of cycles present in the control graph

of the system. Once meta-transitions have been identified, an infinite-state system

can undergo a state-space search consisting of a simple generalization of classical

state-space exploration algorithms.

Computing a finite representation with decidable membership of the set of reach-

able states of an infinite-state system has been the main focus of this work. This gives

a solution to the reachability problem (is a given state reachable) as well as to some

of its variants and to other problems that are easily solved given a representation

of the reachable states, e.g., boundedness and absence of deadlocks. Furthermore,

the verification of temporal properties, and more specifically of properties than can

be expressed in Linear-time Temporal Logic (LTL) or as Büchi automata, has been

addressed. A partial decision procedure has been obtained for this undecidable prob-

lem, in the form of an extension of the infinite state-space exploration algorithms

281
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that have been developed.

In general, though the reachability problem for infinite-state systems is undecid-

able, it is possible to give sufficient syntactic conditions under which the exploration

of the state space is guaranteed to terminate. Examples of such conditions are given,

and it is shown that the LTL model-checking problem becomes decidable for infinite-

state systems satisfying some of these conditions. In addition, we have studied an

optimization technique that allows the control graph of systems to be modified in a

way that preserves their behavior, but that makes satisfying the sufficient termina-

tion conditions more likely.

Since the infinite state-space exploration algorithms that we have introduced pro-

ceed by manipulating sets of states that may be infinite, they need a representation

system for such sets. We have introduced a general technique for obtaining suitable

representation systems in a large number of domains. This technique consists of

encoding memory contents as words over some finite alphabet, and of representing

sets as finite automata accepting the encodings of the elements of these sets. The

advantage of this approach over other representations is that set operations translate

naturally into simple operations over automata.

This general technique has been particularized to two important classes of in-

finite-state systems. The first is the one of systems that use a finite number of

unbounded FIFO channels, on which send and receive operations are performed.

The representation system adapted for such systems is the Queue Decision Diagram,

or QDD. Another task was to show that all the operations required by the state-

space exploration, the model-checking, and the termination study of systems using

unbounded FIFO channels can be performed with QDDs. Among other results that

were obtained during the design of the algorithms, it has been proved constructively

that the iteration of any sequence of send and receive operations involving only

one channel preserves the recognizable nature of sets of channel contents. Those

results have been generalized to sequences involving more than one channel, in the

form of an exact decision procedure for the preservation of recognizability, and of an

algorithm for computing the effect of iterating a sequence of operations. Another

result that has been obtained is that lossy systems can easily be analyzed by simply

adding a new type of meta-transition.

The second class of infinite-state systems that has been studied is the one con-

taining systems using unbounded integer variables on which linear operations are

performed. The representation system developed for such systems is the Number

Decision Diagram, or NDD. It has been shown that all the operations required by

state-space exploration, model-checking, and the termination study of systems us-

ing unbounded integer variables can be performed with NDDs. An interesting result

obtained in this context is a decision procedure for determining whether the closure

of a guardless linear operation preserves the recognizability of sets of integer vector

values. In order to develop this decision procedure, an original extension of the
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concept of definability to vectors with complex components has been introduced.

Algorithms have also been provided for applying the closure of a linear operation to

sets represented as NDDs, as well as for optimizing the control graphs of systems

using unbounded integer variables.

9.2 Related Work

A methodologically related approach is the symbolic model checking of finite-state

systems [CMB91, BCM+92, McM93]. It consists of representing symbolically sets

of states as well as the transition relation between these states, and of expressing

the set of reachable states of the system as the solution of a fixpoint equation. The

symbolic representation system that is mostly used is the Binary Decision Diagram

(BDD) [Bry92]. The main advantage of this approach over enumerative state-space

exploration [Hol88, Hol90, HK90, Hol91, DDHY92, FGM+92] is that the sets of

states are represented and manipulated implicitly rather than explicitly. This may

reduce dramatically the total cost of the exploration. The main limit of symbolic

model-checking using BDDs is that it can only be applied to systems with a finite

state space.

In this thesis, we have extended the scope of symbolic state-space exploration by

allowing to compute the reachability of an infinite number of states in a finite amount

of time. The idea of capturing the state-space periodicity that results from repeated

executions of the same operations is not new. In [KM69], Karp and Miller show that

this approach makes it possible to decide the boundedness problem for Petri nets.

Sketchily, their decision procedure consists of computing an upper approximation of

the set of reachable markings of a Petri net, by performing a state-space exploration

in which every sequence of transitions that can be repeatedly followed an infinite

number of times produces an upper bound of the set of markings that are reached

during these repetitions. The symbolic representation system that is used is rather

simple and consists of replacing in the description of markings each unbounded

component by the special value ω. The set of states returned by the algorithm of

Karp and Miller does not exactly correspond to the set of reachable markings of the

Petri net, but allows to decide the boundedness of each place.

Other authors have investigated the possibility of computing exactly the set of

reachable states of an infinite-state system by considering the effect of repeated ex-

ecutions of the same operations. Lubachevsky [Lub84] uses mathematical induction

as a tool for establishing the reachability of infinite sets of states, in the field of

systems composed of a large number of identical processing elements. The method

consists of performing a depth-first search in the state space of the system, in which

one detects in exploration paths particular sequences of transitions that are repeated
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more than a given amount of times. When such a sequence is detected, one attempts

to compute in one step the effect of its repetition and then resumes the search (with-

out any guarantee of termination). This approach has similarities with the dynamic

state-space exploration algorithm presented in Section 3.5. However, Lubachevsky

does not describe algorithms for detecting repeated transitions or for computing

their effect, and does not provide a representation system for sets of states.

Similar ideas also appear in a paper by Valmari [Val89], which describes an

extended state-space exploration algorithm that is able to compute the effect of

infinitely repeating sequences of operations. Specifically, the sequences that can be

iterated are those in which the value of exactly one integer variable grows one by

one, and the value of all the other variables stays unchanged. The representation

system for sets of states consists of formulas expressed in a dedicated formalism

equivalent to a restricted subset of Presburger arithmetic. The results that we have

obtained in Chapter 8 thus strictly extend those of Valmari.

The first definition of the concept of meta-transition appears in [Boi93], in which

it is shown that adding cycle meta-transitions to a system may speed up its state-

space exploration. The class of systems that is considered is the one of state machines

associated with a finite set of integer variables. The reachability analysis of such a

system is carried out by performing a depth-first search in which a cycle analysis

takes place whenever the same control location appears twice in an exploration

path. A cycle meta-transition is then created each time one finds a cycle labeled by

a sequence of operations that can be iterated. The main limits of this technique are

that only a simple sufficient condition is given for detecting iterable sequences of

transitions (amounting to require an idempotent transformation matrix), and that

the representation system used for sets of states is only able to represent finite unions

of convex sets.

The same state-space exploration technique appears in [BW94] together with an

improved representation system for sets of states. This representation system, which

consists of associating a set of periodicity vectors to the set of integer solutions of a

linear system of inequations, is closed over the set of all the operations needed by

the state-space exploration with cycle meta-transitions. Its main drawback is the

difficulty of deciding the inclusion of a set of states into another, which is unfor-

tunately essential for detecting the convergence of state-space exploration. It can

easily be shown that the representation system introduced in [BW94] is inclusively

less expressive that the NDDs. Since the algorithms of Chapter 7 allow to apply the

closure of all the sequences whose transformation matrix is idempotent, the results

presented in this thesis supersede those of [BW94].

As already mentioned, the most widely used representation system in the context

of symbolic exploration is the Binary Decision Diagram (BDD) [Bry92]. The idea

consists of encoding the elements of a set as fixed-length words of bits. The set is

then represented by a canonical decision diagram – isomorphic to a directed acyclic
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graph – that recognizes the encodings of all the elements of the set. This simple and

elegant representation has efficient implementations, and can easily be applied to a

large class of domains. It does however suffer from an important drawback: BDDs

only allow to represent finite sets. As a consequence, symbolic exploration with

BDDs is limited to the analysis of models with a finite state space. Nonetheless,

BDDs have similarities with the finite-state representations introduced in this thesis.

Representing a set as a BDD actually consists of constructing a minimal finite-state

machine that accepts the encodings of the elements of the set, with the restriction

that the length of those encodings is fixed. The finite-state representations proposed

in Chapter 6 can thus be seen as generalizations of the concept of BDD. By using the

minimization operation, these representations can easily be converted into BDDs if

the sets that they represent are finite.

Systems whose infinite nature results from the use of unbounded FIFO chan-

nels have been studied for a long time [BZ83, MF85, Pac86]. A restricted class of

such systems that has received much attention is the one of lossy systems , which

are systems whose FIFO channels are unreliable and may nondeterministically lose

messages. It has been shown by Abdulla and Jonsson [AJ93, AJ94] that several

interesting verification problems are decidable for this class of systems, namely the

restricted reachability problem, the problem consisting of deciding safety properties

expressed as a set of regular traces, and the eventuality problem. These results are

strictly more powerful than the ones presented in Section 7.5, in which we have only

shown that the main results of Chapter 7 can be adapted with little difficulty to lossy

systems by simply adding a new type of meta-transition. It is however possible to

solve the restricted reachability problem using the meta-transition based state-space

exploration method proposed in this thesis. The only required modifications are to

perform the search backwards (from the state whose reachability is to be determined

to the initial state) rather than forwards, and to create for each control location a

special meta-transition that nondeterministically inserts arbitrary symbols into the

queue contents. Thanks to a result due to Higman [Hig52], the search then always

terminates. The result of the search is the set of predecessors of the state of interest,

and this state is reachable if and only if that set contains the initial state.

In fairly recent work, Finkel [Fin90, Fin94], Cécé and Iyer [CFI96] have also

demonstrated that an infinite state space does not always prevent one from be-

ing able to decide interesting properties of systems using unbounded FIFO queues.

Precisely, these authors consider several restricted classes of such systems, and es-

tablish the decidability or the undecidability of different important problems over

these classes. In particular, they show that there are families of systems such as

those with insertion errors for which a finite-state representation of their set of

reachable states always exists and can always be computed. The approach followed

in this thesis is significantly different from the one of Finkel and al. Rather than iso-

lating elegant but very restricted classes of systems for which some simple properties
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can always be decided, we have developed partial algorithmic solutions for deciding

reachability properties of full-fledged systems. Nevertheless, we have provided in

Chapter 5 sufficient static conditions that characterize a subclass of systems using

FIFO channels for which a finite representation of their set of reachable states can

always be computed. These conditions are quite different from the ones described

in in [Fin90, Fin94, CFI96], which is far from being surprising. Indeed, our condi-

tions are derived from the state-space exploration algorithm rather than the other

way around. Moreover, the sufficient conditions presented in Chapter 5 have been

developed independently from a particular data domain and are thus also applicable

to systems different from those using FIFO channels.

There are other ways than ours of obtaining useful partial decision procedures

for interesting properties of systems using FIFO channels. In [JJ93], Jard and Jéron

address the boundedness problem, and give a partial solution based on the detection

of sequences of queue operations that can be followed an infinite number of times.

Their approach differs from the one promoted in Chapter 3 in that they consider

sequences of queue operations that can always be applied infinitely many times

to at least one initial queue-set content, rather than sequences whose closure can

always be computed with respect to some symbolic representation system. Actually,

the technique of Jard and Jéron can be seen as a generalization to systems using

FIFO channels of the Karp and Miller solution to the boundedness problem [KM69].

The condition given in [JJ93] that allows to determine whether a given sequence of

queue operations can be applied an infinite number of times is actually equivalent

to the one that has been obtained in Sections 7.6.1 and 7.6.2, except that the

latter condition allows an easy and efficient computation of the set of queue-set

contents from which the sequence can be followed an infinite number of times. The

scope of the algorithm of Jard and Jéron has been extended by Burkhart, Jéron

and Quemener [QJ95, QJ96, BQ96], which use this algorithm for building a finite

representation of the state space of a system using unbounded FIFO queues. Their

representation consists of a graph grammar, i.e., a set of transformation rules that

finitely describes an infinite graph, and differs from ours in that it represents, in

addition to the reachable states, the reachability relation between these states. It is

shown in [QJ95, QJ96] that the branching-time temporal logic CTL can be decided

for restricted classes of systems, using a simple extension of the algorithm of Jard

and Jéron. This result is generalized to the µ-calculus in [BQ96].

The notion of QDD and some algorithms for performing elementary operations

on QDDs first appeared in [BG96b]. In that paper, the sequences of queue operations

from which one is able to create meta-transitions are limited to three very restricted

subclasses, the purpose of this restriction being to simplify the algorithms for com-

puting the effect of meta-transitions. These results are improved in [BGWW97],

in which a full decision procedure for the sequences of queue operations whose clo-

sure can be computed is presented. Most of the results appearing in Chapter 7 are
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actually detailed descriptions of results announced in [BGWW97].

Several extensions of the QDDs have been developed in these recent years. A

generalization of QDDs that broadens their expressiveness is proposed in [BH97].

This generalization consists of associating with the QDD a set of integer variables

constrained by formulas of Presburger arithmetic, and of restricting the form of the

state-transition graph of the QDD. Although attractive, this extended representation

system has the disadvantage of not being closed under all usual operations, which

limits its applicability. An alternative to QDDs is also proposed in [FM96] in the

form of a representation system that is less expressive but easier to manipulate.

BDDs have also been used for representing finite but large sets of queue-set contents.

An elegant encoding scheme that facilitates the computation of queue operations

over finite sets represented as BDDs is described in [GL96].

Systems using integer variables have been a subject of intense study. A excellent

survey of decidability results for such systems is presented in [EN94]. Recent de-

velopments in this field include the design of efficiently manageable representation

systems for sets of integer vector values. Such a representation system has been

developed by Pugh [Pug92a, Pug92b, Pug94] and has been implemented in a tool

called the Omega Test. It proceeds by representing sets as formulas of Presburger

arithmetic, on which some carefully selected simplifications are made in order to

keep their size as low as possible. In spite of the very high theoretical lower bound

on the complexity of deciding Presburger arithmetic, the Omega tool allows to ma-

nipulate Presburger-definable sets with a cost that in practice is quite low. The

idea of using finite-state automata as a practical representation of sets of vector

values appeared in [WB95], in which it was shown that integer programming can

be solved in its known optimal lower bound with this technique. The same idea is

also present in the work of Boudet and Comon [BC96], who have given algorithms

for computing efficiently the minimal NDD representing the set of solutions of a

system of equations and of inequations. An extension of finite-state representations

to sets of real vectors has been proposed in [BBR97]. This extension simply consists

of encoding real vectors as infinite words over a finite alphabet, and of representing

sets as finite-state automata on infinite words.

A class of infinite-state systems that has not been studied in this thesis is the one

of pushdown systems . These systems belong however to a natural class to consider in

order to obtain decidability results, and there are indeed already a number of results

on that topic [MS85, HS91, HJM94, BS95, Wal96]. Furthermore, it is known [Cau92]

that the set of reachable states of a pushdown system can always be represented by

a finite-state automaton, and that a finite-state representation of this set can always

be effectively computed. In [BEM97, FWW97], a symbolic representation system

similar to QDDs is used in order to compute the set of reachable states of a pushdown

system. This method makes it possible to perform linear-time model checking, and

has been generalized to branching-time temporal logic in [FWW97].
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9.3 Future Work

The primary purpose of the algorithms presented in this thesis is to prove that the

functions that they implement are actually computable. Although most of them

can readily be translated into actual code, this translation is by no means always

a straightforward task and deserves further work. Due to the lack of an actual

implementation, the actual cost of analyzing systems with the approach promoted

here is still unknown, even though small tests carried out with prototypes of early

versions of this work have given encouraging results.

Another subject of potential research is to evaluate the benefit of symbolic meth-

ods for analyzing systems that have a large but finite state space. For instance, in

the case of systems using FIFO channels whose capacity is large but bounded, it is

our understanding that using symbolic state-space exploration with QDDs rather

than traditional state-space exploration might reduce dramatically the cost of the

analysis for a large class of systems.

The representation system introduced in Chapter 6 is very general and can be

used in a large number of domains. A direction that we did not follow but that

seems promising could be to combine two different domains into an heterogenous

representation system for sets. For instance, a memory content of a system using

FIFO channels as well as integer variables could be encoded as the concatenation

of the encodings of both parts of the content. The challenge would then be to com-

bine the algorithms developed for individual domains into ones suited for combined

representations.

The reachability analysis performed by the technique that have been introduced

does not rely on approximations, i.e., it computes exactly the set of reachable states

of the system. This approach has the disadvantage that termination is not guar-

anteed for sufficiently expressive systems. Another direction for future research

could be to introduce in the framework of symbolic state-space exploration opera-

tors that force convergence (at the cost of introducing approximations). One could

for instance consider transformations analogous to the widening operators used in

abstract interpretation [CC77, CC92, JN95].

Finally, we stress the fact that symbolic representations for possibly infinite sets

of values have applications well beyond verification issues. Domains such as temporal

databases could indeed benefit from the types of representation systems that we have

developed [KSW90].
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