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Patrice GodefroidLucent Technologies { Bell Laboratories1000 E. Warrenville RoadNaperville, IL 60566, U.S.A.Email: god@bell-labs.comAbstractWe study the veri�cation of properties of communication protocols modeled by a �nite setof �nite-state machines that communicate by exchanging messages via unbounded FIFO queues.It is well-known that most interesting veri�cation problems, such as deadlock detection, areundecidable for this class of systems. However, in practice, these veri�cation problems may verywell turn out to be decidable for a subclass containing most \real" protocols.Motivated by this optimistic (and, we claim, realistic) observation, we present an algorithmthat may construct a �nite and exact representation of the state space of a communicationprotocol, even if this state space is in�nite. Our algorithm performs a loop-�rst search in the statespace of the protocol being analyzed. A loop-�rst search is a search technique that attempts toexplore �rst the results of successive executions of loops in the protocol description (code). A newdata structure named Queue-content Decision Diagram (QDD) is introduced for representing(possibly in�nite) sets of queue-contents. Operations for manipulating QDDs during a loop-�rstsearch are presented.A loop-�rst search using QDDs has been implemented, and experiments on several com-munication protocols with in�nite state spaces have been performed. For these examples, ourtool completed its search, and produced a �nite symbolic representation for these in�nite statespaces.1 IntroductionState-space exploration is one of the most successful strategies for analyzing and verifying properties of�nite-state concurrent reactive systems. It proceeds by exploring a global state graph representingthe combined behavior of all concurrent components in the system. This is done by recursivelyexploring all successor states of all states encountered during the exploration, starting from a giveninitial state, by executing all enabled transitions in each state. The state graph that is explored iscalled the state space of the system. Many di�erent types of properties of a system can be checked byexploring its state space: deadlocks, dead code, violations of user-speci�ed assertions, etc. Moreover,the range of properties that state-space exploration techniques can verify has been substantiallybroadened during the last decade thanks to the development of model-checking methods for varioustemporal logics (e.g., [CES86, LP85, QS81, VW86]).�\Aspirant" (Research Assistant) for the National Fund for Scienti�c Research (Belgium). The work of this authorwas done in part while visiting Bell Laboratories.



Veri�cation by state-space exploration has been studied by many researchers (cf. [Liu89, Rud87]).The simplicity of the strategy lends itself to easy, and thus e�cient, implementations. Moreover,veri�cation by state-space exploration is fully automatic: no intervention of the designer is required.The main limit of state-space exploration veri�cation techniques is the often excessive size of thestate space. Obviously, this state-explosion problem is even more critical when the state space beingexplored is in�nite.In contrast with the last observation, we show in this paper that veri�cation by state-space explo-ration is also possible for systems with in�nite state spaces. Speci�cally, we consider communicationprotocols modeled by a �nite set of �nite-state machines that communicate by exchanging messagesvia unbounded FIFO queues. We present a state-space exploration algorithm that may constructa �nite and exact representation of the state space of such a communication protocol, even if thisstate space is in�nite. From this symbolic representation, it is then straightforward to verify manyproperties of the protocol, such as the absence of deadlocks, whether or not the number of messagesstored in a queue is bounded, and the reachability of local and global states.Of course, given an arbitrary protocol, our algorithm may not terminate its search. Indeed, itis well-known that unbounded queues can be used to simulate the tape of a Turing machine, andhence that most interesting veri�cation problems are undecidable for this class of systems [BZ83].However, in practice, these veri�cation problems may very well turn out to be decidable for asubclass containing most \real" protocols. To support this claim, properties of several communicationprotocols with in�nite state spaces have been veri�ed successfully with the algorithm introduced inthis paper.In the next section, we formally de�ne communication protocols. Our algorithm performs a loop-�rst search in the state space of the protocol being analyzed. A loop-�rst search is a search techniquethat attempts to explore �rst the results of successive executions of loops in the protocol description(code). This search technique is presented in Section 3. A new data structure, the Queue-contentDecision Diagram (QDD), is introduced in Section 4 for representing (possibly in�nite) sets of queue-contents. Operations for manipulating QDDs during a loop-�rst search are presented in Section 5.A loop-�rst search using QDDs has been implemented, and experiments on several communicationprotocols with in�nite state spaces are reported in Section 6. This paper ends with a comparisonbetween our contributions and related work.2 Communicating Finite-State MachinesConsider a protocol modeled by a �nite set M of �nite-state machines that communicate with eachother by sending and receiving messages via a �nite set Q of unbounded FIFO queues, modelingcommunication channels. Let Mi denote the set of messages that can be stored in queue qi, 1 � i �jQj. For notational convenience, let us assume that the sets Mi are pairwise disjoint. Let Ci denotethe �nite set of states of machine Mi, 1 � i � jMj.Formally, a protocol P is a tuple (C; c0; A;Q;M; T ) where C = C1 � � � � � CjMj is a �nite setof control states, c0 2 C is an initial control state, A is a �nite set of actions, Q is a �nite set ofunbounded FIFO queues, M = [jQji=1Mi is a �nite set of messages, and T is a �nite set of transitions,each of which is a triple of the form (c1; op; c2) where c1 and c2 are control states, and op is a labelof one of the forms qi!w, where qi 2 Q and w 2 M�i , qi?w, where qi 2 Q and w 2 M�i , or a, wherea 2 A.A transition of the form (c1; qi!w; c2) represents a change of the control state from c1 to c2 whileappending the messages composing w to the end of queue qi. A transition of the form (c1; qi?w; c2)represents a change of the control state from c1 to c2 while removing the messages composing w fromthe head of queue qi.A global state of a protocol is composed of a control state and a queue-content. A queue-content
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SENDER RECEIVERFigure 1: Alternating-Bit Protocolassociates with each queue qi a sequence of messages from Mi. Formally, a global state 
, or simplya state, of a protocol is an element of the set C1 � � � � � CjMj �M�1 � � � � �M�jQj. A global state
 = (c(1); c(2); : : : ; c(jMj); w(1); w(2); : : : ; w(jQj)) assigns to each �nite-state machine Mi a \local"(control) state c(i) 2 Ci, and associates with each queue qj a sequence of messages w(j) 2 M�jwhich represents the content of qj in the global state 
. The initial global state of the system is
0 = (c0(1); c0(2); : : : ; c0(jMj); "; : : : ; "), i.e., we assume that all queues are initially empty.A global transition relation ! is a set of triples (
; a; 
0), where 
 and 
0 are global states, anda 2 A [ f�g. Let 
 a! 
0 denote (
; a; 
0) 2 !. Relation ! is de�ned as follows:� if (c1; qi!w; c2) 2 T , then (c1(1); c1(2); : : : ; c1(jMj); w0(1); w0(2); : : : ; w0(jQj)) �!(c2(1); c2(2); : : : ; c2(jMj); w00(1); w00(2); : : : ; w00(jQj)) where w00(i) = w0(i)w and w00(j) = w0(j);j 6= i (the control state changes from c1 to c2 and w is appended to the end of queue qi);� if (c1; qi?w; c2) 2 T , then (c1(1); c1(2); : : : ; c1(jMj); w0(1); w0(2); : : : ; w0(jQj)) �!(c2(1); c2(2); : : : ; c2(jMj); w00(1); w00(2); : : : ; w00(jQj)) where w0(i) = ww00(i) and w00(j) = w0(j);j 6= i (the control state changes from c1 to c2 and w is removed from the head of queue qi);� if (c1; a; c2) 2 T , then (c1(1); c1(2); : : : ; c1(jMj); w0(1); w0(2); : : : ; w0(jQj)) a!(c2(1); c2(2); : : : ; c2(jMj); w00(1); w00(2); : : : ; w00(jQj)) with w00(i) = w0(i), for all 1 � i � jQj(the control state changes from c1 to c2 while the action a is performed).A global state 
0 is said to be reachable from another global state 
 if there exists a sequence ofglobal transitions (
i�1; ai; 
i), 1 � i � n, such that 
 = 
0 a1! 
1 � � � 
n�1 an! 
n = 
0. The globalstate space of a system is the (possibly in�nite) set of all states that are reachable from the initialglobal state 
0.Example 1 As an example of communication protocol, consider the well-known Alternating-BitProtocol [BSW69]. This protocol can be modeled by two �nite-state machines Sender and Receiverthat communicate via two unbounded FIFO queues StoR (used to transmit messages from the Senderto the Receiver) and RtoS (used to transmit acknowledgments from the Receiver to the Sender).Precisely, the Alternating-Bit Protocol is modeled by the protocol (C; c0; A;Q;M; T ) where C =CSender � CReceiver , where CSender = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g and CReceiver = f1; 2; 3; 4; 5; 6; 7; 8g;c0 = (1; 1); A = fSnd;Rcv; timeoutg; Q = fStoR;RtoSg; M = MStoR [MRtoS , where MStoR =fmsg0;msg1g andMRtoS = fack0; ack1g; and T contains the transitions ((s1; r1); op; (s2; r2)) where



either r1 = r2 and (s1; op; s2) is a transition in the Sender machine of Figure 1, or s1 = s2 and(r1; op; r2) is a transition in the Receiver machine of Figure 1. The action Snd models a request tothe Sender, coming from a higher-level application, to transmit data to the Receiver side. The actualdata that are transmitted are not modeled, only message numbers msg0 and msg1 are transmittedover the queues. Similarly, the action Rcv models the transmission of data received by the Receiverto a higher-level application. The actions labeled by timeout model the expiration of timeouts.3 Loop-First SearchAll state-space exploration techniques are based on a common principle: they spread the reachabilityinformation along the transitions of the system to be analyzed. The exploration process starts withthe initial global state of the system, and tries at every step to enlarge its current set of reachablestates by propagating these states through transitions. The process terminates when a stable set isreached.In order to use the above state-space exploration paradigm for verifying properties of systemswith in�nite state spaces, two basic problems need to be solved: one needs a representation forin�nite sets of states, as well as a search technique that can explore an in�nite number of states ina �nite amount of time.In the context of the veri�cation of communication protocols as de�ned in the previous section,our solution to the �rst problem is to represent the control part explicitly and the queue-contents\symbolically". Speci�cally, we will use special data structures for representing (possibly in�nite)sets of queue-contents associated with reachable control states.To solve the second problem, we will use these data structures for simultaneously exploring(possibly in�nite) sets of global states rather than individual global states. This may make it possibleto reach a stable representation of the set of reachable global states, even if this set is in�nite.In order to simultaneously generate sets of reachable states from a single reachable state, meta-transitions [BW94] can be used. Given a loop that appears in the protocol description and a controlstate c in that loop, a meta-transition is a transition that generates all global states that can bereached after repeated executions of the body of the loop. By de�nition, all these global states havethe same control state c.The classical enumerative state-space exploration algorithm can then be rewritten in such a waythat it works with sets of global states, i.e., pairs of the form hcontrol state, data structurei, ratherthan with individual states. Initially, the search starts from an initial global state. At each stepduring the search, whenever meta-transitions are executable, they are explored �rst, which is aheuristic aimed at generating many reachable states as quickly as possible. This is why we call sucha search a loop-�rst search. The search terminates if the representation of the set of reachable statesstabilizes. This happens when, for every control state, every new deducible queue-content is includedin the current set of queue-contents associated with that control state. At this moment, the �nalset of pairs hcontrol state, data structurei represents exactly the state space of the protocol beinganalyzed.In order to apply the veri�cation method described above, we need to de�ne a data structurefor representing (possibly in�nite) sets of queue-contents, and algorithms for manipulating thesedata structures. Speci�cally, whenever a transition or a meta-transition is executed from a pairhcontrol state, data structurei during a loop-�rst search, the new pair hcontrol state, data structureiobtained after the execution of this (meta-)transition has to be determined. Therefore, from anygiven such data structure, one needs to be able to compute a new data structure representing thee�ect of sending messages to a queue (qi!w) and receiving messages from a queue (qi?w), as well asthe result of executing frequent types of meta-transitions, such as repeatedly sending messages on aqueue ((qi!w)�), repeatedly receiving messages from a queue ((qi?w)�), and repeatedly receiving the



sequence of messages w1 from a queue qi followed by sending another sequence of messages w2 onanother queue qj , i 6= j, ((qi?w1; qj !w2)�). Finally, basic operations on sets are also needed, such aschecking if a set of queue-contents is included in another set, and computing the union of two setsof queue-contents.4 Queue-content Decision DiagramsQueue-content Decision Diagrams (QDDs) are data structures that satisfy all the constraints listedin the previous section. A QDD is a special type of �nite-state automaton on �nite words. A �nite-state automaton on �nite words is a tuple A = (�; S;�; s0; F ), where � is an alphabet (�nite set ofsymbols), S is a �nite set of states, � � S � (� [ f"g) � S is a transition relation (" denotes theempty word), s0 2 S is the initial state, and F � S is a set of accepting states. A transition (s; a; s0)is said to be labeled by a. A �nite sequence (word) w = a1a2 : : : an of symbols in � is accepted by theautomaton A if there exists a sequence of states � = s0 : : : sn such that 81 � i � n : (si�1; ai; si) 2 �,and sn 2 F . The set of words accepted by A is called the language accepted by A, and is denoted byL(A). Let us de�ne the projection wjMi of a word w on a set Mi as the subsequence of w obtainedby removing all symbols in w that are not in Mi. An automaton is said to be deterministic if itdoes not contain any transition labeled by the empty word, and if for each state, all the outgoingtransitions are labeled by di�erent symbols.Precisely, QDDs are de�ned as follows.De�nition 2 A QDD A for a protocol P is a deterministic �nite-state automaton (M;S;�; s0; F )on �nite words such that 8w 2 L(A) : w = wjM1wjM2 : : : wjMn :A QDD is associated with each control state reached during a loop-�rst search, and represents aset of possible queue-contents for this control state. Each word w accepted by a QDD de�nes onequeue-content wjMi for each queue qi in the protocol.By De�nition 2, a total order < is implicitly de�ned on the set Q of all queues qi in the protocolsuch that, for all QDDs for this protocol, transitions labeled by messages in Mi always appear beforetransitions labeled by messages in Mj if i < j. Therefore, for all QDDs for a protocol, a givenqueue-content can only be represented by one unique word. In other words, De�nition 2 implicitlyde�nes a \canonical" representation for each possible queue-content. Note that this does not implythat QDDs are canonical representations for sets of queue-contents.5 Operations on QDDsStandard algorithms on �nite-state automata on �nite words can be used for checking if the languageaccepted by a QDD is included in the language accepted by another QDD, for computing the unionof QDDs, etc. (e.g., see [LP81]). In what follows, A1 [ A2 will denote an automaton that acceptsthe language L(A1) [ L(A2), while DETERMINIZE(A) will denote a deterministic automaton thataccepts the language L(A). We will write \Add (s; w; s0) to �" to mean that transitions (si�1; ai; si),1 � i � n, such that w = a1a2 : : : an, s0 = s, sn = s0, and si; 1 � i < n, are new (fresh) states, areadded to �.We now describe how to perform the other basic operations on QDDs listed in Section 3.Let A be the QDD associated with a given control state c. Let L(A) denote the language acceptedby A, and let Lop(A) denote the language that has to be associated with the control state c0 reached



SEND(queue id i, word w, QDD (M;S;�; s0; F )) fFor all states s 2 S such that9w0 2 ([ij=1Mj)� : s0 w0) s,do the following operations:� Add a new state s0 to S;� For all transitions t = (s;m; s00) 2 � such that m 2Mj ; j > i:Replace t by (s0;m; s00);� For all transitions t = (s00;m; s) 2 � such that m 2Mj ; j > i:Replace t by (s00;m; s0);� Add (s;w; s0) to �;� If s 2 F , add s0 to F , and remove s from F ;Return DETERMINIZE((M;S;�; s0; F )).gRECEIVE(queue id i, word w, QDD (M;S;�; s0; F )) fFor all states s 2 S such that9w0 2 ([i�1j=1Mj)� : s0 w0) s,do the following operations:� Add a new state s0 to S;� For all transitions t = (s;m; s00) 2 � such that m 2Mj ; j � i:Replace t by (s0;m; s00);� For all transitions t = (s00;m; s) 2 � such that m 2Mj ; j � i:Replace t by (s00;m; s0);� For all states s00 2 S such that s0 w) s00:Add a transition (s; "; s00) to �;� If s 2 F , add s0 to F , and remove s from F ;Return DETERMINIZE((M;S;�; s0; F )).g Figure 2: qi!w and qi?wafter the execution of a transition (c; op; c0) from the control state c, with op 2 fqi!w; qi?wg. Wehave the following:� Lqi!w(A) = fw00j9w0 2 L(A) : w00jMi = w0jMiw ^ 8j 6= i : w00jMj = w0jMjg;� Lqi?w(A) = fw00j9w0 2 L(A) : w0jMi = ww00jMi ^ 8j 6= i : w00jMj = w0jMjg:Algorithms for computing a QDD A0 that accepts all possible queue-contents obtained after theexecution of a transition of the form qi!w or qi?w on a QDD A = (M;S;�; s0; F ) are given inFigure 2. The correctness of these algorithms is established by the following two theorems.Theorem 3 Let A be a QDD, let A0 denote the automaton returned by SEND(i, w, A), and letL(A0) denote the language accepted by A0. Then A0 is a QDD such that L(A0) = Lqi!w(A).Proof Proofs are omitted here due to space limitations. See the full paper.Theorem 4 Let A be a QDD, let A0 denote the automaton returned by RECEIVE(i, w, A), and letL(A0) denote the language accepted by A0. Then A0 is a QDD such that L(A0) = Lqi?w(A).



SEND-STAR(queue id i, word w, QDD (M;S;�; s0; F )) fFor all states s 2 S such that9w0 2 ([ij=1Mj)� : s0 w0) s,do the following operations:� Add two new states s0 and s00 to S;� For all transitions t = (s;m; s000) 2 � such that m 2Mj ; j > i:Replace t by (s00;m; s000);� For all transitions t = (s000;m; s) 2 � such that m 2Mj ; j > i:Replace t by (s000;m; s00);� Add (s; "; s0), (s0; "; s00) and (s0; w; s0) to �;� If s 2 F , add s00 to F ;Return DETERMINIZE((M;S;�; s0; F )).gRECEIVE-STAR(queue id i, word w, QDD (M;S;�; s0; F )) fFor all states s 2 S such that9w0 2 ([i�1j=1Mj)� : s0 w0) s,do the following operations:� Add a new state s0 to S;� For all transitions t = (s;m; s00) 2 � such that m 2Mj ; j � i:Replace t by (s0;m; s00);� For all transitions t = (s00;m; s) 2 � such that m 2Mj ; j � i:Replace t by (s00;m; s0);� For all states s00 2 S such that 9w0 2 fwg� : s0 w0) s00:Add a transition (s; "; s00) to �;� If s 2 F , add s0 to F ;Return DETERMINIZE((M;S;�; s0; F )).g Figure 3: (qi!w)� and (qi?w)�Proof See the full paper.We now consider the meta-transitions discussed in Section 3. The operation (qi!w)� denotesthe union of all possible queue-contents obtained after sending k sequences of messages w 2 M�i tothe queue qi of the system, for all k � 0. The operation (qi?w)� denotes the union of all possiblequeue-contents obtained after receiving k sequences of messages w 2 M�i from the queue qi of thesystem, for all k � 0. The operation (qi?w1; qj !w2)� denotes the union of all possible queue-contentsobtained after receiving k sequences of messages w1 2M�i from the queue qi and sending k sequencesof messages w2 2M�j to the queue qj , for all k � 0, and for i 6= j.Let A be the QDD associated with a given control state c. Let L(A) denote the language acceptedby A, and let Lop(A) denote the language that has to be associated with the control state c reachedafter the execution of a meta-transition (c; op; c) with op 2 f(qi!w)�; (qi?w)�; (qi?w1; qj !w2)�g. Wehave the following:� L(qi!w)�(A) = fw00j9w0 2 L(A); k � 0 : w00jMi = w0jMiwk ^ 8j 6= i : w00jMj = w0jMjg;� L(qi?w)�(A) = fw00j9w0 2 L(A); k � 0 : w0jMi = wkw00jMi ^ 8j 6= i : w00jMj = w0jMjg;



RECEIVE-SEND-STAR(queue id i, word w1, queue id j, word w2, QDD (M;S;�; s0; F )) fLet n be the greatest integer such that9s1; : : : sn+1 2 S : s1 w1) s2 w1) � � � w1) sn+1;with 81 � k < l � n + 1 : sk 6= sl;Let A0 denote the QDD (M;S;�; s0; F );For all k, 1 � k � n+ 1, compute Ak = SEND(j; w2, RECEIVE(i; w1; Ak�1));If L(An+1) = ;:� Return DETERMINIZE([nk=0Ak);If L(An+1) 6= ;:� Let p = 1;� While L(An+1) 6= L(RECEIVE(i; wp1 ; An+1)):p := p+ 1;� For all k, 2 � k � p, compute An+k = SEND(j; w2, RECEIVE(i; w1; An+k�1));� Compute An+p+1 =SEND-STAR(j;wp2 ; DETERMINIZE([n+pk=n+1Ak));� Return DETERMINIZE([n+p+1k=0 Ak).g Figure 4: (qi?w1; qj !w2)�� L(qi?w1;qj !w2)�(A) = fw00j9w0 2 L(A); k � 0 : w0jMi = wk1w00jMi ^ w00jMj = w0jMjwk2 ^ 8l 62fi; jg : w00jMl = w0jMlg:Algorithms for computing a QDD A0 that accepts all possible queue-contents obtained afterthe execution of a meta-transition of the form (qi!w)�, (qi?w)�, or (qi?w1; qj !w2)� on a QDD A =(M;S;�; s0; F ) are given in Figures 3 and 4. The correctness of these algorithms is established bythe following theorems.Theorem 5 Let A be a QDD, let A0 denote the automaton returned by SEND-STAR(i, w, A), andlet L(A0) denote the language accepted by A0. Then A0 is a QDD such that L(A0) = L(qi!w)�(A).Proof See the full paper.Theorem 6 Let A be a QDD, let A0 denote the automaton returned by RECEIVE-STAR(i, w, A),and let L(A0) denote the language accepted by A0. Then A0 is a QDD such that L(A0) = L(qi?w)�(A).Proof See the full paper.Lemma 7 Let n and An+1 be as de�ned in the algorithm RECEIVE-SEND-STAR(i; w1; j; w2; A),with i 6= j. If the language accepted by An+1 is not empty, then there exists p such that 0 < p �(n+ 1)!, and L(An+1) = L(RECEIVE(i; wp1 ; An+1)).Proof See the full paper.Theorem 8 Let A be a QDD, let A0 denote the automaton returned by RECEIVE-SEND-STAR(i,w1, j, w2, A), , with i 6= j, and let L(A0) denote the language accepted by A0. Then A0 is a QDDsuch that L(A0) = L(qi?w1;qj !w2)�(A).Proof See the full paper.It is worth noticing that, as a corollary of the last theorem, the language L(qi?w1;qj !w2)�(A) isregular.



6 Experimental ResultsConsider again the Alternating-Bit protocol of Example 1. Meta-transitions are added to the proto-col description for loops that match either (qi!w)�, (qi?w)�, or (qi?w1; qj !w2)�. Precisely, the meta-transitions (3; (RtoS?ack1;StoR!msg0)�; 3), (3; (StoR!msg0)�; 3), (8; (RtoS?ack0;StoR!msg1)�; 8),(8; (StoR!msg1)�; 8) are added to the set of transitions of the Sender, while the meta-transitions(1; (StoR?msg1;RtoS!ack1)�; 1) and (5; (StoR?msg0;RtoS!ack0)�; 5) are added to the set of transi-tions of the Receiver.We have implemented (in C) a \QDD-package" containing an implementation of the algorithmsfor manipulating QDDs described in the previous section, and we have combined it with a loop-�rstsearch. Starting with the control state (1; 1) and the QDD (M; fs0g; fg; s0; fs0g), which correspondsto the queue-content " for both queues StoR and RtoS, the execution of the loop-�rst search for theAlternating-Bit protocol terminates after 5.9 seconds of computation on a SPARC10 workstation.The number of (meta-)transitions executed is 331. The largest QDD constructed during the searchcontains 21 states, and 52 control states are reachable from the initial state.Many properties can be checked on the symbolic representation of the state space of the protocolobtained at the end of the search. For instance, it is then straightforward to prove that the protocoldoes not contain any deadlocks, that there are reachable control states where the number of messagesin a queue is unbounded, that messages are always delivered in the correct order, etc.Our tool has also been tested on several variants of the Alternating-Bit protocol, where the tran-sitions labeled by \timeout" are removed from the protocol description, where the Sender/Receiverhave various number of control states, etc. An interesting variant is the case where queues may losemessages (to model unreliable transmission media). In order to handle this case, it is su�cient tode�ne one additional algorithm SEND-LOSSY(i, w, A), that merely returns A[ SEND(i, w, A). Wealso performed experiments on several simple sliding-window protocols [Tan89], with various windowsizes. For all these examples with in�nite state spaces (more than 20 in total), our tool was ableto successfully terminate its search within a few minutes of computation. This shows that, at leastfor this particular though important class of examples, our veri�cation method is very useful androbust.7 Comparison with Other Work and ConclusionsAlthough most veri�cation problems are undecidable for arbitrary protocols modeled by communicat-ing �nite-state machines, decision procedures have been obtained for the veri�cation of speci�c prop-erties for limited sub-classes [KM69, RY86, GGLR87, CF87, Fin88, Jer91, SZ91, AJ93, AJ94, CFP96].These sub-classes do not cover, e.g., the Alternating-Bit Protocol and the properties discussed in theprevious section, which were easily veri�ed using a loop-�rst search and QDDs.Clearly, a necessary, but not su�cient, condition for the termination of our algorithm is that,for all reachable control states of the protocol, the language of queue-contents associated with thatcontrol state can be represented by a QDD. The class of protocols characterized by the above nec-essary condition is equivalent to the class of protocols for which, for each reachable control stateof the protocol, the set of possible queue-contents can be described by a recognizable expression(i.e., a �nite union of cartesian products of regular expressions). Indeed, it can be shown that anyrecognizable language can be represented by a QDD, and that any set of queue-contents representedby a QDD is a recognizable language.In [Pac87], it is pointed out that several veri�cation problems are decidable for the above class ofprotocols. However, no method is given for constructing a recognizable expression representing allpossible queue-contents for each control state of the protocol. Actually, from [CFP96], it is easy toshow that an algorithm for constructing such recognizable expressions, for any protocol in the class



de�ned above, cannot exist. In contrast, our contribution is to provide a practical algorithm whichis able to compute such a representation for protocols in the above class, although not for all of them{ this is impossible anyway.In this paper, we have presented algorithms on QDDs for computing the e�ect of executing threefrequent types of meta-transitions. These algorithms were su�cient for analyzing the protocolsconsidered in the previous section. However, it is possible to design algorithms on QDDs for othertypes of meta-transitions as well. Interesting future work is to characterize precisely the set of meta-transitions that preserve recognizability and to provide a generic algorithm for computing the e�ectof the execution of any meta-transition in this class. These topics will be addressed in a forthcomingpaper.In [PP91], a veri�cation method based on data-
ow analysis is used to generate \
ow equations"from the description of a set of communicating �nite-state machines. By computing approximationsof solutions for these equations, it is possible to show that the original system is free of certain typesof errors. In contrast, our algorithm is able to produce an exact representation of the state spaceof the protocol being analyzed. This enables us not only to prove the absence of errors, but alsoto detect errors and to exhibit to the user sequences of transitions that lead to errors. Note that,obviously, approximations could also be used in our framework, e.g., for simplifying QDDs whenthey become too complex, or when the search does not seem to stop. For the examples we haveconsidered so far, no approximations were necessary.The idea of representing states partly explicitly (control part) and partly symbolically (data part)already appeared in [ACD93] for the veri�cation of real-time systems, where dense-time domains arerepresented by polyhedra. This idea also appeared in [BW94], where the values of integer variablesare represented by periodic vector sets. These symbolic representations are quite di�erent fromQDDs.For digital hardware veri�cation [BCM+90], the most commonly used symbolic representation iscertainly the Binary Decision Diagram (BDD) [Bry92], which represents a boolean function (witha �nite domain) as a directed acyclic graph. In [GL96], it is shown how QDDs can be combinedwith BDDs to improve the e�ciency of classical BDD-based symbolic model-checking methods forverifying properties of communication protocols with large �nite state spaces.8 AcknowledgmentsWe wish to thank Michael Merritt and Mark Staskauskas for helpful comments on a preliminaryversion of this paper.References[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Informationand Computation, 104(1):2{34, May 1993.[AJ93] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In Proceed-ings of the 8th IEEE Symposium on Logic in Computer Science, 1993.[AJ94] P. A. Abdulla and B. Jonsson. Undecidable veri�cation problems for programs withunreliable channels. In Proc. ICALP-94, volume 820 of Lecture Notes in ComputerScience, pages 316{327. Springer-Verlag, 1994.[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic modelchecking: 1020 states and beyond. In Proceedings of the 5th Symposium on Logic inComputer Science, pages 428{439, Philadelphia, June 1990.
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