
Automatic Synthesis of Speci�cations from theDynamic Observation of Reactive ProgramsBernard Boigelot1? and Patrice Godefroid21 Universit�e de Li�egeInstitut Monte�ore, B28B-4000 Li�ege Sart-Tilman, Belgiumboigelot@montefiore.ulg.ac.be2 Bell LaboratoriesLucent Technologies1000 E. Warrenville RoadNaperville, IL 60566, U.S.A.god@bell-labs.comAbstract. VeriSoft [God97] is a tool for systematically exploring thestate spaces of systems composed of several concurrent processes exe-cuting arbitrary C (or C++) code. VeriSoft can automatically detectcoordination problems between the concurrent processes of a system. Inthis paper, we present a method to synthesize a �nite-state machine thatsimulates all the sequences of visible operations of a given process thatwere observed during a state-space exploration performed by VeriSoft.The examination of this machine makes it possible to discover the dy-namic behavior of the process in its environment and to understand howit contributes to the global behavior of the system.1 IntroductionState-space exploration techniques are increasingly being used for analyzing thecorrectness of concurrent reactive systems. These techniques consist of explor-ing a directed graph, called the state space, representing the combined behav-ior of all concurrent components in a system. Existing state-space explorationtools can compute automatically a state space from a description of the concur-rent system speci�ed in a modeling language. Examples of such tools are CAE-SAR [FGM+92], COSPAN [HK90], CWB [CPS93], MURPHI [DDHY92], SMV[McM93], SPIN [Hol91], and VFSMvalid [FHS95], among others. These toolsdi�er by the modeling languages they use for representing systems and proper-ties, and by the conformation criteria according to which these representationsare compared. But all of them are based on state-space exploration algorithms,in one form or another, for performing the veri�cation itself. Some very complex? \Aspirant" (Research Assistant) for the National Fund for Scienti�c Research (Bel-gium). The work of this author was done while visiting Bell Laboratories.



concurrent systems have been analyzed using state-space exploration techniques.In many cases, these techniques were able to reveal quite subtle design errors(e.g., [Rud92, CGH+93, BG96]).Recently, it has been shown in [God97] how veri�cation by state-space explo-ration can be extended to deal directly with \actual" descriptions of concurrentsystems, e.g., implementations of communication protocols written in program-ming languages such as C or C++. This result was obtained by using a newsearch algorithm suitable for e�ciently exploring the state spaces of such sys-tems. This algorithm is used in VeriSoft, a tool for systematically exploring thestate spaces of systems composed of several concurrent processes executing arbi-trary C (or C++) code. VeriSoft can automatically detect coordination problemsbetween the concurrent processes of a system. Speci�cally, VeriSoft searchesthe state space of the system for deadlocks, livelocks, divergences, and viola-tions of user-speci�ed assertions. An interactive graphical simulator/debuggeris also available for following the execution of all the processes of the system.(See [God97] for details.)In this paper, we argue that state-space exploration can give a deeper in-sight into the behavior of concurrent reactive systems than just checking speci�cformal properties. The state space of a system contains much information thatcan be used to better understand how the code is being exercised and how thedi�erent processes behave and interact with each other. However, extracting thisinformation and presenting it to the user in a meaningful and convenient way isby no means a trivial task since state spaces of concurrent systems often containmillions of states and transitions.To take up this challenge, we show in this paper how to automatically syn-thesize a speci�cation, i.e., an abstract representation, for a reactive programfrom the observation of its executions. Precisely, we present a method to synthe-size a �nite-state machine that simulates all the sequences of visible operationsof a process that were observed during a state-space exploration performed byVeriSoft. The examination of such a machine makes it possible to discover thedynamic behavior of the process in its environment and to understand how itcontributes to the global behavior of the system.In the next section, we de�ne the state space of a concurrent system com-posed of processes executing arbitrary code written in a full-edged programminglanguage. In Section 3, we present an algorithm for synthesizing an abstract ma-chine representing the observed behavior of a given process of the concurrentsystem being analyzed. The synthesis procedure includes a parameter that canbe adjusted to obtain machines that represent the desired behavior with varyingdegrees of accuracy. We also describe an \on-the-y" version of the algorithm forproducing intermediate results while the state space of the system is still beingexplored. The synthesis algorithm has been implemented, and results of experi-ments are reported in Section 4. Several applications of this work are discussedin Section 5. The paper ends with a comparison of our approach with relatedwork.



2 Systematic State-Space Exploration using VeriSoftWe consider a concurrent system composed of a �nite set P of processes and a�nite set of communication objects. Each process Pi 2 P executes a sequenceof operations, that is described in a sequential program written in a full-edgedprogramming language such as C or C++. Such programs are deterministic:every execution of the program on the same input data performs the same se-quence of operations. We assume that processes communicate with each otherby performing operations on communication objects. Examples of communica-tion objects are shared variables, semaphores, and FIFO bu�ers. At any time,at most one operation can be performed on a given communication object (op-erations on a same communication object are mutually exclusive). Operationson communication objects are called visible operations, while other operationsare called invisible. The execution of an operation is said to be blocking if itcannot be completed. We assume that only executions of visible operations maybe blocking.The concurrent system is said to be in a global state when the next operationto be executed by every process in the system is a visible operation. We assumethat every process in the system always eventually attempts to execute a visibleoperation. This implies that initially, after the creation of all the processes of thesystem, the system may reach a �rst and unique global state s0, called the initialglobal state of the system. We de�ne a transition as a visible operation followedby a �nite sequence of invisible operations performed by a single process. Atransition whose visible operation is blocking in a global state s is said to bedisabled in s. Otherwise, the transition is said to be enabled in s. A transition tthat is enabled in a global state s can be executed from s. Once the execution oft from s is completed, the system reaches a global state s0, called the successor ofs by t. The state space of the concurrent system is composed of the global statesthat are reachable from the initial global state s0, and of the transitions that arepossible between these. All operations on objects are deterministic, except onespecial operation \VS toss". This operation takes as argument a positive integern, and returns an integer in [0; n]. The operation is visible and nondeterministic:the execution of a transition starting with VS toss(n) may yield up to n + 1di�erent successor states, corresponding to di�erent values returned by VS toss.VeriSoft [God97] is a tool for systematically exploring the state space of aconcurrent system as de�ned above. In a nutshell, every process of the concurrentsystem to be analyzed is mapped to a UNIX process. The execution of the systemprocesses is controlled by an external process, called the scheduler. This processobserves the visible operations performed by processes inside the system, and cansuspend their execution. By resuming the execution of (the next visible operationof) one selected system process in a global state, the scheduler can explore onetransition between two global states in the state space of the concurrent system.By reinitializing the system, the scheduler can explore alternative paths in thestate space. The scheduler also contains an implementation of a new searchalgorithm that make it possible to systematically and e�ciently explore the statespaces of such systems without storing any intermediate states in memory. For



�nite acyclic state spaces, this search algorithm is guaranteed to terminate andcan be used for detecting deadlocks and assertion violations without incurringthe risk of any incompleteness in the veri�cation results. We refer the readerto [God97] for a detailed presentation of VeriSoft.In what follows, the only fact we will need about VeriSoft is that it can gen-erate a labeled tree T representing the state space of a concurrent system. Eachnode n of T corresponds to a global state of the system. Each edge (n; (a; Pi); n0)of T corresponds to a transition in the state space from global state n to globalstate n0, and is labeled by its visible operation a and by the identi�er Pi of theprocess executing the transition. The root node of T corresponds to the initialglobal state s0 of the system. Every path in T corresponds to a sequence ofvisible operations that has been observed during the state-space exploration. Ifthe state-space search terminates, this implies that the state space of the systemis �nite and acyclic, and the �nal tree T generated by VeriSoft contains all thesequences of visible operations that each individual process can perform in theconcurrent system. Of course, if the state-space exploration is stopped before itscompletion, the �nal tree T obtained represents only the part of the state spacethat has been explored.The following de�nitions and notations will be used in the following sections.A �nite-state machine, or machine for short, is a tuple M = (S;A;�; s0), whereS is a �nite set of states, A is an alphabet, � � S�A�S is a transition relation,and s0 2 S is the initial state. A �nite word w = a0a1 : : : an�1 is accepted by amachineM if there is a sequence of states � = s0 : : : sn such that s0 is the initialstate of M and (si; ai; si+1) 2 � for all 0 � i � n � 1. A (labeled) tree can beviewed as a machine where (1) there is exactly one node, called the root, whichno transitions enters, (2) every node except the root has exactly one enteringtransition, and (3) there is a path from the root to each state.We also recall the following de�nitions (e.g., [Mil89]).De�nition 1. A machine M1 = (S1; A1; �1; s10) simulates a machine M2 =(S2; A2; �2; s20) if there exists a binary relation R � S1 � S2 that satis�es thetwo following conditions:{ (s10; s20) 2 R;{ whenever (s1; s2) 2 R and (s2; a; s02) 2 �2, there exists a s01 such that(s1; a; s01) 2 �1 and (s01; s02) 2 R.De�nition 2. Two machines M1 = (S1; A1; �1; s10) and M2 = (S2; A2; �2; s20)are strongly bisimilar if there exists a binary relation R � S1 � S2 that satis�esthe three following conditions:{ (s10; s20) 2 R;{ whenever (s1; s2) 2 R and (s1; a; s01) 2 �1, there exists a s02 such that(s2; a; s02) 2 �2 and (s01; s02) 2 R;{ whenever (s1; s2) 2 R and (s2; a; s02) 2 �2, there exists a s01 such that(s1; a; s01) 2 �1 and (s01; s02) 2 R.



3 Synthesis AlgorithmGiven a tree T representing (possibly a part of) the state space of a concurrentsystem, the problem addressed here is to synthesize a �nite-state machine Mthat simulates all the sequences of visible operations of process Pi 2 P that wereobserved during the exploration of T .Since T typically contains transitions performed by all the processes of thesystem, we �rst compute the projection of T on the set of operations executedby Pi. This is done by hiding in T all the edges e = (n; (a; Pj); n0) correspondingto operations performed by processes other than Pi: for every such edge e, theorigin of all the edges outgoing from the destination node n0 of e is replacedby n, and the edge e is then discarded. The implementation of the projectionalgorithm also ensures that the resulting tree is deterministic, i.e., that all edgesfrom a node have di�erent labels. Moreover, the successor edges of each nodeare sorted. Let T ji denote the tree returned by the projection algorithm. We callT ji a projected tree.For synthesizing an abstract machine for process Pi from T ji, we use a variantof an algorithm described in [BF72] that generates a �nite-state machine forcomputing a given function f . Speci�cally, this algorithm takes as input a �niteset S of words on an alphabet A and a function f : A� 7! Y that maps words inA� to values in set Y . The algorithm then generates a �nite-state machine Mwhose states are labeled by values in Y and such that the execution of M onany word w 2 S leads to a state labeled by f(w).In this section, we extend the procedure of [BF72] from words to trees, andadapt it to make it suitable for solving the problem addressed here. The basicidea of the modi�ed algorithm is to de�ne an equivalence relation between thenodes of the projected tree T ji, and to associate one state of the output �nite-state machine to each equivalence class. Then, for every pair of nodes connectedby an edge in the projected tree, a transition with the same label is added in thesynthesized machine to connect the two states corresponding to the equivalenceclasses of these nodes. The synthesis procedure includes a parameter that canbe adjusted to obtain machines that represent the desired behavior with varyingdegrees of accuracy.Precisely, we proceed as follows. Let k be a positive integer. For each node nof the projected tree T ji, let subtree(n; k) denote the subtree of T ji that has nas its root and that contains all the successor edges and nodes of n up to depthk. This implies that all the paths in subtree(n; k) contain at most k edges.De�nition 3. Two nodes n and n0 of the projected tree T ji are said to be k-equivalent if subtree(n; k) and subtree(n0; k) are strongly bisimilar.Since T ji is deterministic, all subtrees of T ji are also deterministic. Therefore,since the successor edges of each node in T ji are sorted by the projection algo-rithm, checking whether subtree(n; k) and subtree(n0; k) are strongly bisimilarcan be done in time linearly proportional to the size of the smallest of bothsubtrees. Let [n]k denote the set of nodes of T ji that are k-equivalent to n.We now de�ne formally the synthesized machine Mk.



De�nition 4. Given a projected tree T ji = (S;A;�; s0) and an integer k > 0,the nondeterministic abstract machine Mk = (Sk; Ak; �k; sk0) is de�ned by{ Sk = f[n]kjn 2 Sg,{ Ak = A,{ �k � Sk �Ak � Sk is such that([n]k; a; [n0]k) 2 �k i� 9(n; (a; Pi); n0) 2 �;{ sk0 = [s0]k.This construction groups together the nodes of the projected tree T ji that arek-equivalent. If subtrees corresponding to nodes of Mk that have already beengenerated are stored in a hash table, and if we assume that it takes O(1) timeto access any of these trees, the overall worst-case time complexity of the aboveprocedure is O(NBk) where N is the number of nodes in T ji and B is themaximum number of successor edges of a node in T ji.We have the following.Theorem5. Let T ji = (S;A;�; s0) be a projected tree, let k be a positive in-teger, and let Mk = (Sk; Ak; �k; sk0) be the corresponding abstract machine asde�ned in De�nition 4. Then, Mk simulates T ji.Proof. Consider the relation R � Sk � S de�ned by R = f([s]k; s)js 2 Sg. Letus show that R is a relation satisfying the two conditions of De�nition 1.Since [s0]k = sk0 , the �rst condition of De�nition 1 is satis�ed. Moreover, weknow by De�nition 4 that 8s 2 S : 8(s; (a; Pi); s0) 2 � : ([s]k; a; [s0]k) 2 �k . Thisimplies that, for all ([s]k; s) 2 R and (s; (a; Pi); s0) 2 �, we have ([s]k; a; [s0]k) 2�k and ([s0]k; s0) 2 R. Consequently, the second condition of De�nition 1 is alsosatis�ed, and Mk simulates T ji.The following corollary is immediate.Corollary 6. Let L(T ji) denote the language accepted by the projected tree T ji,and let L(Mk) be the language accepted by the abstract machine Mk as de�nedin De�nition 4. Then, L(T ji) � L(Mk):The previous theorem formalizes the notion of \approximation" providedby Mk with respect to T ji. The level of approximation is determined by theparameter k. If k is small, the procedure may group together many di�erentnodes of T ji, and hence may generate a very compact machine. Conversely, ifk is greater or equal to depth(T ji), the length of the longest path in T ji, noapproximation is made: the resulting machine Mk and T ji are strongly bisimilarand accept the same language.The previous observation implies that, for every T ji, there exists a k suchthat L(T ji) = L(Mk). More interestingly, it also implies that, for every T ji, thereexists a k such thatL(T ji) = fw 2 L(Mk) : jwj � depth(T ji)g: (1)



This property holds when, not only all the sequences of T ji are represented inMk, but also all the sequences of length smaller or equal to depth(T ji) acceptedbyMk correspond to sequences of operations contained in T ji: the approximationperformed by the synthesis algorithm is then exact for sequences of operationswhose length is limited to depth(T ji). Given a projected tree T ji, it is possibleto compute the smallest value of k that satis�es Condition (1) above. This valuecan be much smaller than the smallest value of k satisfying L(T ji) = L(Mk), aswe will see in Section 4.
a

a

a

d e

a

a

b c

b c

d e

(k=1)Fig. 1. Example of projected tree (left) and synthesized machine with k = 1 (right)Example 1. Consider the projected tree on the left of Figure 1. The machine onthe right of the �gure is the abstract machine generated by the above procedurewith k = 1. Nodes of the abstract machine correspond to nodes of the projectedtree that have the same k-subtree. For instance, the initial state of the machineis the equivalence class of states that have only one transition labeled by a assuccessor. Because the abstract machine contains a cycle from the initial statein the abstract machine, the language of the projected tree is not equal to thelanguage of the machine. The reader can check that the minimum value of k suchthat L(T ji) = L(Mk) for this example is 3. The minimum value of k satisfyingCondition (1) is 3 as well.It is worth noticing that it is possible to generate parts of the machine Mkwhile the state space of the system is still being explored. This is useful for pro-viding feedback to the user before completion of the search. Precisely, this can



be done as follows. Let a node n of the projected tree T ji be called complete oncesubtree(n; k) is completely known, i.e., when all the paths from n in T ji containat least k transitions or are known to be complete (because all the correspondingexecutions of the system are �nite and have been completely explored). When-ever a complete node n is available in the projected tree, it can be passed tothe synthesis algorithm, which can then test whether subtree(n; k) has alreadybeen visited; if this is not the case, a new state [n]k and new transitions canimmediately be generated in Mk. By extension, such a state [n]k in Mk will alsobe called complete.However, there are examples of concurrent systems for which this on-the-y version of the synthesis algorithm is not helpful because no complete nodesare generated before the search ends. For instance, consider two processes P1and P2 that can repeatedly perform a wait operation, enter a critical section,and then perform a signal operation. Assuming the value of the semaphore isinitially 1, there is an execution of the system where P2 loops forever while P1does not move, although P1 is able to proceed eventually often. Because of theexistence of this scenario, the root node of the projected tree T j1 will never becomplete: there exists an execution of the system where the execution of the �rstoperation of P1 is continually postponed, preventing the k-subtree of the rootnode to be completely de�ned. This pathological case shows that the on-the-yvariant we have just described is mainly useful for concurrent systems withoutloosely-coupled processes.4 ExampleThe synthesis algorithm described in the previous section has been implementedto be used in conjunction with VeriSoft. It has been tested on several implemen-tations of concurrent systems. In this section, we present in detail the resultsobtained for one of them, a 2500-line concurrent C program controlling robotsoperating in an unpredictable environment. More precisely, this program rep-resents a concurrent system composed of six processes that communicate viashared memory and semaphores. Two of the processes control robots that col-lect objects randomly dropped on a table by a third robot, represented by athird process. The three other processes are used to simulate the rest of theenvironment of the robots.After exploring the state space of this system for a few minutes, VeriSoftreported a scenario composed of 29 transitions (as de�ned in Section 2) thatled to a divergence. A divergence occurs when a process does not attempt toexecute any visible operation for more than a given (user-speci�ed) amount oftime. After replaying this scenario at the C level using the VeriSoft simulator, itwas easy to see that the problem was caused by an error in a \while" loop in theC code for one of the processes, and to understand under which circumstancesthe execution of that process was trapped inside the loop. This error was thencorrected, and VeriSoft was used again to test whether the modi�cation solvedthe problem without introducing new errors.



When the depth of the search is limited to 100 transitions, the tree repre-senting the state space explored by VeriSoft contains about 380000 transitions,and can be completely explored in about 4 hours on a SparcStation 20. The treecan be saved in a �le of about 12 Megabytes. This tree was used as input forour synthesis algorithm in the following experiments. All the abstract machinesreported in what follows were generated in a few minutes of computation.The �nite-state machines synthesized by the algorithm of Section 3 withk = 1 for the processes 1, 2, 4 and 6 are shown in Figure 2. These processessynchronize with each other by executing the visible operations semsignal andsemwait on semaphores that are identi�ed by the �rst argument of the oper-ation. The second argument speci�es the value to be added (resp. subtracted)to the value of the corresponding semaphore after the execution of semsignal(resp. semwait). For all these processes, the minimum value of k satisfying Con-dition (1) is 1. Incomplete states are not shown. Increasing the value of k haslittle or no e�ect on the produced machines for these processes, as long as k issu�ciently smaller than the depth of the projected tree. When k reaches thisthreshold, the cycles in the graphs are unfolded and become sequences. The ma-chines obtained for processes 1 and 6, which control the two robots collectingobjects on the table, are identical. The machine synthesized for process 3 doesnot contain any transitions.
semsignal(2,1)

semsignal(6,1)

semwait(3,1)

semwait(5,1)

semwait(7,1) semsignal(4,1)

semsignal(5,2)

semwait(4,2)

semwait(6,2)

semsignal(7,2)processes 1 and 6
process 2
process 4Fig. 2. Abstract machines for processes 1, 2, 4 and 6The abstract machines generated for process 5 with k = 1 and k = 2 areshown in Figure 3. Process 5 is the process that periodically drops new objectson the table. It uses the visible operation VS toss to randomly select locationson the table for placing new objects. When the selected location is alreadyoccupied by another object, the process attempts to �nd another location that



VS_toss(1) = 0

VS_toss(1) = 1

VS_toss(1) = 0

VS_toss(1) = 1

VS_toss(3) = 0

VS_toss(3) = 1

VS_toss(3) = 2

VS_toss(3) = 3

semwait(2,2)

VS_toss(1) = 1

VS_toss(1) = 0

semsignal(3,2) VS_toss(1) = 1

VS_toss(3) = 0

VS_toss(3) = 1

VS_toss(3) = 2

VS_toss(3) = 3

VS_toss(1) = 0

VS_toss(1) = 1

VS_toss(1) = 0

VS_toss(1) = 1

VS_toss(1) = 0 VS_toss(1) = 1

VS_toss(1) = 0
VS_toss(1) = 1

VS_toss(1) = 0

VS_toss(1) = 1

VS_toss(1) = 0

semsignal(3,2)

semwait(2,2)

semwait(2,2)

Fig. 3. Abstract machines for process 5 with k = 1 (left) and k = 2 (right)is available (this procedure also involves calls to VS toss). The minimum valueof k satisfying Condition (1) is 2. Indeed, chosing k = 1 causes the synthesisalgorithm to consider the two successive occurrences of a same operation asexecutions of the same cycle ofM1 (cf. second state ofM1). This cycle generatessequences of operations that are not represented in T ji. Chosing k = 2 yields theoptimal machine that generates only sequences of T ji (see Section 3). Greatervalues of k makes the synthesis algorithm generate less compact machines.5 ApplicationsMuch information about the behavior of a system can be obtained from theexamination of the abstract machines generated by the synthesis algorithm.Information about the test coverage of the search performed by VeriSoft canbe obtained from the abstract machines since they contain the visible operationshave been exercised during the search. For instance, the �nite-state machinesynthesized for process 3 in the example of the previous section does not containany transitions. This means that this process was never able to execute a visibleoperation during the scenarios represented in the explored part of the state space.Since the synthesized machines represent partial descriptions of the individ-ual processes of the system, they make it possible to discover properties of thebehavior of these processes without formally specifying any property. Examin-ing these machines can help in identifying suspicious and erroneous behaviors.This is also useful for selecting scenarios for testing purposes. For instance, un-expected behaviors in an abstract machine can help in designing test cases to



exhibit these behaviors. These scenarios can then be executed and examined indetail at the implementation level with an interactive simulator.The synthesized abstract machines can also provide valuable informationabout the overall communication and synchronization structure of the concur-rent system. For the example of the previous section, one can see from thesynthesized machines that the coupling between the di�erent processes is verytight: processes 1 and 6 enforce a strict synchronization ordering between pro-cesses 2, 4 and 5. The amount of parallelism in the system is very limited. Thisalso reveals a potential weakness in the design of the synchronization structureof this system: a failure (death) of one process should quickly block all the otherprocesses of the system.The synthesis algorithm provides information on the regularity of the statespace of the system. Indeed, the synthesis algorithm detects recurrent patterns ofoperations in the observed (�nite) behaviors, and groups them in the generatedabstract machines. Extrapolating repetitive behaviors can help predicting the(very long or even in�nite) behaviors exhibited in the unexplored parts of thestate space.Finally note that our synthesis algorithm can be a very e�ective way topresent a huge amount of data (e.g., 12 Megabytes of data) on a complex con-current program (2500 lines of C code spread over 12 �les) in a very compactform (a few tens of states and transitions) that can easily be examined by theuser. When the generated abstract machines are too large to be examined, theuser has the possibility to compute more abstract machines by modifying the la-bels corresponding to visible operations. For instance, labels of operations thatcontain values of parameters (e.g., a message being sent or received) can besimpli�ed by masking out the values of some of these parameters from the la-bel name. This reduces the number of possible labels for the transitions of theabstract machine, and hence the size of the machine.6 Conclusions and Comparison with Related WorkWe have presented a technique for automatically synthesizing a �nite-state ma-chine that simulates all the sequences of visible operations of a given process(executing arbitrary C or C++ code) that were observed during a state-spaceexploration performed by VeriSoft. The level of abstraction is determined bythe set of labels of the transitions of the abstract machine, while the level ofapproximation can be adjusted by modifying the value of the parameter k of thesynthesis procedure. This technique makes it possible to discover the behaviorof processes for which the code is unknown or unavailable, or to visually detectanomalies in the dynamic behavior of processes in their environment.Our synthesis algorithm can generate very compact and faithful �nite-statemachines from a huge amount of data. For the example considered in Section 4,it synthesized a handful of small �nite-state machines satisfying Condition (1)from a state-space tree of about 380000 transitions. It is worth emphasizingthat our technique is e�ective because it is used in conjunction with a tool for



systematically exploring the state space of a concurrent system. If the synthesisalgorithm was used in conjunction with traditional testing and debugging toolsfor distributed and parallel programs (e.g., see [CMN91, NM92, SS94]), the syn-thesized machines would likely be much less compact. Indeed, since these toolsexplore random paths in the state space, a same local state of a process mightthen be associated with di�erent k-subtrees each time it is visited, and hence berepresented by several states (equivalence classes) in the synthesized machine.This work also proposes an original approach to reverse engineering [CC90].Indeed, traditional reverse engineering methods and tools are based on staticanalysis techniques for extracting information about the structure of complexprograms (e.g., see [WNC95]). In contrast, our approach does not rely on anyspeci�c assumption about the static structure of the programs used to representthe behavior of the processes, which can actually be written in any language.Moreover, it is also applicable to processes for which no code is available. Finally,it makes possible a much closer examination of the behavior of a process sinceit is based on the dynamic observation of its executions.Other approaches to the �nite-state machine synthesis problem have beenproposed. Statistical methods using neural networks [DM94] are based on prob-abilities calculated from observations of the input language. These methods arevery robust with respect to \input noise", i.e., when the observation of the inputlanguage may not be entirely reliable, but are much less e�cient and di�cult touse. Statistical methods can also be combined with algorithmic techniques intoa \hybrid" method [MQ88] based on Markov models. This method has no ad-vantages with respect to the synthesis algorithm we used since there is no inputnoise in the problem addressed here. Moreover, this hybrid method is not alwaysable to produce a machine accepting exactly the input language when it exists.A detailed comparison of these di�erent methods can be found in [CW95], wheresynthesis algorithms are used to generate a structured representation of the de-velopment process of a software-production organization from events recordedduring the various tasks performed in the organization.AcknowledgmentsWe wish to thank Glenn Bruns for helpful comments on this paper.References[BF72] A.W. Biermann and J.A. Feldman. On the synthesis of �nite state ma-chines from samples of their behavior. IEEE Transactions on Computers,21(6):592{597, June 1972.[BG96] B. Boigelot and P. Godefroid. Model checking in practice: An analysis ofthe ACCESS.bus protocol using SPIN. In Proceedings of Formal MethodsEurope'96, volume 1051 of Lecture Notes in Computer Science, pages 465{478, Oxford, March 1996. Springer-Verlag.[CC90] E. H. Chikofsky and J. H. Cross. Reverse engineering and design recovery:A taxonomy. IEEE Software, 7(1):13{17, January 1990.



[CGH+93] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMil-lan, and L. A. Ness. Veri�cation of the Futurebus+ cache coherence proto-col. In Proceedings of the Eleventh International Symposium on ComputerHardware Description Languages and Their Apllications. North-Holland,1993.[CMN91] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debuggingparallel programs with owback analysis. ACM Transactions on Program-ming Languages and Systems, pages 491{530, October 1991.[CPS93] R. Cleaveland, J. Parrow, and B. Ste�en. The concurrency workbench: Asemantics based tool for the veri�cation of concurrent systems. ACM Trans-actions on Programming Languages and Systems, 1(15):36{72, 1993.[CW95] J. E. Cook and A. L. Wolf. Automatic Process Discovery through Event-Data Analysis. In Proceedings of the 17th Conference on Software Engi-neering, Seatle, April 1995.[DDHY92] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol veri�cation asa hardware design aid. In 1992 IEEE International Conference on ComputerDesign: VLSI in Computers and Processors, pages 522{525, Cambridge,MA, October 1992. IEEE Computer Society.[DM94] S. Das and M. C. Mozer. A Uni�ed Gradient-Descent/Clustering Architec-ture for Finite-State Machine Induction. Advances in Neural InformationProcessing Systems, 6:19{26, 1994.[FGM+92] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, andJ. Sifakis. A toolbox for the veri�cation of LOTOS programs. In Proc. ofthe 14th International Conference on Software Engineering ICSE'14, Mel-bourne, Australia, May 1992. ACM.[FHS95] A. R. Flora-Holmquist and M. Staskauskas. Formal validation of virtual �-nite state machines. In Proc. Workshop on Industrial-Strength Formal Spec-i�cation Techniques (WIFT'95), pages 122{129, Boca Raton, April 1995.[God97] P. Godefroid. Model Checking for Programming Languages using VeriSoft.In Proceedings of the 24th ACM Symposium on Principles of ProgrammingLanguages, pages 174{186, Paris, January 1997.[HK90] Z. Har'El and R. P. Kurshan. Software for analytical development of com-munication protocols. AT&T Technical Journal, 1990.[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. PrenticeHall, 1991.[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,1993.[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.[MQ88] L. Miclet and J. Quinqueton. Learning from Examples in Sequences andGrammatical Inference. In Syntactic and Structural Pattern Recognition,volume 45 of NATO ASI Series F { Computer and Systems Science, pages153{171. Springer-Verlag, 1988.[NM92] R. H. B. Netzer and B. P. Miller. Optimal Tracing and Replay for Debug-ging Message-Passing Parallel Programs. In Proceedings of Supercomput-ing'92, pages 502{511, Minneapolis, 1992.[Rud92] H. Rudin. Protocol development success stories: Part I. In Proc. 12th IFIPWG 6.1 International Symposium on Protocol Speci�cation, Testing, andVeri�cation, Lake Buena Vista, Florida, June 1992. North-Holland.[SS94] R. S. Side and G. C. Shoja. A debugger for distributed programs. SoftwarePractice and Experience, 24(5):507{525, May 1994.



[WNC95] L. Wills, Ph. Newcomb, and E. Chikofsky, editors. Proceedings of the SecondWorking Conference on Reverse Engineering, Toronto, July 1995. IEEE.


