
An Improved Reachability Analysis Method
for Strongly Linear Hybrid Systems

(Extended Abstract)

Bernard Boigelot⋆, Louis Bronne⋆ and Stéphane Rassart

Université de Liège
Institut Montefiore, B28

B-4000 Liège Sart-Tilman, Belgium
{boigelot,bronne,rassart}@montefiore.ulg.ac.be

Abstract. This paper addresses the exact computation of the set of reachable
states of a strongly linear hybrid system. It proposes an approach that is
an extension of classical state-space exploration. This approach uses a new
operation, based on a cycle analysis in the control graph of the system, for
generating sets of reachable states, as well as a powerful representation system
for sets of values. The method broadens the range of hybrid systems for which a
finite and exact representation of the set of reachable states can be computed.
In particular, the state-space exploration may be performed even if the set of
variable values reachable at a given control location cannot be expressed as a
finite union of convex regions. The technique is illustrated on a very simple
example.

1 Introduction

Hybrid systems are dynamical systems whose variables change both discretely and
continuously over time, which makes them well-suited for modeling real-life systems
such as embedded controllers and clocked systems. Techniques have been devel-
oped for analyzing various properties of hybrid systems [ACHH93, HH94, HNSY94,
ACH+95, LPY95, Hen96], and some of them have been implemented as tools such as
HyTech [HH95, HHWT95a, HHWT95b], Kronos [DOTY96, DY95, MY96], and UP-
PAAL [BLL+95]. All the current analysis methods are based on symbolic state-space
exploration. Thanks to various search strategies and approximations, a wide range
of properties can be decided or semi-decided for some restricted classes of hybrid
systems [KPSY92, ACD93, AD94, HKPV95, AHH96].

This paper deals with exact reachability analysis of hybrid systems, i.e., comput-
ing an exact and finite representation of their set of reachable states. We restrict
our study to strongly linear hybrid systems, which are systems whose discrete vari-
able changes are linear, and whose continuous variable changes obey constant-slope
laws. Reachability analysis is traditionally done by performing a search in the state
space of the system, while representing sets of reachable states with the help of some
symbolic representation system. The usual representation consists of a finite set of

⋆ “Aspirants” (Research Assistants) for the National Fund for Scientific Research (Belgium)

pairs (control location, region), where a region is a convex set of variable values
bounded by conjunctive linear constraints. Regions are themselves represented by
formulas expressed in some simple arithmetic, or specific mathematical objects such
as convex polyhedra. This approach suffers from a major drawback: the exploration
algorithm never terminates for systems whose reachable part of the state space can-
not be expressed as a finite set of pairs (control location, region). There are however
numerous examples of such systems which seem to be analyzable without resorting to
approximation techniques, in spite of the fact that the general reachability problem
is undecidable for the whole class of strongly linear hybrid systems.

In Section 3, we show how the classical state-space search algorithm can be im-
proved in order to be able to analyze systems with an infinite number of reachable
regions. Although our improved algorithm does not always terminate, which is not
surprising since it addresses an undecidable problem, it makes it possible to broaden
the class of systems for which an exact reachability analysis is possible. In particular,
our analysis method is not limited to systems for which every reachable state is reach-
able by an exploration path of bounded length. Our technique relies on a powerful
representation system for sets of values, the Real Vector Automaton (RVA), which
is described in Section 4. The technique is illustrated on a very simple example in
Section 5.

2 Hybrid Systems

A hybrid system is a dynamical system with discrete and continuous components. It is
modeled by a hybrid automaton, which consists of a finite-state automaton associated
to a set of real variables. The control locations of a hybrid automaton are labeled
with evolution laws (differential equations) that govern the continuous change of the
variables with time, as well as with invariant conditions that must hold when the
control resides in that location. The transitions of a hybrid automaton are labeled
with guarded assignments. A transition is enabled when the values of the variables
satisfy the guard. Following an enabled transition modifies the values of the variables
according to the assignment labeling the transition.

In this paper, we restrict ourselves to strongly linear hybrid systems, which are
hybrid systems with particular restrictions on their evolution laws, invariant condi-
tions, and guarded assignments. A strongly linear hybrid system is composed of the
following elements:

– A finite set C of control locations.
– A vector x = (x1, . . . , xn) ∈ Rn of variables.
– An initial location c0 ∈ C and an initial variable value x0 ∈ Zn.
– A labeling function inv that assigns to each control location c ∈ C an invariant

condition inv(c), which is a predicate over the domain Rn of the variables. Invari-
ant conditions of strongly linear hybrid systems are of the form Px ≤ q, where
P ∈ Zm×n and q ∈ Zm(m ≥ 0).

– A labeling function eq that assigns to each control location c ∈ C a control
law eq(c), which consists of a differential equation involving the variables. Con-
trol laws of strongly linear hybrid systems are of the form ẋ = d, where d =

2

(d1, . . . , dn) ∈ Zn contains the rates d1, . . . , dn according to which the variables
x1, . . . , xn change with time. The vector d of rates associated to c is denoted
rates(c).

– A finite set T of transitions. Each transition is a triple (c, a, c′), where c, c′ ∈ C are
respectively source and target locations, and a is a guarded assignment. Guarded
assignments of strongly linear hybrid systems are of the form Px ≤ q → x :=
Ax + b, with P ∈ Zm×n, q ∈ Zm (m ≥ 0), A ∈ Zn×n, and b ∈ Zn. The guard
Px ≤ q and the assignment x := Ax+b of a are respectively denoted by guard(a)
and assgn(a).

A state of a strongly linear hybrid system is a pair (c,v), where c is a control
location and v is a value for the variables. The state of the system can change in two
ways:

– A time delay can modify the value of the variables according to the control law
of the current control location, without changing this location. Let c ∈ C be a
control location and v,v′ ∈ Rn be variable values. The state s′ = (c,v′) is a
time-step successor of the state s = (c,v), which we note s →ti s′, if there exists
t ∈ R+ such that v′ = v + t.rates(c) and both v and v′ satisfy the invariant
condition inv(c).

– Following a transition can change the control location and modify the values of the
variables according to the guarded assignment of the transition. If (c, a, c′) ∈ T
is a transition and v,v′ ∈ Rn are variable values, then the state s′ = (c′,v′)
is a transition-step successor of the state s = (c,v), which we note s →tr s′, if
guard(a) is satisfied by v and assgn(a) transforms v into v′.

Consider two states s and s′. We say that s′ is a step-successor of s, which we note
s →s s′, if either we have s →ti s′, or there exists s′′ ∈ C × Rn such that s →ti s′′

and s′′ →tr s. Let →∗

s denote the transitive closure of the relation →s. The state s′

is said to be reachable from the state s if we have s →∗

s s′. A reachable state is a state
that is reachable from the initial state (c0,v0).

3 Reachability Analysis

3.1 Principles

In this section, we address the problem of computing an exact and finite represen-
tation of the set of reachable states of a strongly linear hybrid system. The classical
method consists of performing a state-space exploration of the system, starting from
a set containing only the initial state and spreading reachability information along
control locations and transitions until a stable set is obtained. Reachability informa-
tion is propagated by executing time-step and transition-step operations from the
current set of reachable states. Stabilization is detected by testing if the current
set is included in the union of the sets obtained at previous steps. Various search
strategies [Eve79] can be used for the exploration (depth-first, breadth-first, . . .).

A time-step operation may generate an infinite number of reachable states from
a finite number of them. It follows that state-space exploration techniques require

3

a symbolic representation system for the sets of states that have to be manipu-
lated. Traditionally, sets of states are represented with the help of regions, which,
for strongly linear hybrid systems, are sets of variable values bounded by conjunc-
tive linear constraints. The idea is to represent a set of states by associating to each
control location a finite number of regions corresponding to the variable values that
are reachable at that location. Regions are themselves represented by mathematical
formulas, or by specific objects such as convex polyhedra. For strongly linear hy-
brid systems, there exist simple algorithms for computing the effect of time-step and
transition-step operations on a set of states represented by a pair (control location,
region).

A major drawback of this approach is that state-space exploration will not termi-
nate if there are reachable states that cannot be reached from the initial state by a
bounded sequence of time-step and transition-step operations. In particular, this hap-
pens when the set of reachable values at some control location cannot be expressed
as a finite union of convex regions. An example of such a system is given at Figure 1.
Its set of reachable states is given at Figure 2 (solid and dashed lines respectively
correspond to values that are reachable at control locations c0 and c1).

x2 ≤ 1

ẋ2 = 1

ẋ1 = 1

x2 ≥ 0

ẋ1 = 1

ẋ2 = −1

x1 = 0

x2 = 0

x2 ≤ 0 →

x2 ≥ 1 →

c0 c1

Fig. 1. Example of strongly linear hybrid system.

Let us show how to extend the classical state-space exploration algorithm such
as to be able to analyze systems with an infinite number of reachable regions. The
main idea, inspired by [BW94] and [BG96], consists of adding a cycle-step operation,
whose purpose is to capture discrete periodicity. Specifically, given a cycle in the
control graph of a hybrid automaton, a cycle-step operation is able to generate all
the variable values that could be obtained by performing an unbounded number of
times the sequence of time-step and transition-step operations corresponding to the
cycle. This makes it possible to generate an infinite number of convex regions in a
finite number of steps. As a consequence, cycle-step operations may generate sets
of states that are not representable by a finite set of pairs (control location, convex
region). It follows that a more powerful representation system is needed. Such a
system will be described in Section 4.

4

. . .

x2

x1
0 1 2 3 4 5 6 7

1

Fig. 2. Reachable states.

3.2 Cycle-step Operations

Let C = (c1, a1, c2), (c2, a2, c3), . . . , (ck−1, ak−1, ck), (ck, ak, c1) be a cycle of transi-
tions. This cycle is said to be composable if for all 1 ≤ i ≤ k, the conjunction
inv(ci) ∧ guard(ai) is a predicate of the form pi.x = qi, with pi ∈ Zn, qi ∈ Z, and
pi.rates(ci) 6= 0. Intuitively, a cycle is composable if for every visited control loca-
tion and values of the variables at this location, there is exactly one amount of time
one can spend at the location that allows to follow the next transition. Determining
whether a cycle is composable can be performed by a simple algorithmic check.

Composable cycles have a nice property. If C is composable, then there exists
a guarded assignment a ≡ Px ≤ q → x := Ax + b, with P ∈ Zm×n, q ∈ Zm

(m ≥ 0), A ∈ Qn×n and b ∈ Qn, whose effect is equivalent to following C. In other
words, executing a from a given set of variable values would yield the same result
as performing a time step at the location c1, followed by a transition step along
(c1, a1, c2), then a time step at c2, and so on until the transition step associated to the
last transition (ck, ak, c1) of the cycle. There is a simple algorithm for computing the
equivalent guarded command of a composable cycle. It proceeds by first expressing at
each control location the only possible time delay at this location as a linear function
of the variables, and then by composing the linear transformations undergone by the
variables at the control locations and transitions visited by the cycle.

Definition 1 Let a ≡ Px ≤ q → x := Ax + b be the equivalent guarded assignment
of some composable cycle C, and r > 1 be an integer. The guarded assignment a is
said to be iterable in base r if there exist p ∈ N0 and m ∈ N such that the matrix Ap

is diagonalizable, and all its eigenvalues belong to {0, rm}.

Iterable guarded assignments have two important properties. First, one can algorith-
mically check for iterability:

Theorem 2. There is a decision procedure, based on simple integer arithmetic, for
checking whether a guarded assignment is iterable or not.

Proof The algorithm is left for the full paper. ⊓⊔
Second, one can compute the image of a set of values by the transitive closure of

an iterable guarded assignment:

5

Theorem3. There exists a representation system for sets of variable values, such
that:

– Any finite union of convex regions can be represented.
– For every guarded assignment a and represented set V of values, one can compute

a representation of the image V ′ = a∗(V) of V by the transitive closure of a (in
other words, V ′ contains the values obtained by executing repeatedly a any number
of times from elements of V).

Proof A suitable representation system is described in Section 4. The proof that
a∗(V) is computable on represented sets is left for the full paper. ⊓⊔

The classical state-space exploration algorithm is extended in the following way.
Given a composable cycle C = (c1, a1, c2), . . . , (ck, ak, c1) such that its equivalent
guarded assignment a is iterable, we simply add to the set of transitions of the system
a meta-transition (c1, a

∗, c1), whose effect is to transform a set of values V ⊆ Rn into
a∗(V) without changing the control location c1. Performing a cycle-step operation
simply consists of executing a meta-transition. We do not impose an exploration
order; however, a breadth-first search will always reach a stable set whenever there
is a search order that reaches such a set. Since cycle-step operations generate all the
values that could be produced by following repeatedly their underlying cycle, they do
not influence the result of a state-space exploration if it terminates. However, they
may force the search to terminate, or lower dramatically the number of exploration
steps needed before stabilization occurs.

4 Real Vector Automata

In this section, we describe a symbolic representation system well suited to the sets of
values that are manipulated by the improved reachability analysis method described
in the previous section. The requirements on this system are linked to the operations
that are performed during the analysis. Specifically, the representation system has to
be able to represent single vectors of integers (such as the set of initial variable values)
as well as convex regions. It must be closed over time-step, transition-step, cycle-step,
and elementary set-theory operations (union, intersection, . . .), and allow an easy
computation of their effect on represented sets. Moreover, inclusion of represented
sets must be decidable.

4.1 Principles and Definitions

The main idea, inspired by [WB95] and [BG96], consists of representing a set of values
by a finite-state automaton accepting encodings of those values as strings of symbols
over some alphabet. Since we deal here with sets of vectors with real components,
the first step is thus to give an encoding scheme for such vectors.

Let x ∈ R be a real number and r > 1 be an integer. We encode x in base r,
most significant digit first, using r’s complement for negative numbers. The result is
a word of the form w = wi.wf , where wi encodes the integer part of x as a finite
word over the alphabet {0, . . . , r − 1}, the symbol “.” is a separator, and wf encodes

6

the fractional part of x as a infinite word over the alphabet {0, . . . , r− 1}. We do not
fix the length p of wi, but only require it to be such that −rp−1 − 1 ≤ x ≤ rp−1 + 1.
Hence, the most significant digit of a number will be “0” if and only if this number
is positive. For simplicity, we require the length of wf to be infinite (this is not a
severe restriction, since an infinite number of “0” symbols can always be appended
harmlessly to wf). The encoding w of x is thus an infinite word over the alphabet
{0, . . . , r−1, .}. We define its integer-part length |w|i as the number of symbols in wi.
It is noteworthy to remark that for some x ∈ R and p ∈ N, there exist two encodings
of x of integer-part length p. For instance, choosing r = 10, x = 11/2 and p = 3
yields the two words 005.5(0)ω and 005.4(9)ω. Such encodings are said to be dual.

To encode a vector of real numbers, we encode each of its components with words
of identical integer-part length. This length can be chosen arbitrarily, provided that
is sufficient for encoding the vector component with the highest magnitude. It follows
that any vector has an infinite number of possible encodings. An encoding of a vector
of reals x = (x1, . . . , xn) can indifferently be viewed either as a tuple (w1, . . . , wn) of
words of identical integer-part length over the alphabet {0, . . . , r−1, .}, or as a single
word w over the alphabet {0, . . . , r − 1}n ∪ {.}.

Since a real vector has several possible encodings, we have to choose which of these
the automata we define will recognize. A natural choice is to accept all encodings.
This leads to the following definition.

Definition 4 Let n ≥ 0 and r > 1 be integers. A Real Vector Automaton (RVA) A
in base r for vectors in Rn is a Büchi automaton [Büc62] over the alphabet {0, . . . , r−
1}n ∪ {.}, such that:

– Every word w accepted by A is of the form w = wi.wf , with wi ∈ ({0, . . . , r−1}n)∗

and wf ∈ ({0, . . . , r − 1}n)ω.
– For every vector x ∈ R, A accepts either all the encodings of x in base r, or none

of them.

A RVA is said to represent the set of vectors encoded by the words belonging to
its accepted language. Remark that the representation is not canonical, for different
Büchi automata may accept the same language.

4.2 Elementary RVA

RVA representing sets of real vectors satisfying elementary predicates are easy to
obtain. We have the following result.

Theorem 5. Let n ≥ 0 and r > 1 be integers. There exist RVA for representing in
base r the sets:

– Zn;
– {v}, for any v ∈ Qn;
– {(x1, x2) ∈ R2 | x1θx2}, for any θ ∈ {=, 6=, <, >,≤,≥};
– {(x1, x2, x3) ∈ R3 | x1 + x2 = x3}.

Proof The RVA will be given in the full paper. ⊓⊔

7

4.3 Elementary Operations on RVA

We consider operations on sets of real vectors and study their implementation by
operations on the RVA representing those sets. We have the following result.

Theorem6. Let r > 1 and m ≥ 0 be integers, V1, V2 be sets of real vectors of re-
spective arities (number of components per vector) n1 and n2, and A1, A2 be RVA
representing respectively V1 and V2. There exist algorithms for computing RVA rep-
resenting:

– The union V1 ∪ V2 and intersection V1 ∩ V2, provided that n1 = n2;
– The complement V1;
– The Cartesian product V1 × V2 = {(x1,x2) | x1 ∈ V1 ∧ x2 ∈ V2};
– The projection ∃xiV1 = {(x1, . . . , xi−1, xi+1, . . . , xn1

) | (∃xi)(x1, . . . , xn1
) ∈ V1};

– The reordering πV1 = {(xπ(1), . . . , xπ(n1)) | (x1, . . . , xn1
) ∈ V1}, where π is a

permutation of {1, . . . , n1};
– The expansion expand(V1, m) = {rmkx | x ∈ V1 ∧ k ∈ N}.

Moreover, there are algorithms for deciding if V1 is empty, and if V1 ⊆ V2.

Proof The algorithms are left for the full paper. ⊓⊔
An important consequence of this result and those of the previous section is that

any set of real vectors definable in the structure 〈R, +,≤, Z〉, where Z is the predicate
defined as

Z(x) ≡

{

True if x ∈ Z
False if x ∈ R \ Z

is representable by a RVA (in any base). Moreover, any set operation expressed in
the structure 〈R, +,≤, Z〉 is computable on RVA. Remark that the reciprocal is not
true, since the expansion operation is not definable in 〈R, +,≤, Z〉. A similar result
appears in [Büc62].

4.4 Performing Step Operations with RVA

Using RVA in the context of our improved reachability analysis method as described
in Section 3 requires to be able to perform time-step, transition-step, and cycle-step
operations on sets of states represented by a finite union of pairs (control location,
RVA). This can be done thanks to the following result:

Theorem7. Let c ∈ C be a control location and V ⊆ Rn be a set of variable values
represented by a RVA A.

– One can compute a RVA representing the result

{v′ | (∃v ∈ V, t ∈ R+)(v′ = v + t.rates(c) ∧ inv(c)(v) ∧ inv(c)(v′))}

of a time-step operation performed at c.
– Let t = (c, a, c′) be a transition. One can compute a RVA representing the result

a(V) of a transition-step operation performed along t.

8

– Let m = (c, a∗, c′) be a meta-transition. One can compute a RVA representing
the result a∗(V) of a cycle-step operation performed along m, provided that a is
iterable in the base r of A.

Proof The idea is to express the results in terms of the elementary sets and opera-
tions concerned by Theorems 5 and 6. The complete proof is left for the full paper.

⊓⊔

5 Example of Use

Let us show how the improved reachability analysis method presented in Section 3
can be applied to the very simple system depicted at Figure 1.

The first step consists of adding meta-transitions. The hybrid automaton contains
the cycle C = (c0, a0, c1), (c1, a1, c0), with a0 ≡ x2 ≥ 1 and a1 ≡ x2 ≤ 0. This cycle is
composable. Indeed, (x2 ≤ 1 ∧ x2 ≥ 1) ≡ (x2 = 1) and (x2 ≥ 0 ∧ x2 ≤ 0) ≡ (x2 = 0)
have both the form pi.x = qi, i = 0, 1, where each pi is such that pi.rates(ci) 6= 0.
Since C is composable, there exists a guarded assignment a whose effect is equivalent
to following C. In order to compute the components of a, we express at each control
location the (unique) time delay that can be spent there as a linear function of the
variables. If one spends the time t0 at location c0, the evolution law will cause the
variable values to undergo the transformation

[

x1

x2

]

:=

[

x1

x2

]

+ t0

[

1
1

]

. (1)

Since the result of this transformation must satisfy the output condition x2 = 1, we
obtain t0 = 1−x2. Replacing this value in (1), we obtain that the effect of a time-step
operation at c0 is equivalent to the guarded assignment

ac0
≡ x2 ≤ 1 →

[

x1

x2

]

:=

[

x1 + 1 − x2

1

]

.

Similarly, one obtains for the control location c1 the guarded assignment

ac1
≡ x2 ≥ 0 →

[

x1

x2

]

:=

[

x1 + x2

0

]

.

Finally, the sequential composition of ac0
, a0, ac1

and a1 yields the guarded assignment

a ≡ x2 ≤ 1 →

[

x1

x2

]

:=

[

x1 − x2 + 2
0

]

,

which therefore captures the effect of C. The last expression can be rewritten in the
canonical form Px ≤ q → x := Ax + b:

a ≡
[

0 1
]

[

x1

x2

]

≤ 1 →

[

x1

x2

]

:=

[

1 −1
0 0

] [

x1

x2

]

+

[

2
0

]

.

9

Since A is diagonalizable and has the eigenvalues 0 and 1, the guarded assignment a
is iterable (in any base). We can therefore add the meta-transition (c0, a

∗, c0) to the
system.

We are now ready for exploring the state space of the system. Let us simply show
that there exists a single exploration path of finite length that visits all the reachable
states (the existence of such a path implies that a breadth-first search would terminate
at a depth less or equal to the length of the path). The results are given at Figure 3.
For clarity, each computed set of states is prefixed by the operation that produced it,
and is expressed as a pair (control location, set of values). In the actual computation,
the sets of variable values are represented by RVA.

(initial set of states) S0 = (c0, {(0, 0)})
(cycle step, (c0, a

∗, c0)) S1 = (c0, {(2λ, 0) | λ ∈ N})
(time step, c0) S2 = (c0, {(2λ + δ, δ) | λ ∈ N ∧ 0 ≤ δ ≤ 1})
(transition step, (c0, a0, c1)) S3 = (c1, {(2λ + 1, 1) | λ ∈ N})
(time step, c1) S4 = (c1, {(2λ + 1 + δ, 1 − δ) | λ ∈ N ∧ 0 ≤ δ ≤ 1})
(transition step, (c1, a1, c0)) S5 = (c0, {(2λ + 2, 0) | λ ∈ N}) ⊆ S1

Fig. 3. State-space exploration path.

6 Conclusions and Comparison with Other Work

We give an algorithm for computing an exact and finite representation of the set of
reachable states of a strongly linear hybrid system. Our algorithm can be seen as a
strict extension of existing methods [HNSY94, ACH+95, Hen96], which are based on
state-space exploration. The improvement consists of a new operation for generating
sets of reachable states, that is based on a cycle analysis in the control graph of
the system, combined with an original representation system for sets of variable
values. Our algorithm considerably broadens the class of systems for which an exact
reachability analysis is possible. In particular, it is not limited to systems such that
the set of reachable values at each control location can be expressed as a finite union
of convex regions. When it terminates, our algorithm allows to decide properties such
as reachability of isolated states, or reachability of sets of states expressed as a finite
union of pairs (control location, set of values defined in the structure 〈R, +,≤, Z〉).

Of course, since reachability of a given state is undecidable for strongly linear
hybrid systems [HKPV95], our algorithm does not necessarily terminate. From a
theoretical point of view, this might seem unsatisfactory, but from a practical point of
view, this is not at all troublesome. Indeed, our algorithm always terminates whenever
existing techniques succeed in producing an exact representation of the reachable part
of the state space, and may give out an exact answer when traditional algorithms
must resort to approximations methods [HH94]. Moreover, it may produce a faster
result for systems having a finite but large number of reachable regions.

10

Expressing sets of real vectors as finite automata is a very old idea [Büc62], which
has originally been introduced as a tool for establishing decidability results in arith-
metic. However, the use of finite automata as actual representations of sets of real
vectors is original, and generalizes previous results [WB95, BG96] which were ob-
tained for very different systems. The idea of using meta-transitions for speeding
up reachability analysis was proposed in [BW94, BG96]. Interesting future work will
be to generalize to hybrid systems ongoing work concerning symbolic exploration
with meta-transitions (for instance, analyzing a larger class of properties than plain
reachability). Another interesting subject will be to study the complexity and prac-
tical usefulness of the manipulation algorithms for RVA discussed in Section 4, and
evaluating the benefits of the overall method on an actual implementation.

7 Acknowledgments

We wish to thank Pierre Wolper for helpful comments on a preliminary version of
this paper.

References

[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. In-

formation and Computation, 104(1):2–34, May 1993.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science, 138(1):3–34, 6 February 1995.

[ACHH93] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In
R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid Systems

I, volume 736 of Lecture Notes in Computer Science, pages 209–229. Springer-
Verlag, 1993.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183–235, 25 April 1994. Fundamental Study.

[AHH96] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of
embedded systems. IEEE Transactions on Software Engineering, 22(3):181–
201, 1996.

[BG96] B. Boigelot and P. Godefroid. Symbolic verification of communication proto-
cols with infinite state spaces using QDDs. In Proc. Computer Aided Verifi-

cation, volume 1102 of Lecture Notes in Computer Science, pages 1–12, New-
Brunswick, NJ, USA, July 1996. Springer-Verlag.

[BLL+95] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL
- a tool suite for automatic verification of real-time systems. In Proceedings

of the 4th DIMACS Workshop on Verification and Control of Hybrid Systems,
New Brunswick, New Jersey, October 1995.

[Büc62] J. R. Büchi. On a decision method in restricted second order arithmetic. In
Logic, Methodology and Philosophy of Science, Proceedings of the 1960 Inter-
national Congress, Stanford, California, 1962. Stanford Univ. Press.

11

[BW94] B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Com-

puter Aided Verification, Proc. 6th Int. Conference, Stanford, California, June
1994. Lecture Notes in Computer Science, Springer-Verlag.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Hybrid

Systems III, Verification and Control, volume 1066 of Lecture Notes in Com-

puter Science. Springer-Verlag, 1996.

[DY95] C. Daws and S. Yovine. Two examples of verification of multirate timed au-
tomata with Kronos. In Proceedings of the 1995 IEEE Real-Time Systems

Symposium, Pisa, Italy, 1995. IEEE Computer Society Press.

[Eve79] S. Even. Graph Algorithms. Computer Science Press, 1979.

[Hen96] T. A. Henzinger. The theory of hybrid automata. In Proceedings, 11th An-

nual IEEE Symposium on Logic in Computer Science, pages 278–292, New
Brunswick, New Jersey, 27–30 July 1996. IEEE Computer Society Press.

[HH94] T.A. Henzinger and P.-H. Ho. Model-checking strategies for linear hybrid sys-
tems. Technical Report CSD-TR-94-1437, Cornell University, 1994. Presented
at the Seventh International Conference on Industrial and Engineering Appli-
cations of Artificial Intelligence and Expert Systems (Austin, TX).

[HH95] T.A. Henzinger and P.-H. Ho. HyTech: The Cornell Hybrid Technology Tool.
In P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, editors, Hybrid Systems

II, volume 999 of Lecture Notes in Computer Science, pages 265–293. Springer-
Verlag, 1995.

[HHWT95a] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: the next generation.
In Proceedings of the 16th Annual Real-time Systems Symposium, pages 56–65.
IEEE Computer Society Press, 1995.

[HHWT95b] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In
E. Brinksma, W.R. Cleaveland, K.G. Larsen, T. Margaria, and B. Steffen, ed-
itors, TACAS 95: Tools and Algorithms for the Construction and Analysis of

Systems, volume 1019 of Lecture Notes in Computer Science, pages 41–71.
Springer-Verlag, 1995.

[HKPV95] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? In Proceedings of the 27th Annual Symposium on Theory of

Computing, pages 373–382. ACM Press, 1995.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111(2):193–244, 1994.
Special issue for LICS 92.

[KPSY92] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: a class of
decidable hybrid systems. In Proceedings of Workshop on Theory of Hybrid

Systems, volume 736 of Lecture Notes in Computer Science, pages 179–208,
Lyngby, Denmark, 1992. Springer-Verlag.

[LPY95] K. G. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time systems.
In Horst Reichel, editor, Proceedings of the 10th International Conference on

Fundamentals of Computation Theory, volume 965 of Lecture Notes in Com-

puter Science, pages 62–88, Dresden, Germany, August 1995. Springer-Verlag.

[MY96] O. Maler and S. Yovine. Hardware timing verification using Kronos. In Pro-

ceedings of the IEEE 7th Israeli Conference on Computer Systems and Software

Engineering, ICCBSSE’96. IEEE Computer Society Press, 1996.

[WB95] P. Wolper and B. Boigelot. An automata-theoretic approach to Presburger
arithmetic constraints. In Proc. Static Analysis Symposium, Lecture Notes in
Computer Science, Glasgow, September 1995. Springer-Verlag.

12

This article was processed using the LaTEX macro package with LLNCS style

13

