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Abstract. In order to compute the reachability set of infinite-state mod-
els, one needs a technique for exploring infinite sequences of transitions
in finite time, as well as a symbolic representation for the finite and
infinite sets of configurations that are to be handled. The representa-
tion problem can be solved by automata-based methods, which consist
in representing a set by a finite-state machine recognizing its elements,
suitably encoded as words over a finite alphabet. Automata-based set
representations have many advantages: They are expressive, easy to ma-
nipulate, and admit a canonical form.

In this survey, we describe two automata-based structures that have
been developed for representing sets of numbers (or, more generally, of
vectors): The Number Decision Diagram (NDD) for integer values, and
the Real Vector Automaton (RVA) for real numbers. We discuss the
expressiveness of these structures, present some construction algorithms,
and give a brief introduction to some related acceleration techniques.

Keywords. Infinite-state systems, symbolic representations, number-set
representations.

1. Introduction

Although all realizable computer systems are inherently finite, being able to verify
infinite-state systems is interesting for several reasons. First, infinite-state models
are good abstractions of large finite-state systems. Indeed, approximating a large
finite domain by an unbounded one is often more precise than imposing unreal-
istically small bounds on data values, which is often done in order to keep the
number of reachable configurations manageable. Second, infinite-state systems are
natural models of parameterized systems, when the range of parameter values is
unbounded. Finally, the solutions developed for analyzing infinite-state systems
are usually also applicable to very large finite ones, which are out of reach of
enumerative state-space exploration techniques.

In order to compute the reachability set of an infinite-state model, one needs
a way of generating an infinite number of reachable configurations in finite time.
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This problem is solved by acceleration methods, which are able to compute with
a finite amount of resources the effect of following unbounded, and possibly in-
finite, sequences of transitions. As an example of acceleration technique, meta-
transitions are generalized transitions that capture the repeated effect of cycles
present in the control graph of the model [17,5]. Intuitively, following a meta-
transition once leads to the set of all configurations that can be reached by follow-
ing the corresponding cycle any number of times. After adding meta-transitions
to the transition relation of the model, it may become possible to compute all
its reachable configurations in a finite number of exploration steps. Note that,
since the reachability problem is undecidable for most classes of systems that we
consider, finding a suitable set of meta-transitions will not always be feasible in
all situations.

Besides acceleration, one also needs a symbolic representation for the sets of
configurations that are handled. If the models being analyzed have finite control,
it is actually sufficient to represent symbolically sets of data values. A good rep-
resentation system is one that satisfies the following requirements. First, in order
to be able to carry out state-space exploration, sets of initial values need to be
representable. Then, the representation should be effectively closed under all data
operations performed by the models. One should also be able to compute unions
of represented sets (so as to collect new reachable configurations at each explo-
ration step), as well as to check inclusion between sets (in order to detect termi-
nation). The representation system should also be concise and efficient. Finally,
it should be possible to apply acceleration methods to the represented sets.

A first solution to the representation problem is to use a formula-based data
structure. For instance, in the case of programs based on unbounded integer vari-
ables, one can represent sets of data values by formulas expressed in Presburger
arithmetic, i.e., the first-order theory (Z, +, <) [43,44]. This representation system
has the advantage of being closed under all Boolean operators, Cartesian product,
and set projection. Moreover, reachable sets with a polyhedral and/or periodic
structure, such as those often observed in models of communication protocols and
distributed algorithms, are representable. However, formula-based representations
have disadvantages. First, the representation of a given set is not unique, and its
structure usually mimics the sequence of operations from which the set has been
constructed. This is problematic for state-space exploration applications, in which
reachable sets often have a simple structure, but are obtained after long sequences
of manipulations. Second, comparing two formulas for equality or entailment is
usually difficult and/or costly.

Another approach is to use automata-based representations [49,50,8,5,19,30,
42]. The idea consists in encoding each data value as one or many words over
a given alphabet. This encoding scheme thus maps a data set into a language
which, if it is regular, can be accepted by a finite-state automaton. An automata-
based representation of a data set is thus a finite-state machine that accepts all
encodings of all the values belonging to the set. This representation strategy has
many advantages. First, it is sufficiently expressive for many applications. For
instance, in the case of integer vector values encoded in the positional number
system, with respect to a given integer base » > 1, it is known that the class
of finite-state representable sets contains all Presburger-definable sets [22,21].
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Second, automata are easy to manipulate algorithmically, and regular languages
are closed under all usual set-theory operators: Boolean connectors, Cartesian
product, projection, ... [29]. Finally, deterministic finite-state automata admit
a minimized form that is canonical and easy to compute [28], which makes it
possible to represent a set independently from the history of its construction.

Two main automata-based data structures have currently been defined for
handling number sets. The first is the Number Decision Diagram (NDD) [49,5],
in which the vectors components are encoded in a fixed base r > 1, either least
or most significant digit first, with a number of digits that is not bounded. The
encodings of all vector components are read synchronously, and thus the number of
digits chosen for each of them must be identical. Negative numbers are represented
by their r’s complement. Algorithms have been developed for synthesizing NDDs
from equations, inequations, or general Presburger formulas [49,20,51,12,18], as
well as for creating and computing the effect of meta-transitions [5,6].

The second data structure is the Real Vector Automaton (RVA) [7,16], and is
suited for sets of integer and/or real values, for instance the sets of reachable data
values of models combining discrete variables and a dense representation of time.
The idea is that a real number can be encoded in a base r > 1 as a word composed
of a finite prefix, corresponding to the integer part of the number, followed by a
separator, and then by an infinite suffix for the fractional part. A set of real vectors
is thus mapped onto a language of infinite words over an alphabet composed of
r digits and a separator. A RVA is simply a Biichi automaton that accepts such
a language. Although infinite-word automata are often difficult to manipulate in
practice [46,32,35,34], it has been shown that the sets defined in the first-order
theory (R,Z,+,<) (the extension of Presburger arithmetic to real and integer
variables) can always be represented by weak deterministic automata [10,11]. The
advantage is that this restricted form of infinite-word automaton is practically as
efficient to handle as finite-word ones. Just as for NDDs, a full set of theoretical
tools is available for constructing the representation of sets defined by linear
constraints or arithmetical formulas, and for applying various operators to the
represented sets [16]. Finally, acceleration techniques have been developed for
data transformations with both discrete and continuous features, when the sets
are represented with RVA [9].

2. Number Decision Diagrams
2.1. Principles

Let » € N, with > 1, be a base. The positional number system in base r consists
in encoding numbers z € N as words d,—1d,—2...d1dy over the digit alphabet
{0,1,...,7 — 1}, such that z = Ef:_ol d;rt.

This encoding scheme can easily be generalized to signed numbers using the
r’s complement method: An encoding of a number z € Z such that —rP~1 < 2z <0,
with p > 0, is given by the last p digits of any unsigned encoding of rP + z.
With this method, the leading digit of an encoding corresponds to the sign of the
number: It is equal to “0” for positive or zero values, and to “r — 1”7 for negative
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numbers. The leading digit of an encoding will hence be referred to as the sign
digit. The number of digits p chosen for encoding a number z € Z does not need
to be fixed, but must be large enough to satisfy the constraint —rP~! < z < rP~L,
Note that this scheme associates every number with an infinite number of
encodings, which can be obtained from the shortest one by repeating an arbitrary
number of times the sign digit. Besides, remark that a word over {0,1,...,r — 1}
is a valid encoding of a number only if its leading digit is either “0” or “r —1”.

Example 1 Let Enc,.(z) denote the language of all base-r encodings of z. We have

EﬂCQ (12)
Ency(—6)

(0)*1100
(1)*010.

O

In order to encode a vector 2 € Z™, with n > 0, one first encodes separately
its components z1, 29, . . . , 2, into words wy, wa, . . . , Wy, choosing for each of them
the same number p > 0 of digits. The synchronous encoding scheme then consists
in grouping successively, for each i = 1,2,...,p, the i-th digit of wy,ws,...,w,
into a m-tuple. The synchronous encodings of ¢ thus take the form of words
defined over the alphabet of tuples {0,1,...,7 — 1}"™. Note that the signs of the
components of a vector are represented by the first symbol of its synchronous
encodings, which we then call the sign header. The sign header can be repeated
at will without modifying the value of the encoded vector.

Example 2 Let SynFEnc,(Z) denote the language of all base-r synchronous encod-
ings of Z. We have

SynEnc,((12,—6,1)) = (0,1,0)"(1,1,0)(1,0,0)(0, 1,0)(0,0,1).
O

The disadvantage of the synchronous scheme is that the size of the word
alphabet becomes exponential in the dimension of the vectors. The serial encoding
scheme is a simple variant that does not have this drawback. The idea is to
translate each tuple symbol (w1;, wa;, ..., ws;) € {0,1,...,7—1}" appearing in a
synchronous encoding into the sub-word wy;wo; - - - wy;, which is defined over the
much simpler alphabet {0,1,...,r — 1}. In other words, a synchronous encoding

(w117w217 ceey wnl)(w127w227 e 7wn2) tee (w1p7w2p7 e 7wnp)
is translated into the serial one
W11W21 * * " Wpl W12W22 ** W2 * WipW2p - Wnyp-

Note that all serial encodings of a vector 2’ € Z™ have a length equal to an integer
multiple of n. The sign header now corresponds to the n leading symbols of such
encodings.
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Example 3 Let SerEnc,(Z) denote the language of all base-r serial encodings of
Z. We have

SerEncs((12, —6,1)) = (010)T110100010001.
O

We are now ready to define our finite-state representation of sets of vectors.

Definition 1 Given a dimensionn > 0, a base r > 1, and a (either synchronous or
serial) encoding scheme, a Number Decision Diagram (NDD) representing a set
S CZ" is a finite-state automaton that accepts the language of all the encodings
of the elements of S.

A NDD can be deterministic or non-deterministic, depending on the proper-
ties of the underlying automaton. Converting a synchronous NDD into a serial
one, or the other way around, can be done by simple operations. In practice,
theoretical developments are easier to express using synchronous representations,
while actual implementations preferably rely on the serial scheme to avoid the
alphabet size overhead. It is also worth mentioning that we have arbitrarily de-
fined NDDs as machines reading numbers most significant digit first. Since the
properties of regular languages are mostly insensitive to the direction in which
words are parsed, least-significant-digit-first NDDs can indifferently be used.

2.2. Fxpressiveness

The properties of automata recognizing sets of numbers have been exploited for
a long time [22] for establishing the decidability of arithmetical theories. The
following result [21] characterizes the expressiveness of NDDs in a given base
r> 1.

Theorem 1 A set S C Z" is representable by an NDD in a base r > 1 iff it can
be defined in the first-order theory (Z,+,<,V,.), where V,. is defined as

the greatest power of v dividing z if z # 0

V;:Z—>N:Z|—>{1 if2=0.

The following theorem characterizes the sets that can be represented in all
integer bases [23,47,21].

Theorem 2 A set S C Z™ is representable by an NDD in every base r > 1 iff it can
be defined in the first-order theory (Z,+,<), i.e., in Presburger arithmetic [43].

Informally, Theorem 2 states that a set can be represented by an NDD if
it can be expressed in linear additive arithmetic, i.e., by a formula in which
variables are not multiplied together. The expressiveness of NDDs thus covers
the sets defined as combinations of linear constraints and modular periodicities.
These correspond to the reachability sets often observed during the analysis of
programs manipulating integer variables [17], such as communication protocols
or distributed algorithms.
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2.8. Construction and Manipulation

There exists a simple algorithm [20] for constructing an NDD A representing the
set of solutions of a linear equation @.Z = b, with a € Z™ and b € Z. This algorithm
is based on the property that each non-initial node ¢ of such an automaton accepts
a language L(q) that encodes the set of solutions of @.Z = ((q), i.e., the original
equation in which the right-hand side has been replaced by a value 3(q) associated
to q. The construction proceeds by computing the value of § for each state of
the automaton, starting from a single accepting state g for which we know that
B(qr) = b holds.

Then, one propagates the value of 3 to all the states of the automaton, moving
backwards along its transitions. Consider a state ¢ that leads to a state ¢’ by
a transition labeled by a tuple of digits d € {0,1,...,7 — 1}". A path from the
initial state that reaches ¢ after having read the encoding w of a vector ¥ can be
extended into a path that reaches ¢’ by appending d to w. The resulting path
thus reads an encoding of 7' = r7 + d. Introducing ¢ and ¥’ into the equation, we
get

PN
sy = B0 —0d
r
which provides a way of computing 3(¥) from ((¢"). Note that non-integer values
of B do not correspond to valid states and can be discarded.

This procedure always terminates after a finite number of propagation
steps [20] (thanks to the division by r performed by the propagation rule). In or-
der to transform the resulting automaton into an NDD, one simply needs to add
an initial state ¢y, the outgoing transitions from which are labeled by the possible
sign headers. A transition from ¢; labeled by a tuple of digits d e {0,r — 1}™
reads an encoding of —d/(r — 1), and thus leads to a state ¢ such that

a.d

r—1"

Blq) = —

Example 4 A NDD representing the set of solutions of 4x1 — 2x9 = —8, using a
synchronous encoding in base 2, is given in Figure 1. O

The construction algorithm that has just been outlined produces NDDs that
are deterministic and minimal. This algorithm can easily be adapted to the set
of solutions of linear inequalities [20,16,51].

A major advantage of automata-based set representations is that they can eas-
ily be combined by Boolean operators. Indeed, computing the intersection, union,
difference, symmetric difference, or Cartesian product of two sets represented by
NDDs simply reduces to carrying out the same operation on the languages ac-
cepted by the finite-state machines, for which there exist simple algorithms based
on product constructions [29]. In the same way, testing NDD-represented sets
for equality, inclusion, or emptiness also reduces to performing the same opera-
tions on the accepted languages. Furthermore, if the automata are systematically
determinized and minimized into their canonical form [28], testing set equality
amounts to a simple isomorphism check between the finite-state machines.
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(1,0)

Figure 1. NDD representing the set of solutions of 4x1 — 2z = —8.

Another operation of interest is the projection, which computes from a set
S C Z™ and a variable index i € {1,...,n} the set

E'iS:{(1)1,..‘,Uz‘,l,’UiJrl,.../Un) | Jv;, € Z: (Ul,...7’l)n) € S}

A first idea for computing a representation A’ of 3;S from a NDD A repre-
senting S is to remove the i-th tuple component from all the transition labels of
A. Unfortunately, this method produces an automaton Aly; that, even though
it accepts valid encodings of all the elements of 3,5, is generally not an NDD.
Indeed, for some vectors, the automaton may recognize their encodings only if
they are of sufficient length (consider for instance 3;{(4,1)}). In order to build A’
from A|.;, one thus has to transform the automaton so as to make it also accept
the shorter encodings of the vectors that it recognizes. An efficient solution to
this problem is described in [12,13].

The constructions that have been outlined provide a simple algorithm for
deciding Presburger arithmetic. Indeed, given a Presburger formula, one can build
a NDD representing its set of solutions by starting from the atoms of the formula,
which can be handled by the construction algorithms for linear equalities and
inequalities. Logical connectors correspond to Boolean operations. Quantifiers
are dealt with using projections and, for universal ones, complementation (which
can be implemented as a set difference operation). The original formula is then
satisfiable iff its set of solutions is non-empty. This decision procedure has been
implemented in the tools LASH [36] and MONA [26].

Finally, an operation that has some applications [45] and that can be per-
formed efficiently on NDD-represented sets is to count their number of elements
(when it is finite). This operation can be performed by counting the number of
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accepting paths in the underlying automaton, which can be done in linear time. A
minor complication is that, since any given vector has an infinite number of valid
encodings, one has to filter out the paths that do not encode distinct vectors.
Algorithms for performing this operation are described in [12,13].

3. Real Vector Automata

In this section, we show that the automata-based set representations described
in Section 2 can be generalized so as to handle sets of real and integer values (or
vectors). The main motivation behind such a representation is the development of
symbolic methods for analyzing hybrid systems [27], which combine discrete and
continuous features, as well as timed systems relying on a dense representation of
time [2].

3.1. Principles

Let v € R be a real number and r > 1 be an integer. We encode v in base r,
most significant digit first, using r’s complement for negative numbers. The result
is a word of the form w = w; x wr, where w; encodes the integer part v; of v
as a finite word over the alphabet {0,...,r — 1}, the symbol “+” is a separator,
and wr encodes the fractional part vy of v as an infinite word over the alphabet
{0,...,7—1}. We do not fix the length p of wy, but only require it to be non-zero
and large enough for —rP~! < v; < rP~! to hold. Hence, the most significant
digit of a number will be “0” if this number is positive or equal to zero, and
“r — 1”7 otherwise. The length |w;| of w; will be called the integer-part length of
the encoding of v by w. For simplicity, we require that the length of wpr always
be infinite (this is not a real restriction, since an infinite number of “0” symbols
can always be appended harmlessly to wg).

It is important to note that some numbers v € R have two distinct encodings
with the same integer-part length. For example, in base 10, the number v = 11/2
has the following two encodings with integer-part length 3 : 005 x 5(0)* and
005 % 4(9)¥ (¥ denotes infinite repetition). Such encodings are said to be dual.

To encode a vector of real numbers, we encode each of its components with
words of identical integer-part length. This length can be chosen arbitrarily, pro-
vided that it is sufficient for encoding the vector component with the highest mag-
nitude. It follows that any vector has an infinite number of possible encodings.
Using the same idea as the one discussed in Section 2 for integers, an encoding of
a vector of reals ¥ = (v, ..., v,) can indifferently be viewed as a word over either
the alphabet {0,...,7 — 1}™ U {x} (synchronous encoding), or {0,...,7 — 1,x}
(serial encoding). Note that it is sufficient to make the separator occur only once
in vector encodings, since it is always read simultaneously in all components.

Definition 2 Given a dimension n > 0, a base r > 1, and a (either synchronous
or serial) encoding scheme, a Real Vector Automaton (RVA) [7] representing a
set S C R™ is a Bichi automaton [22] that accepts all encodings of the elements
of S.
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3.2. Expressiveness

The sets of real vectors that can be represented by RVA in a given base r > 1
have been characterized in [16].

Theorem 3 A set S C R"™ is representable by an RVA in a base r > 1 iff it can be
defined in the first-order theory (R,Z,+,<, X,), where X, is the predicate over
R3 such that X,.(z,u,k) = T iff u is a (positive or negative) integer power of v,
and there exists an encoding of x such that the digit at the position specified by u
is equal to k.

Thus, as in the case of NDDs, the expressiveness of RVA corresponds to first-
order additive arithmetic, augmented by a base-dependent predicate. In most
intended applications of RVA, the expressive power of this additional predi-
cate is not needed, i.e., the represented sets can be restricted to the sub-theory
(R,Z,+, <), which can be seen as a generalization of Presburger arithmetic to
mixed real and integer variables. In this setting, the following result [10,11] states
that Biichi automata can be replaced by a much simpler form of finite-word au-
tomaton.

Theorem 4 Let S C R™ be definable in (R, Z,+,<). The set S can be represented
by a weak deterministic [41]. RVA, i.e., a deterministic automaton whose state
set Q can be partitioned into disjoint subsets Q1, ..., Qm such that

e cach Q; contains only either accepting or non-accepting states, and

e there is a partial order < on the sets Q1,...,Qm such that for every q €
Q; and ¢ € Q; for which there exists a transition from q to ¢', we have
Qj < Q.

The advantage of weak deterministic automata is that they can be ma-
nipulated algorithmically in mostly the same way as finite-word automata,
avoiding the intricacies of some manipulation procedures for infinite-word au-
tomata [46,32,35,34]. In particular, they can easily be complemented, as well as
minimized into a canonical form [39]. Non-deterministic weak automata can also
be determinized into co-Biichi automata [40,33] by a variant of the subset con-
struction used with finite-word automata.

3.3. Construction and Manipulation

The constructions presented in Section 2.3 can be adapted to RVA. The idea
behind the construction of a RVA representing the set of solutions in R™ of an
equation d.Z = b, with @ € Z™ and b € Z, is the following [16]. First, one
decomposes the unknown & into the sum of two variables Z; and Z, respectively
defined over Z™, and the real interval [0, 1]™. Thus, Z; represents the integer part
of the solution, and Z'p its fractional part. The original equation then splits into
azxr=b and daxrp=0b-".

From the former equation, b’ must be equal to an integer multiple of
ged(aq, ..., an), where aq,...,a, are the components of @. From the latter, we
get that b — b’ belongs to the interval [a_,ay], where a_ (resp. a4 ) is the sum
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(1,1)

(1,0)

Figure 2. RVA representing the set of solutions of 4x1 — 2x2 = —8.

of the negative (resp. positive) components of @. Therefore, the range of possible
values of b’ forms a finite set that can easily be computed.

One can thus first build the part of the RVA recognizing the integer part of
solutions by carrying out the procedure described in Section 2.3, starting from a
set of states corresponding to the possible values 3 of b’. For each of those states,
one then creates an outgoing transition, labeled by the separator “x”, leading
to a state that will accept the fractional part of the solutions of d.# = 3, with
B+ 05 =0

In order to build the part of the RVA that accepts the fractional part of
solutions, one can apply a forwards propagation rule. Consider a state ¢’ that
accepts the fractional part of the solutions of a.7 = 3'(¢’). If ¢’ can be reached
by a state ¢ by a transition labeled by de {0,1,...,7 — 1}", and ¢ accepts the
fractional part of solutions of @.# = 5’(¢), then we have

3'(qd') =rB(q) — a.d.

This expression allows to compute the value of #'(¢') given #'(q) and d, i.e., to
determine the outgoing transitions from the state ¢. Note that §'(¢’) must belong
to the interval [a_,a], otherwise there is no solution in [0, 1]" to @.&" = §'(s).
If this requirement is not satisfied, then there is no outgoing transition from g¢
labeled by d. The part of the RVA that recognizes the fractional part of solutions
can then be constructed by applying repeatedly the propagation rule. Since the
possible values of 3’ belong to a finite set, this operation always terminates.
Finally one marks as being accepting all the states belonging to the fractional
part of the RVA.

Example 5 A RVA representing the set of solutions of 4xy — 2x9 = —8, using a
synchronous encoding in base 2, is given in Figure 2. O

A generalization of this construction to inequations is described in [16].
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Boolean operators, Cartesian product, as well as emptiness and inclusion tests
can be applied to RVA in much the same way as to NDDs, by using product con-
structions. Projecting sets represented by RVA is more difficult, because it gener-
ally produces non-deterministic Biichi automata. However, if one restricts the sets
that are represented to the theory (R, Z,+, <), it has been shown in [10,11] that
all RVA can straightforwardly be transformed into equivalent weak deterministic
automata. Since all projections of a set in (R,Z,+, <) can themselves be ex-
pressed in that theory, one can always determinize the result of a projection, and
then turn it into a weak deterministic RVA. This yields an algorithm for deciding
(R,Z,+, <) that avoids the usual intricacies of infinite-word automata manipu-
lation procedures. Such an algorithm is implemented in the tool LASH [36].

4. Acceleration Methods

We now give a brief overview of some techniques that have been developed for
exploring infinite sequences of transitions in finite time, when the sets of reachable
configurations are represented by NDDs or RVA.

4.1. Integer Transformations

We consider models for which the data domain is Z", with n > 0, and the data
transformations are linear, i.e., of the form

PF<§— &:= AT+,

with P € Z™*", ¢ € Z™, A € Z™"*" and b e Z"™, with m > 0. The left-hand
part PZ < ¢ of such a transformation is its guard, that must be satisfied by a
data value in order to be able to apply the transformation. The right-hand part
# = AT +bis an assignment that defines the transformation undergone by the
values.

Linear transformations are closed under sequential composition, i.e., for every
sequence 61;0s; . ..;0, of such transformations, one can compute a single equiva-
lent linear transformation 6. The idea behind meta-transition-based acceleration
is to study sequences of transformations that can be iterated during state-space
exploration. Consider for instance systems modeled by a finite control graph ex-
tended with n unbounded integer variables, the edges of this control graph being
labeled by linear transformations. If there is a control cycle looping from some
location to itself, the effect of following this cycle once can be described by a linear
transformation 6. The meta-transition corresponding to that cycle is defined as
the transformation §* = Id U U % U -- -, i.e., applying the meta-transition once
amounts to following the cycle any possible number of times.

Meta-transitions preserve reachability, i.e., when applied to reachable sets of
configurations, they only lead to configurations that are reachable as well. They
can thus be added to the transition relation of the model in order to speed up
state-space exploration, and even in some cases force its termination.

In order to construct meta-transitions, one needs to be able to check that
the closure 6* of a given transformation € preserves the representability of sets,
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i.e., to guarantee that 6*(S) is representable for all representable sets S. This
problem has been solved in [5,6] for linear transformations without guards, and
sets of values represented by NDDs. The solution is formalized by the following
theorems.

Theorem 5 Let n > 0 be a dimension, r > 1 be a base, and § = AT + 5, with
A€Z™™ and b€ Z", be a guardless linear transformation.

For every set S C Z™ representable by an NDD in base r, the set 0*(S) is
representable in the same way iff there exist m,p € N, with p > 0, such that

o AP is diagonalizable, and
o the eigenvalues of AP all belong to {0,r™}.

Theorem 6 Let n > 0 be a dimension and 0 = AT + l_;, with A € Z™*" and
be Z", be a guardless linear transformation.

For every set S C Z™ representable by an NDD in every base r > 1, the set
0*(S) is representable in the same way iff there exists p € N, with p > 0, such
that

o AP is diagonalizable, and
e the eigenvalues of AP all belong to {0,1}.

Algorithms have been developed for checking these criteria using only inte-
ger arithmetic, and without computing explicitly eigenvalues [5,6]. The proof of
correctness of these results is constructive, and can be turned into an algorithm
for constructing a NDD representation of 6*(S) from the parameters of § and a
representation of S.

For linear transformations guarded by systems of linear constraints, it has
been shown [5,6] that Theorems 5 and 6 provide sufficient criteria for the preserva-
tion of representability of sets. In the particular case of Presburger-definable sets
of values, this result has been generalized to arbitrary Presburger guards in [25].
Meta-transition detection and computation algorithms, as well as an infinite-state
symbolic model checker that relies on them, have been implemented in the tool
LASH [36].

4.2. Hybrid Transformations

Meta-transitions can be generalized [7] to models combining discrete and con-
tinuous data transformations over real variables. It has been shown in [9] that
the data transformations 6 labeling arbitrary control paths of linear hybrid au-
tomata [3,1,27], are of the form

H:R”HQRn:ﬁH{ﬁWP[;},}g(f},

with P € Zm*2?" ¢ Z™, and m > 0.

For such transformations, algorithms for creating meta-transitions and com-
puting their effect over sets represented by RVA have been developed in [9], and
successfully applied to the reachability analysis of simple systems.
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4.8. Generic Methods

The acceleration techniques sketched in Sections 4.1 and 4.2 proceed by comput-
ing, for a set of initial configurations Sy represented by a finite-state machine,
and a data transformation 6, a representation of the image 6*(Sy) of Sy by the
reflexive and transitive closure of 6.

Let Ay be an automaton recognizing the elements of Sy, with respect to a
suitable encoding scheme. Constructing a representation of §*(Sy) can be seen as

computing the limit of the sequence of automata Ay, Ay, As, ... where, for each
i >0, A; represents 6°(Sy).
In order to compute the limit of Ay, A;,As, ..., one can check whether the

transition graph of some or all of these automata share common structures. For
instance, if one detects that, within some prefix of the sequence, each automaton
differs from its left neighbor only by an identical “increment”, one can guess that
the limit of the sequence can be reached by repeating this increment any number
of times. This idea, as well as techniques for checking whether the guess that
has been made is correct, is developed in [14,15]. Other techniques for computing
limits of sequence of automata can be found in [19,48,24,30,42].

5. Conclusions

Automata-based representations of number sets have all the good properties
needed by symbolic state-space exploration: They are expressive, easy to handle,
closed under a large class of operators, and have a minimized form that is canoni-
cal. Although they have been known for a long time as theoretical tools for estab-
lishing the decidability of arithmetical theories, they only have recently started
to be used as actual data structures in implemented applications [36,26,4].

Automata-based representations are not perfect, though. First, they are not
always able to capture concisely the simple structure of some sets [31]. For in-
stance, the minimal and deterministic NDD representing the set of solutions of
x1 = 2¥2y, with k € N, has a number of states that grows exponentially with k.
However, this relation can clearly be checked on the synchronous binary encod-
ings of (x1,x2) using only O(k) memory. Another example of sets that are not
represented optimally are those with a Cartesian product structure. Indeed, an
automaton recognizing the product of k sets essentially simulates the concurrent
operation of k individual automata, and can thus have a number of states expo-
nential in k. Whether there exists a finite-state representation of number sets that
shares the good properties of NDD and RVA, while being able to represent con-
cisely sets with a simple structure, is an interesting open problem. Another prob-
lem is to extract efficiently information from an automata-based representation
of a number set, for instance, by synthesizing an arithmetical formula equivalent
to the set. This problem is investigated in [37,38].
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