The inner debris disc of Vega as seen by CHARA / FLUOR

Olivier Absil (Univ. Liège)

E. Di Folco (Obs. Genève)

J.-C. Augereau (LAOG, Grenoble)

A. Mérand (Georgia State University)

V. Coudé du Foresto (LESIA, Paris)

The quest for warm dust

- Until now:
 - Cold and distant (~100 AU)
 - Massive (~10⁻² M_⊕)
 - Similar to Kuiper belt
 - > Evidences for inner holes
- Detected by
 - > Far-IR excess flux
 - Sub-mm imaging
 - Visible imaging
- First hints for warm dust with Spitzer
- Final goal: detect debris discs similar to our zodiacal disc
 - > Towards Darwin / TPF...

Marsh et al. 2005 (350 µm)

Kalas et al. 2005 (0.8 µm)

(150 AU ≈ 20" at 7.7 pc)

Are the inner holes for real?

- Two major difficulties
 - High contrast (>1:100)
 - Small angular separation
 - Inner disc: a few 10 mas
 - * Requires IR interferometry

Macintosh et al. 2003 (Keck AO)

Stellar interferometry

 van Cittert-Zernike theorem: each baseline gives one component of the Fourier transform of the source

Debris discs by interferometry

- Disc larger than angular resolution $(\lambda/b) \rightarrow$ incoherent flux
- Induces a visibility deficit at all baselines
- Best detected at short baselines

Previous attempts

Near-IR (K band)

- Ciardi et al. 2001
 - Vega with PTI
 - Baseline too long
 - Suggest possible excess of 3-6%
- Di Folco et al. 2004
 - > 5 stars at VLTI
 - Upper limit of a few % on the inner disc emission

Mid-IR (N band)

- Liu et al. 2004
 - Vega by nulling interferometry (MMT)
 - Very short baseline (4m)
 - Observation restricted to radius > 1 AU
 - Upper limit of 2.1% on mid-IR excess

CHARA - FLUOR

The Fourier Vega

Pole-on → no azimuthal dependence

- Stellar diameter (150 m)
- Limb darkening (>200 m)
- Circumstellar dust (30 m)

Fitting a uniform stellar model

Fitting star + debris disc

Absil et al. 2006, A&A 452

Modelling the inner disc

- Spectral Energy Distribution constrained by
 - > Photometric data, from 1 to 12 µm
 - > Interferometric data, at 2.2 and 10.6 µm
- Caveat: Vega is a rapid rotator!

Aufdenberg et al. 2006

SED fitting procedure

- SED fitted with model of Augereau et al. (1999)
 - Various density power laws, size distributions & compositions
 - > 2 fit parameters: minimum grain size (a_{min}) and inner radius (r₀)

Properties of the inner disc

- Small grains (mostly < 1 μm) at distances ~ 0.1 0.5 AU
- Highly refractive grains, no silicate feature → carbons > 50%
- Steep density power law: $\Sigma(r) \sim r^{-4}$ (or steeper)

Our new view of Vega

Inner debris disc

Origin of the dust

- Radiation pressure → grains blown out in ~10 yr
 - High replenishment rate needed (~10⁻-8 M⊕/yr)
- Cometary origin is favoured
 - ➢ Grain size distribution (dn ∝ a^{-3.7} da)
 - > Steep density distribution
 - > ~10 Hale-Bopp per day!
- Dynamical perturbations
 - Migrating Neptune suggested by Wyatt (2003)
 - See also poster 44 by Rèche

Towards a global scenario?

- Late Heavy Bombardment scenario
 - > Triggered by late migration of giant planets
 - Compatible with age of Vega (~350 Myr)
- Could explain at the same time
 - Asymmetry of outer disc
 - Small grains in outer disc
 - > Dust in inner disc

What's next?

- Further observations of Vega
 - Confirm the excess in H/K with IOTA/IONIC
 - > VISIR: mid-IR spectroscopy
- Interferometric survey of bright Vega-type stars (K<5)
 - > 6 more targets at CHARA in 2006
 - Preliminary result: 3 of them seem resolved
 - > First observations with VLTI (MIDI + AMBER)
- Multi-wavelength approach
- More short baselines for morphology