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Chapter 1

Introduction

Go ahead, make my day.

Harry Callahan (Sudden Impact)

Within the last decade, the emergence of electronic commerce and other online
environments has made the issue of information search and information selection
increasingly serious. Users are overwhelmed by thousands of possibilities (e.g.,
items to buy, music to listen or movies to watch) and they may not have the time or
the knowledge to identify those they might be interested in. This is exactly the prob-
lem that recommender systems are trying to solve: help users find items they might
like by making automatic but personal recommendations. Amazon’s Customers Who
Bought This Item Also Bought algorithm [42] for recommending books and other items
is certainly one of the most famous recommender systems. Other famous examples
include recommending movies (at Netflix, at MovieLens), recommending music (at
Last.fm) or even recommending news (at Google News [20]). Because of the broad
range of applications they can be used for, and especially because of the potential
financial gains they represent, recommender systems are a very active field of re-
search, both in the industry and in the academic world. The underlying theory and
algorithms are however still quite young. The first publication on the subject in-
deed only dates back from the mid-1990s, which coincides with the emergence of
the Internet.

Recommender systems should definitely not be seen as some kind of gadgets
that only the biggest online companies can afford. On the contrary, they have be-
come very important and powerful tools for most of online stores. Some of those
have even based most of their business model on the success of the recommender
systems they use. The US DVD rental and Video On Demand company Netflix is
one of the most telling examples [55]. When they opened business back in 1997,
recommending movies was not a big issue. They had stocked only 1000 titles or
so and customers could browse the entire catalogue pretty quickly. However, Net-
flix grew over the years and stocks today more than 100000 titles. At that scale, a
recommendation system becomes critical. As the CEO of Netflix, Reed Hastings,
says ”People have limited cognitive time they want to spend on picking a movie”.
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In 2000, Netflix introduced Cinematch, its own recommendation system. The first
version worked very poorly but it improved over time, as the programmers tried
new ideas and finely tuned their algorithm. It has actually become so effective that
it now drives a surprising 60% of Netflix’s rentals. What is interesting is that the
system do not simply consist in suggesting the latest blockbusters. On the con-
trary, smaller or independent movies are often proposed to customers, which has
the effect of steering them away from the lastly released big-grossing hits. Inciden-
tally, their recommendation system do not only help people find new stuff, it also
conduces them to consume more. In the business model of Netflix, this is critical.
Customers pay a flat monthly fee, usually around 16$, to watch as many movies
as they want. The problem with that strategy is that new members have usually a
dozen of movies in mind that they want to see, but as soon as they have watched
what they wanted, they do not know what to check next and their requests slow
down. But a customer paying 16$ to watch only one or two movies a month is very
likely to cancel his subscription. That model only makes sense if you rent a lot of
movies. This is exactly where Cinematch comes into play. It helps customers getting
the most of their membership. The better the predictions, the more they’ll enjoy the
movies they watch and the longer they’ll keep their subscriptions.

Despite great success in e-commerce, recommender systems are by no means a
mature technology. Many key challenges still have to be addressed. One of those
challenges is scalability [52]. With the tremendous growth of customers and prod-
ucts, recommender systems are faced with many recommendations to produce per
second, for millions of customers and products. At the same time, the quality of
recommendations has to remain sufficiently high to help users find anything they
might like. They need recommendations they can trust. Indeed, if some user pur-
chases some product he was recommended and then finds out that he doesn’t like
it, then he is very unlikely to trust the system again. The problem is that most of rec-
ommendation algorithms have not been designed with that large-scale constraint
in mind, which may indirectly affect the quality of recommendations. The more
the user and/or the product base grows, the longer it takes for those algorithms
to produce good-quality recommendations. A corollary of this is that the less time
these algorithms have to make recommendations, the worse the recommendations
become. In other words, the challenge is to make recommendations that are both
relevant and practical.

In that context, the object of this work is threefold. The first part consists in a sur-
vey of recommendation algorithms and emphasizes on a class of algorithms known
as collaborative filtering algorithms. The second part consists in studying in more
depth a specific model of neural networks known as restricted Boltzmann machines
and see how it can be used to make recommendations. The third part of this work
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focuses on how that algorithm can be made scalable. Three different and original
approaches are proposed and studied.

The rest of this text is organized as follows. Chapter 2 introduces a taxonomy of
recommendation algorithms and then examines in some more depth the most pop-
ular approaches. A slight digression is then made in chapter 3 to give an overview
of the Netflix Prize and of its implications on recommendation algorithms. Chapter
4 introduces Restricted Boltzmann Machines. A deep study of the inner workings
of that class of models is presented. It is then experimentally evaluated on a recom-
mendation problem. Three different and original approaches are then identified in
chapter 5 to make that model more scalable. For all three, the impact on the quality
of recommendations is discussed as well as the gains in terms of computing times.
Finally, chapter 6 gathers the conclusions of this work.



Chapter 2

Recommendation algorithms

I’m going to make him an offer he can’t refuse.

Don Vito Corleone (The Godfather)

This chapter presents a review of the state of the art of recommendation algo-
rithms. It first introduces in section 2.1 a general framework in which the problem
of making recommendations can be formulated. Section 2.2 presents a taxonomy
of recommender systems. The inner workings of the most popular collaborative
filtering algorithms are then introduced in section 2.3.

2.1 Framework

The problem of making automatic recommendations usually takes place in a context
where items of some sort (e.g., movies or books) are rated by a set of users (e.g., cus-
tomers). In its most common form, the recommendation problem is often reduced
to the problem of predicting the ratings for the items that have not been rated by
a user. Depending on the algorithm, these predictions are computed based on the
ratings given by that user to other items, on the ratings of like-minded users and/or
on some other sources information. Once these estimations have been computed,
the items with the highest predicted ratings can be picked as recommendations to
the user.

More formally, the recommendation problem can be formulated as introduced
in [2]. Let U be the set of users and I be the set of all possible items. Let also r be a
utility function that measures the usefulness of item i to user u, i.e., r : U × I → V ,
where V is a totally ordered set (e.g., non-negative integer values or real values
within a given range). Then, for each u ∈ U , the recommendation problem consists
in finding the item i∗ that maximizes the utility of u, i.e.:

i∗ = arg max
i∈I

r(u, i)

In most cases, the utility of an item is represented as a rating, that is an integer value
which indicates how much a particular user liked or disliked that particular item.
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For instance, in the case of movies, Alice might have given the rating of 1 (out of 5)
to the movie Avatar. Note however that r can be any arbitrary function.

What makes the recommendation problem so difficult is that r is not defined on
the whole U × I space, but only on some subset of it. In other words, the challenge
behind making recommendations is to extrapolate r to the rest of that space. To
make things worse, the size of the subspace where r is known is usually very small
in comparison with the size of the unknown region. Yet, recommendations should
be useful even when the system includes a small number of examples. In addition,
the size of U and I might range from a few hundreds of elements to millions in some
applications. For scalability reasons, this shouldn’t be lost of sight.
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Alice 1 2 ? 5 4

Bob 3 ? 2 5 3 R(u)

Clint ? ? ? ? 2

Dave 5 ? 4 4 5

Ethan 4 ? 1 1 ?

R(u,i) R(i)

 Figure 2.1: Example of rating matrix R

In case of ratings, r can be represented as a matrix R, as depicted in figure 2.1.
In that case, the recommendation problem boils down to predict unknown values
of R. The set of ratings given by some user u will be represented by an incomplete
array R(u), while the rating of u on some item i will be denoted R(u, i). Note that
this value may be unknown. The subset of items i ∈ I actually rated by u is I(u).
The number of items in that set is denoted |I(u)|. Similarly, the set of ratings given
to some item i will be represented by an incomplete array R(i). The subset of users
u ∈ U which have actually rated i is noted U(i). The number of items in that set is
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|U(i)|. The average rating of user u and of item i will be respectively denoted R(u)
and R(i). Using these notations, a general recommendation algorithm can be for-
mulated as shown in algorithm 2.1. Note that how the actual predictions of R(u, i)
are computed is left undefined for now. Also, an alternative formulation might be
to consider the Top-N recommendations instead of suggesting a single item.

Algorithm 2.1 General recommendation algorithm
Inputs: a user u
Outputs: an item i∗ to be recommended

1. For all unrated items i of user u, compute a prediction R(u, i) using some
algorithm.

2. Recommend the item i∗ with the highest prediction.

2.2 Taxonomy

The unknown ratings of the matrix R can be predicted in various ways. Many tech-
niques have been investigated, including machine learning approaches, approxima-
tion theory and various heuristics.

It is common to classify recommender systems according to the strategy they
use to make recommendations. Two different paradigms are usually cited in the
literature [2, 7]: content-based approaches and collaborative filtering algorithms.

• In content-based approaches, the user is recommended items similar to the
ones he liked in the past. That class of algorithms stems from information
retrieval and uses many of its techniques. Formally, the estimation of R(u, i)
is based on the ratings R(u, ik) assigned by user u for the items ik ∈ I(u)
that are somehow similar to item i. The similarity of two items is computed
based on their profiles, that is on the content information of these items. For
instance, in a news recommender system, recommendations are made based
on the textual content of the articles to be suggested to the user. An example
of similarity measure that is often used in that context is the term frequency /
inverse document frequency (TF-IDF) measure. In the case of movies, content-
based recommender systems try to discover common characteristics between
the movies that have been liked the most by u (e.g., a specific list of actors,
a genre, a subject of matter). Based on that knowledge, the movies with the
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highest degree of similarity are suggested to user u. Note that in some algo-
rithms, the actual profile of u might also be taken into account.

• By contrast, collaborative filtering algorithms do not take into account any
content information. In addition, rather than recommending items similar to
the ones a user u liked in the past, the user is recommended items that sim-
ilar users liked. This is based on the assumption that people who liked the
same things are likely to feel similarly towards other things. Formally, the es-
timation of R(u, i) is based on the ratings R(uk, i) assigned by the set of users
uk ∈ U which are similar to u and which have rated the item i. For instance, in
order to recommend movies, a recommender system would try to find users
that have similar taste (i.e., users who rate movies similarly) and then recom-
mend the ones they liked the most. What also distinguish pure collaborative
filtering algorithms from content-based approaches is that the only informa-
tion they know about an item is a unique identifier. Recommendations for a
user are made solely on the basis of similarities to other users. Profiles are not
taken into account at all. In a sense, this property makes them more general
since they can be applied to any problem that can be cast into a recommen-
dation problem (c.f., section 2.1). Yet, at the same time, this generality makes
them completely useless to recommend items to new users or to recommended
items which have never been rated. This is the cold start problem.

Recommender systems are of course not strictly bound to one of these two cat-
egories. Hybrid approaches combining content-based and collaborative filtering
are practicable (e.g., [7]). In that case, linear combinations and/or various voting
schemes are usually used to blend together the predicted ratings.

Collaborative filtering techniques have been extensively studied. Many algo-
rithms have been proposed since the emergence of recommender systems. These ap-
proaches are usually [14] partitioned into two categories: memory-based approaches
and model-based approaches.

• The strategy of memory-based algorithms, also known as neighborhood-based
methods, is to use the entire set R of ratings to make recommendations. First,
these algorithms employ various statistical techniques and heuristics to iden-
tify a setN (u) of users similar to u, known as neighbors. Once that set of neigh-
bors is formed, the prediction is computed as an aggregate of their ratings, i.e.,

R(u, i) = h({R(uk, i)|uk ∈ N (u)})

where h is some aggregation function. In the simplest cases, ratings are (weight-
ily) averaged. A possible drawback of memory-based methods is that they are
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generally quite sensitive to data sparseness. In order to be relevant, the sim-
ilarity measure on which they are based indeed often requires that a critical
mass of users have entered some minimum number of ratings. In addition,
these methods often suffer from scalability issues.

• Model-based algorithms were first proposed to solve some of the shortcom-
ings of memory-based methods. The approach behind model-based algo-
rithms consists in learning a model on the ratings R and then to use it to
make predictions. The underlying objective is to identify complex patterns
in the data and to make use of it to generate intelligent recommendations.
Model-based algorithms uses techniques from linear algebra (SVD, PCA) or
techniques borrowed from the machine learning community (Bayesian mod-
els, clustering models, neural networks). They usually perform better than
memory-based algorithms and are typically faster at query time. On the other
hand, model-based techniques might require expensive learning or updating
time.

2.3 Popular algorithms

2.3.1 Basic neighborhood-based methods

As introduced earlier in section 2.2, neighborhood-based methods (sometimes known
as kNN) operate in two steps. First, the system identifies a subset of users, called
neighbors, who liked the same items as u. Second, their ratings are aggregated to
estimate the rating that u would give to the item i. Repeating that process over ev-
ery unrated item, the system can then pick the one with the highest estimation, as
shown in the example of figure 2.2.

Formally, the first step of neighborhood-based algorithms consists in building a
subset N (u) ⊂ U(i) containing the n most similar users to u. The similarity of two
users u1 and u2, denoted w(u1, u2), can be seen as some kind of distance measure. It
will essentially be used as a weight to differentiate between levels of user similarity.
The motivation is that the closer uk is from u, the more his rating R(uk, i) should
weight in the prediction of R(u, i).

The two most used measures in recommender systems are correlation-based and
cosine-based similarities. Among correlation-based measures, the Pearson correlation
measure is undoubtedly one of its most popular and accurate representatives [49,
53, 2]. Its purpose is to measure the extent to which two variables (i.e., two users)
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Alice

Bob

Clint

Ed

Figure 2.2: The neighborhood based method. Say that Alice has a crush on Russel Crowe and
liked the three movies on the left. To make a recommendation for her, the recom-
mender system first identifies similar users who also liked those movies. Then,
the movies they all liked are recommended. In that case, Alice is recommended
American Gangster.

linearly relate with each other:

w(u1, u2) =
∑
i∈C(R(u1, i)−RC(u1))(R(u2, i)−RC(u2))√∑

i∈C(R(u1, i)−RC(u1))2
√∑

i∈C(R(u2, i)−RC(u2))2
(2.1)

where C is the set of co-rated items I(u1) ∩ I(u2) and RC(uk) is the average rating
of user uk over the items in C. By contrast, the cosine-based similarity measure
estimates the similarity of two users by computing the cosine of the angle between
their corresponding vector representation:

w(u1, u2) = cos(~RC(u1), ~RC(u2)) =
~RC(u1) • ~RC(u2)

‖~RC(u1)‖‖~RC(u2)‖
(2.2)

where ~RC(uk) is the vector of ratings of uk over the co-rated items in C and where •
denotes the dot product of the two vectors. Even though it might work well in some
cases, a flaw of the cosine measure is that it cannot take into account the fact that
different users may use different rating scales. Some users might indeed consider
that a rating of 3 (out of 5) is fair while some others might find that it is too harsh.
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That issue can however be easily addressed by subtracting the corresponding user
average to each co-rated pair. Interestingly, this adjusted cosine similarity measure
is then exactly equivalent to the Pearson correlation measure [53]. Besides Pearson
correlation and cosine similarity, many other measures have been proposed in the
literature. Examples include Spearman rank correlation or probability-based similarity
measures.

Once the n nearest neighbors of u have been identified, the second step of the
algorithm is to compute the actual prediction of R(u, i). The common strategy is to
aggregate the ratings of uk ∈ N (u) using one of the following schemes:

R(u, i) =
1

|N (u)|
∑

uk∈N (u)

R(uk, i) (2.3)

R(u, i) =

∑
uk∈N (u) w(u, uk)R(uk, i)∑

uk∈N (u) |w(u, uk)|
(2.4)

R(u, i) = R(u) +

∑
nk∈N (u) w(u, uk)(R(uk, i)−R(uk))∑

uk∈N (u) |w(u, uk)|
(2.5)

The simplest aggregation scheme is to average the neighbor ratings, as defined in
equation 2.3. A more effective scheme consists in computing a weighted average of
the ratings, as shown by equation 2.4. That way, the ratings of the closest neighbors
are more prevailing than the others. Still, both of these schemes might suffer from
the fact that users may not use the same ratings scale (just like the cosine similarity
measure). Equation 2.5 tries to address this limitation. Instead of using the absolute
values of ratings, that approach computes a weighted sum of the deviations from
the average rating of each neighbor. The aggregated deviation is then added to the
average rating of u to obtain the final prediction.

Many extensions have been proposed to improve this algorithm. The most pop-
ular and effective are default voting, inverse user frequency and case amplification. De-
fault voting [14] tries to address the problem of extreme sparseness. It was indeed
observed that memory-based methods do not perform very well whenever there are
relatively few known ratings; the similarity measures becoming unreliable. Yet, it
was shown that the performances could improve if some default value was assumed
in place of the missing ones. Inverse user frequency [54] tries to deal with universal
items. The idea is that items that have been rated by almost everyone may not be
as relevant than the items rated by smaller groups of users. In practice, inverse user
frequency can be defined as

f(i) = log(
|U |
|U(i)|

) (2.6)
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and then taken into account by premultiplying every value R(u, i) by f(i). As for
case amplification [14], it refers to an heuristic which tries to reduce noise in the data.
The approach consists in emphasizing high weights and penalizing lower ones:

w(u1, u2)′ = w(u1, u2)|w(u1, u2)|ρ−1 (2.7)

where ρ is the case amplification power, typically 2.5. For instance, if w(u1, u2) is high,
say 0.9, then it remains high (0.92.5 ≈ 0.76), while if it is low, say 0.1, then it becomes
negligible (0.12.5 ≈ 0.003).

While the above methods compute similarities between users to make recom-
mendations, the dual approach is actually as practical. Accordingly, rather than
identifying similar users, the same techniques can be used to identify a set of similar
items N (i) and then to predict ratings from them. In practice, empirical evidence
has shown that item-based approaches provide comparable or even better perfor-
mance than user-based algorithms. The recommender system at Amazon.com is an
example of item-based algorithm [42].

Algorithm 2.2 Neighborhood-based algorithm
Inputs: a user u, an item i, a maximum number of neighbors n
Outputs: an estimation of R(u, i)

1. For performance issues, pick a similarity measure w (e.g., formula 2.1 or 2.2)
and precompute w(u1, u2) for all pairs of users.

2. Find the n most similar neighbors of u, N (u).

3. Aggregate the ratings of uk ∈ N (u) using either formula 2.3, 2.4 or 2.5.

2.3.2 Slope One

Neighborhood-based algorithms presented previously are arguably the simplest
methods to make recommendations. In this section, a slightly more elaborate scheme
called Slope One [41] is introduced. It is known to be one of the simplest to under-
stand, but yet effective, item-based algorithms.

Before diving into the logic of the algorithm, let’s first consider a concrete ex-
ample (inspired from [46]). Say you are discovering the filmography of Quentin
Tarantino. On average, people who liked Reservoir Dogs also liked Pulp Fiction, but
they tend to like the latter a bit more. Let’s assume most people would give a rating
of 3 (out of 5) to Reservoir Dogs and a rating of 4 to Pulp Fiction. Say you didn’t en-
joy Reservoir Dogs very much and gave it a rating of 2. Then, one might reasonably
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 Figure 2.3: The Slope One algorithm

guess that you would give a rating of 3 to Pulp Fiction, i.e., one more than Reservoir
Dogs. This is the principle used at the core of Slope One. Predictions R(u, i) are
computed based on the average differences between the ratings of i and the ratings
of the other items of u. Say now that people who liked Pulp Fiction also liked Kill
Bill and gave it on average a rating of 4. Let’s also assume that this time you liked
Kill Bill and gave it a rating of 4. Based on Reservoir Dogs, the prediction was that
you’d give a rating of 3 to Pulp Fiction. By contrast, based on Kill Bill, one might say
that you’d give it a rating 4. By averaging the two predictions, the final prediction
given by Slope One is 3.5. Figure 2.3 illustrates that example.

More formally, the motivation behind the Slope One algorithm is the following.
Let u1 and u2 be two arbitrary users and assume for simplicity that I(u2) ⊂ I(u1).
We search for the best linear predictor, i.e., the most accurate linear function of the
form R(u2, i) = mR(u1, i) + b,∀i ∈ I(u2), to predict the ratings of u2 from those
of u1. Fixing m to 1 (hence the name of the algorithm) and minimizing the total
quadratic error

∑
i∈I(u2)

(R(u1, i) + b−R(u2, i))2, it comes that:

b =

∑
i∈I(u2)

R(u2, i)−R(u1, i)

|I(u2)|
(2.8)

Put differently, the optimal value for b is simply the average difference between
the ratings of u2 and those of u1. Driven by equation 2.8, let’s then consider the
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average difference of ratings between items i2 and i1:

δ(i2, i1) =

∑
u∈U(i1,i2)

R(u, i2)−R(u, i1)

|U(i1, i2)|
(2.9)

where U(i1, i2) = U(i1)∩U(i2). Given equation 2.9, R(u, ik) + δ(i, ik) is a prediction
ofR(u, i). It means that if the average difference of ratings between i and ik is δ(i, ik)
and if u gave a rating of R(u, ik) to ik, then one might guess that his rating towards
i would be R(u, ik)+ δ(i, ik). Combining all these predictions together by taking the
average over all the items rated by u, the Slope One algorithm summarize to:

R(u, i) =

∑
ik∈L(u,i)R(u, ik) + δ(i, ik)

|L(u, i)|
(2.10)

where L(u, i) = {ik|ik ∈ I(u), i 6= ik, |U(i, ik)| > 0}, that is the list of items shared
with at least another user. In practice, this version of the Slope One algorithm can be
reformulated into a simpler expression. Indeed, when data is dense enough, U(i, ik)
is almost always non-empty, which means that L(u, i) = I(u) when i /∈ I(u) and
L(u, i) = I(u)/{i}when i ∈ I(u). Then, since

R(u) =
∑

ik∈I(u)

R(u, ik)
|I(u)|

≈
∑

ik∈L(u,i)

R(u, ik)
|L(u, i)|

for almost all i, equation 2.10 can be approximated by:

R(u, i) = R(u) +

∑
ik∈L(u,i) δ(i, ik)

|L(u, i)|
(2.11)

It is quite intriguing to note that the last formulation of the Slope One algorithm
does not directly take into account how the user actually rated individual items.
Rather, formula 2.11 only depends on the user average rating and on his list of items.

Alternatively, equations 2.10 and 2.11 can be rewritten in order to take into ac-
count the number of ratings merged into the predictors. It is indeed intuitively safer
to give more credit to a predictor based on thousands of ratings than to a predictor
based on a couple dozen of ratings. Including this heuristic into equation 2.10, a
weighted version of the algorithm can be defined as:

R(u, i) =

∑
ik∈L(u,i)(R(u, ik) + δ(i, ik))|U(i, ik)|∑

ik∈L(u,i) |U(i, ik)|
(2.12)
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Algorithm 2.3 Slope One
Inputs: a user u, an item i

Outputs: an estimation of R(u, i)

1. For performance issues, precompute δ(i1, i2) for all pairs of items.

2. Find the list of items ik 6= i, L(u, i), shared with at least another user.

3. Compute R(u, i) using either formula 2.10, 2.11 or 2.12.

2.3.3 Latent factor approaches

The collaborative filtering methods presented so far are quite intuitive and easy
to implement. Even though they sound credible and actually work quite well in
practice, most of them are based on heuristics which are sometimes not so well
justified. In this section, a more theoretically founded approach called latent factor
models and issued from the machine learning community is introduced.

Latent factor approaches form a class of model-based collaborative filtering al-
gorithms. The idea is to try to explain the ratings observed in R by characterizing
both users and items with latent factors inferred from the ratings patterns [37]. In a
sense, these factors might be viewed as a sequence of genes, each one of them en-
coding how much the corresponding characteristic is expressed. For instance, in the
case of movies (c.f., figure 2.4), factors might relate to obvious characteristics such as
overall quality, whether it’s an action movie or a comedy, the amount of action, or to
more abstract traits such as a subject of matter. In many cases, they might also relate
to completely uninterpretable characteristics. Likewise, user’s preferences can be
roughly described in terms of whether they tend to rate high or low, whether they
prefer action movies or comedies, the amount of action they tend to prefer and so
on. In that context, the bet is that a user’s rating of a movie can be defined as a sum
of preferences with respect to the various characteristics of that movie. Note also
that these factors are not defined by hand like in content-based methods, but are
rather algorithmically learned by the system.

The two main representatives of that class of algorithms are restricted Boltzmann
machines and models based on matrix factorization techniques, such as singular value
decomposition (SVD, and also known as latent semantic indexing in some contexts).
Since chapter 4 and subsequent chapters will be entirely dedicated to the former,
focus will be given in this section to matrix factorization algorithms.

Formally, the principle of matrix factorization-based models is to project both
users and items into a joint latent factor space of dimensionality f , such that user-
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Figure 2.4: The latent factor approach. Movies and users are projected into a space whose
dimensions measure the characteristics of movies and user’s interest in these
characteristics. In this simplified example, movies and users are projected along
two axis. The first axis corresponds to whether a movie is more female- or male-
oriented while the second corresponds to whether a movie is more a drama or
a comedy. It also shows where users lie in that space. From this example, one
might say that Alice would love Pride and Prejudice while she’d hate Beverly
Hills Cop. Note that some movies, such a SiCKO, or some users, such like Bob,
might be seen as fairly neutral with respect to these dimensions

item interactions are modelled as inner products in that space [37]. In other words,
each user u is associated to a vector of factors P (u) ∈ Rf while each item i is asso-
ciated to a vector of factors Q(i) ∈ Rf . The elements of Q(i) measure the level of
expression of the corresponding features in item i while the elements of P (u) mea-
sure the interest of u in these characteristics. The dot product of these two vectors
represents the overall interest of user u in item i, which is nothing else than R(u, i):

R(u, i) = P (u)TQ(i) (2.13)

In that context, learning a latent factor model boils down to search for the best
mapping between the user-item space and Rf . In matrix terms, P (u) and Q(i) can
respectively be aggregated into a matrix P of format |U | × f and a matrix Q of
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format |I| × f . The k-th row of P corresponds to P (uk) while the k-th row of Q
corresponds to Q(ik). Put differently, the goal is to find P and Q such that PQT is
an approximation as close as possible to R.

Technically, this formulation of the problem amounts to minimize the prediction
error of the model on some training set S containing (u, i)-pairs for which R(u, i) is
known:

minErr =
∑

(u,i)∈S

(RS(u, i)− P (u)TQ(i))2 (2.14)

In practice, solving directly equation 2.14 might lead to models with good results
on the training data but with poor performance in generalization. Since the final
objective is to predict unknown ratings, a critical issue is to avoid overfitting the
model to the data it is trained on. To this end, the model can be regularized using
ridge regression. As a consequence, equation 2.14 is replaced with:

minErr =
∑

(u,i)∈S

(RS(u, i)− P (u)TQ(i))2 + λ(‖P (u)‖2 + ‖Q(i)‖2) (2.15)

Dozens of approaches can be used to solve the optimization problem of equa-
tion 2.15. In the context of collaborative filtering, two methods have become popu-
lar: stochastic gradient descent first proposed by [23] and alternating least squares intro-
duced by [10].

Algorithm 2.4 Matrix factorization - Stochastic gradient descent
Inputs: a training set S, a learning rate γ
Outputs: two matrices P and Q such that RS ≈ PQT

Initialize P and Q with zeroes or random values;
n := 0;
Compute the prediction error Errn at iteration n;
repeat

for (u, i) ∈ S do
E(u, i) := RS(u, i)− P (u)TQ(i);
Q′(i) := Q(i);
Q(i) := Q(i) + γ(E(u, i)P (u)− λQ(i));
P (u) := P (u) + γ(E(u, i)Q′(i)− λP (u));

end for
n := n+ 1;
Compute the prediction error Errn at iteration n;

until |Errn − Errn−1| < ε
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Algorithm 2.5 Matrix factorization - Alternating least squares
Inputs: a training set S, a learning rate γ
Outputs: two matrices P and Q such that RS ≈ PQT

Initialize P and Q with zeroes or random values;
n := 0;
Compute the prediction error Errn at iteration n;
repeat

Fix P . Solve for Q by minimizing the objective function 2.14
Fix Q. Solve for P by minimizing the objective function 2.14
n := n+ 1;
Compute the prediction error Errn at iteration n;

until |Errn − Errn−1| < ε

The logic of the stochastic gradient descent approach (c.f. algorithm 2.4) consists
in looping through the training data and updating P and Q after each training case.
At each step, the parameters of the model are updated by small increases propor-
tional to some learning rate in the opposite direction of the gradient of the objective
function. The algorithms either stops after a fixed number of cycles through the
whole dataset, or as soon as no more improvement is observed. In practice, this
approach is quite easy to implement and usually displays fast training time.

In fact, equation 2.15 is difficult to solve because both P (u)’s and Q(i)’s are un-
knowns, which means that the problem is not convex and may not be solvable ef-
ficiently. However, when either P or Q is fixed, the problem becomes quadratic
and can be solved optimally. The strategy of the alternating least squares (c.f., algo-
rithm 2.5) then simply consists in first fixing P , solving for Q, then fixing Q, solving
for P , and so on. This ensures that at each step the prediction error is reduced.

The guiding principle of this latent-factor model is that ratings are the result of
interactions between users and items. However, in typical collaborative filtering
data, much of the observed variation in rating values is not due to such interactions
but rather on independent effects, called biases, and associated with either users or
items. For instance, some users may have a tendency to give higher ratings than
others. Similarly, some items may have a inherent tendency to receive higher or
lower ratings. Accordingly, it may in fact look a bit overoptimistic to explain the full
rating value by an interaction of the form P (u)TQ(i). To tackle this problem, [37]
proposed to break the rating value into four components:

R(u, i) = µ+B(i) +B(u) + P (u)TQ(i) (2.16)

where µ is the global average rating, B(i) is the bias of item i and B(u) the bias of
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user u. Their idea is that this decomposition should allow for each component to
explain only the portion of the rating value it might be accounted for.

What is more interesting is that the system can learn this new formulation within
the same framework. Indeed, the optimisation problem of equation 2.15 becomes
the one of equation 2.17 and can still be solved using either stochastic gradient as-
cent or alternating least squares. This flexibility is actually one of the biggest advan-
tages of the model. Application-specific factors are usually not difficult to integrate.
As a result, many small other improvements of that kind have actually also been
introduced.

minErr =
∑

(u,i)∈S

(RS(u, i)− µ−B(u)−B(i)− P (u)TQ(i))2 (2.17)

+ λ(‖P (u)‖2 + ‖Q(i)‖2 +B(u)2 +B(i)2)

2.3.4 Other techniques

Neighborhood and latent factors-based approaches have clearly become the most
used and the most effective techniques to build recommender systems. Still, many
other approaches have been proposed in the literature within the last decade, with
various success.

Bayesian models is one of those attempts. The central idea in this approach is
to assume that users can be partitioned into groups which share the same ratings
probability distribution. This leads to a predictive distribution of missing ratings
based on the posterior distribution of the groupings and associated ratings prob-
abilities [18]. Clustering techniques issued from the machine learning community
were also proposed [47, 52] as an intermediate step to group users or items together.
Some others also tried to apply neural networks [45] or decision trees [14] on the
recommendation problem. In addition to pure methods, many hybrid approaches
combining ideas of different techniques have also been introduced. Extensive sur-
veys covering the main and the more exotic collaborative filtering techniques can be
found in [53, 2].

Finally, let’s also note that an alternative formulation of the recommendation
problem is more and more considered. Instead of trying to predict every unknown
rating, the recommendation problem can indeed be reduced to the problem of learn-
ing to rank. In that framework, the goal is to build a model to predict how a particular
user would order the items he did not rate, from the one he would love the most, to
the one he would utterly hate.



Chapter 3

The Netflix Prize

My precious.

Gollum (The Lord of the Rings)

This chapter is dedicated to the Netflix Prize competition that was held from 2006
to 2009. It first reviews in section 3.1 the history of the contest. Section 3.2 presents
the dataset which has been used during the competition. Lessons and innovative
ideas that have emerged from the competition are summarized in section 3.3.

3.1 History

Back in Netflix headquarters. 2006. At the time, programmers at Netflix had been
working for 6 years on the Cinematch recommender system. They had rapidly come
with a reasonably robust recommendation algorithm and were able to detect fairly
nuanced and surprising connections between movies and customers. By 2006 how-
ever, programmers were out of ideas. They didn’t know how to make their algo-
rithm any better. They suspected that some major breakthrough has to be made.
Then, in a staff meeting of the summer of 2006, Reed Hastings had the following
idea: Why not have a public contest to improve our system? [55]

It started on October 2006. Netflix challenged the data mining, the machine
learning and the computer scientists communities to develop an algorithm that
would beat their recommender system. Contestants were provided a dataset of
100,480,507 ratings that 480,189 anonymous subscribers gave to 17,770 movies. Rat-
ings were on a scale from 1 to 5 stars, and were given as quadruplets of the form
user–movie–date–rating. This set of ratings formed the training set. In addition,
2,817,131 of the most recent ratings from the same users on the same movies were
withheld and were provided as triplets of the form user–movie–date. That second
dataset was known as the qualifying set. The goal of the competition was to make
predictions for all of those unknown ratings.

Participants were allowed to make daily submissions of their predictions. In re-
turn, Netflix immediately and automatically computed the score of the submissions.
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The root mean square error (RMSE)

RMSE(S) =

√√√√ 1
|S|

∑
(u,i)∈S

(R(u, i)− R̂(u, i))2 (3.1)

for a fixed but unknown half the qualifying set (known as the quiz set) was reported
back to the contestant and posted to the leader board. The RMSE for the other part
of the qualifying set (known as the test set) was not reported. It was kept secret
by Netflix to identify potential winners of the Prize [13]. At the time, Cinematch
scored an RMSE of 0.9514 on the quiz data set and 0.9525 on the test set. To win
the competition, a 10% improvement over Cinematch had to be reached. Simply
put, in order to win the Grand Prize, contestants had to come up with an algorithm
that would score an RMSE of 0.8572 or lower on the test set. By comparison, a
trivial algorithm that returns for every unknown rating the average rating from the
training set scores an RMSE of 1.0540. In addition, Netflix also identified a probe
subset of the training set, with the same statistical properties than the qualifying set.
That way, contestants could make offline evaluations before submitting their results.
Figure 3.1 illustrates how the Netflix data are organized.

 

Netflix data

Training set

100,480,507 ratings

Probe set

1,408,395 ratings

Qualifying set

2,827,131 ratings

Quiz set

1,408,342 ratings

Test set

1,408,789 ratings

Figure 3.1: The Netflix dataset

What made the Netflix Prize so attractive was the reward promised to the first
person who could go over the 10% mark. 1 million dollars. That lure actually
worked so well that no less than 51051 contestants from 186 different countries ac-
tually took part in the competition. In return, the winner was required to document
and publish his algorithms publicly, enabling everyone to benefit from the insights
and techniques required to achieve the enhanced level of predictive accuracy [13].
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Or chose to not claim the prize if they wanted to keep their algorithm secret. Smaller
intermediate progress prizes were also awarded every year to the leading contes-
tants, as long as they had at least achieved a 1% improvement over the previous
progress prize, or over Cinematch in the first year of the contest. Likewise, the win-
ner of a progress prize had to disclose his techniques and algorithms to claim the
reward.

The competition officially started on October 2, 2006. Two weeks later, three
teams had already beaten Cinematch’s results and one of them was advanced enough
to qualify for the first progress prize. By the end of 2007, the competition had gained
momentum and more than 20000 teams had registered. Several front-runners were
fighting for the first place on the leader board, including ML@UToronto, a team from
the University of Toronto led by Prof. Geoffrey Hinton, Gravity, a team of scientists
from Budapest, and BellKor, a group of researchers from AT&T Labs.

The first progress prize was awarded in 2007 to Yehuda Koren, Robert Bell and
Chris Volinsky from the BellKor team. They were the first to reach an RMSE of
0.8712 (i.e., a 8.43% improvement). Accordingly, they made their techniques pub-
lic, which in return revived the competition. Yet, progress was much slower over
the second year. Approaching the long-desired 10% mark was getting more and
more difficult. The second progress prize was awarded in 2008 to the team BellKor
in Chaos, an alliance between BellKor and Andreas Töscher and Michael Jahrer from
team BigChaos. Together they reached an RMSE of 0.8616 (i.e., a 9.44% improve-
ment). The competition was nearing its end. Other contenders then quickly under-
stood that they wouldn’t stand a chance against the leading team if they didn’t start
merging together as well. Alliances started to appear and leaders were competing
for the first place again. On June 26, 2009, BellKor put an end to it. They had merged
with a third team and achieved an RMSE of 0.8558 – 10.05% better than Cinematch.

But this is not the end of the story. In accordance with the rules of the contest,
when a set of predictions scores beyond the qualifying RMSE, participants get 30
more days to make any additional submission that will be considered for judging.
As a last resort, the remaining leaders merged together to form a team of more than
30 members, The Ensemble. On July 26, 2009 – on the last day of the competition,
they submitted their final solution, a 10.10% improvement on the quiz set. Nearly
at the same time, BellKor’s Pragmatic Chaos submitted their last blend, a 10.09% im-
provement on the quiz set. The winning team was to be the one with the lowest
RMSE of the test set.

In September 2009, Netflix announced the final results. Both Bellkor team and
The Ensemble had scored an RMSE of 0.8567 on the test set. It was tie. Under the
contest rules, in that case, the first team to have made the submission wins. The
Ensemble submitted their results at 18:38:22. Luckily for them, Bellkor posted theirs
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20 minutes sooner, at 18:18:28. They had won the Netflix challenge. That 20 minutes
had been worth $1M [43].

Delighted by the great success of the challenge, Netflix announced a sequel to
the competition in August 2009. Rumours were that this time, contestants should
have to focus on user profiles to make better predictions. Due to privacy concerns
however, the second Netflix challenge never started. It was officially cancelled in
March 2010.

3.2 Data

Since the experiments of the next chapters are all based on the dataset that was
used during the Netflix challenge, a good understanding of its major aspects might
happen to be more than helpful. This is the object of this section.

3.2.1 Creation of the dataset

The complete Netflix dataset (i.e., training set + qualifying set) was created by select-
ing a random subset of the Netflix subscribers who provided at least 20 ratings be-
tween October 1998 and December 2005. To make the contest more realistic, a signif-
icant number of users and movies were selected (480,189 users and 17,770 movies).
Next, some perturbations techniques were applied on the selected ratings in order
to protect the anonymity of the subscribers. Some ratings were added, others were
slightly changed and some were even deleted. The exact perturbation process was
not disclosed by Netflix (it would otherwise defeat its purpose), but they guaran-
teed that the statistical properties of the resulting set remained the same. All in all,
over 100 millions ratings were collected. By comparison, the biggest dataset pub-
licly released at the time was the MovieLens dataset, containing 10 millions ratings
of 71,567 users over 10,681 movies.

For each selected user, 9 of their most recent ratings were put aside and randomly
assigned either to the quiz set, to the test set or to the probe set. If some user had
fewer than 18 ratings (due to the perturbation of the original data), then only the
most recent half of his ratings were put into the subsets [13]. This sampling scheme
actually reflects the goal of recommender systems: predict future ratings based on
past ratings.

In practice, the whole dataset was released as a bunch of 2 Go of text files. The
training set was split into 17,770 distinct files, each one of them corresponding to a
particular movie and containing its list of ratings. The first line of each file encoded
the movie identifier, while ratings were given on the remaining lines as user–rating–
date of rating triplets. Just like for movies, users were given in the form of unique
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identifiers. The example below illustrates this formatting for the 10 first ratings of
movie 2782 (Braveheart).

2782:

1316262,5,2005-07-05

2256305,2,2005-07-13

1026389,4,2005-07-06

313593,5,2005-07-06

1734805,5,2001-01-03

364518,3,2002-09-18

1392773,4,2001-04-26

1527030,1,2005-07-07

712664,3,2002-10-13

1990901,5,2000-10-06

As for the qualifying set, it was provided in an independent file, as a list of
movie–user–date of rating triplets. Ratings of the probe set were also given in a
auxiliary file, as a list of movie–user pairs (recall that the probe set is a subset of the
training set). Finally, a third file reported the title and date of release of every movie.

3.2.2 Statistics

A singularity of the Netflix dataset is that it is largely sparse. At first sight, one might
think that 100,480,507 ratings is a big number, and indeed it is. However, that num-
ber should be put into the perspective of the total number of ratings in the matrix
R. 8,532,958,530 in this case. In other words, only 1.18% of the ratings are known.
Needless to say that this high degree of sparseness only made the challenge harder.
Intuitively, a consequence of this problem is that, on average, two users picked at
random have low overlap, which usually results in less accurate predictions. This
problem also dramatically reduces the number of machine learning methods avail-
able to tackle the problem. Those designed for complete data situations, or nearly
so, have to be abandoned.

Let’s now consider the distribution of ratings between users and movies. The
overall average rating is 3.60, which means that users seem quite satisfied with their
choices. Overall standard deviation is 1.01. This indicates a relatively high variabil-
ity between ratings (on a scale from 1 to 5, this is far from being insignificant), and
either means that users usually disagree with each other or that some movies get
better or worse ratings than some others. Figure 3.2 illustrates the distribution of
average ratings between users. Nearly two thirds of them have an average rating
between 3 and 4, which suggests that they usually like the movies they watch. A



3.2. Data 30

good portion of users have an average rating between 4 and 5, which means that
they seem to really enjoy everything they watch. By contrast, nearly no user appear
to hate everything. Figure 3.3 illustrates the distribution of average ratings between
movies. More than one half appear to have an average rating between 3 and 4,
which confirms that movies are usually liked by their watchers. However, only a
handful of movies have an average rating between 4 and 5, which means that very
few are actually universally liked. By contrast, a lot more of movies appear to be
disliked by all their watchers. Roughly a quarter of them have indeed an average
rating lower than 3.

Another important aspect to take into consideration is the number of ratings
per user and/or per movie. The perfect long tail of figure 3.4 illustrates that the
number of ratings varies by more than three orders of magnitude among users. A
couple thousands of users –or bots?– count thousands of ratings while nearly 50%
of users have less than 100 ratings. This chart also suggests that Netflix subscribers
are actually quite active. More than 200,000 of them have more than 100 ratings! The
same phenomenon occurs with distribution of ratings among movies, as shown in
figure 3.5. Some blockbusters collect dozens of thousands of ratings, up to 200,000
ratings for a couple of them, while more than half of all movies actually amass less
than 500 ratings. As noted in [9], these observations complicate the challenge to
detect weak signals for users/movies with sufficient sample size while avoiding
overfitting for users/movies with very few ratings.
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3.2.3 Relevance of the RMSE measure

There has been much debate during the competition about the importance of the
root mean square error (RMSE) metric. Many wondered about the relevance of this
measure for assessing the quality of recommender systems. Some even questioned
the importance of the challenge itself. Indeed, after all, what does it mean to reduce
the RMSE from 0.9525 down to 0.8572? Is it even useful for the end-user?

Yehuda Koren, one of the winners of the Netflix challenge, made the follow-
ing experiment [35]. He proposed to evaluate the effect of lowering the RMSE of a
recommender system on its capacity to find the top N recommendations for some
user u. To this end, he used all 5-star ratings from the probe set as a proxy for
movies that interest users. His goal was to find the relative place of these interest-
ing movies within the top N recommendations. His experiment protocol was the
following. First, for each 5-star rated movie i, Yehuda randomly picked 20 addi-
tional movies and predicted the rating of i and of these 20 other movies. Second,
he sorted these predictions in descending order. Since those 20 movies were ran-
dom, some may have been of interest to u but most probably wouldn’t have. Hence,
since R(u, i) = 5, the best expected result was to find i in first position. Accordingly,
a score was derived from the obtained ranking. If i was ranked first, then it was
scored 0%. If i was ranked second, then it was scored 5%. And so on such that
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a case where i ranked last was scored 100%. Eventually, he averaged all of these
scores and obtained a final ranking score.

The trivial algorithm that returns for every unknown rating the overall average
rating has an RMSE of 1.0540. The final ranking score of this method is 18.70%,
which means that, on average, the most appealing movies are ranked after 18.70%
of the other movies. By comparison, a neighborhood-based recommender system
using the Pearson’s similarity measure (c.f., Section 2.3.1) yields an RMSE of 0.9430
on the Netflix data, which is roughly a 10% improvement over the trivial approach.
The final ranking score of this method is 14.92%. That’s an improvement of 20.2%
over the previous approach. Finally, one of the hybrid latent-factor based models
of Yehuda scores an RMSE of 0.8949. With this algorithm, the final ranking score
dropped to 10.72%, which is a 42.67% improvement over the first method.

All in all, these experimental results are quite encouraging. They suggest that
improvements in RMSE lead to significant improvements in terms of recommen-
dation quality. It also appears that even small reductions in RMSE might result in
meaningful improvements of the quality of the recommendations.

3.3 Lessons

3.3.1 Publications

The science of making recommendations is a prime beneficiary of the Netflix com-
petition. Many people became involved in the field of collaborative filtering and
proposed a lot of new ideas. In particular, this (temporary?) enthusiasm for rec-
ommender systems led to a large amount of publications on the subject. Most no-
tably, the various papers that the winning team was required to publish greatly
contributed to the progress that has been made during the competition. See [8] for
the advances made to win the first Progress Prize in 2007, [11, 4] for the Progress
Prize of 2008 and [36, 5, 48] for the algorithms used by Bellkor’s Pragmatic Chaos to
win the competition.

3.3.2 Blending predictions

Significant advances have been made during the contest to improve the quality of
existing methods. However, one of the main outcomes of the Netflix competition is
that contestants found no perfect model to make recommendations. Instead, the best
results came from combining the predictions of models that complemented each
other [9]. The very best latent-factor algorithms achieved an improvement ranging
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from 5.10% up to 8.24% for the latest and most sophisticated versions. Pure nearest-
neighbor methods scored way less. However, experience has shown that combining
these methods together always yielded better results. That strategy worked so well
that the final submission of the winning team is actually an aggregation of the pre-
dictions of no less than 307 different algorithms. The exact same strategy was used
by the team which came second.

This improvement comes from the fact that the two main collaborative filter-
ing approaches (i.e., neighborhood and latent-factor models) address quite different
levels of structures in the data [9]. Neighborhood models appear to be the most
effective at detecting and leveraging localized relationships. Recall from Section
2.3.1 that these models identify a subset of similar users or a subset of similar items,
and then aggregate their ratings to form the final prediction. Since the number of
neighbors is typically limited to some value between 10 and 50, these methods are
usually constrained to ignore a vast majority of ratings given by u or to i. As a con-
sequence, neighborhood models usually fails at detecting weak signals in ratings.
The opposite problem occurs for latent-factor models. They are good to estimate
overall characteristics that relate simultaneously to most or all items (it is precisely
their point), but they are usually no so effective to discover associations between
closely related items. For instance, neighborhood models are better at correlating
movie sequels than latent-factor models (e.g., a neighborhood-based model might
find more easily that the three Lord of the Rings movies are highly correlated).

In most cases, predictions have been combined using linear regression tech-
niques [36], but some contestants [5, 48] were more creative and proposed to use
artificial neural networks to blend the predictions together.

3.3.3 Implicit feedback

Recommendation algorithms introduced so far only take into consideration explicit
feedback. Predictions are inferred from explicit ratings given by the users, and only
from that. In practice however, these ratings might be difficult to collect, due to
system constraints or to reluctance of users to cooperate [9]. As observed in Section
3.2.2, this problem leads to serious data sparseness and makes accurate predictions
only more difficult to derive.

By contrast, implicit feedback is abundant and usually very easy to collect. Ex-
amples of implicit feedback might include the rental or purchase history of a user,
his browsing patterns or the keywords he uses. In recommender systems however,
this source of information is often underexploited, or not exploited at all. Yet, this
was one of the major keys to progress during the Netflix challenge. Instead of build-
ing models based on how users rated movies, some contestants came with the idea
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to examine what movies users rated, no matter how they rated them. This led them
to explore a binary representation of the data and to propose models that could take
advantage of it. The two most notables examples are NSVD, a variation of the SVD
factorization technique, and conditional restricted Boltzmann machines. Both showed
notable improvements once a binary view of the data was taken into account. This
intuitively makes sense. If some user chose to watch some movie, it is most likely
that it somehow already appealed to him. Few are those who pick their movies at
random.

What is more interesting however is that these new techniques are even more
promising in the context of real life recommender systems, where implicit feedback
is abundant. While the contest only let the contestants know who rated what, Netflix
could for its part take into account the much broader information of who rented what.
Indeed, that information would let them make valuable and personalized recom-
mendations even to users with few or no ratings but with at least a decent rental
history. This would greatly alleviate the sparseness problem.



Chapter 4

Restricted Boltzmann machines

Memory, Agent Starling, is what I have instead of a view.

Lecter (The Silence of the Lambs)

As pointed out in chapters 2 and 3, many algorithms have been proposed to
make recommendations. From now on though, and for the rest of this text, focus
will be entirely on a specific algorithm called restricted Boltzmann machines (RBMs).
The importance of this particular model is actually threefold. First, it was one of the
best single model that has been used during the Netflix challenge. Every leading
team included several variations of this model in their final blending. Second, its
applications are not limited to recommender systems. They have been used for var-
ious other tasks, such as digit recognition, document retrieval or image denoising.
Third, RBMs can be used as the building blocks of Deep Belief Networks, a new class
of neural networks issued from the emergent deep learning area of machine learning
research [32, 12, 40].

Section 4.1 first reviews the model from which restricted Boltzmann Machines
have been derived. Section 4.2 then focuses on RBMs themselves. It introduces the
complete learning algorithm and then presents an insightful application example.
RBMs are then examined in section 4.3 in the context of collaborative filtering. A
variation of the model in which implicit feedback is taken into account is also ex-
amined in this section. Finally, section 4.4 presents a thorough experimental study
of the model and of its parameters when tested over the Netflix data. The effect of
each parameter of the model is examined.

4.1 Boltzmann machines

4.1.1 Model

Boltzmann machines are a type of neural network invented by David Ackley, Geoffrey
Hinton and Terrence Sejnowski [1]. Intuitively, the purpose of these networks is to
model the statistical behaviour of some part of our world. What this means is that a
Boltzmann machine can be shown some distribution of patterns that comes from the
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real world and then infers an internal model that is capable of generating that same
distribution of patterns on its own [50]. Typical applications of such a model include
pattern classification, generation of plausible patterns, in case we need some more,
or reconstruction of partial patterns. For instance, Boltzmann machines could be
trained on a distribution of photographs and (hopefully) be used to complete some
partial images.

 

Figure 4.1: A Boltzmann machine. Hidden nodes are shown in blue while visible nodes are
shown in orange. Nodes can be interconnected in any way.

Technically, a Boltzmann machine is a recurrent neural network composed of
stochastic binary units with symmetric connections. Nodes of a Boltzmann machine
are usually divided into a set of visible units which can have data clamped on them,
and a set of hidden units which act as latent variables [29]. Units are connected to
each other with symmetric connections in any arbitrary way, except with themselves
(c.f. figure 4.1). Each unit i has a binary state si and turns either on or off (i.e., si = 1
or si = 0) with a probability that is a logistic function of the inputs it receives from
the other units j it is connected to:

p(si = 1) =
1

1 + exp(−bi +
∑
j sjwij)

(4.1)

where bi is the bias term of unit i and wij is the weight of the symmetric connection
between unit i and unit j. The weights and biases of a Boltzmann machine define an
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energy function over global configurations (i.e., binary state vectors) of the network.
The energy of a configuration (v, h), where v is a binary state vector of the visible
units and h a binary state vector of the hidden units, is defined as:

E(v, h) = −
∑
i

bis
(v,h)
i −

∑
i<j

s
(v,h)
i s

(v,h)
j wij (4.2)

If units are chosen at random and continuously updated using equation 4.1, it
can be shown that the network will eventually reach a stationary probability distri-
bution (or equilibrium) [30] in which the probability of finding the network in any
global configuration (v, h) is determined by the energy of that configuration relative
to the energies of all other possible configurations:

p(v, h) =
exp(−E(v, h))∑
u,g exp(−E(u, g))

(4.3)

More particularly, the probability of finding the network at stationarity with a
configuration v over its visible units is given by:

p(v) =
∑
h exp(−E(v, h))∑
u,g exp(−E(u, g))

(4.4)

4.1.2 Learning

Considering equation 4.4, a Boltzmann machine can be viewed as a generative model
that assigns a probability to each possible binary state vectors over its visible units.
Indeed, because of the stochastic behavior of the units, the network will wander
through a variety of states and will therefore generate a probability distribution
over all the 2N possible visible vectors (where N is the number of visible units) [33].
Equation 4.4 determines their respective probability. In that context, if we want a
Boltzmann machine to build an internal model capable of generating over its visi-
ble units a particular distribution of patterns (the data), learning amounts to finding
weights and biases that define a probability distribution in which those patterns
have a high probability, hence a low energy.

Let P+(V ) be the distribution of patterns we want to model and P−(V ) the dis-
tribution generated over the visible units of a Boltzmann machine when the network
runs freely at equilibrium. Considering the Kullback-Leibler measure to evaluate
the distance between the two distributions, learning amounts to minimize:

G =
∑
v

P+(v) ln
(
P+(v)
P−(v)

)
(4.5)
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Since equation 4.5 is indirectly function of the weights and biases of the Boltz-
mann machine, the model can be improved by modifying the wij ’s the and bi’s so as
to reduce G. Hence a simple gradient descent strategy can be used to minimize G.
Surprisingly, it can be shown [1] that the partial derivative of G with respect to wij
is as simple as:

∂G

∂wij
= −(< sisj >

+ − < sisj >
−) (4.6)

where

• < sisj >+ is the averaged probability, when data vectors from P+(V ) are
clamped on the visible units, of finding both unit i and unit j turned on when
the Boltzmann machine runs at equilibrium.

• < sisj >
− is the averaged probability of finding both unit i and unit j turned

on when the Boltzmann machine runs freely at equilibrium.

In practice, computing < sisj >+ is called the positive phase and can be per-
formed as described in algorithm 4.1. Computing < sisj >

− is called the negative
phase and can be done as described in algorithm 4.2.

Algorithm 4.1 BM - Positive phase

1. Clamp a data vector on the visible units of the Boltzmann machine.

2. Update the hidden units in random order using equation 4.1.

3. Once the Boltzmann machine has reached its equilibrium distribution, sample
state vectors and record sisj .

4. Repeat steps 1, 2 and 3 for the entire dataset. Average to get < sisj >
+.

Algorithm 4.2 BM - Negative phase

1. Initialize the Boltzmann machine with a random state.

2. Update visible and hidden units in random order using equation 4.1.

3. Once the Boltzmann machine has reached its equilibrium distribution, sample
state vectors and record sisj .

4. Repeat steps 1, 2 and 3 many times. Average to get < sisj >
−.
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Once these two quantities have been computed, the learning rule simply consists
in iteratively increasing wij in the opposite direction of the gradient, hence:

∆wij = γ(< sisj >
+ − < sisj >

−) (4.7)

where γ > 0 is some learning rate. The learning rule for the biases is similar and is
given by:

∆bi = γ(< si >
+ − < si >

−) (4.8)

The learning rules of equations 4.7 and 4.8 are remarkably simple and only de-
pend on local information. Unfortunately, this simplicity of the learning algorithm
comes at a price. First, it can take a very long time for the network to reach equi-
librium, even when heuristics such as simulated annealing are used to accelerate
convergence. The time required to settle to equilibrium actually grows exponen-
tially with the number of units. Second, the learning signal is in practice very noisy,
since it is the difference of two approximated expectations. These two problems are
so critical that they make the algorithm actually impractical for large networks with
many units [29].

4.2 Restricted Boltzmann machines

4.2.1 Model

As its name suggests, a restricted Boltzmann machine (RBM) is a Boltzmann machine
with a restricted architecture. It consists of a layer of visible units and a layer of hid-
den units, with no visible-visible or hidden-hidden connections [30]. An example is
illustrated in figure 4.2.

 

Figure 4.2: A restricted Boltzmann machine
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4.2.2 Learning

With these restrictions, computing < sisj >
+ no longer requires any settling. In-

deed, when a data vector is clamped on the visible units, the hidden units are con-
ditionally independent and unbiased samples from < sisj >

+ can be computed in
one parallel step using equation 4.1.

Computing < sisj >
− is also simplified. Rather than updating units in random

order to reach equilibrium, units can now be updated using a procedure called Gibbs
sampling, which consists in updating visible and hidden units in chain, alternating
between updating all the visible units in parallel and updating all the hidden units
in parallel. However, it may still require a large number of iterations before con-
verging to the equilibrium distribution.

Fortunately, learning actually still works quite well if < sisj >
− is replaced with

an approximation < sisj >
T which is obtained as described in algorithm 4.3. The

learning rules become:

∆wij = γ(< sisj >
+ − < sisj >

T ) (4.9)

∆bi = γ(< si >
+ − < si >

T ) (4.10)

Algorithm 4.3 RBM - Contrastive divergence

1. Clamp a data vector on the visible units of the RBM.

2. Update all the hidden units in parallel using equation 4.1.

3. For T steps, alternate between updating all the visible units in parallel and
updating all the hidden in parallel, still using equation 4.1.

4. Sample sisj from the current configuration.

5. Repeat steps 1, 2, 3 and 4 for the entire dataset and average to get < sisj >
T .

In practice, learning rules 4.9 and 4.10 do not follow the gradient of equation 4.5
anymore. Instead, they closely approximate the gradient of another objective func-
tion called contrastive divergence [28]. Intuitively, this still works because it is not
necessary to run the chain of updates until equilibrium to see how the model sys-
tematically distorts data vectors. In particular, if we run the chain for just a few
steps and then lower the energy of the data (i.e., increase wij or bi for the data) and
raise the energy of whichever configuration the Boltzmann machine preferred to
the data (i.e., lower wij or bi for those configurations), the model will be more likely
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to generate the data and less likely to generate alternatives [29]. Experimental evi-
dences show that contrastive divergence learning is indeed sufficient enough to be
practical, even for T = 1. Theoretical justifications can be found in [28].
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Figure 4.3: Constrative divergence learning. Visible units and hidden units are updated in
alternance for T steps. Correlations< sisj > are measured after the first update
of the hidden units and then again at the end of the chain after T steps.

4.2.3 Illustration

To get more insight on the inner workings of restricted Boltzmann machines, let’s
conclude this section with a small example. We wish to model a small distribu-
tion of 9 × 9 pixel images. These images consists of nine different binary patterns
representing basic geometric shapes (c.f., figure 4.4).

Figure 4.4: Distribution of patterns

Since we want to model those patterns over the visible units of a Boltzmann
machine, as many visible units as the number of pixels in an image are required.
Each one of the V visible units will correspond to one of the 81 pixels, and vice-
versa. By contrast, the number H of hidden units is unconstrained. We can use as
many as we want. Intuitively however, we can already expect that the accuracy of
the model will increase with respect to the number of hidden units. For the sake of
simplicity, we will use a full mesh of connections between the visible units and the
hidden units. All in all, the model will therefore count up to V ∗H free parameters
for the weights on the connections and V +H free other parameters for the bias terms
of the units. Our goal is to adjust these parameters in order to model as accurately
as possible the distribution of patterns.
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Using learning rules 4.9 and 4.10, we train four different RBMs: one with a sin-
gle hidden unit, a second with 5 hidden units, a third with 10 hidden units and a
fourth with 25 hidden units. The four of them are trained for 100 cycles on a dataset
composed of 1000 random patterns. Learning rate γ is fixed to 0.75 and T to 1.

Let’s first examine what the resulting RBMs believe in. More precisely, we want
to see the low-energy configurations (also called fantasies) the networks tend to sta-
bilize to when they run at equilibrium. If learning worked correctly, we expect those
configurations to correspond to some of the patterns of the distribution. To this end,
we initialize the visible units with random data and then run the alternating Gibbs
sampling algorithm for 1000 iterations. That procedure is repeated 10 times for each
of the four RBMs. The resulting visible configurations are shown in figure 4.5. The
first row pictures the states of the visible units for the RBM trained with a single
hidden node. The second, third and fourth rows correspond respectively to those of
the RBMs trained with 5, 10 and 25 hidden units. Pixels in the figure represent the
probability for the corresponding visible units to be turned on. A white pixel means
that the visible unit is very likely to be on. Accordingly, a black pixel means that the
visible unit is very unlikely to be turned on.

Figure 4.5: Fantasies of restricted Boltzmann machines

The first RBM does not settle to any of the patterns. Rather, it always settles to
the same unstable configuration (because of the grey pixels) from which 6 of the
9 patterns can be reconstructed. By contrast, the second, third and fourth RBMs
all settle to one of the patterns. This suggests that learning managed to distort the
energy landscape of the RBMs so as to make at least one of the minima corresponds
to one of the patterns. Note however that all 9 patterns are not represented. This
could either mean that the missing patterns have a greater energy than those of the
figure (the RBM tends to settle to the configuration with the lowest energy), or that it
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is easier for the networks to escape from these configurations (due to the stochastic
behaviour of the units, it is possible to come back to a configuration with a higher
energy and therefore to escape from a local minima).

Let’s now examine how good these RBMs are at identifying and reconstructing
incomplete or scrambled patterns. This time, visible units are initialized with pat-
terns drawn from the original distribution but where some of the white pixels have
been randomly replaced with black pixels (with a probability of 0.25), and where
some of the black pixels have been replaced with white pixels (with probability of
0.025). A single Gibbs sampling step is then performed. Again, that procedure is
repeated 10 times for each of the four RBMs. If learning worked correctly, we expect
the networks to be able to infer the missing pixels and to erase those which have
been added. Since these patterns should already correspond to some low-energy
configurations, it is indeed more than likely that a Gibbs sampling transition would
reduce the global energy of the RBM even further, hopefully towards a local min-
ima corresponding to the original pattern. Figure 4.6 illustrates the results. The
first row corresponds to the patterns put on the visible units of the RBMs. The four
other rows present the reconstructions, respectively for the RBM with 1, 5, 10 and
25 hidden units.

Figure 4.6: Reconstructions of incomplete and scrambled patterns

We observe from figure 4.6 that reconstructions significantly improve as the num-
ber of hidden units increases. The RBM trained with a single hidden unit do not
manage to reconstruct any single pattern while the one trained with 25 hidden units
perfectly reconstructs them all, even the most damaged (e.g., the third or the ninth
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pattern). We also note that patterns sharing less pixels with others, such as the
square figure, appear to be more difficult to reconstruct. Conversely, those sharing
many pixels with other patterns are easier to model, such as the cross figures. This
is actually not surprising, since the parameters of the model cannot store an infinite
amount of information. Pixels that are turned on more often tend to be learned first,
which reduce the capacity of the model to learn less common patterns. By looking
a bit further, we can actually discover that each hidden unit models some specific
(parts of) patterns. Figure 4.7 shows a normalized representation of the weights on
the connections between the visible units and 10 of the 25 hidden units of the fourth
RBM. For example, it is obvious that the sixth hidden unit of the figure specializes
into modelling the square shape. By comparison, this specific pattern is absent in the
weights of the three other RBMs, which explains why they all fail at reconstructing
the square shape.

Figure 4.7: Weights of a restricted Boltzmann machine

4.3 RBMs for collaborative filtering

Imagine for an instant that the distribution of patterns of the previous example
would correspond to user ratings instead of geometric shapes. A pixel would corre-
spond to a movie and its intensity to the rating the user gave to the movie. Accord-
ingly, learning the distribution of patterns would amount to learn how to perfectly
regenerate the entire dataset of ratings. Of course, this may be not realistic on a
dataset as large as the Netflix dataset, but it’d still be a reasonable thing to do since
it would identify dependencies between ratings and movies. Then, just like we used
RBMs to reconstruct incomplete and scrambled geometric shapes, the rating pattern
of a user could hopefully be completed with the movies he would most likely ap-
preciate. In essence, this is the strategy we will use for the rest of this work.

4.3.1 Basic model

The model presented in this section was first proposed in [51] by Ruslan Salakhut-
dinov et al., as they were themselves competing for the Netflix Prize. Most of this
section is directly based on this publication.
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Assume that we have M movies, N users and that ratings are given as integer
values on a scale from 1 to K. The first issue in applying RBMs to movie ratings is
how to model integer-valued ratings when the outcome of a visible unit is limited
to binary values. An easy solution to this problem is to use composite visible units,
called softmax units, and which roughly consist in a combination of K binary visible
units. Each rating is transformed into a binary code such that the k-th binary unit of
the softmax is turned on if and only if the user rated that movie as k.

The second problem is how to deal with the large number of missing ratings.
The solution proposed in [51] is to consider that the visible units corresponding to
the movies that the user did not rate simply do not exist (c.f., 4.8). In practice, this
simply amounts to consider that these visible units are always turned off and hence
that their state is always zero. Alternatively, this can also be seen as using an unique
RBM per user, all sharing the same weights and biases, all with the same number of
hidden units but each only including the softmax units for the movies rated by their
user.
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Figure 4.8: Restricted Boltzmann machine for collaborative filtering. Binary visible units
are replaced with softmax units. For each user, the RBM only include the soft-
max units for the movies rated by that user. A full mesh of connection is used
between visible and hidden units.
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More formally, assume that some user u rated m movies. Let V be a K ×m ma-
trix such that vki = 1 if u rated movie i as k and 0 otherwise. Let hj , j = 1, ..., F , be
the binary values of the hidden units. Columns of V are modelled using a multino-
mial distribution (a softmax) and hidden latent features h are modelled just like in
equation 4.1:

p(vki = 1|h) =
exp(bki +

∑F
j=1 hjW

k
ij)∑K

l=1 exp(bli +
∑F
j=1 hjW

l
ij)

(4.11)

p(hj = 1|V ) =
1

1 + exp(−bj −
∑m
i=1

∑K
k=1 v

k
iW

k
ij)

(4.12)

where W k
ij is the weight on the connection between the rating k of movie i and the

hidden unit j, bki is the bias of rating k for movie i and bj is the bias term of hidden
unit j.

4.3.2 Learning

Even though the activation function of the visible units has changed, learning rules 4.9
and 4.10 remain the same. The only difference is that Gibbs sampling is used to re-
construct the distribution only over the non-missing ratings. Using the notations
introduced previously, the learning rules become:

∆W k
ij = γw(< vki hj >

+ − < vki hj >
T ) (4.13)

∆bki = γv(< vki >
+ − < vki >

T ) (4.14)

∆bj = γh(< hj >
+ − < hj >

T ) (4.15)

4.3.3 Making recommendations

Back to business. How to make recommendations. Now that we know how to
model a rating distribution over the visible units of a restricted Boltzmann machine,
inferring the missing ratings is actually quite straightforward: clamp the user rat-
ings on the softmax units, and then perform a single Gibbs sampling step over all
the missing ratings. That’s it. Just like with the geometric shapes, the most com-
mon rating trends with respect to the user ratings should automatically be derived.
Hopefully, those should correspond to movies that the user might like. The exact
prediction algorithm is given below (c.f., algorithm 4.4).
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Algorithm 4.4 RBM - Making recommendations
Inputs: a user u, an movie i
Outputs: an estimation of R(u, i)

1. Clamp the ratings of u over the softmax units of the RBM.

2. Compute p̂j = p(hj = 1|V ) for all hidden units j.

3. Compute p(vki = 1|p̂) =
exp(bk

i +
PF

j=1 p̂jW
k
ij)PK

l=1 exp(bl
i+

PF
j=1 p̂jW l

ij)
for k = 1, ...,K.

4. Take the expectation as the prediction, i.e., R(u, i) =
∑K
k=1 p(v

k
i = 1|p̂)k.

4.3.4 Conditional RBM

The recommendation algorithms presented so far, including the RBM-based model,
do not take into account any form of implicit feedback. All of them use explicit
ratings to infer the preferences of users.

Yet, there is an additional source of information that could be exploited in the
Netflix data: we know which user/movies pairs occur in the qualifying set. We do
not know whether these users liked those movies or not, but we know at least that
they took the extra effort to rate them. This actually happens to be a very valuable
source of information, especially for users for which we only have a small number
of ratings in the training set. For instance, if some user is known to have rated Rocky
V, then we already have a good bet about the kinds of movies he might like.

The architecture of the restricted Boltzmann machine can be modified to take
this extra information into account (c.f., figure 4.9). Let r ∈ {0, 1}M be a binary
vector of length M indicating which movies a user rated (even if these ratings are
unknown). The idea is to define a joint distribution over (V, h) conditional on r [51].
In particular, the activation functions are modified so that r will now affect the states
of the hidden units:

p(vki = 1|h) =
exp(bki +

∑F
j=1 hjW

k
ij)∑K

l=1 exp(bli +
∑F
j=1 hjW

l
ij)

(4.16)

p(hj = 1|V, r) =
1

1 + exp(−bj −
∑m
i=1

∑K
k=1 v

k
iW

k
ij +

∑M
i=1 riDij)

(4.17)

where Dij is an element of a learned matrix that models the effect of the vector r on
h. Learning D is as simple as learning the biases terms. The corresponding learning
rule takes the form:
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∆Dij = γd(< hj >
+ − < hj >

T )ri (4.18)

Finally, let’s note that this extension of the model happens to be even more inter-
esting in the context of real life recommender systems. Indeed, in that case, r could
similarly be populated with the (much larger) list of movies a user rented (instead of
only those he rated). Again, we wouldn’t know whether that user liked or not what
he rented, and we couldn’t infer a rating prediction from this only source informa-
tion, but it may still constitute a very good head start. For instance, if this time a
user is known to have rented all six movies of Rocky, then there is little doubt about
the kinds of movies he likes.
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Figure 4.9: Conditional restricted Boltzmann Machine. The binary vector r indicates rated
and unrated movies, and affects the binary states of the hidden units.
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4.4 Experimental results

4.4.1 Implementation

Both basic and conditional restricted Boltzmann machines were implemented from
scratch in C++. At the price of some more effort in the early stages of the develop-
ment, this language indeed guaranteed an implementation that was both efficient
and flexible. Python was considered at first for its ease of use, but it happened to be
very impractical on very large datasets.

To speed up convergence, the learning algorithm (c.f., algorithm 4.5 for the com-
plete learning algorithm) was implemented using mini-batches. In batch learning,
training cases are treated all at once and the parameters of the model are updated
only once the algorithm has gone through the entire dataset. In online learning,
training cases are treated in turn and the parameters of the model are updated after
each example. Mini-batch learning lies between these two approaches. In this im-
plementation, training cases (i.e., users) are treated in bunches of 100 or 1000. Terms
< . >+ and < . >T are computed from these training cases only and then used to
update the parameters of the model.

A second characteristic of the implementation is that it includes a heuristic called
the momentum method [31]. The idea is to take into account the update computed at
iteration t− 1 when computing the update at iteration t:

∆W k
ij(t) = γ(< vki hj >

+ − < vki hj >
T ) + α∆W k

ij(t− 1) (4.19)

where α ∈ [0; 1]. Learning rules 4.14, 4.15 and 4.18 are modified accordingly. The
motivation behind this heuristic is to accelerate convergence when updates always
happen in the same direction and to damp oscillations when consecutive updates
have different signs.

To make the implementation more convenient and efficient, the 2 Go of text files
representing the Netflix dataset were converted into a single binary and compact
file of no less than 450 Mo. The matrix R was encoded using the good old Yale
Sparse Matrix format [22]. The probe set was encoded using the same format. For
comparison, loading 17770 different text files at run-time from a standard hard drive
disk easily took more than one hour. Loading the single compacted binary file takes
no longer than a few seconds at most.

Simulations were all performed on the NIC3 supercomputer of the University
of Liège. This equipment counts no less than 1300 cores integrated into Quadcore
Intel L5420 2.50 Ghz microprocessors. Random access-memory ranges from 16 Go
to 32 Go per motherboard. In the experiments presented below, simulations were
run on a single core (for now) with 1 Go of memory allocated (dataset included).
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Algorithm 4.5 RBM - Learning algorithm

Initialize W k
ij ’s with small values sampled from a zero-mean normal distribution;

Initialize bki ’s to the log of their respective base rates;
Initialize bj ’s with zeroes;
Initialize Dij ’s with zeroes;
n := 0;
Compute the prediction error Errn at epoch n;
repeat

for all mini-batch of users in the training set S do
for all user u in the current mini-batch do

Clamp the ratings of u on the visible units;
Compute pj = p(hj = 1|V, r) for all the hidden units;
Record samples vki pj , v

k
i , pj ;

Run the Gibbs sampler for T steps;
Compute pj = p(hj = 1|V, r) for all the hidden units;
Record samples vki pj , v

k
i , pj ;

end for
Average the first samples to get < vki hj >

+, < vki >
+ and < hj >

+;
Average the last samples to get < vki hj >

T , < vki >
T , < hj >

T ;
Update W k

ij ’s using equation 4.13 (augmented with momentum);
Update bki ’s using equation 4.14 (augmented with momentum);
Update bj ’s using equation 4.15 (augmented with momentum);
Update Dij ’s using equation 4.18 (augmented with momentum);

end for
n := n+ 1;
Compute the prediction error Errn at epoch n;

until Errn−1 − Errn > ε

Algorithm 4.6 RBM - Test algorithm

1. For all user-movie pairs in the test set T , compute R̂(u, i) using algorithm 4.4.

2. Compute the RMSE of the predictions:

RMSE =

√√√√ 1
|T |

∑
(u,i)∈T

(R(u, i)− R̂(u, i))2
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4.4.2 Results

Experiments were all performed on the Netflix dataset. The ratings from the probe
set were all extracted from the original training set, resulting in a new dataset of
99,072,112 user ratings. Models were all trained for 50 or 100 passes (or epochs) on
that dataset. The training error of the model was computed (c.f., algorithm 4.6) after
each epoch on a random subset of the training set. The generalization error (i.e., the
error on an independent dataset) was evaluated on the probe set. Learning was not
stopped if the model started to overfit the training set (contrary to the stop criterion
of algorithm 4.5).

Unless said otherwise, the models presented in this section were all trained using
100 hidden units and mini-batches of 100 training cases. Learning rates were set to
0.0015 for γw, 0.0012 for γv , 0.1 for γh and 0.001 for γd. T was set to 1, momentum α

to 0.9. The values of these parameters were found empirically and happen to yield
quite satisfying results.

To begin with, let’s first mention that learning time took extremely long in some
cases. Despite a meticulous implementation, a single pass through the entire dataset
took on average more than 20 minutes of computing time. Hence, several days(!)
were actually necessary to run the learning algorithm for 50 or 100 epochs. Un-
fortunately, this is not a bug in the implementation. Contestants of the Netflix Prize
reported computation times of the same order of magnitude. Before examining how
to solve that major issue in the next chapter, let’s first focus for the rest of this section
on the results of the model in terms of pure accuracy.

Let’s start with the performances of the basic RBM against those of the condi-
tional version. Figure 4.10 shows the generalization error of both models over the
probe set. Figure 4.11 presents the training error. The x-axis shows the number of
epochs while the y-axis displays the RMSE of the model. First, it is with delight that
we find out that the obtained results are those expected. The lowest RMSE scored by
the basic RBM is 0.9080 (i.e., a 4.67% improvement over Cinematch), while the low-
est RMSE achieved by the conditional model is 0.9056 (i.e., a 4.92% improvement).
By comparison, these results rank slightly worse than those achieved by the RBM-
based models of the winning team of the Netflix Prize, but also much better than
those of Hinton et al. in [51]. As expected, the conditional model performs better
in generalization than the basic model. The same happens to be true for the train-
ing error. As often in machine learning, it is also quite interesting to note that both
models start to overfit the training set between epoch 15 and 20. From this moment
on, the training error keeps decreasing steadily, while the error in generalization
of both models starts increasing instead of decreasing. Intuitively, this means that
the models are getting better at regenerating known ratings than at predicting new
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ones. More technically, overfitting actually happens when the model starts fitting
the noise in the dataset, and not only the regularities in the mapping from input to
output. Given the very large number of free parameters, this is not so surprising
though.

Finding a satisfying combination of parameters is not an easy task. First, all of
them have a specific effect on the learning curves. Second, they all add up together
on the final result, sometimes cancelling or reinforcing each other, which compli-
cates matters even most. Third, given the time required to evaluate a set of param-
eters, it is not practical to test every possible combination. In that context, the four
experiments presented below only aims at studying the individual effect of each pa-
rameter, when all other things are kept equal. Simulations were all carried out using
the conditional model.

1. Learning rate:

Let’s first examine the influence of the learning rate on the convergence of the
algorithm. To make things simpler, all four different learning rates (i.e., γw,
γv , γh and γd) are set to the same value γ, with γ ranging from 0.01 to 0.00001.
Figures 4.12 and 4.13 respectively illustrate the effect of modifying γ on the
generalization error and on the training error. In both cases, the effect appears
to be the same. On one hand, too small values (γ = 0.00001) significantly
slow down learning. On the second hand, too large values (γ = 0.01 or 0.005)
considerably speed up learning in the very first epochs but then quickly fail
at making the model any better. Intermediate values (γ = 0.001, 0.0005 or
0.0001) combine a fast convergence in the first iterations with a lower RMSE
in the latter epochs.

2. Momentum:

As illustrated in figures 4.14 and 4.15, the momentum heuristic has a tremen-
dous effect on the speed of convergence. It gets nearly twice faster with this
heuristic (c.f., α = 0.8 or 0.9 versus α = 0.0)! The effect is especially significant
in the first iterations of the algorithm. The larger the momentum, the faster
the convergence becomes. In the latter iterations however, the momentum
effect starts disappearing and no significant difference is observed between
the learning curves. By looking more carefully at the numbers in the latter
iterations (beyond 50), we observed however that the lowest overall RMSE is
achieved when α is set to 0.2: RMSE is reduced from 0.9056 (α = 0.9) down
to 0.9006 (i.e., a 5.44% improvement over Cinematch). As a result, this gain of
velocity for large values of α comes at the price of a slightly worse final accu-
racy. Yet, considering the potential gains in terms of computing time, this may
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be worth the price in some situations. Finally, let’s also note that the heuristic
makes learning completely degenerate for very large values of α (e.g., α = 0.99
on the learning the curves).

3. Size of mini-batches:

The size of mini-batches directly affects the number of times the model param-
eters are updated. The larger the mini-batch, the less often the parameters get
updated. Conversely, the smaller the mini-batch, the more often the model pa-
rameters get updated. At the same time however, the smaller the mini-batch,
the less samples are recorded to compute the < . > terms, and the noisier the
learning signal gets. This is exactly what happens on figures 4.16 and 4.17. For
small mini-batches (10 or 50 training cases), convergence is fast in the first it-
erations (because of the large number of updates) but then fails at making the
model any better (because of the poor learning signal). For large mini-batches
(500, 1000 and 5000 training cases), convergence is indeed slower (because of
the smaller number of updates) but learning reduces the RMSE further than
with smaller mini-batches (because of the increased quality of learning signal).
The best trade-off seems to be mini-batches of either 500 or 1000 training cases.

This does not directly reflect into the figures, but increasing the size of mini-
batches has also the effect of reducing the time required to run the learning
algorithm. Indeed, updating more than V ∗H∗K parameters when V = 17770,
H = 100 and K = 5 is not an insignificant computing step. This is actually
the reason why some of the training curves are not complete for the smaller
mini-batches. It took way too long to compute!

4. Number of hidden nodes:

As already noted in Section 4.2.3, increasing the number of hidden nodes di-
rectly increases the representational power of the model. As figure 4.19 indeed
illustrates, the more the hidden nodes, the further the RMSE is reduced over
the training set. On the probe set however, as figure 4.18 shows, increasing
the number of hidden nodes beyond 90 or 110 does not make the model any
better in generalization. Quite logically, the more the hidden nodes, the more
the model overfits the data and the worse it becomes in generalization.
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4.4.3 Improvements

The results obtained so far are very satisfying. Yet, with some more determination,
the RMSE can be reduced even further. Considering 100 hidden nodes, M = 17770
and K = 5, the model ends up with 8885000 weights, 88850 bias terms for the vis-
ible units, 100 others for the hidden units and 1777000 values for the D matrix.
This excessively large number of free parameters makes the model very sensitive to
overfitting, and prevents it from achieving an even lower RMSE. In this section, we
investigate two different heuristics to counter as much as possible this phenomenon.

1. Weight decay:

Weight decay is a popular regularization technique [38] whose goal is to limit
the amplitude of weights by penalizing the larger ones. Learning rule 4.13 is
adapted in the following way:

∆W k
ij = γ(< vki hj >

+ − < vki hj >
T −βW k

ij) (4.20)

where β is a penalizing factor called weight cost. As intended, this penalty
causes the weights to converge to smaller absolute values than they otherwise
would. Larger values of β will indeed tend to shrink the size of weights to-
ward zero. In practice, the problem is that excessively large weights can lead
to excessively rough variations in the outputs of the network, even for small
changes in the inputs. Weight decay helps alleviate this problem by smoothing
the variations.

Figures 4.20 and 4.21 illustrate the effect of this heuristic on the generalization
and training error of the conditional RBM. No or too less penalizing weight
costs cause the model to overfit as already observed. By contrast, a weight
decay of 0.001 makes divergence nearly stop and even manages to reduce the
RMSE from 0.9056 down to 0.9035. While being better in generalization, we
observe as expected that the performances of the regularized model are worse
on the learning set. As often, we also note that a too penalizing weight-cost
(β = 0.01) makes learning degenerate.

2. Annealing:

The idea of the annealing heuristic is to decrease the learning rate γ over time.
The intuitive motivation is that learning steps should be less and less impor-
tant as the learning algorithm converges. Accordingly, instead of using a static
learning rate γ, learning uses a dynamic rate γ(t) computed in the following
way:

γ(t) =
γ

1 + t
ρ

(4.21)
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where γ is the base learning rate, t is the current epoch and ρ > 0 is a parameter
controlling the decreasing rate of γ(t).

The effects of this heuristic are shown on figures 4.22 and 4.23. For compar-
ison, the learning curves of the model trained without annealing are shown
in orange. In generalization, speeding up the decrease of γ(t) (i.e., ρ = 2 or
4) appears to improve the overall accuracy of the model. When running the
simulation for 100 epochs instead of 50, RMSE actually decreases from 0.9056
down to 0.8989 for ρ = 2 (i.e., a 5.62% improvement over Cinematch). The
opposite phenomenon seems to happen for the training error. The less γ(t)
decreases, the more the model overfits the training set. Surprisingly however,
a decreasing rate of 6, 8 or 10 happens to be better than a static learning rate
(for which ρ → ∞). This suggests that a decreasing learning rate is actually
beneficial in both cases.

In the end, the lowest RMSE achieved in this work using a single model is 0.8987
(i.e., a 5.64% improvement). It was obtained using a conditional restricted Boltz-
mann machine trained for 100 passes over the training set, using mini-batches of
size 500, γw = 0.0015, γv = 0.0012, γh = 0.1, γd = 0.001, T = 1, α = 0.9, β = 0.0001
and the annealing heuristic with ρ = 3. Unfortunately, combining the optimal pa-
rameters found individually in the previous and in this section did not yield a better
model. Rather this combination of parameters was found empirically by trial and
error. Despite the remarkable accuracy of the model, this is clearly one of its major
drawbacks. Namely, it cannot be applied as an off-the-self method to tackle any kind
of problems. Parameters have to be finely tuned before getting satisfying results.

To conclude this section, let’s also mention that Hinton et al. introduced an or-
thogonal approach to tackle the overfitting problem of restricted Boltzmann ma-
chine. In [51], they proposed to reduce the number of free parameters of the model
by factorizing the parameter matrix W into a product of two lower-rank matrices A
and B. That way, they managed to reduce the number of free parameters by a factor
of 3 while preserving a similar accuracy over the probe set.
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Chapter 5

Scalable RBMs

I feel the need... the need for speed!

Maverick and Goose (Top Gun)

Restricted Boltzmann machines constitute one of the most accurate classes of
stand-alone models to make recommendations. However, as already briefly pointed
out in chapter 4, they are also one of the most resource-consuming. Several days of
computing time to learn a single model is not acceptable. In practice, this is even less
reasonable when the model needs to be periodically recomputed due to additions or
changes in the database, or when the item-movie database is actually bigger than the
Netflix dataset. Clearly, as presented in the previous chapter, restricted Boltzmann
machines are not one of the most scalable models. The solution that we propose to
solve this major issue is to leverage multi-core and distributed architectures in order
to reduce computing times. Three different and original approaches are considered.

Section 5.1 revisits algorithms 4.5 and 4.6 in the context of shared memory archi-
tectures and introduces a parallel version of the algorithms. Section 5.2 is concerned
with distributed architectures. It proposes to reformulate the learning and test algo-
rithms into MapReduce tasks. Finally, section 5.3 studies ensembles of RBMs. For all
three approaches, parallel efficiency is discussed as well as the impact on the quality
of recommendations.

5.1 Shared memory architectures

During this work, I was given the opportunity to work on the NIC3 supercomputer
of the University of Liège. This equipment counts up to 1300 cores dispatched on
blades of 2x4 cores. In a sense, this supercomputer can be seen as an extremely fast
local area network of double-quadcore platforms. Unfortunately however, one can-
not come up with an arbitrary sequential algorithm, launch it on the supercomputer
and then hope it will magically leverage the 1300 cores at hand. In order to fully
exploit its capacities, algorithms have to be designed with that specific architecture
in mind.
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In that context, the objective of this section is to analyze how algorithms 4.5
and 4.6 could be rewritten to fully exploit, at first, a single blade of 2x4 cores.
More specifically, we are interested in shared-memory multiprocessor architectures
in which processes executing on different processors have access to a common (shared)
memory. In these architectures, processes communicate by altering the content of
that memory by means of an interconnection network. On small multiprocessors
(i.e., with a few number of cores, such as those found in today desktop computers or
those found on the blades of the NIC3 supercomputer), this interconnection network
is often implemented by a memory bus, which guarantees uniform memory access
times between every cores and every memory locations. Those multiprocessors are
called UMA machines (Uniform Memory Access) or symmetric multiprocessors. By
contrast, on larger multiprocessors (i.e., with tens or hundreds of cores), the shared
memory is distributed among nodes and organized hierarchically. In particular,
the interconnection network is often implemented as a tree-structured collection of
switches and memories. Because it leads to nonuniform memory access times, those
multiprocessors are called NUMA machines [6]. In this section, algorithms 4.5 and
4.6 will be revisited for symmetric multiprocessors only.

5.1.1 Concurrent algorithms

Concurrent programming is a pet peeve for many programmers. In many cases,
it may lead to programs giving rise to non reproducible bugs, due to unforeseen
scenarii, memory inconsistencies or deadlocks. A nightmare to debug and test. Yet,
algorithms 4.5 and 4.6 can be parallelized in a very easy and safe way.

Let’s first consider the learning algorithm of a restricted Boltzmann machine (c.f.,
algorithm 4.5). Luckily, due to the mini-batch formulation of the training procedure,
the algorithm is actually embarrassingly parallel: it can be parallelized with little or
no effort. The strategy that we propose is to put the model parameters into shared
memory and then simply dispatch the processing of the mini-batches between pro-
cesses. Each process then iteratively computes the < . > terms for its mini-batches
and updates the model parameters. The only critical point is to make sure that the
model parameters are updated in mutual exclusion, hence avoiding two processes
to interfere with each other in case they would happen to update the same parame-
ter at the same time. A high-level and concurrent version of algorithm 4.5 is given in
algorithm 5.1. The inner for-all loop has to be considered as a loop whose iterations
are computed in parallel by the team of n processes created just before.

An issue that arises with algorithm 5.1 is how the iterations of the inner for-all
loop should be divided among processes. The most instinctive strategy would be to
divide the mini-batches equally between the processes. In particular, if the training
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dataset S is composed of m mini-batches, then each process should be assigned to
roughly m

n mini-batches. In practice however, this strategy may lead to very poor
load balancing since some mini-batches may be composed of training cases with
many ratings (hence taking longer to process), while some others may be composed
of training cases with very few ratings (hence taking much less time to process).
In our case, a better approach is to use a guided schedule strategy. Namely, the
mini-batches are assigned to processes in chunks of decreasing sizes. When a pro-
cess finishes its assigned chunk of mini-batches, it is dynamically assigned another
chunk, until none remain. That way, processes do not remain idle in case they finish
to process their list of batches sooner than others. In addition, the size of the chunks
is (exponentially) decreased over time to guarantee a better workload in the latest
iterations of the algorithm.

Algorithm 5.1 RBM - Learning algorithm (Multi-threaded)
Initialize the model parameters into shared memory;
n := 0;
Compute the prediction error Errn at epoch n;
repeat

parallel n do // Fork off n processes
for all mini-batch in the training set S do

//Iterations are executed in parallel by the n processes
Compute the < . > terms for the current mini-batch;
Update the model parameters (with mutual exclusion);

end for
end parallel
n := n+ 1;
Compute the prediction error Errn at epoch n;

until Errn−1 − Errn > ε

Due to its simplicity, the test algorithm (c.f., algorithm 4.6) given in the previous
section was formulated from a very high level point of view. When looking at it
more closely however, two aspects of the algorithm can be parallelized:

• First, instead of using a single process to compute the predictions R̂(u, i), the
workload can be dispatched to a team of n processes in such a way that each
process is assigned to a bunch of user/movie pairs for which it has to pre-
dict the ratings. Just like with the learning algorithm, training cases can be
dynamically assigned to processes to achieve a more balanced workload.

• Second, the computation of the final RMSE score can itself be parallelized us-
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ing a divide and conquer strategy. Instead of using a single process to compute
the sum of squared errors, the computation of the whole sum can be split into
a sum of n smaller sums; one assigned to each of the n processes. The final
RMSE is then obtained by aggregating these partial sums and computing the
square root mean.

The revisited algorithm is given below (c.f., algorithm 5.2).

Algorithm 5.2 RBM - Test algorithm (Multi-threaded)
parallel n do
sub := 0; // Private variable to each process
for all (u, i) pairs in the test set T do

//Iterations are executed in parallel by the n processes
Compute R̂(u, i);
sub := sub+ (R(u, i)− R̂(u, i))2;

end for
end parallel
Reduce the sub variables into a single value sum;
return

√
1
|T |sum;

5.1.2 Results

The original implementation written in C++ was modified using the OpenMP pro-
gramming interface. The main advantage of this API is that it makes parallelization
very easy without letting the programmer shooting himself in the foot. As a matter
of fact, all one needs to do is to add a few compiler directives and then let the API
magically transform the original sequential code into a concurrent program. For
instance to transform a for statement into a parallel for in which iterations are as-
signed to processes using the guided schedule strategy, a single line of code actually
needs to be inserted into the original implementation: #pragma omp parallel

for schedule(guided). More details about the implementation can be found
directly into the source code of this work.

Two different metrics will be used to discuss the gains of parallelization. The
first metric is the speedup factor Sn, which is defined as the ratio between the exe-
cution time T1 of a sequential algorithm and the execution time Tn of its parallel
counterpart on n processors:

Sn =
T1

Tn
(5.1)
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The goal of this metric is to measure how much a parallel algorithm is faster than a
corresponding sequential algorithm. An ideal speedup is achieved when Sn = n. In
that case, speedup is linear and doubling the number of processes makes the parallel
algorithm run twice faster. Due to a better use of the processor cache, speedup may
even be superlinear (i.e., Sn > n) in some rarer cases. Unfortunately however, most
parallel algorithms show sublinear speedup (i.e., Sn < n). The second metric is the
parallel efficiency of a parallel algorithm:

En =
Sn
n

=
T1

nTn
(5.2)

It measures how well a parallel program utilizes extra processors. Algorithms with
sublinear speedup have a parallel efficiency between 0 and 1, those with linear
speedup have a parallel efficiency equal to 1 and those with superlinear speedup
have a parallel efficiency greater than 1.

The speedup and parallel efficiency of the concurrent version of the learning al-
gorithm (c.f., algorithm 5.1) were evaluated using the model parameters mentioned
at the end of section 4.4.3. The execution time of the algorithm was recorded when
varying the number of cores from 1 to 8. Figure 5.1 shows the speedup achieved
by the algorithm. Figure 5.2 shows its parallel efficiency. As the figures illustrate,
speedup is sublinear. Adding more processors –up to 5– appears to steadily reduce
computing times. From 6 and beyond however, gains become insignificant. The
parallel efficiency of the algorithm indeed suggests that processors are more and
more underexploited as their number increases. The crux of the problem actually
directly comes from the fragment of code in charge of updating the parameters of
the model. Since this part of the algorithm needs to be executed with mutual exclu-
sion, processes may have to wait before entering this critical section. Worse, as the
number of processes increases, the more likely they will wait and the longer they
may queue. From a more formal point of view, this argument is theorized by Am-
dahl’s law [3] which states that the speedup of a parallel algorithm is bounded by
the portion of code which is inherently serial. Indeed, if equation 5.1 is reformulated
as

Sn =
T1

(ξ + 1−ξ
n )T1

=
1

ξ + 1−ξ
n

(5.3)

where ξ is the percentage of code that cannot be parallelized and (1 − ξ) is the re-
maining part which is perfectly parallel, then Sn = 1

ξ when n→∞ [34]. In practice,
this means that up to a point, there is no need to throw more cores at the program.
It is not going to make it run faster. This is indeed what happens in the case of the
learning algorithm. Using more than 5 cores is useless.
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As a result of Amdahl’s argument, speedup or parallel efficiency can be im-
proved by increasing (1− ξ). In the case of the learning algorithm, this can be done
easily by increasing the size of the mini-batches. Indeed, this causes the processes to
update less often the parameters of the model, which in turn makes them less likely
to be idling, hence increasing the amount of parallel execution. Figure 5.3 illustrates
the effect the size of mini-batches on the parallel efficiency when the algorithm is
run over 8 cores. We observe that it clearly improves when the size increases. As a
consequence, increasing the size of the mini-batches does indeed reduce the running
time of the program. Paradoxically however, as observed in section 4.4.2, increas-
ing the size of the mini-batches will also make the learning algorithm to converge
slower. Yet, very decent results might undoubtedly be obtained when retuning the
other parameters.

In conclusion, this first approach to parallelize the learning algorithm happens
to give decent results in terms of running time. They are not spectacular, but they
at least have the benefit to reduce the training phase of an RBM over the Netflix
dataset from days down to a couple tens of hours. In practice, this greatly helped to
tune the parameters of the algorithm.

Since the test algorithm is far less critical than the learning algorithm, the perfor-
mances of its parallelized version (c.f., algorithm 5.2) are not discussed in details in
this work. To make it short, speedup is this time nearly linear due to the absence of
critical sections, which is very satisfying.
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5.1.3 The delay effect

At first sight, both sequential and parallel learning algorithms may seem semanti-
cally equivalent. Yet, there is a subtle difference between the two algorithms. In the
sequential algorithm, < . > terms are computed and then used right away to up-
date the free parameters. In particular, the < . > terms are always computed using
the latest version of the free parameters. In the parallel algorithm, < . > terms are
also computed from the current parameters of the model, but they may not be used
right away to update the parameters. Processes may indeed have to queue before
entering the critical section to update the model. Incidentally, the < . > terms of
the waiting processes may no longer correspond to those which would have been
computed from the current model when the update eventually occurs.

For example, two processes may compute < . > terms in parallel and reach the
critical section at the same time. One of the processes would enter the section and
update the model while the other would have to wait for the first to complete the
update. Hence, when the second process would eventually enter the critical section,
its < . > terms would no longer correspond to the current model, since it would
have been updated in the meantime. This problem is known as the delay effect [56]
and may in some cases damage the convergence of the algorithm if the number of
processes is important.
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This delay effect was examined on the learning algorithm. Figure 5.4 illustrates
its impact on the learning convergence when the number of processes is increased
from 4 to 32. The number of cores was fixed to 4. As expected, convergence slightly
decreases with respect to the number of processes. The more the processes, and the
more the delay effect becomes visible. This result is actually quite paradoxical. On
the one hand, the goal of parallelization is to make the algorithm runs faster. But on
the other hand, we also observe that parallelization makes its convergence slower.

5.2 Distributed architectures

In the previous section, the learning and test algorithms of RBMs were rewritten in
the context of shared memory architectures. However, as pointed out in the results,
the proposed approach is of limited interest since it can fully exploit only a limited
number of cores. In particular, it can only take advantage of a single blade of 8 cores
of the NIC3 supercomputer.

Let’s now see the bigger picture and analyze how algorithms 4.5 and 4.6 could
be revisited to run on tens or hundreds of cores. More specifically, we are interested
in distributed memory multiprocessor architectures in which processes executing
on different processors have their own private memory. In these architectures, pro-
cessors interact using a communication network rather than a shared memory. In
particular, shared variables are no longer supported transparently by the operating
system. It is now the duty of the programmer to synchronize processes with each
other with explicit exchanges of messages.

In that context, the approach that we propose is to reformulate both algorithms
as MapReduce tasks.

5.2.1 MapReduce

MapReduce is a programming framework introduced by Google [21] in 2004 to sup-
port distributed computing on large datasets on clusters of computers.

For years, programmers at Google implemented dozens of special-purpose rou-
tines to process large amounts of raw data, including crawled documents or web
logs. Most of the computations were conceptually straightforward but they required
to be distributed across hundreds or thousands of machines to finish in reasonable
time. Unfortunately, the complex machinery needed to parallelize the computa-
tion, distribute the data and handle failures obfuscated the original simple algo-
rithm with large amounts of additional code to deal with these issues. As a result,
programmers designed an abstraction layer, MapReduce, that allowed them to ex-
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press the computations they were trying to perform while hiding the parallelization,
fault-tolerance or load balancing mechanisms into a library.

The MapReduce abstraction is inspired from functional languages such as Lisp
or Scheme. It proposes to reformulate algorithms in terms of user-defined map and
reduce primitives (hence the name):

• The map primitive is applied to each logical record of the input dataset. It
takes as input a key/value pair and produces a set of intermediate results in
the form of intermediate key/value pairs.

• The reduce primitive is applied to all the intermediate values sharing the same
key. Its purpose is to merge these values together and to produce a list of
output values (typically 1).

The main advantage of this formulation is that parallelization is automatic and
entirely transparent. Since the map/reduce primitives should be designed without
border effect, in a purely functional way, they can indeed be executed in parallel by
different processes on different machines. In addition, the map and reduce primi-
tives are the only operations the programmer actually has to define. Mechanisms
of parallelization, data distribution, load balancing or fault-tolerance are entirely
abstracted by the framework. Under the hood, the overall flow of operations (c.f.,
figure 5.5) in a typical implementation of the MapReduce is the following:

1. The first step in the execution of the MapReduce framework is to starts copies
of the user program on a cluster of machines.

2. One of the copies is a special process called the master process. It is in charge
of scheduling the operations between all the processes. The remaining copies
are worker processes dispatched on various machines. Workers are assigned
to map or reduce tasks (possibly both) by the master process.

3. The worker processes assigned to map tasks read the input records they are
assigned to. For example, if we have 4 workers, then the first quarter of records
of the input dataset might be assigned to the first worker, the second quarter
to the second worker, and so on.

4. For each record, the worker processes execute the map primitive and emit
intermediate key/value pairs.

5. Then, the worker processes assigned to reduce tasks gather the intermediate
key/value pairs they are assigned to. Note that in a typical implementation,
the master process tries to ensure load balancing when assigning key/value
pairs to workers.
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6. Finally, for each key, the worker processes execute the reduce primitive on the
list of intermediate values sharing that key and emit output values.

To make things clearer, let’s conclude by considering the canonical example of
counting the number of occurrences of each word in a large collection of docu-
ments [21]. Algorithms 5.3 and 5.4 illustrate how such an algorithm could be imple-
mented as map and reduce tasks. The map function (c.f., algorithm 5.3) is executed
on each document and emits for each word a key/value pair whose key is the word
and the value is 1. Note that the key passed in the input arguments of the map func-
tion is not used in this case but may be useful in other applications. The framework
then puts together all the intermediate key/value pairs with the same key and feed
them to the reduce function (c.f., algorithm 5.4). The number of appearances of a
word is then computed within the reduce function as the sum of its input values.

Algorithm 5.3 MapReduce - Counting words (map)
Inputs: a pair (k, v) where v is a document and k is left undefined
Outputs: a list of intermediate key/value pairs

for all word w in document v do
Emit an intermediate key/value pair (w, 1);

end for

Algorithm 5.4 MapReduce - Counting words (reduce)
Inputs: a word w, a list of number of occurrences l
Outputs: an output pair (word, number of occurrences)
sum := 0;
for all value v in l do
sum := sum+ v;

end for
Emit an output key/value pair (w, sum);

5.2.2 Learning and testing over MapReduce

The MapReduce paradigm has been used with success in many large-scale applica-
tions, including bioinformatics [44], image processing [16] or web mining [21]. In
machine learning, researchers proposed to reformulate some of the most famous al-
gorithms into map and reduce tasks, notably in [19, 46]. In this section, we propose
to reexpress algorithms 4.5 and 4.6 in terms of map and reduce tasks.
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Let’s first consider the learning algorithm of a restricted Boltzman machine. First
and foremost, the strategy which consisted in processing mini-batches in parallel is
no longer feasible in a distributed environment. This approach indeed implicitly
implies that all the processes have always access to the latest version of the model.
In a distributed architecture, this means that the whole bunch of parameters (i.e.,
the W k

ij ’s, the bj ’s, the bki ’s and the Dij ’s) needs to be broadcast through the network
after each update. In practice, this is not bearable since communicating millions of
values (i.e., roughly 64 Mo in a typical configuration) through the network, as fast
as it may be, is always much more costly than processing mini-batches composed
of a few hundreds or thousands of training cases. In other words, such an approach
would totally annihilate the benefits of parallelization due to the cost of communica-
tions. This would also be of very limited interest since we already have observed in
section 5.1.2 that using more than a handful of processes is useless with this strategy.

If mini-batches are too costly in terms of communications, one might as well to-
tally abandon mini-batch learning and return to the very first batch formulation of
the learning algorithm. In that context, the cost of communications would indeed
no longer dominate the cost of processing since the few millions of free parameters
would be updated only once in every entire pass over the whole dataset. Coinciden-
tally, parallelizing the learning algorithm would amount to parallelize the compu-
tation of the < . > terms over the whole dataset and then to update the parameters
among all the workers.

Computing the < . > terms can be reformulated into map and reduce primi-
tives as presented in algorithms 5.5 and 5.6. The first operation of the distributed
algorithm is to split the input dataset into sublists of users and to pass those lists to
the map workers. In the map phase (c.f., algorithm 5.5), the worker processes loop
over the list of ratings they are assigned to and record samples of vki hj ’s, vki ’s or hj ’s
into accumulators, roughly one for each free parameter of the model. In the reduce
phase (c.f., algorithm 5.6), the accumulators corresponding to the same free param-
eter are summed together and averaged to eventually compute < . >+ − < . >T

terms. Note that algorithm 5.6 is only given for the weight parameters. Analogous
reduce primitive should be defined to compute the < vki >

+ − < vki >
T and the

< hj >
+ − < hj >

T terms. Once the execution of the MapReduce process is over,
the < . > terms are gathered on the master process and then used to eventually up-
date the model. The new parameter values are then broadcast back to all the worker
processes before starting the next learning iteration and the next MapReduce exe-
cution. Finally, note also that unlike in the concurrent implementation of the algo-
rithm, training cases cannot be assigned dynamically during the execution of the
map phase. In practice, this might result in poor load balancing, and thus degrade
the performances if sublists of training cases are computationally unbalanced.
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Algorithm 5.5 MapReduce - Learning algorithm (map)
Inputs: a pair (k, v) where v is a list of training cases and k is left undefined
Outputs: a list of intermediate key/value pairs

Initialize an accumulator matrix w acc with zeroes;
Initialize a counter matrix w count with zeroes;
Initialize an accumulator matrix vb acc with zeroes;
Initialize a counter matrix vb count with zeroes;
Initialize an accumulator matrix hb acc with zeroes;
for all user u in v do

Clamp the ratings of u on the visible units;
Compute pj = p(hj = 1|V, r) for all the hidden units;
w acckij := w acckij + vki pj for all movies i rated by u as k, for all j;
vb accki := vb accki + 1 for all movies i rated by u as k;
hb accj := hb accj + pj for all j;
Run the Gibbs sampler for T steps;
Compute pj = p(hj = 1|V, r) for all the hidden units;
w acckij := w acckij − vki pj for all movies i rated by u, for all j, k;
vb accki := vb accki − vki for all movies i rated by u, for all k;
hb accj := hb accj − pj for all j;
w countkij := w countkij + 1 for all movies i rated by u, for all j, k;
vb countki := vb countki + 1 for all movies i rated by u, for all k;

end for
Emit intermediate key/value pairs ((i, j, k), (w acckij ,w countkij)) for all i, j, k;
Emit intermediate key/value pairs ((i, j), (vb accki ,vb countki )) for all i, k;
Emit intermediate key/value pairs (j, (hb accj , |v|)) for all j;

Algorithm 5.6 MapReduce - Learning algorithm (reduce)

Inputs: a key (i, j, k) and a list l of doublets (w acckij ,w countkij)
Outputs: an output pair ((i, j, k), < vki hj >

+ − < vki hj >
T )

sum := 0;
count := 0;
for all (w acckij ,w countkij) in l do
sum := sum+ w acckij ;
count := count+ w countkij ;

end for
Emit an output key/value pair ((i, j, k), sumcount );
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As for the test algorithm, a very similar approach as the one developed for
shared memory architectures can be used. The first operation is to split the training
set into sublists of users and to pass those lists to the map processes. In the map
phase, the worker processes loop over the test cases they are assigned to and accu-
mulate the squared error. In the reduce phase, a single worker process aggregates
the partial sums and eventually computes the final RMSE.

Algorithm 5.7 MapReduce - Test algorithm (map)
Inputs: a pair (k, v) where v is a list of test cases and k is left undefined
Outputs: a list of intermediate key/value pairs
error := 0;
count := 0;
for all (u, i) pairs in v do

Compute R̂(u, i);
error := (R(u, i)− R̂(u, i))2

count := count+ 1;
end for
Emit an intermediate key/value pair (⊥, (error, count));

Algorithm 5.8 MapReduce - Test algorithm (reduce)
Inputs: a key k and a list l of doublets (sum, count)
Outputs: an output pair (⊥, RMSE)
sum := 0;
nb := 0;
for all (error, count) in l do
sum := sum+ error;
nb := nb+ count;

end for
RMSE =

√
sum
nb ;

Emit an intermediate key/value pair (⊥, RMSE);

5.2.3 Results

The MapReduce versions of the learning and test algorithms were implemented
using the MapReduce-MPI library. This library was chosen over more popular im-
plementations of MapReduce for two reasons. First, it is C++ compliant. As a result,
this allowed us to reuse the original code base and to save a lot of time. Second, it
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uses direct message passing (through MPI) to exchange data between processes. By
contrast, some more popular implementations of MapReduce, such as Hadoop, op-
erate on top of a distributed file system to exchange data between processes. While
this additional level of abstraction might ease the implementation, in particular on
heterogeneous clusters of machines, the overhead that it induces was not considered
worth the cost.

The results presented in this section were obtained from the batch version of the
learning algorithm. Since updates now occur once in every pass over the training
dataset, the learning parameters were revised. Parameters γw, γh, γv and γd were
set to 0.5, momentum was set to 0.25 and weight decay to 0.0001. The annealing
heuristic was not used. These values were found empirically and happen to yield
good results. They were however not as finely tuned as those of the mini-batch
algorithm. Processes were all assigned to both map and reduce tasks.

Figures 5.6 and 5.7 show the speedup and parallel efficiency of the MapReduce
algorithm. Execution times were recorded when running the learning algorithm
with 1 to 8 processes, as well as with 16 and 24 processes. The first thing to notice
from figure 5.6 is that speedup does not stop increasing beyond a handful of cores, as
it was the case with the shared memory implementation. Rather, it keeps increasing
steadily. The execution time is nearly 4 times shorter when using 8 processes than
when using only a single one, and gets roughly 6 and 7.3 times faster when using
16 and 24 processes. The main reason of this improvement over the shared memory
implementation is that the MapReduce implementation do not include any critical
section per se. Hence, processes don’t have to queue anymore. Figure 5.7 shows that
parallel efficiency only decreases slightly when increasing the number of processes,
which suggests that the approach is truly scalable. Throwing brutishly more cores
at the problem will reduce the overall execution time. Yet, even if parallel efficiency
only decreases slightly, it decreases anyway. This means that using an incredibly
large number of cores might still be rather wasteful up to a point. The bottleneck of
the algorithm actually comes from communications. In particular, recall that each
worker generates during the map phase roughly as many intermediate key/value
pairs as the number of free parameters of the model. As a result, adding more
workers causes the number of intermediate pairs to inflate, hence increasing the
communications required to redistribute those pairs to the reduce workers. Along
the same line, the broadcast of the latest copy of the model at the beginning of every
iteration may also constitute one of the bottlenecks of the algorithm.

Even tough writing a dedicated distributed algorithm from scratch might have
been better than using a general framework, the results obtained in terms of execu-
tion times are very satisfying. All in all, this new algorithm confirms the ability of
the MapReduce framework to embody various kinds of large-scale problems.
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Since the learning algorithm is now implemented as a batch algorithm, it might
also be interesting to reconsider the learning curves. Figure 5.8 illustrates the train-
ing and generalization error of the model over 200 epochs. In accordance with what
was observed in chapter 4 regarding the size of the mini-batches, convergence is
slower (in terms of number of iterations) than with mini-batch learning (indeed,
this amounts to use an extremely large mini-batch). Over 200 iterations, the low-
est RMSE achieved on the probe set is 0.9163 (i.e., a 3.8% improvement over Cine-
match). This is far from the best RMSE achieved with mini-batch learning (0.8987),
but we believe that with some more tuning of the parameters better performances
could easily be obtained. More interestingly, we also observe that the learning
curves now include many small oscillations. These are the result of the fact that
the model is now updated less often but with much larger steps than before. In
some cases, these steps might be too important, hence the small peaks in the learn-
ing curves.
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5.3 Ensembles of RBMs

The third and final approach that we propose to make restricted Boltzmann ma-
chines more scalable is to consider ensembles of models.

5.3.1 Ensemble approach

The core idea of ensemble learning [27] is to build and combine several models to
form a composite and hopefully more effective model. More specifically, ensemble
methods exploit an existing learning algorithm to build several modelsM1, ...,MT

and the aggregate their predictions. For instance, if predictionsMi(x) are numeri-
cal, they can be simply averaged:

Mens(x) =
1
T

T∑
i=1

Mi(x) (5.4)

The main motivation behind ensemble methods is to build a composite model
with better performances in generalization than a single model built with the orig-
inal algorithm. Ensemble methods differ in the way the different models are pro-
duced and their predictions aggregated. In bagging and model averaging methods,
a significant reduction of variance makes the aggregated model to be generally more
accurate. In boosting and analogous methods, better accuracy is achieved by reduc-
ing the model bias. Empirically, ensemble methods have shown very good results,
especially when there is a significant diversity among the models. As a result, many
ensemble methods seek to promote diversity among the models they combine, e.g.,
by including randomization [24]. By the way, this is the reason why combining the
predictions of several models worked so well during the Netflix Prize.

A second argument in favor of ensemble methods is ambiguity decomposition [39].
Assume thatMens is defined as in equation 5.4. Then it can be shown that:

(f(x)−Mens(x))2 =
1
T

T∑
i=1

(f(x)−Mi(x))2 − 1
T

T∑
i=1

(Mi(x)−Mens(x))2 (5.5)

where f is the function we want to model. This result indicates that the quadratic
error of the ensemble model is always lower than the average quadratic error of the
models Mi. Note however that this doesn’t mean that the quadratic error of the
composite model is in all cases lower than the lowest quadratic error of the sub-
models.

In our case, the objective is not only to make the model more accurate, but also
to make learning more scalable. The idea that we propose is to sample the training
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dataset, to build smaller models on those samples and then to average the predic-
tions of these models into a composite model. The benefits are twofold. First, it
is embarrassingly parallel. Smaller models can be learned independently on dif-
ferent machines, no matter how many they are. Yet better, each one of the smaller
models can itself be built in parallel using either the shared memory or the MapRe-
duce approach. In addition, learning will inherently be faster since only a subset of
the original training set will be used. Second, the end accuracy of the final model
may hopefully be better than the accuracy of a single model trained on the whole
dataset. Similar ensemble approaches have been proposed in the literature to tackle
very large datasets, notably in [15, 17]. This approach is indeed interesting to con-
sider when memory is too small with respect to the size of the dataset.

From a more practical point of view, ensemble methods may also be very ap-
pealing to build updatable models. Instead of rebuilding a model from scratch
every once in a while, a less resource-consuming strategy might be to recompute
cyclically only some of the sub-models. Say for instance that a new movie has been
added recently to the database of an online retailer and that only a handful of users
have rated it. Obviously, recomputing a whole new model to integrate these new
ratings may not be worth the cost if resources are limited. By contrast, recomputing
only some of the sub-models and gradually including the new ratings may indeed
be way less expensive.

5.3.2 Results

The ensemble models presented in this section were built by combining restricted
Boltzmann machines trained over random subsets of the training dataset. Sub-
models were all trained for 50 iterations with γw set to 0.0015, γv to 0.0012, γh to
0.1, γd to 0.001, momentum to 0.9, weight decay to 0.0001 and an annealing rate ρ
set to 3. 75 hidden units were used in all machines. A first set of RBMs were trained
over random samples of 5000 movies, a second over samples of 10000 movies and a
third over samples of 15000 movies. All were individually trained using the shared
memory implementation over 4 cores. For each set of sub-models, an ensemble
model was built by averaging the predictions of the RBMs, as in equation 5.4. Note
that alternatively, the training set could also have been sampled by selecting subsets
of users instead of subsets of movies, or even subsets of both movies and users.

The resulting ensembles of RBMs were tested over the probe set using an increas-
ing number of sub-models. If none of the sub-models was trained on the movie for
which a prediction has to be made, then the average rating of that movie was used
as the prediction. Figure 5.9 shows the accuracy of the three ensemble models when
the number of sub-models varies from 1 to 20. The figure also shows the accuracy of
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a single model trained with the exact same parameters but over the whole dataset.
As expected, we observe that the accuracy of the ensemble models increases with
respect to the number of sub-models. Just like in bagging methods, it can actu-
ally be shown that the bias of the ensemble model is the same as the bias of the
sub-models but that its variance is divided by a factor T when T sub-models are
combined [25]. This explains the hyperbolic aspect of the curves and why improve-
ments become less and less significant. Unfortunately, none of the ensemble models
is better than the single model, which suggests that in all cases the decrease of vari-
ance does not compensate for the increase of the model bias due to subsampling.
Quite logically, the lowest RMSE is achieved by the model whose RBMs are trained
over 15000 movies; it scores an RMSE of 0.9098. By contrast, the RMSE of the single
model is 0.9077. It is not visible on the figure, but in terms of wall clock time, the
ensembles took shorter to train than the single model. Speedup is indeed inversely
proportional to the fraction of the training set the sub-models are trained on. For in-
stance, if sub-models are trained in parallel (assuming that resources are available)
on random halves of the training set, then the ensemble model can be built twice as
fast as the single model. At the price of some decrease in overall accuracy, this ap-
proach might therefore be interesting to consider when computing times are heavily
constrained.

To prove that ensemble models are nevertheless interesting to consider in a more
general case, figure 5.10 shows the accuracy of an ensemble model combining RBMs
trained over the whole dataset. To promote diversity, sub-models are all initial-
ized with random and different weights, as it is often the case ensembles of neural
networks [26]. Improvements are less significant than before, but we observe that
accuracy still improves when combining several RBMs together. The reduction of
variance makes RMSE drop from 0.9077 to 0.9051.

Finally, figure 5.11 shows the lowest RMSE of the submodels, their average RMSE
and the RMSE of the corresponding ensemble model. In all cases, ambiguity decom-
position holds: the RMSE of the ensemble is always lower than the average RMSE
of the sub-models. It also shows that, at least in this application, the RMSE of the
ensemble appears to be always lower than the lowest RMSE of the sub-models.

Admittedly, this approach is the less investigated of all three methods proposed
in this chapter. Better ensemble models might undoubtedly be obtained by using
more elaborate aggregating schemes. The discussion has at least the benefit of ex-
perimentally showing that combining models may lead to better accuracy.
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Chapter 6

Summary and future work

This is your life and it’s ending one minute at a time.

The narrator (Fight Club)

Parallel to the growth of electronic commerce, recommender systems have be-
come a very active area of research, both in the industry and in the academic world.
The goal of these systems is to make automatic but personal recommendations when
customers are presented to thousands of possibilities and do not know what to look
for. In practice, these systems have become so helpful that they now constitute an
integral and substantive part of the business model of most online retailers.

In chapter 2, we first reviewed the main categories of recommendation algo-
rithms. The most popular and effective approaches, namely neighborhood-based
and latent-factor algorithms, were then studied in more details in the second half of
the chapter. Chapter 3 was devoted to the Netflix competition that was held from
2006 to 2009. The goal of the challenge was to substantially improve the recom-
mender system that Netflix uses to make recommendations to its customers. All in
all, the challenge was a great success – partly because of the 1M$ award – and highly
benefited to the science of recommender systems. Many new ideas and algorithms
were proposed by dozens of hobbyists and researchers.

In chapter 4, a class of machine learning models called Boltzmann machines was
deeply reviewed, first from a general point of view, and then in the context of rec-
ommender systems. A full implementation of the model was written and then ex-
perimentally tested on the Netflix dataset. The results that we obtained, in terms
of accuracy over an independent test set, happened to be very satisfying and came
close to, or even beat, some of the results published in the literature.

One of the strongest issues of the experiments carried out in chapter 4 was that
computing times turned out to be unbearably long to get satisfying results. In that
context, three different approaches were proposed in chapter 5 to make Boltzmann
machines more scalable:

• In the first approach, we proposed to revisit the learning and test algorithms in
the context of shared memory architectures. The resulting algorithm showed
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interesting characteristics but also showed serious limitations in terms of po-
tential speedup.

• In the second approach, the learning and test algorithms were reformulated
into MapReduce tasks. This strategy yielded truly scalable learning and test
algorithms. In practice, computing times have been greatly reduced, squeez-
ing a few days of single-processor computations into a few hours when dis-
patched over a dozen of cores.

• Finally, in the third approach, we proposed an ensemble method in which
smaller models were trained over subsets of the training set and then aggre-
gated together into a composite model. The results of this approach showed
that ensemble learning boosted computing times (in terms of wall clock time)
but also reduced the end accuracy of the model with respect to a single model
trained of the whole dataset.

In our opinion, the MapReduce approach stands out among the methods in-
vestigated in this work. It is indeed the only one which showed very significant
improvements in terms of computing times without reducing by much the accuracy
of the end model.

Directions of future work include improvements of the methods proposed in
chapter 5. More particularly, the MapReduce approach might be revisited to try to
reduce inter-process communications. More elaborate and hopefully better aggre-
gating strategies might also be investigated with regard to the ensemble method. So
are different sampling schemes of the input training dataset.

Since restricted Boltzmann machines can be used in many other applications,
it might also be interesting to evaluate our scalable versions of the learning and
test algorithms on other tasks than collaborative filtering, and see if accuracy and
speedup are of the same order of magnitude. Another very interesting extension of
this work would be to adapt our scalable algorithms to Deep Belief Networks.

More fundamentally, constant advances and cost decreases in storage capacity,
communication networks and instrumentations have led to the generation of mas-
sive datasets in various domains. Current machine learning techniques however,
often struggle at processing such huge datasets. In that context, parallelization, as
we did in this work, is a very promising direction of research to solve these new
kinds of very-large scale problems.



Appendix A

Source code

The source code written during this work can be downloaded at http://www.
student.montefiore.ulg.ac.be/˜glouppe/TFE/. It is mainly divided into
three parts:

1. python/patterns/

This directory contains a small Python implementation of restricted Boltz-
mann machines. This is the implementation that was used to create the ex-
ample of section 4.2.3.

2. python/data/

This directory contains the Python scripts that were used to convert the raw
Netflix dataset into binary and compact files.

3. cpp/

This directory contains the C++ implementation that was used throughout
this work. The single-threaded, the OpenMP and the MapReduce implemen-
tations are all included in the netflix/ subdirectory. It also contains a small
C++ tool that was designed to aggregate the predictions of multiple models.
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