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Abstract. In the context of texture classification, this article explores the 
capacity and the performance of some combinations of feature extraction, linear 
and nonlinear dimensionality reduction techniques and several kinds of 
classification methods. The performances are evaluated and compared in term 
of classification error. In order to test our texture classification protocol, the 
experiment carried out images from two different sources, the well known 
Brodatz database and our leaf texture images database. 
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1   Introduction 

For natural images the texture is a fundamental characteristic which plays an 
important role in pattern recognition and computer vision. Thus, texture analysis is an 
essential step for any image processing applications such as medical and biological 
imaging, industrial control, document segmentation, remote sensing of earth 
resources. A successful classification or segmentation requires an efficient feature 
extraction methodology but the major difficulty is that textures in the real world are 
often not uniform, due to changes in orientation, scale, illumination conditions, or 
other visual appearance. To overcome these problems, numerous approaches are 
proposed in the literature, often based on the computation of invariants followed by a 
classification method as in [1]. In the case of a large size texture image, these 
invariants texture features often lead to very high-dimensional data, the dimension of 
the data being in the hundreds or thousands. Unfortunately, in a classification context 
these kinds of high-dimensional datasets are difficult to handle and tend to suffer from 
the problem of the “curse of dimensionality”, well known as “Hughes phenomenon” 
[2], which cause inaccurate classification. One possible solution to improve the 
classification performance is to use Dimensionality Reduction (DR) techniques in 
order to transform high-dimensional data into a meaningful representation of reduced 
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dimensionality. Numerous studies have aimed at comparing DR algorithms, usually 
using synthetic data [3 , 4] but less for natural tasks as in [5] or [6]. 

In this paper, considering one family of invariants called Motion descriptors (MD) 
or Generalized Fourier Descriptors (GFD) [7] which provide well-proven robust 
features in complex areas of pattern recognition (faces, objects, forms) [8], we 
propose to compare in 6 classification methods context, the high-dimensional original 
features datasets extracted from two different textures databases to reduced textures 
features dataset obtained by 11 DR methods. This paper is organized as follows : 
section 2 presents the textured images databases, review the definition of invariants 
features used for classification methods which are also quickly described. In section 3 
we propose a review of Dimensionality Reduction techniques and the section 4 
presents the results allowing to compare the performances of some combinations of 
feature extraction, dimensionality reduction and classification. The performances are 
evaluated and compared in term of classification error. 

2   Materials and Methods  

2.1   Textures Images Databases 

In order to test our texture classification protocol, the experiment carried out images 
from two different sources: 

 The well known Brodatz textures dataset [9] adapted from the Machine Vision 
Group of Oulun University and first used by Valkealahti [10]. The dataset is 
composed of 32 different textures (Fig. 1). The original images are grey levels images 
with a 256 256×  pixels resolution. Each image has been cropped into 16 disjoint 
64x64 samples. In order to evaluate scale and rotation invariance, three additional 
samples were generated per original sample (90° degrees rotation, 64 64× scaling, 
combinations of rotation and scaling). Finally, the set contains almost 2048 images, 
64 samples per texture. 

 

Fig. 1. The 32 Brodatz textures used in the experiments 

 The second textures images used in this study have been provided by the 
Matters and Materials laboratory at the “Free University of Brussels” for agronomic 
application. They are grey levels images acquired with a scanning electron 
microscope (SEM) and representing different kinds of leaf surfaces coming from six 
leaf plant species (Fig. 2). Thus, the image database contains 6 classes of leaf textures 
images. For each class 150 to 200 images have been acquired. Each image consists of 
a 100 µm scale image, with a resolution of 512 × 512 pixels adapting the scale to our 
biological application (1242 textures images in six classes). 
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Fig. 2. The six classes of leaf texture images 

2.2   Texture Characterisation Using Generalized Fourier Descriptors (GFD)  

The GFD are defined as follows. Let f  be a square summable function on the plane, 

and f̂ its Fourier transform:  

( )
2

(̂ ) ( )exp .f f x j x dxξ ξ= −∫  (1) 

If ( ),λ θ are polar coordinates of the point ξ , we shall denote again ( )ˆ ,f λ θ the 

Fourier transform of f at the point ( ),λ θ . Gauthier et al. [7] defined the mapping 

fD from + into +  by 

( )
2

2

0

ˆ= ( , ) .
f
D f d

π

λ λ θ θ∫  (2) 

So, fD  is the feature vector (the GFD) which describes each texture image and will 

be used as an input of the supervised classification method and be reduced by DR 
methods.  

Motion descriptors, calculated according to equation (2), have several properties 
useful for object recognition : they are translation, rotation and reflexion-invariant  
[7, 8]. 

2.3   Classification Methods  

Classification is a central problem of pattern recognition [11] and many approaches to 
solve it have been proposed such as connectionist approach [12] or metrics based 
methods, k-nearest neighbours (k-nn) and kernel-based methods like Support Vector 
Machines (SVM) [13], to name the most common. In our experiments, we want to 
evaluate the average performance of the dimensionality reduction methods and one 
basic feature selection method applied on the GFD features. In this context, we have 
chosen and evaluated six efficient classification approaches coming from four 
classification families: The boosting (adaboost) family [14] using three weak 
classifiers, (Hyperplan, Hyperinterval and Hyperrectangle), the Hyperrectangle 
(Polytope) method [15], the Support Vector Machine (SVM) method [13, 16]  and the 
connectionist family with a Multilayers perceptron (MLP) [17]. We have excluded the 
majority of neural networks methods due to the high variability of textures from 
natural images; Variability which included an infinite number of samples required for 
the learning step (Kind of leaves, growth stage, pedo-climatic conditions, roughness, 
hydration state,…).  In order to validate the classification performance and estimate 
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the average error rate for each classification method, we performed 20 iterative 
experiments with a 10-fold cross validation procedure. 

3   Dimensionality Reduction Methods 

The GFD provide features that are of great potential in pattern recognition as it was 
shown by Smach et al. in [8]. Unfortunately, these high dimensional datasets are 
however difficult to handle, the information is often redundant and highly correlated 
with one another. Moreover, data are also typically large, and the computational cost 
of elaborate data processing tasks may be prohibitive. Thus, to improve the 
classification performance it is well interesting to use Dimensionality Reduction (DR) 
techniques in order to transform high-dimensional data into a meaningful 
representation of reduced dimensionality. At this time of our work, we selected a 
dozen of DR methods. However, it is important to note that works employing recent 
approaches as it could be find in [18] are being finalized (another distance, topology  
or angle preservation methods like Kernel Discriminant Analysis, Generative 
Topographic Mapping, Isotop, Conformal Eigenmaps,…). 

3.1   Estimating Intrinsic Dimensionality 

Let 1( ,..., )T
n=X x x be the n×m data matrix. The number n represents the number of 

images examples contained in each texture dataset, and m the dimension of the vector 

ix , which his the vector corresponding to the discrete computing of the fD  (from eq. 

(2)). We have in our case n=2048 and m=32 for Brodatz textures database and 
n=1034 and m=254 for plants leaf textures database. This dataset represent 
respectively 32 and 6 classes of textures surfaces.  

Ideally, the reduced representation has a dimensionality that corresponds to the 
intrinsic dimensionality of the data. One of our working hypotheses is that, though 
data points (all texture image) are points in m , there exists a p-dimensional manifold 

1( ,..., )Tn= y yM�  that can satisfyingly approximate the space spanned by the data 

points. The meaning of “satisfyingly” depends on the dimensionality reduction 
technique that is used. The so-called intrinsic dimension (ID) of X  in m  is the 
lowest possible value of p (p<m) for which the approximation of X  by M  is 
reasonable. In order to estimate the ID of our two datasets, we used a geometric 
approach that estimates the equivalent notion of fractal dimension [19]. Using this 
method, we estimated and fixed the intrinsic dimensionality of our two datasets as 
being p=5. 

3.2   Review of DR Methods 

DR methods can be classified according to three characteristics: 

- Linearity : DR can be Linear or nonlinear. This describes the type of 
transformation applied to the data matrix, mapping it from m to p . 
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- Scale analysis : DR can be Local or global. This reflects the kind of 
properties the transformation does preserve. In most nonlinear methods, there is a 
compromise to be made between the preservation of local topological relationships 
between data points, or of the global structure of X . 

- Metric : Euclidean or geodesic. This defines the distance function used to 
estimate whether two data points are close to each other in m , and should con-
sequently remain close in p , after the DR transformation. 

In this context, we retained 11 methods based on these various criteria, 3 are linear 
methods and 8 are nonlinear. In order to complete this review of dimensionality 
reduction methods, we opposed them to one classical feature selection method. This 
comparison will show which approaches are the most relevant. 

3.2.1   Linear Methods 

3.2.1.1   Principal Components Analysis. Principal Components Analysis (PCA, [11]) 
is the best known DR method. PCA finds a linear transformation for keeping  
the subspace that has largest variance. PCA aims at solving the following problem: 
given p<m, find an orthonormal basis 1 2, ,..., pu u u< > that minimizes the so-called 

reconstruction error: 

2

1

(X, ) ,
n

PCA i i
i

J p
=

= −∑ x y  (3) 

It can be shown that PCAJ  is minimized for the iu being the eigenvectors of the 

covariance matrix of X . In practice, it is implemented using singular value 
decomposition. PCA is linear, global and Euclidean technique. 

3.2.1.2   Second-Order Blind Identification. Second Order Blind Identification (SOBI) 
[20] relies only on stationary second-order statistics that are based on a joint 
diagonalization of a set of covariance matrices. The set X is assimilated to a set of 
signals ( )iX t  and the p features of the destination space we are searching are 

assimilated to a fixed number of original sources ( )is t . Each ( )iX t  is assumed to be 

an instantaneous linear mixture of n  unknown components (sources) ( )is t , via the 

unknown mixing matrix A . 

( ) ( )X t As t=  (5) 

This algorithm can be described by the following steps (more details on SOBI 
algorithm can be found in [20]) : (1) Estimate the sample covariance matrix (0)xR and 

compute the whitening matrix W with *(0) ( ( ). ( ))xR E X t X t= . (2) Estimate the 

covariance matrices ( )zR τ  of the whitened process ( )z t  for fixed lag times τ . (3) 

Jointly diagonalize the set{ ( ) / 1,..., }z jR j kτ = , by minimizing the criterion  

2

,
1,..., 1,...,

( , ) ( ( )t
i j

k n i j n

J M V V M V
= ≠ =

= ∑ ∑  (6) 
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where M is a set of matrices in the form k kM VD V= , where V is a unitary matrix, and 

kD  is a diagonal matrix. (4) Determinate an estimation Âof the mixing matrix A such 

as 1Â W −= . (5) Determinate the source matrix and then extracting the p components. 
SOBI is a linear, global and Euclidean method. 

3.2.1.3  Projection Pursuit (PP). This projection method [21] is based on the 
optimization of the gradient descent. Our algorithm uses the Fast-ICA procedure [22] 
that allows estimating the new components one by one by deflation. The symmetric 
decorrelation of the vectors at each iteration was replaced by a Gram-Schmidt 
orthogonalization procedure. When p components 1,..., pw w  have been estimated, the 

fix point algorithm determines 1pw + . After each iteration, the projections 

1 ( 1,..., )T
p j jw w w j p+ =  of the p precedent estimated vectors are subtracted from 1pw + . 

Then, 1pw +  is re-normalized:  

1
1 1 11

1 1

p pT
p p p j jj T

p p

w
w w w w w

w w

+
+ + +=

+ +

= − =∑  (7) 

The algorithm stops when p components have been estimated. Projection Pursuit is 
linear, global and Euclidean.  

3.2.2   Nonlinear Methods : Global Approaches  

3.2.2.1   Sammon's Mapping (Sammon). Sammon's mapping is a projection method 
that tries to preserve the topology of the set of data (neighbourhood) in preserving 
distances between points [23]. To evaluate the preservation of the neighbourhood 
topology, we use the following stress function  

2
, ,

, 1 ,,, 1

( )1
m pn
i j i j

sam n mm
i j i ji ji j

d d
J

dd =
=

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑

∑
 (8) 

Where ,
m
i jd and ,

p
i jd are the distances between points ith and jth points, in m and p .  

This function, minimized by a gradient descent, allows adapting the distances in 
the projection space at best as distances in the initial space. Sammon’s mapping is a 
nonlinear, global, and Euclidean method.  

3.2.2.2   Isometric Feature Mapping (Isomap). Isometric Feature Mapping (Isomap) 
[24] estimates the geodesic distance along the manifold using the shortest path in the 
nearest neighbours’ graph. It then looks for a low-dimensional representation that 
approximates those geodesic distances in the least square sense (which amounts to 
MDS). It consists of three steps: (1) Build mD (X) , the all-pairs distance matrix. (2) 

Build a graph from X (k nearest neighbours). For a given point ix  in m , a neighbour 

is either one of the K nearest data points from ix  or one for which m
ijd ε< . Build the 

all-pairs geodesic distance matrix m (X)Δ , using Dijkstra’s all-pairs shortest path 
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algorithm. (3) Use classical MDS to find the transformation from m to p that 
minimizes 

2

,

( , ) ( )
n

m p
ISOMAP ij ij

i j

J X p δ δ= −∑  (9) 

Isomap is nonlinear, global and geodesic. 

3.2.2.3   Kernel Methods (K-PCA, K-Isomap). Recently, several well-known algo-
rithms for dimensionality reduction of manifolds have been developed in a new way, 
taking the kernel machine viewpoint [25, 26]. We retain here the two most known : 
the kernel-PCA (K-PCA) [27] and the kernel Isomap (K-Isomap) [28]. The non-
linearity is introduced via a mapping of the data from the input space m  to a feature 
space F . Projection methods (PCA or Isomap) are then performed in this new 
feature space. This feature space is expressed by a kernel K in terms of a Mercer 
Kernel function [29]. More details on K-PCA and K-Isomap algorithm can be found 
respectively in [27] and [28]. These methods are nonlinear and global, K-PCA is 
Euclidean and K-Isomap is geodesic. 

3.2.3   Nonlinear Methods: Local Approaches  

3.2.3.1   Local Linear Embedding (LLE). The LLE algorithm [30] estimates the local 
coordinates of each data point in the basis of its nearest neighbours, then looks for a 
low-dimensional coordinate system that has about the same expansion. The 3 steps 
are: (1) Find the neighbourhood graph (see steps 1 and 2 of Isomap). (2) Compute the 
weights ijW  that best reconstruct ix  from its neighbours, thus minimizing the 

reconstruction error, ˆi i−x x , where ˆ i ij j i
j

W= ≈∑x x x . (3) Compute vectors iy in 

p reconstructed by the weights ijW . Solve for all iy simultaneously. 

i ij j
j

W≈∑y y  (10) 

LLE is nonlinear, local and Euclidean. It finds the local affine structure of the data 
manifold, and identifies the manifold by joining the affine patches. 

3.2.3.2   Laplacian Eigenmaps (Laplacian). Similar to LLE, Laplacian Eigenmaps 
find a low-dimensional data representation by preserving local properties of  
the manifold [31]. The three steps of the algorithm are the following: (1) Build  
the non-oriented symmetric neighbourhood graph. (2) Associate a positive weight 

ijW to each link of the graph. These weights can be constant ( 1/ijW k= ), or 

exponentially decreasing ( ( )2 2exp /ij i jW σ= − −x x ). (3) Obtain the final coordinates 

iy  of the points in p by minimizing the cost function  
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( )2
/LE ij i j ii jj

ij

J W D D= −∑ y y  (11) 

where D is the diagonal matrix ii ijj
D W=∑ . The minimum of the cost function is 

found with the eigenvectors of the Laplacian matrix: 
1 1

2 2L I D WD
− −

= − − . LE is a 
nonlinear, local, Euclidean method. 

3.2.3.3   Curvilinear Components Analysis (CCA). CCA is an evolution of the 
nonlinear Multidimensional Scaling (MDS) and Sammon’s mapping algorithms [32]. 
Instead of the optimization of a reconstruction error, CCA and the related Curvilinear 
Distance Analysis (CDA) aim at preserving of the so-called distance matrix while 
projecting data onto a lower dimensional manifold.  

Let (X)mD be the 2 2n n× matrix of distances between pairs of points in X 

(X) ( ),m
m ijD d= where m

ij i jd = −x x  (12) 

After DR transformation to p , we also have 

(X) ( ),p
p ijD d= where p

ij i jd = −y y  (13) 

As with PCA, the iy are the transformed approximations of the ix . CCA tries to find 

the best suitable transformation, minimizing 

2

, 1

(X, ) ( ) ( ),
n

m p p
CCA ij ij ij

i j

J p d d F d
=

= −∑  (14) 

Where F is a decreasing, positive function. It acts as a weighting function, giving 
more importance to the preservation of small distances. In practice, CCAJ  is 

minimized using stochastic gradient descent and vector quantization to limit the 
optimization to a reduced set of representative points. CCA is nonlinear, local and 
Euclidean.  

CDA is a refinement of CCA [4], minimizing 

2

, 1

(X, ) ( ) ( ),
n

m p p
CDA ij ij ij

i j

J p d F dδ
=

= −∑  (15) 

Where m
ijδ measures the geodesic distance between ix and jx , approximated by the 

shortest path distance along a neighbourhood graph. CDA is nonlinear, local and 
geodesic. 

3.2.4   Feature Selection Method 
Parameter selection with an exhaustive search is impractical due to the large amount 
of possible feature subsets. To select the 5 best parameters, we use sequential forward 
selection (SFS) [33]. The criteria function is the average correct classification rate 
over all classes, obtained by quadratic discriminant analysis (QDA) on all  
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observations. The QDA approach was chosen because it is not dependant on 
parameters other than the observations and that the goal is not to compute the optimal 
classification rate but a measure of the feature subsets efficiencies. At the end of the 
process, the 5 best features have been selected. 

4   Results  

In order to compare the classification performance and estimate the average error rate 
for each classification method, we performed 20 iterative experiments with a 10-fold 
cross validation procedure. In the case of SVM, we used the gaussian kernel, for 
which we tuned the determined the optimum value of : 

2

( , )K e
σ

⎛ ⎞−⎜ ⎟−
⎜ ⎟
⎝ ⎠=

x y

x y  
(16) 

Table 1. Classification results on the Brodatz dataset (% error rate) 

Hyperplan Hyperinterval Hyperrectangle
17,26 12,2 22,5 15,5 2,65 41,4

Selection 21,3 19,7 13,4 8,3 3,06 15,3
PCA 23,4 18,5 13,2 7,4 8,4 11,2
SOBI 46,6 27,1 25,7 24,8 10,46 16,4
PP 84 82 69 75 61,4 73,0

Sammon 23,8 21,2 12,9 15,6 7,8 13,3
Isomap 23,4 19,5 12,9 7,3 6,55 12,1
LLE 22,5 23,4 15,3 8 4,5 15,9
CCA 23,7 20,7 13,9 9,1 5,7 18,2
CDA 22,6 20 15,3 7,4 3,9 15,6
Laplacian 16,7 11,8 14 5,56 1,20 10,2
K-PCA 23,6 19,1 14,2 7,2 6,65 11,8
K-Isomap 21,3 17,7 15,1 6,13 1,9 9,6

no
nl

in
ea

r

SVM MLP

Original features

lin
ea

r

Methods
Boosting

Hyperrectangle

 

 
In the case of Brodatz texture dataset (Table 1), regarding to the classification error 

using the original feature space, the best result are obtained using SVM (e=2.65%). In 
this case, the backpropagation algorithm of the MLP seems to converge to a local 
minimum and not to the global one. The use of a second order optimization method, 
such as BFGS or Levenberg-Marquart method [34] could overcome this problem. All 
the other methods give poorer results (from 12.2% to 22.5%). Their performances are 
generally improved by DR: the optimum error is obtained combining Laplacian 
Eigenmaps and SVM (e=1.2%, i.e. the error is divided by a factor 2). The K-Isomap 
combination with SVM gives some similar results. One can note that the use of kernel 
in DR methods generally improve performances compared to original ones (Isomap 
vs K-Isomap, PCA vs K-PCA). In the family of fast decision methods, the best result 
is obtained using Hyperrectangle also combined with Laplacian Eigenmaps. 

These results are generally confirmed by the experiments performed using the 
plants Leaf dataset (Table 2), although the original dimensional space is significantly 
higher than in the previous case (254 vs 32) and the number of classes is lower (6 vs 
32). In this case, the gain factor is 1.18 (comparing SVM using original feature space, 
and SVM combined with Laplacian Eigenmaps). 



 Texture Classification with Generalized Fourier Descriptors 289 

Table 2. Classification results on the Plants leaf dataset (% error rate) 

Hyperplan Hyperinterval Hyperrectangle
6,52 3,3 16,87 27,61 1,47 35,7

Selection 18,19 14,97 3,7 10,5 5,71 9,7
PCA 7,64 3,94 8,62 9,66 2,35 11,9
SOBI 15,29 4,99 9,56 13,2 4,8 15,8
PP 87,2 85,58 87,45 84,54 82 81,2

Sammon 26,9 25,84 10,89 10,1 5,48 13
Isomap 7,2 5,12 4,25 7,8 2,28 11,2
LLE 22,86 17,87 7,81 8,29 1,96 14,1
CCA 31,07 17,47 5,23 9,98 2,89 16,2
CDA 34,13 7,6 4,83 9,75 1,92 15,4
Laplacian 5,2 2,5 10,38 8,1 1,25 7,8
K-PCA 7,05 13,2 11,75 11,51 1,86 13,9
K-Isomap 6,8 3,9 11,43 6,3 1,31 10,2

no
nl

in
ea

r

SVM MLP

Original features

lin
ea

r

Methods
Boosting

Hyperrectangle

 
 

In order to classify the DR methods, we computed the average rank of each method 
for both datasets (Table 3). Laplacian Eigenmaps and K-Isomap are the best ranked, 
but the standard PCA (linear) is still a good compromise between computation time 
and performances. 

Table 3. Average rank mean for each classification results for the two dataset 

Hyperplan Hyperinterval Hyperrectangle
Laplacian 1 1 7 2 1 1,5 2,25
K-Isomap 3 3 9 1,5 2 2 3,42
Isomap 6 6 1,5 3 7,5 4,5 4,75
PCA 7 4 4,5 5,5 9,5 4 5,75
Selection 6 8 2,5 8,5 8 4,5 6,25
K-PCA 6,5 6,5 9 6,5 6,5 5,5 6,75
Original data 2 2 11,5 11 3 12 6,92
CDA 9 7,5 6 5,5 5 8,5 6,92
LLE 7 11 7,5 5,5 6 8,5 7,58
CCA 10,5 9,5 4,5 8 8 11 8,58
Sammon 10,5 11 5,5 9,5 10,5 6 8,83
SOBI 9,5 8,5 9,5 11,5 11 10 10,00
PP 13 13 13 13 13 13 13,00

MLP rank meansMethods
Boosting

Hyperrectangle SVM

 
 

Moreover, it is interesting to note that DR methods allow to minimize the number 
of support vectors needed for the decision function of SVM (Table 4). For Laplacian 
Eigenmaps, the gain is 29% in the case of Brodatz dataset and 47% in the case of 
Plants leaf dataset. Since the computation time of the SVM decision function depends 
linearly of this number, the process is accelerated. This is particularly true using PCA, 
since it is not always necessary to update the PCA transformation during the 
classification step. 

Table 4. Number of support vectors needed for the decision function of SVM 

Dataset
Original

data
Selection CCA SOBI PCA K-PCA CDA LLE Lapl K-iso Iso Sam PP

Brodatz 1545 1120 1006 1025 1035 1050 1059 1078 1095 1155 1163 1189 1467

Plants leaf 504 209 363 172 232 332 419 291 267 296 328 272 1090  
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5   Conclusion  

In this paper we proposed a comparison of DR methods combined with several 
classification methods, in the context of texture classification of natural images using 
GFD. We used the powerful Generalized Fourier Descriptors which have interesting 
properties such as translation, rotation and reflexion invariants.  

In any case, the SVM classifier outperforms all other classification methods using 
the original feature space. However, we experimentally demonstrated that some DR 
methods still improve final classification performances, and we proposed a rank 
classification of these methods. The best DR methods are the Laplacian Eigenmaps 
and K-Isomap, even if the standard PCA is still a good compromise between 
computation time and performances. In any case, the use of DR methods allows to 
minimize the number of support vectors, thus optimizing the computational cost of 
the final decision step. 

In our future work, we will apply this comparison review to multispectral textures 
images for which the original dimensional space is higher and for which the 
correlation between spectral bands are often very important. 
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