The univariate coefficient of variation $CV = \sigma/|\mu|$ measures the relative variability of a random variable X to its mean ($\mu \neq 0$). The CV is for example widely used in laboratory medicine for comparing the reproducibility of assay techniques/equipments: the lower the CV, the better the analytical precision. The multivariate coefficient of variation deals with the relative variability of a p-dimensional random vector $X^T = (X_1, \ldots, X_p)$ with mean $\mu \neq 0$ and variance-covariance matrix Σ. R. Reyment (1960) was the first to extend the univariate CV concept to the multivariate setting by defining $CV_{RR} = \left(\frac{|\Sigma|^{\frac{1}{2}}}{\mu^T \mu}\right)^{\frac{1}{2}}$. He also derived a formula for the standard error of the estimate. There is supporting evidence however that Reyment’s multivariate CV yields values that are too low compared to the methods which were introduced later on and that some flaws slipped into the standard error formula (Zhang & Albert, 2010). The talk starts with reviewing existing multivariate CV definitions. Then, we focus on correcting Reyment’s definition by including a scaling factor \sqrt{p}. The estimated modified Reyment’s CV and its standard error write $\hat{CV}_{RR}^* = \left(\frac{p|\Sigma|^{\frac{1}{2}}}{\bar{x}^T \bar{x}}\right)^{\frac{1}{2}}$ and $\text{s.e.}(\hat{CV}_{RR}^*) = \left[\frac{(2n-p+1)}{4p(n-p)(n-p+1)} + \frac{\bar{s}^T \bar{s}}{n(\bar{x}^T \bar{x})^2}\right]^\frac{1}{2}$. The various multivariate CVs are illustrated on electrophoretic data from the French and Belgian External Quality Assessment programmes (Zhang et al., 2010). The modified Reyment’s approach provides results which are consistent with and comparable to those of the other multivariate coefficients of variation.

This is a joint work with Prof. A. Albert, Biostatistics, University of Liège.

References:

