EXPERIMENTAL CHARACTERIZATION AND CONSTITUTIVE MODELING OF TA6V TITANIUM MECHANICAL BEHAVIOR IN TENSION AND COMPRESSION

G. Gilles, W. Hammami, V. Libertiaux, A.M. Habraken, O. Cazacu, L. Duchêne

37th Solid Mechanics Conference
Warsaw, Poland
September 6-10, 2010
Outline

- Introduction
- Experimental characterization
- Modeling
- Results
- Conclusions
Introduction

Applications of TA6V

High strength-to-weight ratio, good corrosion resistance, biocompatibility, …
Material

Sheet with 0.6 mm thickness

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>V</th>
<th>Fe</th>
<th>C</th>
<th>O</th>
<th>N</th>
<th>Y</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>6.22</td>
<td>3.93</td>
<td>0.16</td>
<td>0.008</td>
<td>0.19</td>
<td>0.006</td>
<td>0.0004</td>
<td>Bal.</td>
</tr>
<tr>
<td>Bottom</td>
<td>6.27</td>
<td>4.00</td>
<td>0.16</td>
<td>0.009</td>
<td>0.20</td>
<td>0.006</td>
<td>0.0004</td>
<td>Bal.</td>
</tr>
</tbody>
</table>

(in weight %)

Microstructure:

<table>
<thead>
<tr>
<th>Type</th>
<th>Grain size</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-phase</td>
<td>Hexagonal closed-packed (hcp)</td>
<td>~11 µm</td>
</tr>
<tr>
<td>β-phase</td>
<td>Body-centered cubic (bcc)</td>
<td>~1 µm</td>
</tr>
</tbody>
</table>

Introduction – Experimental characterization – Modeling – Results - Conclusions
Material

Initial texture

Introduction – Experimental characterization – Modeling – Results - Conclusions
Experiment

Tensile tests

Zwick 100 kN

Compressive tests

Comb-shaped dies apparatus (Kuwabara et al., Int. J. Mater. Form. 2, 2009)

Introduction – Experimental characterization – Modeling – Results - Conclusions
 Experimental results

Initial yielding

Anisotropy in tension and compression

r-values (tension)

- High anisotropy
- Tension-compression asymmetry

Introduction – Experimental characterization – Modeling – Results – Conclusions
CPB06ex3 yield criterion

CPB06 anisotropic yield criterion
(Cazacu, Plunkett, Barlat, Int. J. Plasticity 22, 2006)

\[\Sigma = C : s \quad (C: \text{4th order orthotropic tensor}) \]

\[F(\Sigma) = \left(|\Sigma_1| - k\Sigma_1 \right)^a + \left(|\Sigma_2| - k\Sigma_2 \right)^a + \left(|\Sigma_3| - k\Sigma_3 \right)^a \]

\(s \): deviator of Cauchy’s stress tensor
\(a \): degree of homogeneity
\(k \): strength differential parameter (asymmetry)

\[C = \begin{pmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{66}
\end{pmatrix} \]

9 anisotropy coefficients for 3-D stresses
(due to homogeneity: \(C_{11} = 1 \))

Extension with 3 transformations (CPB06ex3)
(Plunkett, Cazacu, Barlat, Int. J. Plasticity 24, 2008)

\[\Sigma = C : s, \Sigma' = C' : s, \Sigma'' = C'' : s \]

\[F(\Sigma, \Sigma', \Sigma'') = \left(|\Sigma_1| - k\Sigma_1 \right)^a + \left(|\Sigma_2| - k\Sigma_2 \right)^a + \left(|\Sigma_3| - k\Sigma_3 \right)^a \]

\[+ \left(|\Sigma'_1| - k'\Sigma'_1 \right)^a + \left(|\Sigma'_2| - k'\Sigma'_2 \right)^a + \left(|\Sigma'_3| - k'\Sigma'_3 \right)^a \]

\[+ \left(|\Sigma''_1| - k''\Sigma''_1 \right)^a + \left(|\Sigma''_2| - k''\Sigma''_2 \right)^a + \left(|\Sigma''_3| - k''\Sigma''_3 \right)^a \]

Introduction – Experimental characterization – Modeling – Results - Conclusions
Parameter identification

Error function: \[E = \sum_i \eta_i \left(\frac{\sigma_0^T}{\sigma_0^T} - 1 \right)^2 + \sum_j \eta_j \left(\frac{\sigma_0^C}{\sigma_0^C} - 1 \right)^2 + \sum_k \eta_k \left(\frac{r_k}{r_k^\text{exp}} - 1 \right)^2 \]

Optimization using simulated annealing method:

- **Iteration** \(n \)
- **Trial guess**
- **\(E_n \)**

\(E_n \leq E_{n-1} \):
- Automatically accepted

\(E_n > E_{n-1} \):
- Accepted with probability \(p = \exp(-|E_n - E_{n-1}|/T) \)

\(T \): decreasing fictitious parameter (temperature)

Introduction – Experimental characterization – **Modeling** – Results - Conclusions
Hill (1948)

\[F(\mathbf{\sigma}) = \frac{1}{2} \left[F(\sigma_{22} - \sigma_{33})^2 + G(\sigma_{33} - \sigma_{11})^2 + H(\sigma_{11} - \sigma_{22})^2
ight. \\
\left. + 2L\sigma_{23}^2 + 2M\sigma_{13}^2 + 2N\sigma_{12}^2 \right] \]

CPB06ex3

\[F(\mathbf{\Sigma}, \mathbf{\Sigma}', \mathbf{\Sigma}'') = (|\Sigma_1| - k\Sigma_1)^a + (|\Sigma_2| - k\Sigma_2)^a + (|\Sigma_3| - k\Sigma_3)^a \\
+ (|\Sigma'_1| - k'\Sigma'_1)^a + (|\Sigma'_2| - k'\Sigma'_2)^a + (|\Sigma'_3| - k'\Sigma'_3)^a \\
+ (|\Sigma''_1| - k''\Sigma''_1)^a + (|\Sigma''_2| - k''\Sigma''_2)^a + (|\Sigma''_3| - k''\Sigma''_3)^a \]

Introduction – Experimental characterization – Modeling – Results - Conclusions
Anisotropy

Introduction – Experimental characterization – Modeling – Results – Conclusions
Conclusions

- Experimental investigation of the anisotropy and the strength differential effects in TA6V (uniaxial tests)
- Parameter identification of CPB06ex3 yield criterion
- Good agreement between experimental data and numerical results
Future work

Hardening

Introduction – Experimental characterization – Modeling – Results - Conclusions
Thank you for listening