Remarques concernant les couches émettrices
des étoiles chaudes à raies d'émission,
par P. SWINGS et D. CRESPIN.

On sait que le problème physique de l'émission des raies brillantes dans les étoiles Be a reçu une interprétation satisfaisante; ces raies sont sûrement émises lors de processus de recombinations d'ions et d'électrons se présentant dans des nébulosités entourant les étoiles mères (O. Struve).

Mais il reste à expliquer l'origine de ces enveloppes nébulaires entourant les étoiles Be, ce qui, d'ailleurs, conduira à l'interprétation des profils des raies d'émission et de leurs variations. La dissipation d'atomes dans les atmosphères d'étoiles chaudes résulte surtout de l'accélération centrifuge (théorie de O. Struve) et de la pression de radiation (théorie de B. P. Gerasimović). Dans les étoiles Bne à raies fortement élargies par rotation axiale considérable il est probable que les deux causes agissent concurremment. Dans le cas de certaines étoiles Bse, le facteur pression de radiation serait, d'après Gerasimović, seul en cause. Il y a d'ailleurs lieu d'associer au problème des étoiles Be celui des étoiles à raies d'émission du type P Cygni; celles-ci manifestent clairement l'éjection d'atomes et l'instabilité rotationnelle n'y joue aucun rôle. Pour les étoiles du type P Cygni, il paraît donc logique d'essayer d'interpréter les phénomènes en introduisant uniquement la pression de radiation.

Nous aurons dans cette note fréquemment l'occasion d'utiliser des résultats du mémoire de B. P. Gerasimović (1); notre travail a d'ailleurs pour but essentiel d'apporter quelques compléments à ce mémoire. Il nous a paru utile de rappeler d'abord sommairement les résultats fondamentaux de Gerasimović, en signalant d'ailleurs que certaines critiques assez graves peuvent être faites à son traitement théorique de la question, qui devrait faire l'objet de nouvelles discussions (2).

(2) S. Chandrasekhar (communication privée) publiera prochainement une note à ce sujet.
2. RESULTATS PRINCIPAUX DE GERASIMOVIC

Pour les températures supérieures à 10.000°, l'accélération d'un atome d'hydrogène causée par absorption des fréquences d'ionisation situées au delà de la limite de Lyman est

\[J_{rad} = \frac{P_e}{(kT)^{3/2}} \times 2.6 \times 10^{-7}, \]

(1)

\(p_e \) étant la pression électronique et \(T \) la température absolue.

Pour une étoile B de magnitude absolue visuelle –4 et de température effective \(T=15.000° \), la formule (1) donne pour \(p_e=10^{-8} \) atmosphère une valeur de \(f \) supérieure à 3g (g=gravité).

Il existe également une formule fournissant l'accélération \(J_{rad} \) due à l'absorption de la raie de Lyman \(\lambda \); \(J_{rad} \) est nettement inférieure à \(J_{rad} \) (de l'ordre de \(g \) dans l'exemple numérique ci-dessus).

Il résulte de la formule (1) que dans certaines atmosphères B, la pression de radiation sur les atomes H équilibre la gravité à une profondeur « critique » convenable, il faut toutefois pour cela que \(J_{rad} \) soit égal à \(g \) en des régions où le flux de rayonnement vers l'intérieur n'est pas encore appréciable, car sinon celui-ci donnerait une accélération dirigée en sens inverse de \(J_{rad} \) considéré jusqu'alors. \(J_{rad} \) est orienté vers l'extérieur, normalement à la surface photosphérique.

Pour que les atomes H acquièrent des vitesses suffisantes, il faudra qu'ils parcourent de grandes distances, c'est-à-dire que le gradient \(\frac{\partial p_e}{\partial h} \) soit suffisamment petit (2). La valeur assez élevée de \(p_e \) nécessaire pour que \(J_{rad} \) équilibre \(g \) implique que l'on ait, non pas l'expulsion d'atomes isolés, mais bien un mouvement d'ensemble des couches (ce qui est d'ailleurs compatible avec la grande abondance en hydrogène) (3), on pourra appliquer à ces expulsions la loi de mouvement de Bernoulli.

Le problème soulevé ainsi est celui des chromosphères non stables, en opposition avec les chromosphères stables de Milne et autres. L'atmosphère stellaire commence sa dissipation par effet de la pression de radiation. Dès qu'une quantité considérable de matière est éjectée, celle-ci produit un flux de radiation vers l'intérieur, exerçant une sorte de freinage sur les nouveaux atomes expulsés. Deux cas peuvent finalement se présenter :

PREMIER CAS. — Un état permanent d'expulsion continue peut être atteint (chromosphère non stable permanente) : Gerasimovic a trouvé que trois types sont théoriquement possibles :

1° \(\tau < \) grand (\(\tau = \) épaisseur optique de la chromosphère nubulaire, dans la couche équivalente de Lyman); la vitesse décroît de façon monotone, de la surface de l'étoile jusqu'à la limite de la couche nubulaire;

2° \(\tau \) grand, la vitesse diminue d'abord, passe par un minimum, puis augmente;

3° \(\tau \) petit (donc raies faibles).

DEUXIÈME CAS. — La gravité \(g \) est trop faible pour qu'il existe une atmosphère statique, mais est trop grande pour permettre la formation d'une atmosphère non stable permanente comme dans le premier cas. Alors l'expulsion se passe jusqu'à ce que la chromosphère en expansion fournisse un flux vers le bas qui arrête l'expansion ; celle-ci recommence lorsque la chromosphère s'est dispersée dans l'espace interstellaire sous forme d'une enveloppe en expansion, alors un nouveau cycle recommence.

Les étoiles du type P Cygni semblent bien correspondre au premier cas, type 2°. Pour P Cygni elle-même, la vitesse d'expulsion serait de 220 km/sec. dans la couche renversante, elle irait en décroissant jusqu'au 150 km/sec. à la limite intérieure de la région nubulaire émettrice, elle continuerait encore à décroître jusqu'à un minimum, puis recommencerait à augmenter : la vitesse à l'infiniti serait légèrement inférieure à 150 km/sec.

Certaines étoiles Bse (4) correspondent au premier cas, type 3° : les raies brillantes y sont étroites et faibles (ex. : \(\alpha \) Orionis).

Quant aux étoiles Bne, elles correspondraient au deuxième cas, la gravité effective à considérer étant d'ailleurs la gravité réelle réduite de l'accélération centrifuge existant aux profondeurs que l'on considère. Ce résultat est en bon accord avec l'observation de la variation périodique des intensités des raies d'émission des étoiles Bne.

(1) Voir, à ce sujet, P. Swings et M. Desirant, Bull. de l'Acad. roy. de Belgique (Cl. des Sc.), 22, 1296, 1936.

(2) Ceci n'est pas absolument nécessaire d'après le processus de diffusion drage de M. Crea ; voir M. N. R. A. S., 95, 509-519, 1935.

(4) Les autres étoiles Bse seraient des Bne dont l'axe polaire de rotation serait très voisin de la direction d'observation.
3. EXAMEN DU MODELE DE P CYGNI

Le problème, d’ailleurs complexe, que Gerasimović n’a pas envisagé est celui de l’acquisition des vitesses des atomes H, indiquées plus haut (le problème du « gun and powder »). Il nous paraît possible d’obtenir quelques renseignements à ce sujet en recherchant de quelle profondeur optique τ_v (1) les atomes doivent arriver pour que leur vitesse atteigne $V_i=220$ km/sec. dans la couche renversante à une certaine valeur τ_v de τ. Il subsistera d’ailleurs encore une difficulté provenant du fait que, dans les couches extérieures de P Cygni, l’hydrogène est certainement ionisé de façon presque complète.

Comment peut-on poser le problème ? Supposons que jusqu’à la profondeur optique τ_v, les collisions ne jouent aucun rôle (le τ_v que nous obtenons sera donc une valeur minimum). Désignons par $p_v(\tau)$ la pression électronique existant à la profondeur τ et ne retenons que la partie de l’accélération de radiation due au fond continu de Lyman. Supposons de plus qu’en τ_v le flux de radiation vers l’intérieur ne soit pas encore appreciable.

Nous aurons

$$J_{\text{rad}}(\tau) = \frac{p_v(\tau)}{K^2 \pi T(\tau)^{3\frac{1}{2}}} \times 2.6 \times 10^{-7}. \tag{1'}$$

L’équation de mouvement sera

$$j = \frac{dv}{dt} = v \frac{dv}{dz} - J_{\text{rad}}(\tau) - g. \tag{2}$$

Nous considérons g comme constant sur le trajet parcouru par les atomes à l’intérieur de l’étoile et adopterons la valeur donnée par Gerasimović : $g=1.3 \times 10^7$.

L’équation (2) peut alors s’écrire

$$v \frac{dv}{dz} = [J_{\text{rad}}(\tau) - g] \frac{dh}{d\tau};$$

d’où

$$\left[\frac{v^2}{2} \right]_0^\tau = \int_{\tau_v}^\tau [J_{\text{rad}}(\tau) - g] \frac{dh}{d\tau} \cdot d\tau. \tag{3}$$

Quelles expressions allons-nous adopter pour $T(\tau), p(\tau), \frac{dh}{d\tau}$?

Comme nous cherchons uniquement l’ordre de grandeur de τ_v, nous pouvons considérer le cas d’une atmosphère statique ; ceci signifiera simplement que nous examinons ce qui se passe au début du phénomène expulsif, c’est-à-dire au moment où, au cours de son évolution, l’étoile est arrivée à ce stade critique où elle commence à émettre des atomes d’hydrogène. Bien entendu, l’expulsion subséquente de masses appréciables d’hydrogène peut changer les conditions physiques au sein de l’atmosphère ; il faut toutefois remarquer que l’expulsion annuelle de matière n’est au plus que de 10^{-5} de la masse de P Cygni, de sorte que l’approximation faite ci-dessus ne paraît pas exagérée. Notre but essentiel est d’ailleurs de voir si la pression de radiation peut, à la suite d’une certaine évolution, constituer à un moment donné le « gun and powder » ou si quelque autre « catastrophe » initiale n’est pas nécessaire pour susciter la formation de couches nébulaires émiettées ; autrement dit, nous voulons voir si l’accélération J_{rad} joue un rôle important dans l’acquisition des vitesses des corpuscules ou non.

Dans ces conditions, nous prendrons pour T, p_v et $\frac{dh}{d\tau}$ les expressions relatives aux photosphères modèles de S. Chandrasekhar (1) :

$$T' = \frac{1}{2} T_x \left(1 + \frac{3}{2} \frac{\tau}{\tau_v} \right) \text{ avec } T_x = 20.000 R^4, \tag{4}$$

$$p_v = 2 \cdot T_x^{\frac{3}{2}} \left(1 - \left(\frac{T_x}{T} \right) ^{\frac{3}{2}} \right), \tag{5}$$

$$\frac{dh}{d\tau} = \frac{57}{64} \cdot \frac{R^4}{T^2} \cdot T_x \cdot \left[\frac{1}{2} T_x \left(1 + \frac{3}{2} \frac{\tau}{\tau_v} \right) \right]^{-\frac{3}{4}}. \tag{6}$$

4. PREMIERE HYPOTHESE SUR LA VALEUR DE LA PRESSION ELECTRONIQUE

(Gerasimović : $p_v = 10^{-8}$ atm. en $\tau = \frac{\tau_v}{3}$)

Dans ce cas la constante a de la formule (5) vaut $a = 4 \cdot 10^{-24}$.

On en déduira

$$J_{\text{rad}}(\tau) = \frac{208 \cdot 10^{-37}}{K^2 \pi T_x^{\frac{3}{2}}} \left[1 - \left(\frac{T_x}{T} \right) ^{\frac{3}{2}} \right]^{\frac{1}{2}} \tag{7}$$

(1) Au sens ordinaire de la profondeur optique générale.
ou, tous calculs faits,

\[J_{\text{rad}}(\tau) = 3 \left(1 + \frac{3}{2} \tau \right)^{\frac{3}{5}} \cdot \left[1 - \left(1 + \frac{3}{2} \tau \right)^{-\frac{3}{10}} \right]^{\frac{1}{2}}. \]

\((7') \)

Pour \(\tau > \frac{2}{3} \), la formule \((7') \) peut d'une manière suffisamment approchée être réduite à

\[J_{\text{rad}}(\tau) = 3 \left(1 + \frac{3}{2} \tau \right)^{\frac{3}{5}}. \]

\((7'') \)

Quant à l'expression \((6) \) de \(\frac{dh}{d\tau} \), elle vaut ici

\[\frac{dh}{d\tau} = 3.10^{18} \left(1 + \frac{3}{2} \tau \right)^{-\frac{3}{4}}. \]

\((6') \)

L'application de la formule \((3) \) fournira donc, en supposant

\[\tau_1 = \frac{2}{3}, \]

\[v_f^2 = \int_{\tau}^{\tau_1} 3.10^{18} \left(1 + \frac{3}{2} \tau \right)^{-\frac{3}{4}} \cdot \left[3 \left(1 + \frac{3}{2} \tau \right)^{\frac{3}{10}} - 130 \right] d\tau. \]

\((8) \)

En prenant \(v_1 = 220 \text{ km/sec.} = 2,2 \cdot 10^7 \text{ cm/sec}^{-1} \) on trouve

\[\tau_0 \sim 2400. \]

Remarquons d'ailleurs que pour atteindre une couche où \(J_{\text{rad}} = g \), il faut pénétrer à une profondeur optique \(\tau_a \) donnée par

\[3 \left(1 + \frac{3}{2} \tau_a \right)^{\frac{3}{10}} = 130, \]

c'est-à-dire à

\[\tau_a = 68 ; \]

\[\tau_a = \frac{2}{3} \] égale à

\[h_\tau - h_f \sim 1,5 \cdot 10^8 \text{ km}, \]

soit 0,025 rayon de P Cygni.

En résumé, si l'on adopte la valeur de la pression électronique suggérée par Gerasimovic, on obtient les deux résultats suivants :

1° Pour obtenir en \(\tau = \frac{2}{3} \), la vitesse 220 km/sec., il faut que les atomes quittent avec une vitesse initiale nulle la couche \(\tau_0 \sim 2400. \)

2° De \(\tau_0 \sim 2400 \) à \(\tau_1 \sim 68 \), la vitesse va en augmentant ; sa valeur maximum obtenue en \(\tau \sim 68 \) est de 236 km/sec.; elle diminuera ensuite jusqu'à atteindre 220 km/sec. dans la couche renversante.

On peut calculer à quelle profondeur en kilomètres correspond la profondeur optique \(\tau_0 \sim 2400. \) On trouve aisément

\[h_\tau - h_\tau = \frac{2}{3} = \text{environ} 5.10^8 \text{ km}, \]

soit 0,08 rayon de P Cygni.

Si le processus exposé ici est celui qui entre en jeu, les atomes H partiraient donc avec une vitesse nulle d'une profondeur 0,08 R sous la couche renversante de P Cygni; sous l'action de la pression de radiation surpassant \(g \), leur vitesse irait en augmentant jusqu'à la profondeur 0,025 R, où elle atteindrait 236 km/sec.; après quoi elle diminuera, \(g \) devenant supérieur à la pression de radiation.

La valeur 0,08 R n'est d'ailleurs qu'une valeur minimum comme il a été indiqué au début de ce paragraphe. Si l'on tenait compte des effets des collisions et du flux vers l'intérieur, la valeur obtenue pour \(\tau_0 \) serait évidemment plus élevée.

Dans ces conditions \((p_e = 10^{-4} \text{ atm. en } \tau = \frac{2}{3}) \), il semble bien improbable que la pression de radiation ait pu constituer le "gun and powder" à un moment de l'évolution de P Cygni. A une profondeur optique de l'ordre de \(\tau_0 \sim 2400 \), le flux vers l'intérieur est certainement considérable. Si l'on était forcé d'admettre la valeur de \(p_e \) donnée par Gerasimovic, il faudrait renoncer à attribuer à la pression de radiation un rôle important dans l'acquisition des vitesses.

5. DEUXIÈME HYPOTHÈSE SUR LA VALEUR DE LA PRESSION ÉLECTRONIQUE

\[(p_e = 10^{-3} \text{ atm. en } \tau = \frac{2}{3}). \]

Il y a diverses raisons de penser que la valeur numérique de \(p_e \) est nettement supérieure à celle suggérée par Gerasimovic. Si, par exemple, nous employons la formule de Chandrasekhar \(^{(1)}\), nous obtenons pour \(p_e \) une valeur de l'ordre de 2000 c.g.s. Dans une communication privée, S. Chandrasekhar a bien voulu nous

\((1) \) Loc. cit.
dire qu’une valeur 1000 c.g.s. pour p_e dans P Cygni est tout à fait raisonnable et qu’il y a diverses raisons d’admettre une valeur de l’ordre de 100 à 1000.

Natu rellement, une telle valeur de p_e modifie radicalement toutes les conclusions du paragraphe 4. C’est pourquoi nous avons jugé utile de reprendre les calculs du paragraphe 4 dans le cas où la constante α de p_e (formule 5) vaut $4 \cdot 10^{-18}$ au lieu de $4 \cdot 10^{-21}$.

L’emploi des formules (7) et (7’) nous montre immédiatement que

1° En $\tau = \frac{2}{3}$ l’accélération $(f_{\text{rad}})^{\text{eq}}$ vaut 4500 c.g.s.

2° L’accélération f_{rad} équilibre g en $\tau = 0.063$, c’est-à-dire dans une région très extérieure de l’étoile.

Enfin, par application de la formule 3, on trouve que, pour atteindre en $\tau = \frac{2}{3}$ la vitesse $V = 2.2 \cdot 10^6$ cm.sec$^{-1}$, un atome H doit partir avec une vitesse nulle de la profondeur optique $\tau_a = 3.5$; ce τ_a correspond à une épaisseur 300 000 km = 0.005 R (R=rayon stellaire) sous la couche $\tau = \frac{2}{3}$.

On peut encore poser le problème différentiellement et se demander de quelle profondeur optique τ_a les atomes H doivent partir avec une vitesse nulle pour atteindre $V = 2.2 \cdot 10^6$ cm.sec$^{-1}$, non pas à la base de la couche renversante ($\tau = \frac{2}{3}$), mais dans une région moyenne de celle-ci, par exemple en $\tau = \frac{1}{3}$.

On trouve alors

$$\tau_a \sim 2.7,$$

ce qui correspond à une profondeur 0.003 R ($\sim 200 000$ km.) sous la couche $\tau = \frac{2}{3}$.

Ces valeurs de τ_a sont beaucoup plus plausibles. Si, comme il paraît bien probable, la pression électronique est de l’ordre de 104 c.g.s. en $\tau = \frac{2}{3}$, on peut admettre sans trop de difficulté que, au cours de l’évolution de P Cygni, on soit arrivé à un stade tel que, sous l’action de f_{rad}, les atomes situés aux environs de 0.006 R, sous la couche photosphérique $\tau = \frac{2}{3}$, puissent avoir commencé à être expulsés. Dans ces conditions, il est difficile d’échapper à la conclusion que la pression de radiation ait réellement joué un rôle très important dans l’acquisition des vitesses.

6. EXAMEN DU GRADIENT $\frac{dp_e}{dh}$ POUR LES ÉTOILES B{	extsc{n}}e ET B

Tout comme dans le cas précédent, nous utilisons les formulles des photosphères modèles de Chandrasekhar. L’application aux étoiles B est naturellement justifiée; pour des raisons analogues à celles indiquées précédemment, nous l’appliquerons aussi au cas des étoiles B{	extsc{n}}e.

Nous prenons donc une étoile B et une B{	extsc{n}}e modèles, se rapprochant des types considérés par Gerasimović, ayant toutes deux la température 15.000° et les gravités effectives respectives 10^4 et $5 \cdot 10^5$.

Pour calculer à quelles profondeurs optiques τ_a nous devons pénétrer dans les deux atmosphères stellaires pour que l’accélération de radiation atteigne g, nous devons établir pour les deux étoiles une formule analogue à (7’) et nos résultats dépendront essentiellement des valeurs adoptées pour la pression électronique. Si on admettait des valeurs de l’ordre de celles de Gerasimović (par exemple respectivement 10 et 5 c.g.s. en $\tau = \frac{2}{3}$, on trouverait environ $\tau_a = 375$; mais comme dans le cas de P Cygni il nous paraît probable que ces valeurs de p_e soient nettement trop faibles.

Il nous faut surtout examiner ce que valent les gradients de pression $\frac{dp_e}{dh}$ à une profondeur optique quelconque τ. L’expression de $\frac{dp_e}{dh}$ en fonction de τ peut s’obtenir en partant des photosphères modèles; un calcul assez laborieux conduit à

$$\frac{dp_e}{dh} = \frac{2}{1 + \frac{2}{\tau}} \cdot \beta \cdot 2^{-\frac{2}{3} \tau} \cdot \frac{g}{R_1 \mu} \cdot \frac{T}{T_1} \left(\left(1 + \frac{3}{2} \tau \right)^{\frac{3}{2}} + \left(1 + \frac{3}{2} \tau \right)^{-\frac{3}{2}} \right)$$

avec les notations suivantes :

\bar{x} = degré moyen d’ionisation ;
R = constante des gaz ;
$\mu = \alpha m_H$ (identique pour les deux étoiles) ;

$$\beta = \sqrt{\frac{16}{19}} \varDelta ;$$

avec (1)

$$\varDelta = 1007 \cdot \left(\frac{M}{M_\odot} \right) \cdot \left(\frac{L}{L_\odot} \right) \cdot \left(\frac{T}{5740} \right)^{\frac{3}{2}} \cdot \frac{\bar{x}}{\bar{x}} \cdot \frac{1 + \bar{x}}{\bar{x}^2}.$$

(1) M et L désignent la masse et la luminosité absolue.
A la profondeur optique τ_1 identique pour les deux étoiles, nous aurons donc

$$
\left(\frac{dp_e}{dh}\right)_{\text{Bne}} = \left(\frac{\bar{p} \cdot g}_{\text{Bne}}\right) = \left(\frac{\mathcal{A}^{1/2} \cdot g}_{\text{Bne}}\right),
$$

$$
\left(\frac{dp_e}{dh}\right)_{\text{n}} = \left(\frac{\bar{p} \cdot g}_{\text{n}}\right) = \left(\frac{\mathcal{A}^{1/2} \cdot g}_{\text{n}}\right).
$$

On a choisi $\left(\frac{g}_{\text{Bne}}\right) = \frac{1}{2}$. Il reste à déterminer $\left(\frac{\mathcal{A}^{1/2}}{\mathcal{A}^{1/2}}\right)_{\text{Bne}}$.

En désignant les caractéristiques de Bne et B respectivement par ' et '' on trouve

$$
\frac{\mathcal{A}'}{\mathcal{A}''} = \frac{M'}{M''} \cdot \frac{L'}{L''} = \frac{43.5}{8} \cdot \frac{1}{2.5} = \frac{13.5}{20} = 0.67,
$$

$$
\left(\frac{\mathcal{A}'^{1/2}}{\mathcal{A}''^{1/2}}\right) = 0.8.
$$

Donc

$$
\left(\frac{dp_e}{dh}\right)_{\text{Bne}} = 0.4.
$$

Le gradient de pression électronique est donc nettement plus faible dans le cas de l'étoile Bne choisie que dans le cas de l'étoile B. Remarquons de suite que le facteur le plus important est la gravité effective; celle-ci peut d'ailleurs être réduite de façon notable par la rotation axiale au sein des étoiles Bne.

Institut d'Astrophysique de l'Université de Liège.
Juillet 1937.