

Expressing Female Fertility in the Walloon Region of Belgium: How to do?

Sylvie Vanderick ¹, Catherine Bastin ¹ and Nicolas Gengler ^{1,2}

- ¹ Animal Science Unit, Gembloux Agricultural University, Gembloux, Belgium
- ² National Fund for Scientific Research, Brussels, Belgium

Female Fertility: INTERBULL

- Great variety in evaluated traits

 (e.g. conception rate, Days Open, non return rate, calving rate ...)
- Some countries evaluate several traits

INTERBULL regrouped traits

→ 5 groups, so 5 evaluations!

Female fertility evaluation in the Walloon Region

- Since September 2007, national evaluation of Pregnancy Rate (PR)
- With an animal model adapted for repeated records (BLUP)
- Participation in 3 of the 5 groups defined by INTERBULL
 - →Groups 2, 4 and 5

Female fertility evaluation in the Walloon Region

 Back from INTERBULL: 1-3 international proofs on the Walloon scale for a bull

	T2	T4
T4	.90	
T5	.95	.97

→ High correlations between proofs!

Female fertility evaluation in the Walloon Region

 Back from INTERBULL: 1-3 international proofs on the Walloon scale for a bull

How could we use these proofs to express female fertility for a bull in one value?

Principal Component Analysis: data

- Six female fertility indexes published for bulls from:
 - Canada (CAN)
 - Germany (DEU)
 - France (FRA)
 - Italy (ITA)
 - The Netherlands (NLD)
 - USA

Principal Component Analysis: data

- Six female fertility indexes published for bulls from:
 - Canada (CAN)
 - Germany (DEU)
 - France (FRA) □ ⇒ excluded for PCA!
 - Italy (ITA)
 - The Netherlands (NLD)
 - USA

→ 812 common bulls

Principal Component Analysis: results

Eigenvalues and eigenvectors

	Prin1	Prin2	Prin3	Prin4	Prin5
eigenval	4.039	.365	.291	.186	.118
CAN	.442	585	.048	.658	.162
DEU	.470	205	.061	305	801
ITA	.430	.613	580	.315	068
NLD	.460	215	282	612	.537
USA	.433	.441	.761	004	.200

Principal Component Analysis: results

Eigenvalues and eigenvectors

	Prin1	Prin2	Prin3	Prin4	Prin5
eigenval	4.039	.365	.291	.186	.118
CAN	.442	585	.048	.658	.162
DEU	.470	205	.061	305	801
ITA	.430	.613	580	.315	068
NLD	.460	215	282	612	.537
USA	.433	.441	.761	004	.200

→ Good compromise on female fertility expression

Principal Component Analysis: results

Correlation of Prin1 with the 6 indexes

	CAN	DEU	FRA	HA	NLD	USA
Prin1	.89	.94	.86	.86	.93	.87

Coefficients to combine proofs into DFF

	Dullo	R ²	Regre	ssion co	oeff.
	Bulls	Κ-	T2	T4	T5
T2	791	.525	.399		
T4	811	.684		.454	
T5	790	.682			.445
T2 & T4	790	.703	- .283	.714	
T2 & T5	790	.683	407		.825
T4 & T5	790	.729		.133	.315
T2 & T4 & T5	790	.730	407	.138	.691

Coefficients to combine proofs into DFF

	Bulls R ²		Regression coeff.		
	Bulls	Κ-	T2	T4	T5
T2	791	.525	.399		
T4	811	.684		.454	
T5	790	.682			.445
T2 & T4	790	.703	- .283	.714	
T2 & T5	790	.683	407		.825
T4 & T5	790	.729		.133	.315
T2 & T4 & T5	790	.730	407	.138	.691

Coefficients to combine proofs into DFF

	Dullo	D2	Regression		
	Bulls	Κ-	T2	T4	T5
T2	791	.525	.399		
T4	811	.684		.454	
T5	790	.682			.445
T2 & T4	790	.703	283	.714	
T2 & T5	790	.683	407		.825
T4 & T5	790	.729		.133	.315
T2 & T4 & T5	790	.730	407	.138	.691

Correlation with proofs

	T2	T4	T5
T4	.90		
T5	.95	.97	
DFF	.83	.97	.96

 Correlation with other evaluated traits in the Walloon Region

Direct female fertility (DFF) Correlations between EBVs

	DFF
Milk	53
Fat	41
Protein	50
%Fat	.19
%Protein	.17
SCS	15
Longevity	.13
BCS	.40

	DFF		DFF
Stature	31	Udder texture	43
Chest width I	.10	Fore udder ^I	17
Body depth ^I	24	Front teat placement I	24
Chest depth	26	Teat length I	01
Loin strength	04	Rear udder height ^I	33
Rump length	24	Rear udder width	36
Rump angle ^I	.09	Rear teat placement I	33
Hips width	16	Angularity ^I	49
Rump width I	10	Overall development	21
Foot angle I	09	Overall rump	21
Rear leg set ^I	08	Overall feet and legs	16
Bone quality	28	Overall udder score I	23
Rear leg rear view ^I	01	Overall fore udder	18
Udder balance	23	Overall rear udder	25
Udder depth ¹	05	Dairy character	41
Teat placement side	15	Final conformation ^I	33
Udder support I	26		

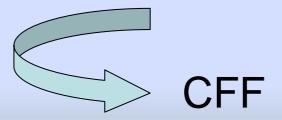
INTERBULL type trait

Indirect female fertility index (IFF)

- Why?
 - Improvement of accuracy of young bulls
 - Available information for bulls without DFF

- How?
 - Multiple regressions of Prin1 on evaluated traits in the Walloon Region
 - → 10 traits to estimate IFF

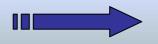
Indirect female fertility index (IFF)


- ✓ Milk yield
- ✓ Fat%
- ✓ Protein
- ✓ SCS
- ✓ Stature
- ✓ Body depth
- ✓ Overall udder score
- Overall feet and legs score
- Final conformation
- ✓ BCS Angularity

IFF_{BCS} or IFF_{ANG}

Combined female fertility index (CFF)

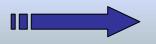
 Direct female fertility (DFF) + indirect female fertility (IFF)


 Theory of selection index to combine DFF with IFF_{BCS} or IFF_{ANG}

Combined female fertility index (CFF)

Correlations for publishable bulls

	T2	T4	T5	DFF	IFF _{BCS}	IFF _{ANG}
T4	.90					
T5	.95	.97				
DFF	.83	.97	.96			
IFF _{BCS}	.42	.48	.50	.51		
IFF _{ANG}	.51	.57	.58	.59	.99	
CFF	.80	.92	.93	.96	.76	.82



IFF_{BCS} and IFF_{ANG} are similar!

Combined female fertility index (CFF)

Correlations for publishable bulls

	T2	T4	T5	DFF	IFF _{BCS}	IFF _{ANG}
T4	.90					
T5	.95	.97				
DFF	.83	.97	.96		_	
IFF _{BCS}	.42	.48	.50	.51		
IFF _{ANG}	.51	.57	.58	.59	.99	
CFF	.80	.92	.93	.96	.76	.82

slightly higher for IFF_{ANG}!

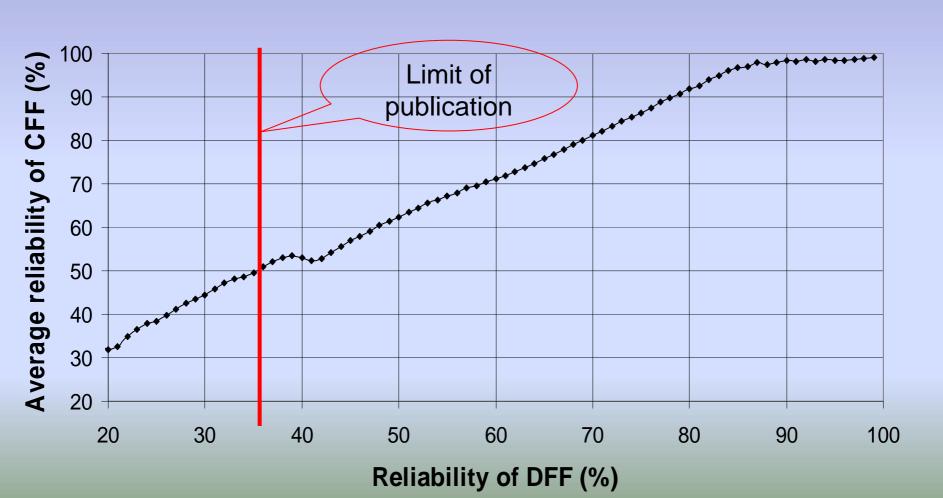
Combined female fertility index (CFF)

Correlations with Prin1

	T2	T4	T5	DFF	IFF _{BCS}	IFF _{ANG}	CFF
Prin1	.72	.82	.82	.85	.55	.55	.86

No loss of information!

Combined female fertility index (CFF)


Correlations with Prin1

	T2	T4	T5	DFF	IFF _{BCS}	IFF _{ANG}	CFF
Prin1	.72	.82	.82	.85	.55	.55	.86

	CAN	DEU	FRA	ITA	NLD	USA
Prin1	.89	.94	.86	.86	.93	.87

Combined female fertility index (CFF)

Reliabilities of DFF vs. Reliabilities of CFF

Conclusions

- Post-treatment of the international female fertility proofs → CFF
 - Good expression of female fertility in Walloon Region
 - Provides a better accuracy to young bulls
 - Useful first indication of female fertility potentiality
 - New tool of management for Walloon breeders

Conclusions

- Next steps:
 - Integration of CFF in our economic index system
 - Improvement of our global economic index (V€G)
 - Improvement of BCS genetic evaluation → better estimation of BCS

Corresponding author's email: vanderick.s@fsagx.ac.be

Thank you for your attention!

Acknowledgements

