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We study numerically multifractal properties of two models of one-dimensional quantum maps: a map with
pseudointegrable dynamics and intermediate spectral statistics and a map with an Anderson-like transition
recently implemented with cold atoms. Using extensive numerical simulations, we compute the multifractal
exponents of quantum wave functions and study their properties, with the help of two different numerical
methods used for classical multifractal systems �box-counting and wavelet methods�. We compare the results
of the two methods over a wide range of values. We show that the wave functions of the Anderson map display
a multifractal behavior similar to eigenfunctions of the three-dimensional Anderson transition but of a weaker
type. Wave functions of the intermediate map share some common properties with eigenfunctions at the
Anderson transition �two sets of multifractal exponents, with similar asymptotic behavior�, but other properties
are markedly different �large linear regime for multifractal exponents even for strong multifractality, different
distributions of moments of wave functions, and absence of symmetry of the exponents�. Our results thus
indicate that the intermediate map presents original properties, different from certain characteristics of the
Anderson transition derived from the nonlinear sigma model. We also discuss the importance of finite-size
effects.
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I. INTRODUCTION

Multifractal behavior has been observed in a wide variety
of physical systems, from turbulence �1� to the stock market
�2� and cloud images �3�. It has been recognized recently that
such a behavior can also be visible in quantum wave func-
tions of certain systems. In particular, wave functions in the
Anderson model of electrons in a disordered potential are
multifractal at the metal-insulator transition �see, e.g., �4–6��.
Similar behaviors were seen in quantum Hall transitions �7�
and in random matrix models such as the power-law random
banded matrix �PRBM� model �8,9� and ultrametric random
matrices �10�. Such properties have also been seen in diffrac-
tive systems �11� and pseudointegrable models, for which
there are constants of motion, but where the dynamics takes
place in surfaces more complicated than the invariant tori of
integrable systems �12�. In all these models, this behavior of
wave functions came with a specific type of spectral statis-
tics, intermediate between the Wigner distribution typical of
chaotic systems and the Poisson distribution characteristic of
integrable systems �12,13�. Recently, a new model of one-
dimensional quantum “intermediate map” which displays
multifractal behavior was proposed �14�, and a version with
random phases was shown semirigorously to display inter-
mediate statistics �15�. This model is especially simple to
handle numerically and analytically, and it displays different
regimes of multifractality depending on a parameter �16�. In
parallel, new experiments allowed one recently to observe
the Anderson transition with cold atoms in an optical poten-
tial �17,18� using a one-dimensional “Anderson map” pro-
posed in �19�.

Although much progress has been made in the study of
these peculiar types of systems, several important questions
related to multifractality remain unanswered. In particular,
many results were derived or conjectured in the framework
of the Anderson model, and their applicability to other fami-
lies of systems is not known. Also, the precise link between
the multifractal properties of wave functions and the spectral
statistics is not elucidated.

In order to shed some light on these questions, we sys-
tematically investigate several properties of the wave func-
tions of the intermediate quantum map of �14,15� and com-
pare them to results obtained for the Anderson map. In these
one-dimensional systems, wave functions of very large vec-
tor sizes can be obtained and averaged over many realiza-
tions. This enables us to control the errors and evaluate the
reliability of standard methods used in multifractal analysis.
This also allows us to check and discuss several important
conjectures put forth in the context of Anderson transitions.
Our results also enable us to study the road to asymptotic
behavior in such models, giving hints on which quantities are
more prone to finite-size effects or can be visible only with a
very large number of random realizations.

The paper is organized as follows. In Sec. II, we review
the known facts and conjectures about quantum multifractal
systems, which were mainly put forth in the context of the
Anderson transition. In Sec. III, we present the models that
will be studied throughout the paper. Section IV discusses
the numerical methods used in order to extract multifractal
properties of the models. Section V presents the results of
numerical simulations, allowing us first to compare the dif-
ferent numerical methods of Sec. IV and then to test the
conjectures and results developed in the context of the
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Anderson transition to the two families of models at hand.

II. EARLIER RESULTS AND CONJECTURES

We first recall some basic facts about multifractal analy-
sis. Localization properties of wave functions of components
�i, with i=1, . . . ,N, in a Hilbert space of dimension N, can
be analyzed by means of their moments,

Pq = �
i=1

N

��i�2q. �1�

The asymptotic behavior of moments �1� for large N is gov-
erned by a set of multifractal exponents �q defined by
Pq�N−�q or by the associated set of multifractal dimensions
Dq=�q / �q−1�. Equivalently, the singularity spectrum f���
characterizes the fractal dimensions of the set of points i
where the weights ��i�2 scale as N−�. It is related to the mul-
tifractal exponents �q by a Legendre transform,

f��� = min
q

�q� − �q� . �2�

Compared to classical multifractal analysis, the quantum
wave functions in Hilbert space of increasing dimensions are
considered as the same distribution at smaller and smaller
scales. This allows us to define properly the multifractality of
quantum wave functions, although at a given dimension they
correspond to a finite vector.

In many physical instances, only a single realization of
the wave function is considered. However, as soon as several
realizations are considered, as is the case in the presence of
disorder, moments �1� are distributed according to a certain
probability distribution, and multifractal exponents depend
on the way ensemble averages are performed, and in particu-
lar on the treatment of the tail of the moment distribution. If
the tail decreases exponentially or even algebraically with a
large exponent, different averages should give the same an-
swer. On the other hand, if the moments decrease according
to a power law with a small exponent, the average �Pq� will
be dominated by rare wave functions with much larger mo-
ments �whose magnitude directly depends on the number of
eigenvectors considered�, while the quantity Pq

typ

=exp�ln Pq� will correspond to the typical value of the mo-
ment for the bulk of the wave functions considered. To each
of these possible averaging procedures corresponds a set of
multifractal exponents, defined by

�Pq� � N−�q, �q = Dq�q − 1� , �3�

Pq
typ � N−�q

typ
, �q

typ = Dq
typ�q − 1� . �4�

As soon as averages over several realizations are made there
can be a discrepancy between �q and �q

typ. Historically this
effect was seen in the context of the Anderson transition
�6,20� and was very recently confirmed by the analytical cal-
culations of �21,22� in the same model. More specifically, it
was shown that the distribution of the normalized moments
yq= Pq / Pq

typ is asymptotically independent of N and has a
power-law tail,

P�yq� 	
1

yq
1+xq

, �5�

for large yq �20,23�. The multifractal exponents �q and �q
typ

only coincide over an interval �q− ,q+�, where xq�1. In the
case of heavy tails xq�1, the averages �Pq� and exp�ln Pq�
yield different exponents.

This phenomenon has a counterpart in the singularity
spectra f��� and f typ��� �6,24�. While f typ��� cannot take
values below zero and terminates at points �	 such that
f typ��	�=0, the singularity spectrum f��� continues below
zero. The two spectra coincide over the interval ��+ ,�−�. It
can be shown that outside the interval �q− ,q+� the set of
exponents �q

typ is given by the linear relation �q
typ=q�+ for

q�q+ and �q
typ=q�− for q�q− �6�.

In �20�, it was stated that the exponents �q and �q
typ can be

related through the following relation which depends on the
tail exponent of the moment distribution xq:

xq�q
typ = �qxq

. �6�

Equation �6� was analytically proven for PRBM �8� for inte-
ger values of xq and also in the limit of large bands for
q�1 /2. It remains unclear to what extent Eq. �6� is valid for
other types of systems. A consequence of identity �6� for
q�q+ is that xq=q+ /q. In the regime of weak multifractality
where Dq is a linear function, identity �6� implies that
xq= �q+ /q�2 for q−�q�q+ �6,8��see Sec. V E for details�.

Finally, a further relation that we wish to investigate in the
present paper has been predicted based on the nonlinear
sigma model and observed in the three-dimensional �3D�
Anderson model at criticality and several other systems. It is
a symmetry relation of multifractal exponents �25�, which
can be expressed as


q = 
1−q, �7�

with 
q=�q−q+1. For the singularity spectrum it gives
f�2−��= f���+1−�. The validity of these different relations
will be investigated on two particularly simple models of
quantum maps that we describe in the next section.

III. MODELS

A. Intermediate map

The properties of Sec. II have been first observed for
wave functions in the 3D Anderson model at criticality. In
the present paper the first model we will consider is a quan-
tum map whose eigenfunctions display similar multifractal
properties in momentum representation. It corresponds to a
quantization of a classical map, defined on the torus by

p̄ = p + ��mod 1�, q̄ = q + 2p̄�mod 1� , �8�

where p is the momentum variable and q is the angle vari-
able, while p̄ and q̄ are the same quantities after one iteration
of the map. The corresponding quantum evolution can be
expressed as
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�̄ = Û� = e−2i�p̂2/Ne2i��q̂� , �9�

in operator notation, or equivalently as an N
N matrix in
momentum representation:

Ukk� =
exp�− 2i�k2/N�

N

1 − exp�2i�N��
1 − exp�2i��k − k� + N��/N�

,

�10�

with 0�k ,k��N−1 �14�. For generic irrational �, the spec-

tral statistics of Û are expected to follow random matrix
theory. When � is a rational number, �=a /b with a ,b inte-
gers, spectral statistics are of intermediate type and eigenvec-
tors of the map display multifractal properties. In order to
study the effect of ensemble averaging on multifractal expo-
nents, we will consider a random version introduced in �15�,
where the phases 2�k2 /N are replaced with independent ran-
dom phases �k. We will also present numerical results ob-
tained for the initial map given by Eq. �10�.

B. Anderson map

An important system where multifractal wave functions
have been observed corresponds to electrons in a disordered
potential in three dimensions. Indeed, the Anderson model
�6� which describes such a situation displays a transition be-
tween a localized phase �exponentially localized wave func-
tions� and a diffusive phase �ergodic wave functions� for a
critical strength of disorder. At the transition point, the wave
functions display multifractal properties �6� and the spectral
statistics are of the intermediate type �26�. In order to com-
pare this type of system with the previous one, we have
studied a one-dimensional system with incommensurate fre-
quencies, which has been shown to display an Anderson-like
transition �19�. In �17� it was shown that it can be imple-
mented with cold atoms in an optical lattice, which enables
one to probe experimentally the Anderson transition. The
system is a generalization of the quantum kicked rotator
model and is described by a unitary operator which evolves
the system over one time interval:

�̄ = Û� = e−iV��̂,t�e−iH0�n̂�� , �11�

with V��̂ , t�=k�1+� cos �1t cos �2t�cos �̂ �here, time t cor-
responds to number of kicks�. Here, �1 and �2 should be two
frequencies mutually incommensurate. Following �17� we
chose in the simulations �=0.75, �1=2��−1, and
�2=2��−2, where �=1.3247. . . is the real root of the cubic
equation x3−x−1=0. In �19� it was shown that this system
displays an Anderson-like transition at the critical value
kc
1.81, but multifractality of this system was up to now
not verified. The function H0�n� can be chosen either by
taking H0�n�=n2 /2 �free evolution� or as in the preceding
case by replacing this quantity with independent random
phases uniformly distributed in the interval �0,2��. This is
actually what we chose to do in our numerical simulations in
order to increase the stability and accuracy of the numerical
results.

As a wave packet spreads slowly at the transition, one has
to iterate the map for a long time in order to obtain data on a

sufficiently broad wave function. We found that in order to
reach vector sizes of order 211, it was necessary to iterate the
map up to t=108. Such values are not realistic for experi-
ments with cold atoms �limited to a few hundred kicks� but
allow us to obtain more precise results.

C. Variations on the models

In both models the evolution of the system during one
time step has the form of an operator diagonal in momentum
�kinetic term� times an operator diagonal in position �kick
term�. In both cases, it has been a common practice in the
field to replace the kinetic term with random phases. This
allows one to obtain a similar dynamics but with a more
generic behavior. Moreover, it enables averages over random
phases to be performed, which makes numerical and analyti-
cal studies more precise. In contrast, in experiments with
cold atoms it is easier to perform iterations with a true ki-
netic term rather than with random phases. In order to assess
the effect of this modification, we will therefore use both
approaches in the study of multifractal properties of wave
functions.

Many works on multifractal wave functions have focused
on eigenstates of the Hamiltonian �see, e.g., �6��. For the
intermediate map, the evolution operator has eigenvectors
which can be numerically found and explored. It is also pos-
sible to evolve wave packets, for example, those initially
concentrated on one momentum state, and to study the mul-
tifractality of the wave packet as time increases. This corre-
sponds more closely to what can be explored in experiments.
For the intermediate map, this process can be understood as
the dynamics of a superposition of eigenvectors of the evo-
lution operator. However, in the case of the Anderson map,
the evolution operator is time dependent �as the continuous
time problem is not periodic�, and the connection with eigen-
vectors is lacking. In the following, we will explore and
compare the multifractality of both eigenfunctions and time-
evolved wave packets for the intermediate map.

IV. NUMERICAL METHODS

As is well known, the numerical estimation of multifractal
dimensions is very sensitive to finite-size effects. In the
present work we have analyzed and compared different nu-
merical methods in order to compute accurately the multi-
fractal exponents. In this section we briefly review the meth-
ods we used.

A. Box-counting method

The most straightforward method is to compute directly
the moments of the wave functions through the scaling of
moments �1� given by Pq=�i��i�2q. If scaling �3� holds true,
then log�Pq� is a linear function of log N, and its slopes yield
the exponents �q. For q�0, coarse graining over neighboring
sites is necessary in order to avoid instabilities due to very
small values of ��i�.

A variation of the moment method is the box-counting
method. It consists of taking a vector of fixed size N and
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summing ��i�2 over boxes of increasing length. If N=2n, then
we define

Pq,k = �
i=0

2n−k−1 ��
j=0

2k−1

��i2k+j�2�q

, �12�

which corresponds to averaging the measure over boxes of
length 2k, with 0�k�n. Starting from k=2 allows us to
smooth out exceedingly tiny values of ��i�2 which otherwise
yield inaccurate estimates of Dq for negative q. The two
methods above give similar results, as was also carefully
checked for the Anderson model in �27�. We will therefore in
the following present results using the box-counting method
to assess the properties of this type of procedures.

B. Wavelet transform method

Recently, alternative procedures to compute the multifrac-
tal spectrum based on the wavelet transform �WT� were de-
veloped �28�. The wavelets form a basis of functions as does
the Fourier basis, and a function expressed in this new basis
gives the WT. Unlike the Fourier basis wavelets are localized
both in position and in momentum spaces �or time and fre-
quency spaces�. They are therefore suitable to probe the local
variations of a function at different scales. They have be-
come essential tools for image and sound processing and
compression.

A wavelet basis is constructed from a single function g
called analyzing or mother wavelet. The rest of the basis is
constructed by translations and compressions �expansions� of
the analyzing wavelet g. The translations define a space vari-
able, while the compressions define the scale at which the
function is analyzed. We define the WT of a �real� function h
as

Th�A,B� =
1

A

 dxh�x�g� x − B

A
� , �13�

where A is the scale variable and B is the space variable. As
a consequence, Th�A ,B� can be interpreted as a measure of
how close the function h is to the mother wavelet at point B
and at scale A.

�q can be extracted from the WT in the following way. We
define the partition function

Z�q,A� = �
Bi

�Th�A,Bi��q, �14�

where �A ,Bi�i are the local maxima at scale size A and q is
real. It can be shown that �q appears as the exponent in the
power-law behavior of Z�q ,A�,

Z�q,A� 	
A→0+

A�q. �15�

This is essentially the method known as wavelet transform
modulus maxima �28�. This method is developed for con-
tinuous wavelet functions.

If the function h is sampled as an N-dimensional vector
with N=2n the wavelet transform can be discretized and
implemented efficiently by a hierarchical algorithm �29� re-
sulting in a fast wavelet transform �FWT�. The scale and
space parameters take the values

A = 1,
1

2
,
1

4
, . . . ,

1

2n−1 , �16�

BA � �1,2, . . . ,
1

A
� , �17�

respectively. Starting from a wave function � and using a
proper normalization at each scale, we redefine the partition
function as

Z�q,A� = �
Bi � �T���2�A,Bi��

�
Bi

�T���2�A,Bi���q

, �18�

where again �A ,Bi�i are the local maxima at scale A. As in
the continuous case Z�q ,A� exhibits the same power-law be-
havior as Eq. �15�. In the following, we will present results
using this implementation of the wavelet method, using the
Daubechies 4 mother wavelet �30�.

We note that, although the partition function �18� is the
most standard, recently it was numerically observed �31� that
for a complex multifractal wave function �, the exponents �q
can also be obtained from the power-law behavior of a modi-
fied partition function defined from the complex FWT of �
and using 2q as the exponent in Eq. �18�.

V. RESULTS

A. Numerical computation of the multifractal exponents

In this section, we present numerical results correspond-
ing to the multifractal exponents for the intermediate quan-
tum map model �10� and the Anderson map �11�. Examples
of wave functions for both models are shown in Fig. 1. The
two sets of multifractal dimensions Dq and Dq

typ were com-
puted from log2�Pq,k� and �log2 Pq,k�, respectively, for the
box-counting method, and from log2�Z�q ,A�� and

2048153610245120

0.0075

0.005

0.0025

0

i

|ψ
i|2

1638412288819240960
0.01

0.0075

0.005

0.0025

0

i

|ψ
i|2

FIG. 1. �Color online� Top panel: instance of an eigenvector of
the intermediate map with random phases for N=214 and �=1 /3.
Bottom panel: instance of an iterate of the Anderson map with
random phases for k=1.81, N=211, and t=108; ���0��= �i�, with i
=1024.
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�log2 Z�q ,A��, respectively, for the wavelet method. For the
Anderson map, as less realizations of the random phases
could be computed, the same set of random realizations was
used for the two methods investigated in order to ensure that
comparable quantities were plotted. Figure 2 illustrates the
scaling of these quantities for the two models considered. It
displays log2�Pq,k� as a function of the logarithm of the box
size �top� and log2�Z�q ,A�� as a function of the logarithm of
the scale parameter log2 A �bottom� for different values of q.
We chose to show the scaling of these moments since it is the
worst case, with the curves for �log2 Pq,k� and �log2 Z�q ,A��
being always closer to linear functions. Nevertheless, Fig. 2
shows that the scaling is indeed linear over several orders of
magnitude. The slopes of the linear fits give the multifractal
exponents. In the two methods, there is a certain freedom in
determining the range of box sizes �or scales for the wavelet
method� over which the linear fit is made �the one we chose
is indicated by the shaded area in Fig. 2�. Usually for mod-
erate values of q in absolute value, the result does not depend
very much on this choice. As can be seen in Fig. 2, the data
are well fitted by a linear function in the range chosen; how-
ever, there is still an uncertainty on the slope, which usually
gets larger for large negative q. In the next figures of this
section, the uncertainty of the linear fit for the set of points
chosen is plotted together with the mean value in order to
give an estimate of the reliability of the values obtained.

The values of Dq and Dq
typ as functions of q are presented

in Fig. 3 for the random intermediate map and in Fig. 4 for
the Anderson map. In both cases, we observe a spectrum
typical of multifractal wave functions. In the intermediate

case, we observe that the two methods give comparable re-
sults with small uncertainty, although it gets larger for large
negative q. For the Anderson map, the uncertainty gets very
large for q�−2, and besides it begins to depend strongly on
the range of box sizes �box-counting method� or scales
�wavelet method� chosen �data not shown�. We attribute the
larger uncertainty for the wavelet method to the seemingly
stronger sensitivity of this method to exceptionally small val-
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FIG. 2. �Color online� Top panels: average moments log2�Pq,k�
as a function of k, the logarithm of the box sizes. Bottom panels:
partition function log2�Z�q ,A�� as a function of the logarithm of the
scale A. The left panels correspond to eigenvectors of the interme-
diate map with random phases, N=214, and �=1 /3. Here, the aver-
age is taken over 98 304 vectors �respectively, 32 768 vectors for
the partition function�. The right panels correspond to iterates of the
Anderson map for k=1.81, N=211, ���0��= �i�, with i=1024, and
t=108, where the average is taken over 1302 vectors. The values
chosen for q are q=−2 �red diamonds�, q=2 �blue circles�, and
q=6 �green squares�. The gray shaded regions show the fitting
interval.
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FIG. 3. �Color online� Top panel: multifractal exponents Dq for
eigenvectors of the intermediate map with random phases, N=214,
and �=1 /3. Empty �filled� red circles correspond to the method of
moments �wavelets�. The �light blue and light red� shaded regions
indicate standard error in the least-squares fitting. The multifractal
analysis was done over 98 304 vectors with box sizes ranging from
16 to 1024 and scales ranging from 2−12 to 2−5. Bottom panel: typi-
cal multifractal exponents Dq

typ for the same data. In both panels, the
gray solid line is the linear approximation 1−q /3.
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FIG. 4. �Color online� Multifractal exponents Dq and Dq
typ for

iterates of the Anderson map with k=1.81 and N=211. Same con-
vention as in Fig. 3. The multifractal analysis was done over 1302
realizations of size N=211 with box sizes ranging from 4 to 512 and
scales ranging from 2−9 to 2−4.
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ues. We note that for the Anderson map only a vector size of
211 could be reached numerically because of the computa-
tional power required to iterate the Anderson map for long
times. The discrepancy between the two methods is smaller
for Dq

typ, which can be understood by the fact that �Pq,k� or
�Z�q ,A�� are more sensitive to rare events than �log2 Pq,k�
and �log2 Z�q ,A��.

Our data nevertheless show that the iterates of the Ander-
son map display multifractal behavior. In view of the recent
implementation of such maps with cold atoms �17�, this in-
dicates that in principle one can observe multifractality of
this map in cold atom experiments; we note that in �18�
properties of the wave functions of this experimental system
were investigated, but focused on the envelope of the wave
packet.

In both the intermediate map and the Anderson map, Dq
typ

goes to a constant �+ for large q, which corresponds to the
fact already mentioned that �q

typ is expected to behave as
�q

typ=q�+ for q�q+. This will be studied in more detail in the
next section.

In �16� we observed the existence of a linear regime
around q=0, with slope −1 /b for the random intermediate
map with parameter �=1 /b. This regime seemed to be valid
in a quite large interval around zero. The data displayed in
Fig. 3 obtained by two different large-scale computations
confirm this result and show that this regime exists for both
types of averages. We will go back to this property in Sec.
V B.

The data presented in Fig. 4 show that the Anderson vec-
tors are less fractal than the eigenvectors of the intermediate
map for b=3. This can be expected from the fact that Ander-
son vectors correspond to iterates of a quantum map, which
in general are less fractal than eigenvectors �32�. Indeed, the
value of D2 for eigenvectors of the three-dimensional Ander-
son model is D2
1.7 �33�, close to half of the value D0=3,
whereas our results show that iterates of the Anderson map
correspond to D2
0.9 close to the value D0=1. In order to
compare similar quantities, we display in Fig. 5 multifractal
dimensions for vectors obtained by iteration of the interme-
diate map for b=3. One sees that using iterates instead of
eigenvectors also in this case reduces the overall multifrac-
tality at a given q, with D2
0.42 for eigenvectors and
D2
0.75 for iterates. We note that in �34� a relation was
suggested between the return probability of iterated wave
packets and the value of D2 for eigenvectors. Although a
general mapping between multifractal exponents of eigen-
vectors and iterates is still lacking, we think our results indi-
cate that it might be possible to use experimental results
from cold atom experiments to infer properties of the eigen-
vectors of the 3D Anderson transition.

In order to assess the effect of random phases, we present
in Fig. 6 the results of numerical computation of Dq and Dq

typ

for the intermediate map �10� without random phases. Al-
though spectral statistics for random and nonrandom vectors
are very close �15�, the obtained fractal dimensions are quite
different. Moreover it can be seen that there still exists a
difference between Dq and Dq

typ, although the map is not
random any more. The discrepancy in the two sets of expo-
nents was to our knowledge up to date observed only in
disordered systems, where rare events are created by specific
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realizations of disorder. It is interesting to see that this effect
can be observed in a dynamical system without any disorder
whatsoever. This discrepancy is due to the fact that the av-
erage in Eqs. �3� and �4� is performed over several eigenvec-
tors of a single realization of the map, which gives a certain
dispersion of the moment distribution. The average over
eigenvectors in the intermediate map thus suffices to create
the effect even in a deterministic map. Therefore, one can
also observe the separation between the two sets of expo-
nents in quantum systems without disorder. The rare events
in this case correspond to rare eigenvectors of the evolution
operator having large moments.

The numerical results displayed in this section indicate
that multifractality is indeed present in all models consid-
ered. Furthermore, our results show that for an appropriate
choice of a range of box sizes �box-counting method� or
scales �wavelet method�, both methods are based on curves
well fitted by linear function over a wide interval, with a
small uncertainty on the exponent extracted. We believe that
the good agreement for q�−2 between the two methods, and
the small uncertainty found for the linear fit, indicates that
our numerically extracted multifractal exponents are reliable
�up to finite-size effects�. For q�−2, the numerical uncer-
tainty increases for decreasing q, and the two methods give
increasingly different results. The results presented here
show that our data are still reliable, although less precise, for
eigenvectors of the intermediate map, even for negative q.
However, in the case of the Anderson map, the uncertainty is
too large to give reliable results for q�−2. This is certainly
due to the fact that both the number of realizations and the
vector sizes are smaller in this case, which makes it difficult
to find reliable results in the more demanding regime of large
negative q. In the regime of q�−2, our results indicate that
the two methods can be used and give similar results. In the
more demanding cases �large negative q� we found the box-
counting method more reliable and accurate, and therefore
the numerical results presented in the following sections cor-
respond to this method.

B. Linear regime

In �16� the first investigations of the multifractal expo-
nents for the random intermediate map showed the presence
of a linear regime around q=0 over a relatively large range
of q values. We recall that map �10� displays multifractal
properties at rational values of the parameter �=a /b. Based
on semiheuristic arguments, this linear regime was shown to
be described by

Dq 
 Dq
lin = 1 −

q

b
. �19�

Relation �19� enables us to link the spectral statistics and the
distribution of Dq around q=0 in a systematic way since both
are controlled by the parameter b explicitly. While one ex-
pects that some form of linear regime should exist over small
intervals for any smooth curve, the extent of it in this par-
ticular model indicated a small second derivative near q=0.
This feature was seen in the PRBM model �6� but in the
regime of weak multifractality where the derivative at q=0
of Dq is very close to zero.

Figure 7 displays the extent of the linear regime for the
intermediate map for three values of the parameter �=1 /b.
The data presented show that the linear regime is present in
all three cases, although its extent seems to be larger for
large b �weak multifractality�. This indicates that the linear
regime is a robust feature of the random intermediate map.
To explore more precisely the dependence of this regime on
the value of b, the inset of Fig. 7 shows the separation point
between the actual exponent and the linear value, defined by
a constant relative difference �set to 1%�, for all values of b
between b=2 and b=13. The data presented show that in-
deed the extent of the linear regime grows with b, although
the precise law of this growth is difficult to specify.

These results correspond to the random intermediate map,
where the kinetic term is replaced with random phases. It is
important to explore also the behavior of the deterministic
intermediate map, where the kinetic term is kept as a func-
tion of momentum. In this case, Fig. 7 shows the presence of
a much smaller linear regime. This indicates a strong differ-
ence between the random model and the deterministic one,
and that a large linear regime is a property restricted to a
certain kind of models.

The data for the Anderson map with random phases,
shown in Fig. 8, also show a linear regime, comparable with
the random intermediate map. Again, as the data correspond
to iterates of wave packets, not eigenvectors, the multifrac-
tality is weaker than for other simulations of the Anderson
model using eigenvectors �6�. This might explain why the
linear regime that is visible seems larger than for Anderson
transition eigenstates.

C. Average versus typical multifractal exponents

In disordered systems, the statistical distribution of the
moments of the wave function is responsible for a discrep-
ancy between the multifractal exponents Dq and Dq

typ calcu-
lated, respectively, by averaging over the moments them-
selves or over their logarithms. The two sets of exponents are
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lin for eigenvectors of

the intermediate map with random phases for �=1 /3 �blue solid
curve�, �=1 /7 �green dotted curve�, and �=1 /11 �red dashed-
dotted curve�. Blue dashed curve shows the same difference for the
intermediate map without random phases for �=1 /3. Inset: separa-
tion points between Dq and Dq

lin �green dots�, determined by
�Dq−Dq

lin� / �Dq+Dq
lin�=0.01, for eigenvectors of the intermediate

map with random phases for different values of �=1 /b. Other pa-
rameters as in Fig. 6.
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expected to match only in some region q� �q− ,q+�. Outside
this range, �q

typ should follow a linear behavior. Figure 9 dis-
plays results for �q and �q

typ for the intermediate map with
parameter �=1 /b for two representative values of b. As ex-
pected from the PRBM model �6�, in the case of weak mul-
tifractality ��=1 /11, bottom panel of Fig. 9�, the range over
which the exponents are equal is wider than for strong mul-
tifractality ��=1 /3, top panel of Fig. 9�. Beyond that interval
the behavior of �q

typ is linear for both values of �. For positive
q the linear tail appears around q�2.5 for �=1 /3 and
q�4.3 for �=1 /11. The slopes of the linear tails give �− and
�+. According to the theory �see Sec. II�, these values of �
correspond to the terminating point of the singularity spec-
trum f typ��� defined in Eq. �2�. We obtained comparable re-
sults for the Anderson map �data not shown�.

In order to take a closer look at the discrepancy between
the two sets of exponents, we plot the difference between the

exponents Dq and Dq
typ for both systems. It is clearly seen in

Fig. 10 that in all cases the regime where the exponents
coincide is only about −1�q�1. At this scale the separation
between �q and �q

typ occurs around q=1. In order to obtain
more systematically the separation point, we have plotted in
Fig. 11 the value of q defined by a constant relative value of
the difference of the two exponents �set equal to 0.01� for
intermediate maps with different parameters �=1 /b; this al-
lows us to get comparable data independently of the value of
the exponents. The results show a clear linear scaling of the
separation point with respect to b, obeying the formulas
q−0.01+1
−0.1�b+1� and q+0.01−1
0.15�b−1�. Changing
the threshold of relative value from 0.01 to 0.02 gives also a
linear scaling, with a different slope �data not shown�.

The singularity spectrum f��� defined in Eq. �2� is an
alternative way to analyze multifractality and the discrep-
ancy between the two sets of multifractal exponents. In Fig.
12 we show the singularity spectrum obtained for the inter-
mediate map �10� with random phases �in �16� similar curves
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were obtained using directly the box-counting method to
compute f���; here, we use the Legendre transform of the
exponents, obtaining similar results�. As expected f typ��� ter-
minates at points �+ and �− given by the large-q slopes of
�q

typ, while f��� takes values below zero coming from statis-
tically rare events. In �16�, it was shown that a linear ap-
proximation for Dq yields a parabolic approximation for
f���, giving in turn a behavior �−−�+�1 /�b. We checked
this behavior for all values of b between b=2 and b=13, thus
confirming the validity of this law, even beyond the linear
regime �see inset of Fig. 12�. Figure 12 allows a more direct
comparison between multifractalities in the intermediate map
and the Anderson map: the narrower f��� curve for Anderson
corresponds to a weaker multifractality.

D. Moment distribution

The discrepancy between the two sets of multifractal ex-
ponents observed in the previous section is due to the fact
that the moments Pq defined by Eq. �1� have a statistical
distribution with a certain width. In particular for multifractal
measures the distribution of the normalized moments
yq= Pq / Pq

typ is expected to have a power-law tail at large q as

P�yq�	1 /yq
1+xq, with an exponent xq depending on q.

In Fig. 13 we show an example of the distribution of the
logarithm of the moments Pq for the random intermediate
map. The distribution is indeed algebraic with a power-law
tail depending on q. While the linear behavior �in a logarith-
mic scale� is clearly observed for small values of q �re-
stricted to the range q�1�, this is not the case for larger q.
We calculated the exponent xq of the tail for a range of val-
ues of q where this exponent could be extracted. Results are
displayed in Fig. 14 for the intermediate map and Fig. 15 for
the Anderson map.

The value of q where xq
1 should correspond to the
value q+ where the two curves of Dq and Dq

typ �or �q and �q
typ�

separate. As one can observe in Fig. 14 that value of q is
rather difficult to estimate numerically with sufficient accu-
racy as the exponents xq did not converge to a definite value
at the largest vector size available �N=214�. However, the
curves seem to yield an exponent equal to 1 around
q
2.51 for �=1 /3 and 4.3 for �=1 /11. These values are
indicated with black arrows in Fig. 9, and at that scale they
do seem to coincide with points where �q and �q

typ separate.
However, these points are far beyond the value q
1 at
which the multifractal dimensions Dq and Dq

typ separate at the
scale of Fig. 10, and also different from the values obtained
by fixing the relative difference of the exponents in Fig. 11
�equal to q+0.01=1.31 for �=1 /3 and q+0.01=2.51 for
�=1 /11�. The value where the curves separate is dominated
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by the rare events in the extreme tail of the distribution. The
different values obtained indicate that indeed the numerical
results are still far from the asymptotic regime. Similar con-
clusions can be drawn from Fig. 15, which presents the
power-law tail exponents xq obtained for the moment distri-
bution of the Anderson vectors: the point where xq=1 is
reached around q
3, while Fig. 10 seems to indicate a sepa-
ration of the multifractal exponents around q
1. We note
that for the finite sizes considered, the value of xq seems to
become infinite as q→1, indicating that in this regime the
distribution of moments is not any more fitted by a power
law at large moments �see also Fig. 19�. The behavior of the
exponents xq will be further discussed in the next section.

E. Relation between multifractal exponents and moment
distribution

As explained in Sec. II, it was proposed in �20� that the
exponents �q and �q

typ were related to the moment distribution
through relation �6�. This formula was proved only in some
very specific cases, such as the PRBM model in the regime
of weak multifractality, but conjectured to be generically
valid. The results of the preceding sections enable us to
check numerically whether this formula holds for our mod-
els.

In Figs. 16 and 17 we show �qxq
as a function of xq�q

typ for
the random intermediate map with parameters �=1 /3 and

�=1 /11. For �=1 /3 �Fig. 16�, it shows a certain agreement
with the conjectured law for small values of q. Similarly for
�=1 /11 �Fig. 17� the agreement with law �6� is good, but the
actual slope seems slightly different. On the other hand, for
�=1 /3 and larger values of q the relation breaks down. We
note that there is a certain ambiguity in the formula since as
can be seen in Fig. 16 one can have two values of �qxq

for the
same value of xq�q

typ �corresponding to two different values
of q�. The results indicate that relation �6� can indeed be
seen, even if approximately, in other systems than in Ander-
son transition models. Interestingly, the case �=1 /11 corre-
sponds to a case of weak multifractality. This might indicate
that the relation is better verified in the case of weak multi-
fractality and only approximate in the general case. But we
cannot exclude that the regime of weak multifractality leads
to weaker finite-size effects and that the results for �=1 /3
would eventually converge to law �6� for larger sizes and
many more realizations. An additional problem concerns the
different scales of Figs. 16 and 17. As the multifractality is
weaker in the case �=1 /11, the values of xq and �q are
larger, leading to a much larger scale for the data in Fig. 17.
It is possible that the finite-size effects are comparable but
show more markedly in Fig. 16 due to its much smaller
scale.

In Fig. 18 we present the same numerical analysis for the
Anderson map. The results show that a linear law similar to
Eq. �6� can be seen. The slope is close to 1, but the curve is
shifted by a relatively large offset �
0.3�. Note that formula
�6� was predicted for eigenvectors of the Anderson model
and PRBM; here, we are looking at iterates of wave packets,
which can show different behavior.

Interesting properties of the exponents xq can be deduced
from relation �6�. As mentioned in the introduction, if such a
relation is verified it implies that for q�q+ �or equivalently
xq�1� the inverse of the exponents xq should follow a linear
law. Indeed, for q�q+ the exponent �q

typ is linear and one has
qxq�+=�qxq

=Dqxq
�qxq−1�; thus, z=qxq is a solution of the

equation Dz= z
z−1�+. If this equation has a unique solution,

then the quantity qxq is a constant, equal to q+ for q=q+, and
thus 1 /xq should be linear as a function of q for q�q+. In
order to check whether this holds in our case, we plot in Fig.
19 the values of 1 /xq as a function of q for the intermediate
random map with parameters �=1 /3 and �=1 /11. In both
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cases, a linear law agrees well with the data at large q, but
obeys an equation different from the one predicted, with in
particular an extra constant term which depends on �.

A second consequence of relation �6� arises in the case
where Dq is given by a linear function. This is in particular
the case for the intermediate map in the regime of weak
multifractality. In this regime it was observed �16� that for
not too large q the multifractal exponents Dq are very closely
given by the linear approximation Dq=1−q /b. Inserting this
relation into Eq. �6�, we get that for q� �q− ,q+� �where Dq
and Dq

typ are equal� the exponents are given by xq=b /q2 pro-
vided qxq also belongs to �q− ,q+�. We note that this in turn
predicts a value q+=�b for the separation point between the
two sets of exponents, contrary to the linear scaling found in
the data shown in Fig. 11. According to these considerations,
in the small-q regime and for weak multifractality, a qua-
dratic behavior of 1 /xq should be observed provided the lin-
ear regime extends beyond the point q+. In the case
�=1 /11 for the intermediate map, the linear regime is veri-
fied quite far away from zero but breaks down before q+ �see
Fig. 10�; thus, Dqxq

is not a linear function of its argument.
Still, Fig. 19 �lower panel� shows that the parabolic behavior
of 1 /xq is retained for small values of q; the inset shows that
indeed a quadratic fit is much better than a linear fit in this
range. In the strong multifractality regime, Dq is not linear
any more beyond q=1; in that case, the inset of the top panel

in Fig. 19 shows that the behavior of 1 /xq is linear rather
than quadratic.

F. Symmetry between exponents

As described in Sec. II, it was predicted analytically and
observed in the Anderson model at the transition that a sym-
metry exists between multifractal exponents. Indeed, the
quantity 
q=�q−q+1 follows the law 
q=
1−q �relation
�7��. This relation was predicted on very general grounds and
expected to hold for all multifractal quantum systems. It was
seen in the PRBM model �25�, the Anderson model �27�, and
ultrametric random matrices �10�. It was also predicted to
occur in simple multifractal cascade models in �22�. We per-
formed systematic calculation of the quantity 
q for each of
the systems considered.

Figure 20 shows the results of this analysis for the random
intermediate map. The presence of a large linear regime
complicates the picture since the linear law described above
in Sec. V B verifies the symmetry. Thus, the intermediate
map can show deviations from the symmetry only outside
the linear regime. It turns out �comparing Figs. 7 and 20� that
symmetry �7� is only present in the linear regime and does
not extend beyond its validity. This seems to indicate that the
symmetry is absent from these models.

As the linear regime is much smaller in the case of the
intermediate map without random phase, if the symmetry
does not hold in this system we should expect a larger dis-
crepancy in the nonrandom case. Figure 21 displays 
q and

1−q for the nonrandom intermediate case, showing that in-
deed the symmetry is verified in an even smaller range of q
values than for the random case, in agreement with the small
extent of the linear regime.

Finally, we have also computed the quantities 
q and 
1−q
for iterates of the random intermediate map and of the ran-
dom Anderson map. As said in Sec. V A, the precision of the
exponents degrades for q�−2 in the case of the Anderson
map, so verification of the symmetry relation is delicate.
Nevertheless, our results indicated that while for iterates of
the random intermediate map symmetry �7� still does not
hold beyond the linear regime, in the case of the Anderson
map the symmetry remains valid within the numerical error
bars �which are however quite large� well beyond the linear
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black dashed lines are, respectively, quadratic and linear fits in two
different q ranges; dashed line �linear fit for large q� is
1 /xq=0.36q−0.55; inset is a blowup of the small q range, showing
in red the best linear fit for the same data. In both cases, the two
ends of the error bars correspond to two values of xq obtained from
a fit of the moment probability distribution over two different inter-
vals. Parameter values are the same as in Fig. 3.
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FIG. 20. �Color online� Anomalous exponents 
q �blue dashed
curve� and 
1−q �red solid curve� for eigenvectors of the interme-
diate map with random phases, �=1 /3, and N=214. Parameter val-
ues are the same as in Fig. 3. The black thin line shows the parabola
q�1−q� /b corresponding to the linear regime.
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regime �data not shown�. This seems to indicate further that
the symmetry is a feature of the Anderson model, which is
clearly absent from the intermediate map.

Although we cannot prove rigorously that the symmetry
relation �7� does not hold for intermediate systems, our re-
sults strongly indicate that it is violated in these systems as
soon as the linear regime breaks down. To further confirm
that our numerical method is able to observe symmetry �7� in
a system where it is present, we computed 
q and 
1−q for
ultrametric random matrices where the relation is known to
hold �10�. Our numerical method was able to confirm unam-
biguously the presence of the symmetry in this specific case
�data not shown�.

We note that in �25� the presence of symmetry �7� for the
Anderson transition was theoretically predicted on the basis
of a renormalization-group flow whose limit corresponds to a
nonlinear sigma model. It would be interesting to see if a
different nonlinear sigma model can apply to the intermedi-
ate map or if it is a clue that these models cannot describe
certain aspects of these systems.

VI. CONCLUSION

In this paper, we have studied the different multifractal
exponents one can extract from the wave functions of the
intermediate map and the Anderson map. Both models are
one dimensional, and thus allow much larger system size
than the 3D Anderson transition, but in contrast to random
matrix models such as the PRBM they correspond to physi-
cal systems with an underlying dynamics.

Our results enabled us to extract the exponents over a
large range of q values for the intermediate map. We have
checked that two methods widely used in other contexts
�classical multifractal systems�, namely, the box-counting
and the wavelet methods, can be used to obtain reliably the

exponents, giving similar results in most cases, although the
box-counting method seems more robust for large negative
values.

Our numerical data allow us to confirm that the Anderson
map introduced in �19� and experimentally implemented
with cold atoms �17� indeed displays multifractal properties
at the transition point, although this multifractality is weak.
As concerns the intermediate map, our data confirm the ex-
istence of a linear regime for the multifractal exponents Dq
and Dq

typ, which was first seen in �16�, well beyond the re-
gime of weak multifractality. Interestingly enough, the linear
regime is much smaller for the nonrandom intermediate map.
We checked that the exponents Dq and Dq

typ are different also
in the case of the intermediate map, even in the nonrandom
case where no disorder is present.

Our numerical study of the moments of the wave func-
tions and the multifractal exponents shows that the generic
behavior of Dq and Dq

typ predicted for the Anderson transition
�6� is present for the Anderson map. Our results enable us to
extract the values of q+ and q− through the behavior of the
moments of the wave functions together with the values of
�+ and �−; the fact that the value is different from the one
obtained by direct computation of the multifractal exponents
shows that finite-size effects persist in such systems up to
very large sizes. Note, however, that as our numerical com-
putations correspond to very large system sizes, this might
indicate that the asymptotic limit may be difficult to reach
even in experimental situations. In addition, our investiga-
tions show that relation �6� between the moments and the
exponents conjectured in �20� is only approximately verified
in our systems, even in the Anderson map. At last, the exact
symmetry relation �7� between the multifractal exponents of
the Anderson transition discovered in �25� is not present in
intermediate systems.

Our results indicate that intermediate systems studied, and
more generally quantum pseudointegrable systems, represent
a type of model with some similarities with the Anderson
transition model of condensed matter, but with specific prop-
erties. In particular, the absence of the symmetry present in
the Anderson model between the exponents suggests pro-
ceeding with care in using the nonlinear sigma model to
predict properties of these systems. We think that further
studies of these two kinds of quantum systems are needed in
order to elucidate the multifractal properties of quantum sys-
tems and their link with spectral statistics.
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FIG. 21. �Color online� Anomalous exponents 
q �blue dashed
curve� and 
1−q �red solid curve� for eigenvectors of the interme-
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