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INTRODUCTION
The step by step numerical analysis of structures submitted to fire is traditionally performed by a succession of subsequent static analyses of the structure taking into account the modifications of the temperature field in the structure from one time step to the other, see for example [1 to 7]. Figure 1 shows a schematic algorithm that explains the usual procedure for a simple structure with a behaviour that can be characterised by one displacement and one force and that is characterised by a single temperature.

The load is first applied at ambient temperature, noted T0 on the figure. If the load level in case of fire is sufficiently high to generate a non linear behaviour of the structure, the load may be applied in several increments. On Figure 1, two successive time steps have been used in order to apply the load in two increments. For each step, one initial displacement is first found corresponding to the incremental load, and one iteration is then performed in order to treat the out of balance force that appears because of the non linear behaviour. It can be seen on the Figure that the obtained solution is not exactly converged, but the remaining out of balance force can be taken into account in the subsequent step so that they don't accumulate.

When the applied load is equal to the design load for the fire case, it is usually kept constant and the temperature in the structure is increased in an incremental manner. Figure 1 illustrates the out of balance force that occurs because of the degradation of the mechanical properties of the structure during the first temperature increase, from time step 2 to time step 3. This out of balance force leads to a new incremental displacement.
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Figure 1 : schematic algorithm for a static analysis
If the loads at all degrees of freedom of the structure are noted 
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 and if the corresponding displacements that have to be determined are noted 
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, then Equation 1 is used to determine the incremental displacements.
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where

[image: image5.wmf][

]

K


is the stiffness matrix of the structure,
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represents either the increment of external applied forces or the out of balance forces.

On Figure 1, the stiffness matrix is represented by the slope of the curve at each point.

In a simple structure, the evolution of the situation toward failure is depicted by Figure 2 where the last converged time step is time N° 4. For any higher temperature, the behaviour of the structure has degraded to such an extend that it is not possible to find a point on the curve 5 that satisfies the equilibrium. In other words, from point 4, it is possible to increase the displacements of the structure without any increase of the load. The structure is unstable. Mathematically, this corresponds in Equation 1 by the fact that the stiffness matrix is not anymore positive defined.
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Figure 2 : evolution toward failure in a simple structure

For this simple structure, the time corresponding to the curve number 4 is really the “true” failure time. Unfortunately, for some more complex structures, it is not always the case… In figure 3, it can be seen that point 3 does not corresponds to the “true” failure time of the structure. Another point of equilibrium exists at temperature T4, but for a significantly larger displacement. With the classical algorithm described in equation (1), it is usually impossible to reach this point 4. The failure found at point 3 in fact corresponds to a local or to a temporary failure of the structure. As a first consequence, the failure time of the structure can be underestimated and, secondly, the real failure mechanism of the structure can be badly understood. Now, for the security of firemen, it is essential to know the most properly this failure mode…
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Figure 3 : evolution toward failure in a complex structure

THE DYNAMIC APPROACH

A solution to pass through these instants of instability has to be found. Various attempts to solve this problem have already been studied. The one developped here (and that has been implemented in the FEM software SAFIR) consists in performing a dynamic analysis. The idea is to model the behaviour of the structure as a dynamic process with the objective that acceleration term will counterbalance the negative stiffness during the unstable states of the structure. Equation 2 is the basic equation for a dynamic analysis if the behaviour of the structure is linear.
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where,
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is the damping matrix
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is the mass matrix
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are the velocity and acceleration (unknown)
Equation (2) clearly shows that even when the stiffness matrix becomes equal to zero, the resolution of the equation is still possible because the term of damping and the term of mass are not equal to zero and allow the determination of the displacements.

To solve this equation, a great number of step by step method exist, which give the state of the structure in discreet instant ti, separated by a time step (t. In the SAFIR software, the Newmark method has been used. This method expresses the velocity and the acceleration (unknown) as a function of the displacement (unknown too), and of the displacement, velocity and acceleration from the previous time step (known).
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where,
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are the displacements, velocity and acceleration at time t0 (known)
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are the displacements, velocity and acceleration at time t1=t0+(t (unknown)
( and ( 
are the Newmark parameters (the most often, 
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is the time step from t0 to t1.

The equations (3) and (4) allow to transform (2) in a system that is a function of the only unknowns u1: 
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where,
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For a structure with a non linear behaviour, equation 5 is slightly modified into equation 8.
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The development of the calculation will be the following one:

1 determination of the applied forces

2 assembly of the matrix

3 resolution of  (8): solution 
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, first estimation of the increment of displacement. For the total displacement, we obtain the estimation
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4 calculation of the out of equilibrium forces
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where, 
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 designates the internal forces of the structure

5 convergence test

6 if converged : new time step → back to 1.

7 If not converged : next iteration, with as second member the out of equilibrium forces → back to 2.

In SAFIR, the contribution to the mass matrix coming from the finite elements has been diagonalised in order to limit memory allocation requirements. The shell finite element has only the terms in the mass matrix corresponding to displacements. For the 3D beam finite element, the 2 masses in rotation around the axes that are perpendicular to the longitudinal axis are given the same value as the mass in rotation along the longitudinal axis. This approximation is justified by the fact that several finite elements are anyway used to model one beam member. It allows not rotating the mass matrix from the local to the global system of co-ordinates. Nodal masses can also be added by the user, either for displacement or for rotation types degrees of freedoms.

For the damping matrix, one common solution is the Rayleigh damping where the damping matrix is a linear combination of the stiffness and the mass matrix, with the coefficients of the combination being calculated as a function of the critical damping and of the first two eigen frequencies of the structure. This has not been used here because, when the stiffness matrix becomes negative, the damping matrix can also become negative and the system becomes unstable (it is possible to use the initial elastic stiffness matrix instead of the updated tangent stiffness matrix, but this adds additional storage requirement). The determination of the eigen modes also requires that the mass matrix does not contain any null term and this can also be a problem in some cases, especially when some degrees of freedom are not cinematic quantities.

This is why a numerical damping has been introduced. Practically speaking, the critical damping is taken as 0 (which means that no damping matrix is calculated) and the Newmark parameters are modified. In SAFIR they have been chosen as ( = 0.80 and ( = 0.45. It has to be kept in mind that the aim here is not the precise modelling of dynamic effects where a precise determination of the accelerations and of the damping is required as would be the case, for example, in a design of a building against seismic actions.

An automatic adaptation of the time step during the analysis has been implemented, based on the number of iterations required for obtaining convergence. If convergence is not obtained, the software automatically comes back to the previously converged point and tries again with a reduced time step. The required CPU time may be longer than for static analyses, but the time required for each time step is not significantly increased. A longer CPU time is mainly required when very small time steps have to be used.

PRATICAL EXAMPLES

The first example is an academic structure. It consists of  a frame with one diagonal member, and only the diagonal is heated (Figure 4).

[image: image40.wmf]-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

3360

3370

3380

3390

3400

3410

3420

3430


Figure 4
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When the diagonal is heated, it tends to elongate but the members of the frame prevent this movement. The diagonal is compressed and buckles after some minutes. The dynamic analysis must normally be able to go through this instant of instability and to show the behaviour of the structure after the buckling of the diagonal. In this case, with the applied loads, the structure without diagonal can still survives as demonstrated by a static calculation (figure 5). The horizontal displacement H at the top of the column is equal to 103 mm.
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Figure 5: Displacement without diagonal member

Figure 6 shows the evolution of the horizontal displacement of the node located at the top of the left column for the frame with a diagonal member provided by static and dynamic analysis.
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Figure 6: Horizontal displacement (m) function of time (s)

In the beginning, the heated diagonal pushes the column to the left and after about 3350 seconds, the buckling of this diagonal occurs. In case of dynamic analysis, the position of the top of the column after buckling corresponds to the one calculated for the frame without diagonal member. After buckling, the structure works as if the diagonal member is not present. Before buckling, the two analyses give the same results, but the static analysis cannot deal with the buckling and stops whereas the global stability is not endangered.

In figure 7, the evolution of the axial load in the diagonal member is presented. It confirms the fact that after buckling, it is as if the diagonal member is not present. Indeed, the axial load becomes null. 
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Figure 7: Axial load (N) function of time (s)

The example has demonstrated that a local failure leads to the end of calculation in usual static analyses. This may be misunderstood and interpreted by the user as the failure of the structure. The load redistribution is not taken into account. The dynamic approach, described in the paper, enables to solve that problem and to predict accurately the different localised failure up to the global failure.

The second example is the simulation of an industrial hall partially submitted to fire (see figure 8):


Figure 8: Simulated structure

The structure is maintained in several points to simulate the presence of wind bracing.

For the loads, every purlin is  loaded to have a simulation closed to the reality.

In a first step, statical analysis was made, but a lateral buckling of a purlin occurs after approximately 790 seconds (see figure 9) due to the built up of axial compressive force induced by the restraint from the adjacent cold members. This event explains why the static analysis stops at this time. The dynamic analysis allows following this buckling and so that post-local failure stage can be analysed.
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Figure 9: Simulated structure

The dynamic analysis of this structure has been done as well. In this case, the time of collapse found by SAFIR is 1257.4 seconds. The deformed structure at this time is shown below:
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Figure 10 : Deformed structure without amplification

It can be seen on this figure that the collapse is toward the inside of the buildings.  Figure 11 shows the different relevant point where displacement were printed:

Figure 11 : Relevant points of the structure

In figure 12, 13, 14 and 15, the comparison between the static analysis and the dynamic one is shown. They show the evolution of the horizontal displacement of the node a and the node c, the vertical displacement of the node b and the out of plane displacement of the heated beam at the node d for the two analysis.

[image: image34.wmf]-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

200

400

600

800

1000

1200

1400

Time (s)

Horiz. displacement node a [m]


Figure 12: Horizontal displacement of the node a (top of the heated column) 
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Figure 13: Horizontal displacement of the node c (top of the cold column)
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Figure 14: Vertical displacement of node b (middle of the heated beam)
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Figure 15: out of plane displacement of the node d

Figures 17 and 18 show the evolution with respect to time of normal forces at the connection between the central column and the beam under fire and at the connection of the cold frame and the purlins under fire (See figure 16) :

Figure 16 : Relevant points of the structure
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Figure 17: Beam axial force at the node c
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Figure 18: Beam axial force at the node e

The evolution of the normal force in the purlin at point e shows the instantaneous buckling at approximately 800 seconds. When the purlin buckles the normal force falls. That physical phenomenon made the convergence not possible for simulation without the dynamic approach. At the final time, the hot part of the building pulls on all the cold parts but the value of theses forces remain acceptable to not endanger this part. In other words, the collapse of the heated part does not lead to the progressive collapse of the remaining of the building.

CONCLUSION

By means of this recently implemented dynamic algorithm, it’s now possible to simulate the complete failure mechanism, to predict the influence of a local failure on the global behaviour of the structure and to follow eventually the progressive collapse. Therefore the resistance time is now really determined whereas in the past many numerical failure corresponding to local failure were interpreted as resistance time of the whole structure.
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