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Abstract

Finding our way in a previously learned, ecologically valid environment concurrently 

involves spatial and contextual cognitive operations. The former process accesses a 

cognitive map representing the spatial interactions between all paths in the 

environment. The latter accesses stored associations between landmark objects and 

their milieu. Here, we aimed at dissociating their neural basis in the context of 

memory-based virtual navigation. To do so, subjects freely explored a virtual town 

during one hour then were scanned using fMRI while retrieving their way between 

two locations, under four navigation conditions designed to probe separately or jointly 

the spatial and contextual memory components. Besides prominent commonalities 

found in a large hippocampo-neocortical network classically involved in 

topographical navigation, results yield evidence for a partial dissociation between the 

brain areas supporting spatial and contextual components of memory-based 

navigation. Performance-related analyses indicate that hippocampal activity mostly 

supports the spatial component, whereas parahippocampal activity primarily supports 

the contextual component. Additionally, the recruitment of contextual memory during 

navigation was associated with higher frontal, posterior parietal and lateral temporal 

activity. These results provide evidence for a partial segregation of the neural 

substrates of two crucial memory components in human navigation, whose combined 

involvement eventually leads to efficient navigation behavior within a learned 

environment.
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Introduction

Route retrieval and way finding in a previously learned environment are 

critical prerequisites to successfully carry out most of our daily activities. These 

cognitive abilities involve the creation of a cognitive map of the environment, where 

are coded its landmarks, paths and their spatial relationships (Maguire et al., 1998a; 

Berthoz, 2001; Pazzaglia and De Beni, 2001). Neuroimaging studies have revealed 

that navigation in a virtual environment involves an extended neural network, mostly 

including hippocampal and parahippocampal areas, frontal, posterior parietal and 

occipital cortices as well as the caudate nucleus (Aguirre et al., 1996; Ekstrom et al., 

2003; Maguire et al., 1998b; Hartley et al., 2003; Voermans et al., 2004; Peigneux et 

al., 2004; Orban et al., 2006). Within these areas, spatial memory-based navigation 

prominently relies upon activity in the hippocampal formation (e.g. Burgess et al., 

2002; Maguire et al., 1998b), also crucially involved in episodic memory. In contrast, 

procedural memory-based navigation (i.e., moving along a well-known pathway in a 

kind of automatic fashion) is rather contingent upon activity in the striatal complex 

(e.g. Packard and Knowlton, 2002; Hartley et al., 2003; Iaria et al., 2003; Orban et al., 

2006). Additional experiments have indicated a role for the parahippocampal gyrus in 

the storage of object location as a part of the neural mechanisms underlying 

successful navigation (Janzen and van Turennout, 2004) and retrieval of objects’ 

spatial context (Burgess et al., 2001). Recently, promising attempts have been made to 

track the neural correlates of spontaneous mentalizing and behaviors during virtual 

navigation (Spiers and Maguire, 2006a, 2006b). 

In the present study, we have focused on another possible dissociation between 

cognitive processes engaged in route retrieval and way-finding, considering that these 

actions are supported by manifold memory processes in which two prominent 
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cognitive components may be identified. The first one, spatial representation memory, 

involves creation of and/or access to a cognitive map of the environment, where are 

specified the spatial relationships between the streets independently of the salient 

features of the environment. For instance, when attempting to reach the school from 

the church, one can keep in mind an “abstract” map-like representation indicating the

appropriate direction to follow at each crossroad, independently of specific 

environmental cues along the way. Besides this “streets configuration” component, a 

second, complementary process can be used. It refers to a contextual representation 

memory (or “landmarks memory”) where are stored specific associations between 

salient landmark objects and their milieu. For instance, one may remember that from 

church to school, there is a right turn just after the library and then a left turn in front 

of the red telephone box close to the grocery store. In most cases though, both 

memory constituents are engaged simultaneously during route retrieval or way finding 

in a previously learned environment, in that navigation involves the creation of a 

cognitive map coding both the relationships between paths and between landmarks in 

episodic memory (Maguire et al., 1998a; Berthoz, 2001; Pazzaglia and De Beni, 

2001).  

Using functional magnetic resonance imaging (fMRI), we investigated the 

neural bases of spatial (map-like streets configuration) and contextual (milieu-related 

landmarks) components of navigation memory. To do so, 16 volunteers were scanned 

under four complementary memory conditions during route retrieval. Before testing, 

they freely explored during one hour a complex 3D virtual town, composed of three 

different surroundings in the same city, with distinctive wall and ground features, and 

landmark objects (Peigneux et al., 2004, 2006; Orban et al., 2006). In the Natural

testing condition, they were positioned in the same environment as during the training 
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period and asked to reach target locations from various starting points. This classical 

testing condition (e.g., Maguire et al., 1998b; Peigneux et al., 2004, 2006; Orban et 

al., 2006) actually does not dissociate the spatial and contextual components of 

memory-based navigation since circulating in such an enriched environment may rely 

on either or both, or even rely on a stimulus-response associations strategy mediated 

by the striatum (Iaria et al., 2003; Voermans et al., 2004; Bohbot et al., 2004; Orban et 

al., 2006). Thus, to engage subjects using more specifically the spatial memory 

component of navigation, they had, in the Impoverished testing condition, to reach 

target locations in this same environment after removal of all landmark objects and 

after that the walls and ground were made uniform. In this spatial condition indeed, 

subjects must rely on their abstract knowledge of the spatial relationships of the 

streets to find a way towards the target. Likewise in the Alternate condition, the scene 

was the same as in the Natural task but the optimal path between the starting location 

and the designated target was blocked by an impassable barrier. In this case, 

previously identified landmark objects and other contextual features become less 

relevant for navigation: subjects should rather rely on a more spatial, less 

contextualized representation of the navigation space to build an alternate route. Thus, 

this condition further allowed investigating the spatial component by promoting 

alternative route-finding strategies. And finally, to specifically assess the contextual 

component of memory in navigation, subjects were asked in the Recognition

condition to follow the same pathways while paying particular attention to the 

potential changes made to the town’s scenery. To minimize the requirements for 

spatial information, they had to follow color dots positioned on the ground all along 

the pathway. Additionally, a forced-choice recognition task was proposed after each 

walk to reveal a posteriori the presence or absence of subjects’ awareness of 
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contextual changes. Besides targeted differences, it should be mentioned that all these 

conditions involve episodic memory, although additional contribution of procedural 

memory cannot be excluded.  

The analysis of brain imaging data aimed at unraveling the specificity of the 

spatial and contextual memory components of memory-based navigation, by 

conducting between-tasks comparisons. Additionally, correlation analyses between 

functional imaging data and behavioral performance aimed at evidencing the brain 

structures whose activity differentiates efficient from poor navigation at the within-

subject level, and good from bad navigators, at the between-subject level, across the 

various experimental conditions. We hypothesized that although all tasks would elicit 

grossly similar activity in the neural network classically engaged in navigation 

(Aguirre et al., 1996; Maguire et al., 1998b; Burgess, 2002; Hartley et al., 2003; 

Peigneux et al., 2004), those conditions relying more on the spatial memory 

component should induce higher activity in the hippocampal/parahippocampal region 

as well as posterior cortical areas. In contrast, tasks more based on the contextual 

memory component should rather rely upon frontal (Ranganath and Knight, 2003) and 

lateral temporal (Ojemann et al., 2002) cortices activity, as well as the 

parahippocampal gyrus known to be involved in visual recognition memory (Meunier 

et al., 1993; Rauchs et al., 2006). 

Materials and Methods

Subjects

Sixteen healthy right-handed volunteers (8 females, 8 males; mean age of the group: 

22.1 years; range: 18-30 years) gave their informed, written consent to participate in 

this experiment approved by the Ethics Committee of the University of Liège. They 
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were free of neurological or psychiatric disease and had a normal structural MRI brain 

scan on visual inspection. 

Navigation task

Subjects were trained in a virtual environment developed and validated in our 

laboratory (Peigneux et al., 2004, 2006; Orban et al., 2006), adapted from a 

commercially available computer game (Duke Nukem 3D, 3D Realms Entertainment, 

Apogee Software Ltd., Garland TX) using the editor provided (Build, Ken Silverman, 

Realms Entertainment). The environment was a complex town composed of three 

districts (Far West, Urban and English) that were made distinct from each other by 

different visual backgrounds and objects along the streets. Each of these districts 

contained a target location identified by a rotating medallion (Fig. 1). The virtual 

town also contained 10 starting points that were each 35 virtual units apart (optimal 

path) from their associated target location. Subjects navigated at a constant speed 

within the environment at the ground level using a four-direction keypad with their 

right hand. During training, the virtual environment was presented on a desktop 800-

MHz Pentium-III PC (screen size, 17’). For testing in the scanner, a mirror allowed 

the participants to see the display of the virtual town projected on a screen.

Learning phase: Participants were trained outside of the scanner during four 

15-minute exploration periods. They were explicitly instructed to learn the layout of 

streets, districts and target locations by moving freely within the environment. During 

the entire training session, pictures of the three target locations and their associated 

names were continuously available to the subject. 
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Test conditions: At the end of the training session, subjects were scanned 

using fMRI while performing four different tasks that aimed at assessing spatial and 

contextual components involved in memory-based navigation (Fig. 2a). 

In the Natural, Impoverished and Alternate conditions, subjects had to retrieve, 

as fast as possible and in no more than 35 s, the route between two locations in the 

learned environment. In the Impoverished condition, the environment was made 

plainly uniform by removing all wall/ground features and objects. In the Natural and 

Alternate conditions, the environment was identical as during the exploration. In the 

Alternate condition however, optimal pathways between starting and target points 

were blocked by an impassable barrier to promote alternative route-finding strategies 

and to prevent from using a routine navigation behavior. Thus, the Impoverished 

condition allows to assess the spatial memory component and the Natural condition

allows the investigation of both memory processes (spatial and contextual). The 

Alternate condition was designed to assess spatial memory since, in this task, 

previously identified landmark objects and contextual features become less relevant 

for navigation. Indeed, subjects should rather rely on a more spatial, less 

contextualized representation of the navigation space to build an alternate route. For 

each of these three tasks, the fMRI scanning session consisted of 10 blocks of tests, 

each lasting for 35 s, that alternated with 10 blocks of rest, during which a black 

screen was displayed for a duration randomly lasting from 10 to 17 s. During rest 

periods, subjects were instructed not to think to anything in particular and to relax as 

the study is long and demanding. Within the last two seconds of the rest period 

preceding each test, the target location for the test was indicated orally through MR 

compatible headphones. After test time elapsed, a quantitative measure of route 

retrieval performance was determined as the distance remaining between the subject’s 
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actual location and the target to reach, proportional to the length of the optimal path 

between the starting point and the target. Although various indicators of performance 

can be computed (e.g. success, walked distance, effective navigation speed, 

crossroads, dead end errors, …), the distance remaining to target was selected as the 

main behavioral measure of navigation, in reference to previous studies in our group 

(Peigneux et al., 2004, 2006) in which the remaining distance (or conversely the

distance towards destination) was shown the most sensitive measure of navigation 

ability. At variance with the Impoverished and Natural conditions in which all targets 

were 35 virtual units apart from the starting point, the use of barriers in the Alternate 

condition makes that the average optimal distance was 52 virtual units (SD = 5.8, 

range 39-58). Therefore, to render performance in the Alternate condition comparable 

with those in the two other conditions, performance was measured as the distance 

remaining between the subject’s actual location and the position located at 35 virtual 

units from the starting point on the shortest path towards the target. For the 

Impoverished, Natural and Alternate conditions, the same 10 tests were administered 

in a counterbalanced order, both at the between- and within-subjects levels. 

In the Recognition condition, subjects had to pay attention to the 

environmental features of the town during 35s while following colored dots on the 

ground that signaled the path to follow between the starting and target points. They 

were instructed to determine whether and where environmental changes were made as 

compared to the town explored during the learning phase. All changes were easily 

detectable and did not necessitate stopping along the walk. At the end of each 35-s 

walk, they were presented with a four-choice panel composed of three pictures taken 

along the route just previously followed, and a white square (Supplementary Fig. 1). 

Using a keypad with their left hand, they had to indicate in no more than 10 s the 
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modified image, or to select the white square if they thought that no modification was 

made. For the Recognition condition, 22 tests were administered in a pseudo-

randomized order (4 possible lists), and alternated with short blocks of rest during 

which a black screen was displayed for 10-17 seconds. Behavioral performance was 

measured as the number of correct recognitions. This measure was used to associate a 

performance index with brain imaging data obtained during the walk between the 

starting and target points, here deemed as a contextual recognition task as subjects 

were actively engaged in the detection of potential modifications in the learned 

environment.

For all subjects, the four tasks were proposed in the following fixed order: 

Impoverished, Recognition, Natural then Alternate. Although administrating the 

various tasks in a randomized order would have ruled out the possibility of decreased 

medial temporal lobe activation as the pathways become familiar (Nyberg, 2005), it 

was much more important for the purpose of the present study to avoid as much as 

possible interference between the four tasks. Thus, to minimize re-learning of the 

contextual details of the environment or of the spatial layout of the routes, the 

Impoverished and Recognition conditions were administered before the Natural 

navigation condition. Additionally, although only optimal paths were blocked in the 

Alternate condition, some subjects never discovered these during the initial 

exploration period and actually learned an alternate route in which they perseverated. 

Therefore, we analyzed our subjects’ data in the Alternate condition based on the 

pathways (either optimal or not) followed by them in the immediately preceding 

Natural condition. Two strategies were differentiated in this condition: true alternate 

way finding and routine strategy (see Brain Imaging and Results sections for details).
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fMRI data acquisition.

Brain imaging data were obtained using a 3 Tesla head-only MRI system (Allegra, 

Siemens, Erlangen, Germany) equipped with an actively shielded gradient coil system 

(max gradient amplitude 40 mT/m). For each testing session, the functional multi-

slice T2*-weighted images were obtained using a blood oxygen level dependent 

(BOLD) sensitive single-shot echo planar (EPI) sequence (TR = 2130 ms; TE = 40 

ms; flip angle = 90°; FoV = 220x220 mm²; matrix size = 64x64x32) covering the 

whole brain (128 mm high). Each functional volume consisted of 32 slices, with a 

thickness of 3 mm (inter-slice gap = 1 mm) and a voxel size of 3.4x3.4x3 mm3. The 

four initial scans of each session were discarded to control for magnetic saturation 

effects. 

A high-resolution structural MRI scan was also acquired for each subject using a 

standard three-dimensional T1-weighted sequence (TR = 1960 ms; TE = 4.43 ms; flip 

angle = 8°; 176 slices; FOV = 230x173 mm²; matrix size = 256x192x176; voxel size 

= 0.9x0.9x0.9 mm³). The mean and individual MR images were used for a precise 

identification of loci of activation. 

fMRI data analysis.

Functional volumes were pre-processed and analysed using the Statistical Parametric 

Mapping software SPM2 (Wellcome Department of Cognitive Neurology, London, 

UK, http://www.fil.ion.ucl.ac.uk/spm/spm2) implemented in MATLAB (Mathworks 

Inc., Sherbom, MA). For each subject, spatial preprocessing included realignment and 

adjustment for movement related effects, co-registration of functional and anatomical 

data, spatial normalization into standard stereotactic MNI space, and spatial 

smoothing using a Gaussian kernel of 6 mm full width at half maximum (FWHM). 
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Data were analyzed using a mixed-effects model, aimed at showing 

stereotypical effect in the population from which the subjects are drawn (Penny and 

Holmes, 2003). This procedure was implemented in two processing steps accounting 

respectively for fixed and random effects. For each subject, changes in BOLD 

responses were estimated in a first-level intra-individual analysis using a general 

linear model at each voxel. For each experimental condition, the regressors of interest 

were built using boxcar functions corresponding to each block of navigation 

convolved with the canonical hemodynamic response function. In the Impoverished, 

Natural and Alternate conditions, the 10 pre-test 2-s periods during which subjects 

were orally indicated the name of the target to reach were modeled explicitly. In the 

Recognition condition, the time during which subjects were presented the four-choice 

response panel and made their response was also modeled explicitly. 

Additionally, the strategy used by the subjects in the Alternate condition was 

modeled in the design matrix as follows. For each test in this condition, if a subject 

had followed the optimal path in the Natural condition, its brain activity was analyzed 

separately for the time spent in the detour portion of the walk, outside of its usual 

pathway. Otherwise if the subject had followed a non-optimal path during the Natural 

condition for a given test, and did not encounter the barrier in the Alternate condition 

for the same test, its brain activity during this period of time was not taken as a 

detour-related activity. It was rather analyzed as a routine-related navigation activity

if the pathway was the one previously followed by the subject or explicitly modeled

as a “lost” condition when the subject appeared to be completely disoriented in the 

environment as compared to his/her behaviour in the Natural condition (i.e., going 

round in circles, going in a totally wrong direction, entering already known dead 
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ends…). Only the results of comparisons between detour and routine strategies are of 

interest here. 

Furthermore, in order to test whether modifications of neuronal activity in 

navigation–related areas were linked to behavioral performance (navigation accuracy 

or recognition performance), performance regressors were added to the model. This 

allowed computing at the within-subject level the correlation between navigation (and 

recognition) performance and the navigation-related regional BOLD response. Hence, 

within-subjects’ correlation analyses looked for cerebral structures in which BOLD 

response during tests of place finding (or during the recognition task) correlated with 

subject’s trial-to-trial variations in performance. 

In all individual analyses, movement parameters derived from realignment of 

the functional volumes (translations in x, y and z directions and rotations around x, y

and z axes) were included as covariates of no interest in the design matrix. High-pass 

filtering was implemented in the matrix design using a cut-off period of 128 seconds 

to remove low frequency drifts from the time series. Serial correlations in fMRI signal 

were estimated with a restricted maximum likelihood (ReML) algorithm, using an 

intrinsic autoregressive model during parameter estimation. The effects of interest 

(i.e., main effects of condition, direct comparisons between the four tasks and intra-

individual modulations by performance) were then tested by linear contrasts, 

generating statistical parametric maps [SPM(T)]. Since no inference was made at this 

fixed effects level of analysis, individual summary statistic images were thresholded 

at p<0.95 (uncorrected).

The individual summary statistics images resulting from these contrasts were 

then further spatially smoothed (6 mm FWHM Gaussian kernel) and entered in a 

second-level analysis, corresponding to a random effects (RFX) model in which 
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subjects are considered random variables. A global null analysis (Friston et al., 2005) 

computed at the RFX level aimed at highlighting the brain areas commonly engaged 

during navigation in the four experimental conditions. Restricted maximum likelihood 

estimates of variance components were used to allow possible departure from the 

sphericity assumptions in conjunction analyses (Friston et al., 2002). It should be 

noted that a significant conjunction does not mean all contrasts were individually 

significant (i.e., conjunction of significance), but rather means that the contrasts were 

consistently and jointly significant (Friston et al., 2005). Additionally, we investigated 

the neural activity that differentiated good navigators from bad ones in our 

population. To do so, correlations were computed at the RFX level between each 

subject’s individual contrast image of the main effect of navigation and its average 

behavioral performance for this condition. 

The resulting set of voxel values for each contrast constituted a map of the t 

statistic [SPM(T)], thresholded at p<0.001 (uncorrected for multiple comparisons). 

Statistical inferences were then obtained after corrections at the voxel level using 

Gaussian random field theory (Worsley et al., 1996), either pcorr<0.05 (FWE) 

corrected for multiple comparisons in the whole brain volume, or psvc(10mm) <0.05, 

corrected in a small spherical volume (radius 10 mm) around a priori locations of 

activation in structures of interest, taken from the literature (Table 1, Supplemental 

Data). Uncorrected values at p < .001 are reported descriptively only. 

Finally, posterior probability maps enabled conditional or Bayesian inferences 

about regionally specific effects, allowing us to ensure that a lack of significant 

statistical effect in a given contrast was not merely due to a failure to detect this effect 

using classical inferences (Friston and Penny, 2003).
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For all activated voxels, anatomical localization was determined based both on 

stereotactic coordinates using the co-planar stereotactic atlas of the human brain 

(Talairach and Tournoux, 1988) after coordinates conversion using M. Brett’s set of 

linear transformations (http://www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html) and 

an automatic algorithm labelling (AAL toolbox; Tzourio-Mazoyer et al., 2002). 

Confirmation of precise anatomical localization was made based on individuals’ and 

mean structural MR images. 

Results

Behavioral performance 

In the Impoverished, Natural and Alternate conditions, subjects were required 

to reach within 35 s a given target from a designated starting point. A quantitative 

estimate of navigational performance was given by the distance remaining between 

the subject’s actual location at the end of testing and the target, relative to the total 

length of the shortest possible route. Thus, a value comprised between 0 and 1 

indicates that the subject moved towards the target on the optimal path and the smaller 

the value the closest the subject was from the target. In contrast, a value >1 indicates a 

displacement in the direction opposite to the target. 

As expected given the absence of contextual cues during route retrieval, 

performance in the Impoverished condition was weaker than in the Natural condition 

(Table 1a, p<0.001). In order to render performance comparable in the Alternate 

condition with the index obtained in the other tasks, we measured not only the 

absolute performance (mean distance remaining to the target relative to the total 

length of the path = 0.40; SD = 0.16) but also a corrected index relative to an 

imaginary point located 35 units apart from the starting point on the new optimal path. 
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This latter measure allows a direct comparison of the subjects’ efficiency to find their 

way between the Alternate and the other conditions. Note that both measures were 

correlated at the within-subject level (r = 0.78, p<0.001). Results indicate that 

corrected performance in the Alternate condition was better than in the Impoverished 

(p<0.001) but did not differ from the Natural (p>0.6) condition (see Table 1a). This 

result indicates that the Impoverished condition was harder than the two other 

conditions. In contrast, forcing subjects to find an alternative route to a given target 

does not reduce their navigation efficiency as performance, when expressed relative to 

the same path length, did not differ in the Alternate and Natural conditions. 

Additionally, we found that performance in the Natural condition was 

correlated with performance in the Recognition memory task (i.e. number of correct 

recognitions; p<0.01) and in the Impoverished condition (p<0.01; see Table 1b). 

Performance in the Impoverished condition was also correlated with performance in 

the Alternate condition (p<0.05; see Table 1b). These results indicate that both spatial 

and contextual memory components contribute to accurate navigation in the Natural 

condition. It also suggests that performance in the Alternate condition, where subjects 

had to devise an unfamiliar path to reach the target, relies more on the capacity to 

elaborate an accurate cognitive map of the town, likewise in the Impoverished 

condition. 

Brain imaging data

Navigation-related activations

A conjunction analysis across the Natural, Impoverished, Alternate and Recognition

conditions revealed an increase in navigation-related blood oxygen level dependent 

(BOLD) responses in an extended hippocampo-neocortical network, including the 
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hippocampus bilaterally as well as occipital, parietal and frontal areas (pcorr<0.05; 

Table 2; see Fig. 2b for navigation effects in separate conditions). 

Besides these commonalities, differences in navigation-related brain activity 

were found between the four conditions. There was higher activity in the Natural than 

in the Impoverished condition in the left fusiform gyrus (psvc<0.05), right superior 

temporal gyrus and cuneus (p<0.001; Table 3). The reverse comparison was non 

significant. As compared to the Natural condition, there was higher activity in the left 

parahippocampal gyrus (psvc<0.05), the bilateral frontal areas (anterior cingulate and 

superior, inferior and middle frontal gyri) and in the caudate nuclei (psvc<0.05) in the 

Alternate condition. The reverse comparison was non significant. As compared to the 

Impoverished condition, there was higher activity mainly in the bilateral fusiform gyri 

(pcorr< 0.05; Table 3) in the Alternate condition, but also in the lateral temporal and 

frontal areas (p<0.001, uncorrected). The reverse comparison did not yield any 

significant activation. Finally, navigation in the Recognition condition was associated 

with higher activity than in the three other conditions in frontal areas, lateral temporal 

cortex (superior and middle temporal gyri), precuneus, retrosplenial and posterior 

parietal cortices (p<0.001, uncorrected, see Table 4).

In the Alternate condition, the regional cerebral activity was analyzed 

separately as a function of the subjects’ behavior during navigation. The underlying 

hypothesis was that finding an alternative to the pathway previously learned as 

optimal by the subject should engage more actively the hippocampus and 

parahippocampal area than navigating along a well-known route. We also speculated 

that navigating along the subject’s usual path could possibly rely on a response-based 

(habit) navigation strategy associated with caudate activity (Iaria et al., 2003; Orban et 

al., 2006). Therefore, the regional cerebral activity associated with navigation in the 
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known portion of the route (i.e. corresponding to the portion of the route taken by the 

subject in the immediately preceding Natural condition) was contrasted within each 

trial with the activity associated with the portion of the route that corresponded to a 

detour. This analysis revealed higher activity in the detour than in the well-known part 

of the route bilaterally in the left ([-30 –50 -6], Z score = 4.38, pcorr<0.05) and right 

([30 –42 -10] Z score = 4.13, psvc< .05; Fig. 3) parahippocampal gyrus, as well as in

fusiform and frontal, parietal and occipital areas (p<0.001 uncorrected; Table 5). In 

contrast, the analysis failed to evidence differential activation in the caudate nucleus 

between routine and detour behaviors. Posterior probability maps (Friston and Penny, 

2003) indicated a low probability to disclose a caudate activation in the detour part of 

the road (all P < 0.27, range 0.05-0.27).

Performance-related activations

Next, to evidence the brain areas where activity varies from trial to trial according to 

navigation efficiency within an individual, we looked at the correlation between 

BOLD response during navigation and the performance measure at each trial within 

each condition (i.e., performance was the distance remaining to target in the Natural, 

Impoverished and Alternate conditions; the correct recognition score in the 

Recognition condition). This analysis highlighted correlation profiles between 

performance and activity in medial temporal areas (Fig. 4): left hippocampal activity 

was correlated with navigation performance in the Impoverished and Natural 

conditions, whereas bilateral parahippocampal activity was associated with 

performance in the Recognition and Alternate conditions. Additionally, performance 

was correlated with left parietal activity in the Natural condition, with right or 

bilateral parietal activity in the Recognition and Alternate conditions respectively, and 
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with predominant left frontal activity in the Recognition condition (Table 6). Finally, 

an interaction analysis revealed that activity in the left hippocampus, 

parahippocampal gyri, parietal lobe (mainly on the right side), frontal areas, 

precuneus and caudate nuclei correlated more with navigation performance in the 

Alternate than in the Natural condition (Table 7). 

In a second step, we determined the brain areas where activity varies between 

subjects according to their global navigation efficiency, i.e. the brain regions that 

differentiate good from poor navigators. At the between-subjects level, we evidenced 

correlations between subjects’ average performance score and their navigation-related 

BOLD response within each condition. Positive correlations indicate brain areas that 

activated more in good than poor navigators. Results are summarized in Table 8 and 

illustrated in Fig. 4. Positive correlations with hippocampal activity were found only 

in the Impoverished condition (psvc<0.05). At variance, performance was positively 

correlated with activity in the right lateral temporal cortex in all conditions, and with 

activity in the precuneus, inferior parietal lobule and frontal areas in the 

Impoverished, Natural and Alternate conditions. 

Discussion

The present study aimed at unravelling the neural substrates of spatial and 

contextual components of spatial memory-based navigation during route retrieval in 

an ecologically valid environment. Besides prominent commonalities found in a large 

hippocampo-neocortical network known to be involved in topographical learning in 

humans (Aguirre et al., 1996; Maguire et al., 1998b; Burgess et al., 2002; Hartley et 

al., 2003; Voermans et al., 2004; Peigneux et al., 2004, 2006; Orban et al., 2006; 

Spiers and Maguire, 2006a), our results yield evidence for a partial dissociation 
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between the brain areas that sustain these primary memory components, eventually 

leading to efficient navigation within a newly learned environment. 

Between-tasks comparisons revealed subtle differences in navigation-related 

brain activity that may relate to various cognitive processes. We interpret the higher 

fusiform, superior temporal and cuneus activity in the Natural than in the 

Impoverished condition (also found for the fusiform gyrus in the comparison between 

Alternate and Impoverished conditions) as being induced by the profuseness of visual 

details (objects, colors, textures, …) in the former case, in line with Maguire et al. 

(1998a) who found increased activation in fusiform and parahippocampal regions 

when the navigated environment was visually enriched. Better performance in the 

Natural than in the Impoverished condition is also in accordance with rodent studies 

having demonstrated that exposure to an enriched environment enhances memory 

performance in spatial tasks (Rosenzweig and Bennett, 1996; Frick et al., 2003). In 

the Alternate condition, in which subjects had to find a new way to reach the target, 

higher activity was observed in the left parahippocampal gyrus and frontal areas than 

in the Natural condition. Since the degree of enrichment was similar between those 

conditions, we propose that higher parahippocampal activity in the Alternate 

condition reflects an increased dependency upon map-like representations of the 

environment to find an alternative route near the target. At variance, higher prefrontal 

involvement may be explained by increased requirements for strategy switching in the 

presence of obstacles, a reading consistent with prior studies having used tasks with 

similar cognitive demands (Maguire et al., 1998b; Rosenbaum et al., 2004; Spiers and 

Maguire, 2006a). Frontal activations are also in line with a role for these areas in 

planning (Shallice, 1982) and decision making (Fellows, 2004 for review) in the 
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Alternate condition, and increased working memory demands when updating 

topographical information (Gron et al., 2000). 

In the Recognition task, cerebral activity was consistently higher than in the 

three other conditions in a large set of brain areas encompassing the precuneus, 

retrosplenial and posterior parietal cortices, and frontal and lateral temporal cortices. 

Frontal areas are well known to be involved in contextual and source memory tasks 

(Ranganath and Knight, 2003). Their involvement in the Recognition condition could 

therefore reflect the effortful process associated with retrieving the environmental 

information acquired during the exploration period, in order to ascertain possible 

differences with the actual scene when following the track. Also, fMRI studies have 

highlighted a role for the precuneus and posterior parietal cortex in source memory 

tasks (Lundstrom et al., 2003, 2005; Cavanna and Trimble, 2006), and activations in 

these regions, extending to posterior cingulate and retrosplenial cortices as well as to 

the inferior parietal lobule, have been consistently linked to episodic retrieval 

processes (Wagner et al., 2005). Finally, higher activity in the lateral temporal cortex 

in the Recognition condition is in line with the results of intracerebral recording in 

superior, middle and temporal regions in patients performing a series of memory tasks 

(Ojemann et al., 2002). The authors observed significant changes of neural activity 

during a recognition task mainly in the superior temporal gyrus and the superior part 

of the middle temporal gyrus, confirming the role of lateral temporal cortex in 

memory. 

It is worth noticing that activation of the hippocampus per se was not different

between the four navigation conditions. Beyond its well-known role in human 

navigation, numerous studies indicate that the hippocampus is also involved in 

relational memory (Davachi, 2006, for review; Tendolkar et al., 2007). Such a double
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role could explain why hippocampal activity is observed in all memory tasks, even if 

they were designed to tap selectively spatial or associative (contextual) memory 

processes. A lack of differential involvement of the hippocampus across tasks could 

also be due to the fixed order in which we administered the tasks. Indeed, such an 

order constraint, that limits interference between conditions, could have masked

hippocampal activation since neural activity in this region is known to decrease as 

stimuli become more familiar (Nyberg, 2005). Nevertheless, even if the same 

pathways were presented several times, objects were presented in an unexpected 

context in the Recognition condition. Detection of contextual novelty also implies the

hippocampus (Nyberg, 2005) and may have compensated, at least in part, for the 

repetition of pathways. Furthermore, in the Alternate condition, the fact that we added 

barriers along the road created another form of novelty, and may have compensated

for the fact that this condition was the last administered. Though, a comparable 

hippocampal involvement both in spatial and contextual memory is consistent with 

the report of independent codes for spatial and episodic memory within this same 

region (Leutgeb et al., 2005). Independent encoding patterns may enable a 

simultaneous representation of spatial and episodic information, giving additional 

ground for these two cognitive components to be generally both involved in 

navigation. However, when brain activity in the Alternate condition was analyzed 

separately as a function of the subjects’ behavior, we found that the 

hippocampus/parahippocampal area and the fusiform gyrus were more activated in the 

detour than in well-known part of the route. This result can not be attributed solely to 

a novelty effect as the alternate routes to reach the target are, for the most part, known 

by the subjects. This confirms that two different navigation strategies were embedded 

in the Alternate condition, that must be segregated to find out the neural correlates of 
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the spatial component. Indeed, it is mostly in the detour portion of the test trial that 

subjects actually need to rely more heavily on a mental map of the environment to 

find an alternative route to reach the target, and therefore activate more regions 

known to be involved in spatial memory. Notwithstanding, an alternative 

interpretation could be that differences in brain activity between these two conditions 

relate to behavioral or attentional processing differences, as subjects might have 

attended more to particular aspects of the environment during the detour than in the 

routine segments. These results also confirm those reported by Rosenbaum et al. 

(2004) but depart from those of Spiers and Maguire (2006a), who disclosed an 

involvement of the retrosplenial cortex in planning new routes, i.e. when 

topographical representations need to be updated, whereas we did not. However, this 

apparent discrepancy could be resolved considering that the retrosplenial cortex is 

always activated throughout the navigation process, as acknowledged by these authors 

themselves. Therefore, a direct comparison between navigation conditions would be 

unable to evidence a retrosplenial activity-related behavior. Finally, when comparing 

brain activity associated with routine and detour behavior within the Alternate 

condition, no differential activation of the caudate nucleus was evidenced (although 

caudate activity was globally higher than in the Natural condition). Prior studies 

indicate that navigation-related caudate activity is present when the environment is 

well-learned (Packard and Knowlton, 2002; Hartley et al., 2003) and/or consolidated 

for the long-term after sleep (Orban et al., 2006). Therefore, a lack of differential 

caudate activation between routine and detour strategies suggests an incomplete 

consolidation of the town’s knowledge at the time of testing. 

Although the hippocampus is involved in all navigation conditions, hints for a 

dedicated association of the hippocampus with the spatial memory component come 
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from correlation analyses in which we seek the brain areas associated with variations 

in behavioral performance. At the within-subject level, trial-by-trial variations in 

place-finding efficiency was correlated with hippocampal activity in the Impoverished 

and Natural conditions, in line with prior studies indicating that the hippocampus is 

involved in accurate navigation (e.g., Maguire et al., 1998b; Hartley et al., 2003; 

Peigneux et al., 2004). Similarly at the between-subjects level, we found greater 

hippocampal activation in accurate than in poor navigators, like Maguire et al. 

(1998b) and Orban et al. (2006), but only in the Impoverished condition. This latter 

correlation, exclusively disclosed in the most difficult task, suggests that only those 

subjects who were truly able to create a hippocampus-related spatial representation of 

the town during the exploration period have been able to rely successfully on this 

map-like representation at the time of testing in a non-enriched, un-contextualised 

environment. As a whole, these findings concur with the idea that hippocampus 

activity sustains accurate way-finding in man (Hartley et al., 2003). Contrary to our 

expectations however, no correlation was found with hippocampal activity in the 

Alternate condition, also designed to probe the spatial memory component. A 

potential explanation for this lack of effect could be due to the fact that this condition 

came last in the protocol, which may have contributed to the reduction in individual

performance variability (SD = .13) as compared to the other conditions (SD > .2), 

decreasing the power of correlation.

At variance in the Recognition condition, correlations between navigation-

related cerebral activity and trial-by-trial variations in correct recognition scores were 

found in the parahippocampal area, noticeably in the perirhinal cortex (Brodmann 

areas 35 and 36) known to be a key region for visual recognition memory (Meunier et 

al., 1993; Rauchs et al., 2006). The parahippocampal cortex, and notably the 

Page 25 of 51

John Wiley & Sons

Hippocampus

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Rauchs et al.,  Page 26

parahippocampal place area, is also known to selectively respond to and identify 

individual visual scenes (Epstein and Higgins, 2007) and encode the geometry of the 

local environment (Epstein and Kanwisher, 1998). Still, this role cannot solely explain 

the correlations found in the contextual condition, in which subjects had to recognize 

landmarks in their specific context. In contrast, our results are consistent with the idea 

that the parahippocampal cortex is also involved in binding processes, mediating

contextual associations between spatial and non-spatial stimuli (Aminoff et al., 2007). 

Such a function has already been aforementioned for the hippocampus. Nevertheless, 

it appears that a clear-cut dissociation between the contribution of the hippocampus 

and parahippocampal cortex to memory is not so obvious (see for example Gold et al., 

2006). However, Bohbot et al. (1998) found that some patients with hippocampal 

lesions were still able to retain information over half an hour in a human adaptation of 

the Morris water maze task, whereas other patients with parahippocampal areas

damage were not, suggesting implication of the parahippocampal cortex itself in 

spatial memory. Aminoff et al. (2007) additionally provided evidence for a functional 

dissociation within the parahippocampal cortex, with its anterior part involved in 

associations of non-spatial elements, and its posterior part (overlapping with the 

parahippocampal place area) mediating associations of spatial stimuli. In our study, 

correlations were observed in the perirhinal cortex (i.e., the anterior part of the 

parahippocampal gyrus) in a condition in which subjects had to associate landmarks 

and their specific context. In the framework of the dissociation proposed by Aminoff 

et al. (2007), this suggests that performance in the contextual condition was indeed 

achieved with minimal requirements for the spatial memory component.

Beside segregated correlations between hippocampal (respectively 

parahippocampal) activity and spatial (respectively contextual) memory, we found 
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that trial-by-trial, within-individual variations in navigation efficiency also correlate 

with cerebral activity in a set of neocortical regions essentially encompassing the 

inferior parietal lobe (IPL) and the left frontal cortex. Activity in the left IPL was 

correlated with performance in the Natural, Recognition and Alternate conditions, 

confirming the role of this brain area in episodic retrieval and retrieval success 

(Wagner et al., 2005). Since IPL activity was linked to behavioral indexes both in the 

Alternate, Recognition and Natural conditions, it suggests that this area integrates 

spatial and contextual information to enable accurate navigation. Conversely, 

performance in the Recognition task was correlated with left frontal activity, which 

confirms the crucial role of the left frontal cortex in retrieval success (Cabeza and 

Nyberg, 2000; Konishi et al., 2000), and the involvement of frontal areas in 

recognition or source memory tasks, as evidenced using fMRI (Fan et al., 2003). 

Finally, activity in bilateral parietal cortices was correlated with navigation 

performance in the Alternate condition. Recruitment of the right hemisphere and more 

particularly of the right infero-posterior parietal cortex, known to be involved in 

spatial processes (e.g., Woelbers et al., 2004), is compatible with increased reliance 

upon a spatial map when forced to find an alternative route to reach the target after a 

barrier has prevented using the optimal path. Note however that correlations between 

performance and activity in the parahippocampal gyrus were found both in the 

Recognition and Alternate conditions. These data suggest that besides a crucial 

involvement of the spatial component in the Alternate condition, concurrent 

processing and remembering of contextual information is not to be excluded.

Finally, correlation analyses conducted at the between-subject level aimed at 

evidencing the neural structures whose activity differentiates good from poor 

navigators, based on their average measure of performance in each condition. Our 
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study essentially confirms the results obtained by Hartley et al. (2003) who made a 

comparison between navigation-related activity in novel versus well-learned routes. 

Here, we have additionally extended these observations to other navigation-related 

behaviors or strategies. As previously reported (Hartley et al., 2003), there was a 

significant association between lateral temporal activity and performance in all 

experimental conditions. Furthermore, in all experimental conditions except the 

Recognition one, navigation performance was correlated with BOLD responses in a 

network including the frontal areas bilaterally, the precuneus and the parietal areas 

notably including the inferior parietal lobule. An association between performance 

levels and activity in frontal areas may reflect the successful involvement of executive 

functions in planning routes (Maguire et al., 1998b; Hartley et al., 2003), whereas 

posterior parietal activations are consistent with a role for this area in visuospatial 

attention (Grefkes and Fink, 2005) and in mental imagery (Cavanna and Trimbles, 

2006). One may speculate that the most accurate navigators are those individuals who, 

besides higher hippocampal involvement, more efficiently allocate their visuospatial 

attention and executive functioning resources to the task. 

To sum up, the present study provides evidence for a partial segregation of the 

neural bases of two primary memory processes usually embedded during active 

navigation in humans. Although these memory components primarily rely on the 

integrity of a large hippocampo-neocortical network during navigation, behavior-

based analyses suggest that activity in the hippocampus mostly sustains spatial 

memory, whereas parahippocampal activity preponderantly supports contextual 

memory. Their combined action eventually leads to successful route retrieval in an

ecologically valid, virtual environment. Further investigations should assess whether 

dissociation between the spatial and contextual memory components may be observed 
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in patients with circumscribed hippocampal lesions, and how compensatory cognitive 

mechanisms may be promoted to help them coping with their memory impairment in 

everyday navigation.
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Figure legends: 

Figure 1: Virtual environment.

The map depicts an aerial view of the 3D virtual town in which subjects navigated at 

the ground level. Snapshots show the three locations used as target for testing during 

the fMRI sessions. The 10 starting points are represented by letters (from A to J) with 

associated symbols indicating the target location to reach.

Figure 2: 

a. Navigation conditions. The four images illustrate the same location in the 

environment as viewed by the subject in the four experimental conditions. In the 

Impoverished condition, subjects were placed in the same environment as during the 

exploration period, but uniformly deprived of all objects, wall and ground features. In 

the Natural and Alternate conditions, the environment was exactly the same as in the 

exploration but in the Alternate condition a barrier blocked the direct, optimal 

pathway between the starting point and its associated target. In the Recognition task, 

subjects had to follow a route marked with red or green dots on the floor while paying 

attention to the environment. They had then to determine using a multiple-choice 

panel (see Supplementary Figure) if and where was any contextual modification as 

compared to the town explored during learning. 

b. Navigation-related cerebral activity. Each image shows areas where BOLD 

response is greater than the mean (baseline) activity at the population level, during 

navigation blocks within the experimental condition illustrated above. Contrasts are 

displayed at pcorr <0.05 superimposed on the MNI template. The blue crosshair locates 

the hippocampus. The colour bar indicates the t statistic associated with each voxel.
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Figure 3: Detour-related activation in the hippocampus. Left panel illustrates 

brain areas where activity was higher in the detour than in the well-known portion of 

the route in the Alternate condition. Contrasts are displayed at p<0.001 (uncorrected). 

The image shows the main peak of activation, located in the left parahippocampal 

gyrus ([-30 –50 –6], psvc(10mm) <0.05) superimposed on the MNI template. Detour-

related activation are also reported in the right parahippocampal gyrus, left insula, left 

frontal and parietal cortices, cuneus bilaterally and right superior and inferior 

temporal gyri (p<0.001(uncorrected), Table 5). The color bar indicates the t statistic 

associated with each voxel. Right panel illustrates the size of effect for each behavior 

(D: detour, K: well-known) in the right and left hippocampus and parahippocampal 

gyrus. Error bars are standard deviations. 

Figure 4: Brain-behavior correlations. Within-individual between-trials (left panel) 

and between-subjects (right panel) correlations of brain activity with navigation 

performance in the four experimental conditions. Images are displayed at p<0.001 

(uncorrected). The color bar indicates the t statistic associated with each voxel.

Figure in Supplemental Data: 

Figure 1: Choice panel of the recognition task. At the end of each 35-s walk, 

subjects were presented a four-choice panel composed of three pictures taken along 

the road just previously followed and a white square. Using the keypad, they had to 

indicate in no more than 10 s the modified image, or to select the white square if they 

thought that no modification was made. Once their choice made, the selected image 

appears surrounded by a yellow rectangle. 
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Figure 1: Virtual environment. The map depicts an aerial view of the 3D virtual town in 
which subjects navigated at the ground level. Snapshots show the three locations used as 

target for testing during the fMRI sessions. The 10 starting points are represented by 
letters (from A to J) with associated symbols indicating the target location to reach.  
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Figure 2: a. Navigation conditions. The four images illustrate the same location in the 
environment as viewed by the subject in the four experimental conditions. In the 

Impoverished condition, subjects were placed in the same environment as during the 
exploration period, but uniformly deprived of all objects, wall and ground features. In the 

Natural and Alternate conditions, the environment was exactly the same as in the 
exploration but in the Alternate condition a barrier blocked the direct, optimal pathway 
between the starting point and its associated target. In the Recognition task, subjects 

had to follow a route marked with red or green dots on the floor while paying attention to 
the environment. They had then to determine using a multiple-choice panel (see 

Supplementary Figure) if and where was any contextual modification as compared to the 
town explored during learning. b. Navigation-related cerebral activity. Each image shows 
areas where BOLD response is greater than the mean (baseline) activity at the population

level, during navigation blocks within the experimental condition illustrated above. 
Contrasts are displayed at pcorr <0.05 superimposed on the MNI template. The blue 

crosshair locates the hippocampus. The colour bar indicates the t statistic associated with 
each voxel.  
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Figure 3: Detour-related activation in the hippocampus. Left panel illustrates brain areas 
where activity was higher in the detour than in the well-known portion of the route in the 
Alternate condition. Contrasts are displayed at p<0.001 (uncorrected). The image shows 

the main peak of activation, located in the left parahippocampal gyrus ([-30 �50 �6], 
psvc(10mm) <0.05) superimposed on the MNI template. Detour-related activation are 
also reported in the right parahippocampal gyrus, left insula, left frontal and parietal 

cortices, cuneus bilaterally and right superior and inferior temporal gyri 
(p<0.001(uncorrected), Table 5). The color bar indicates the t statistic associated with 

each voxel. Right panel illustrates the size of effect for each behavior (D: detour, K: well-
known) in the right and left hippocampus and parahippocampal gyrus. Error bars are 

standard deviations.  
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Figure 4: Brain-behavior correlations. Within-individual between-trials (left panel) and 
between-subjects (right panel) correlations of brain activity with navigation performance 
in the four experimental conditions. Images are displayed at p<0.001 (uncorrected). The 

color bar indicates the t statistic associated with each voxel. 
190x254mm (300 x 300 DPI)  
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Table 1: a. Behavioral performance

Condition p
Natural <0.001 (a)

Impoverished <0.001 (a)
Alternate (corrected performance) <0.001 (b)

Recognition

b. Correlation analyses

Natural Alternate
Impoverished r = 0.61 (p<0.01) r = 0.56 (p<0.05)
Recognition r = -0.61 (p<0.01) ns

ns: non significant.

0.24 ± 0.13

64.1 ± 13.9 %

Mean performance ± SD (arbitrary units)

(a): in comparison to the Impoverished or Natural condition; (b): in comparison to the Impoverished
condition.

0.29 ± 0.24
0.61 ± 0.22 

Mean percentage of correct recognitions ± SD
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Table 2: Common navigation-related network.

Cluster size x y z Z p FWE-corr
(no. of voxels)

R lingual gyurs 8269 10 -90 -4 7.15 0.000
middle occipital gyrus 20 -94 6 7.01 0.000
cuneus 22 -92 20 6.63 0.000

L middle occipital gyrus 280 -46 -76 2 6.36 0.000
R middle / superior frontal gyrus 114 26 2 56 6.10 0.000
L cerebelum 260 -32 -64 -32 6.10 0.000
R hippocampus 74 24 -28 -4 5.94 0.000
L precentral gyrus 128 -28 -4 54 5.77 0.001
L calcarine sulcus 75 -18 -58 14 5.66 0.002
R calcarine sulcus 135 22 -58 16 5.65 0.002
L middle cingulate gyrus 19 -14 -18 44 5.56 0.003
L postcentral gyrus 72 -42 -28 44 5.54 0.003

Vermis 435 0 -74 -32 5.52 0.004
R cerebelum 8 -68 -42 5.35 0.009
L hippocampus 4 -22 -28 -8 5.11 0.025
L superior parietal gyrus 7 -18 -64 66 5.10 0.025
R inferior parietal lobule 7 34 -46 50 5.10 0.026

Region

Conjunction analysis of navigation-related effects in the four conditions. All listed regions are statistically
significant at the pcorr <0.05 level. The coordinates (x, y, z) refer to the strongest activation within a given
region. L: left; R: right. 
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Cluster size x y z Z
(no. of voxels)

Natural > Impoverished
L fusiform gyrus 49 -26 -48 -16 3.78*
R superior temporal gyrus 78 38 16 -28 3.62
R cuneus 144 4 -90 34 3.60

Alternate > Natural
L middle frontal gyrus 151 -34 52 -4 4.46
L anterior cingulate gyrus 44 -10 22 46 4.20*
R middle cingulate gyrus 8 26 40 3.88
L superior frontal gyrus -2 38 40 3.12
R middle frontal gyrus 297 46 38 26 4.13
R inferior frontal gyrus 42 26 26 3.41
R cerebelum 161 12 -82 -28 4.00
L inferior frontal gyrus 144 -38 28 22 3.89
L parahippocampal gyrus 28 -22 -48 -10 3.76*
R precentral gyrus 222 50 10 34 3.71
R caudate nucleus 19 12 10 16 3.70*
L inferior temporal gyrus 38 -60 -58 -14 3.61
L lingual gyrus 18 -16 -76 2 3.60
R angular gyrus 57 54 -50 34 3.59
R thalamus 204 6 -10 -6 3.58
R superior frontal gyrus 29 26 64 10 3.57
L cuneus 15 -6 -66 24 3.57
L precuneus 92 -4 -68 62 3.57
R precuneus 4 -66 62 3.45
R calcarine sulcus 78 20 -56 6 3.55
R cerebelum 23 14 -60 -32 3.45
L caudate nucleus 22 -10 6 16 3.40*
R lingual gyrus 56 20 -76 -2 3.39
R fusiform gyrus 28 -66 -8 3.27
R inferior temporal gyrus 26 66 -28 -18 3.34
R superior parietal gyrus 12 20 -60 54 3.29*
L middle temporal gyrus 15 -60 -36 -12 3.29
L inferior parietal lobule 17 -36 -74 48 3.25

Alternate > Impoverished
L fusiform gyrus 2483 -22 -48 -14 6.01#
R fusiform gyrus 1866 30 -50 -16 4.80#
R inferior temporal gyrus 147 48 42 -16 4.18
L superior frontal gyrus 52 -22 50 42 3.90
R superior temporal gyrus 146 34 16 -26 3.82
L middle frontal gyrus 89 -50 34 30 3.79
R pulvinar 132 12 -26 2 3.73
R inferior frontal gyrus 78 44 28 20 3.65
L precuneus 109 -2 -66 56 3.51
R superior frontal gyrus 45 24 16 64 3.46
R supramarginal gyrus 55 54 -52 36 3.33
L medial part, superior frontal gyrus 16 -6 46 32 3.23
L posterior cingulate gyrus 15 -14 -58 12 3.19
R middle temporal gyrus 7 50 -72 24 3.15

Region

Table 3: Direct comparisons between navigaiton-related activity in the Natural,
Impoverished and Alternate conditions. 
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* : psvc < 0.05; # : pcorr < 0.05
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Table 4: Comparisons between navigation-related activity in the Recognition as compared to the 3 other conditions.

Recognition vs.
Impoverished Natural

Superior frontal gyrus [2 48 -14], 4.42; [-8 60 26], 5.33# [10 46 48], 4.09; [-12 58 28], 3.85
Middle frontal gyrus [-36 20 50], 3.71 [34 32 48], 3.80; [-36 24 36], 4.55
Inferior frontal gyrus [56 30 0], 3.96; [-60 20 8], 4.23 [62 26 12], 3.96; [-36 28 24], 5.01#

Middle cingulate gyrus [-8 -22 36], 3.25
Precentral gyrus [-36 6 46], 3.99 [42 -10 50], 4.16 ; [-50 -6 44], 3.71
Postcentral gyrus [62 -8 38], 3.59; [-36 -20 36], 3.55
Supramarginal gyrus [68 -40 24], 3.86 [66 -30 36], 3.26; [-54 -40 36], 4.30
Angular gyrus [60 -54 34], 3.67 [-44 -66 42], 3.44
SMA [6 14 70], 3.59; [-4 10 66], 3.31
Superior parietal lobule [22 -58 54], 3.41*
Inferior parietal lobule [-36 -62 52], 3.55
Paracentral lobule [-18 -28 66], 4.17
Superior temporal gyrus [56 -8 -12], 4.39; [-66 -22 6], 4.95 [48 -36 12], 4.91; [-64 44 16], 4.51
Middle temporal gyrus [60 -34 4], 4.76; [-52 0 -28], 5.01 [50 -12 -16], 4.60; [-30 10 -34], 3.70
Inferior temporal gyrus [-28 -4 -42], 3.50 [48 -48 -26], 3.29; [-52 -56 -20], 3.82
Amygdala [-30 6 -18], 3.40
Hippocampus [30 -12 -14], 3.45*
Parahippocampal gyrus [26 -38 -10],  3.16*
Fusiform gyrus [32 -48 -16], 3.34*;  [-34 -82 -18], 4.69
Lingual gyrus [-26 -62 -4], 3.71
Retrosplenial cortex [0 -42 26], 4.49 [0 -48 24], 4.90
Posterior cingulate cortex
Precuneus [4 -58 32], 3.71 [2 -58 48], 4.14*
Cuneus [8 -90 36], 3.54; [-2 -88 38], 3.79
Insula [-36 6 -12], 3.44
Caudate nucleus [-6 2 10], 4.11
Putamen [20 8 -6], 3.97; [-18 4 -10], 4.94
Thalamus [12 -24 4], 3.80; [-14 -24 0], 3.79 [-14 -24 2], 3.40
Cerebellum [-50 -64 -22], 4.18 [6 -30 -50], 3.79; [-50 -64 -20], 3.43

All activations are reported at p<0.001 (uncorrected) except * : psvc < 0.05 and # : pcorr < 0.05.
Results are displayed as follows: [coordinates in MNI template], z score.
SMA: supplementary motor area.
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her conditions.

Alternate

[54 30 -2], 3.94
[-4 -22 42], 3.57*

[50 0 40], 3.85; [-22 -22 60], 3.96
[22 -36 64], 3.84
[-64 -48 24] 4.81
[-48 66 30], 3.85

[60 -6 -4], 5.36#

[-52 -20 -4], 4.91#

[0 -46 28], 4.41
[16 -44 30], 3.71
[4 -46 20], 4.12

[-34 -26 20], 3.68
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Region Cluster size x y z Z
( voxels)

    1) Detour > Well-known part of the route
L parahippocampal gyrus 918 -30 -50 -6 5.12#

L thalamus -20 -32 4 4.10
L fusiform gyrus -34 -46 -20 3.92
L insula 148 -32 -2 18 4.58
L inferior frontal operculum -34 6 20 4.16
L superior parietal gyrus 721 -14 -84 50 4.47
L middle occipital gyrus -28 -86 12 3.96
L cuneus -20 -86 26 3.45
R cuneus 1305 14 -90 32 4.34
R superior temporal gyrus 203 46 -78 26 4.26
R parahippocampal gyrus 188 30 -42 -10 4.13*
R inferior temporal gyrus 22 50 -56 -8 3.53
L superior frontal gyrus 43 -20 -4 56 3.52

    2) Well-known part of the route > Detour
R superior temporal gyrus 42 34 14 -44 3.70
L supramarginal gyrus 34 -60 -58 32 3.22
# : pcorr <0.05; *: psvc <0.05.

Table 5: Brain areas significantly more activated in the detour and well-known part of the
route (Alternate condition).
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Table 6: Performance effects: within subjects correlations.

Impoverished Natural Recognition Alternate

1) Medial temporal areas
Hippocampus L: -14 -8 -16 L: -26 -12 -24 
Parahippocampal gyrus L: -30 2 -40 L: -26 8 -22 

R: 38 -44 -12 R: 34 -34 -12 
L: -30 -46 -12 

Fusiform gyrus L: -58 -10 -30 L: -50 -64 -18 

2) Lateral temporal areas
Middle temporal gyrus L: -36 -64 18 L: -58 -34 -4 L: -62 -54 6 
Inferior temporal gyrus R: 68 -22 -20 

3) Parietal areas
Inferior parietal lobule L: -54 -48 52 R: 36 -62 44 L: -36 -32 44 
Post-central gyrus L: -32 -28 38 L: -48 -28 38 
Supramarginal gyrus L: -48 -46 32 

R: 60 -48 34 
Lateral sulcus R: 16 10 -12
Angular gyrus R: 44 -70 34 
Paracentral lobule R: 10 -34 70

4) Occipital areas
Precuneus L: -3 -72 50
Middle occipital gyrus R: 28 -94 0

5) Frontal areas
Superior frontal gyrus L: -30 64 2 R: 8 66 20

L: -2 -30 58
Middle frontal gyrus L: -38 58 -4

R: 28 -32 40
Inferior frontal gyrus L: -48 28 18 
Anterior cingulate gyrus R: 4 40 8

6) Other structures
Middle cingulate gyrus L: -2 -6 36
Posterior cingulate gyrus L: -2 -34 40 L: -14 -44 32
Putamen L: -28 -16 -8
Pulvinar L: -10 -26 6

R: 12 -24 8
Amygdala L: -24 -4 -18
Cerebellum R: 44 -72 -40 R: 14 -62 -50

Region
Condition

All regions listed are statistically significant at the p<0.001 level. For brevity, each region that correlated
with performance is listed only once; when several peaks were observed in the same region, the
coordinates (x, y, z) refer to the strongest activation. L: left; R: right. 
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Region Cluster size x y z Z
( voxels)

R/L precuneus 1595 16 -58 30 4.69
-14 -60 24 4.53

L middle frontal gyrus 72 -38 60 -2 4.51
R inferior parietal lobule 462 58 -46 40 4.28
R middle temporal gyrus 108 66 -20 -18 4.16
L superior temporal gyrus 39 -58 -20 2 4.12
L caudate nucleus 66 -14 2 20 4.11
R caudate nucleus 49 -14 6 16 4.06
L cerebellum 58 -30 -40 -34 4.01
R anterior cingulate gyrus 94 2 46 6 4.01
R cerebellum 200 14 -62 -48 3.92
R middle cingulate gyrus 38 10 -42 36 3.78
R superior frontal gyrus 40 20 10 52 3.73
R superior parietal lobule 95 -24 -68 60 3.63
L hippocampus 34 -20 -36 -4 3.45
L parahippocampal gyrus -24 -42 -8 3.35
R parahippocampal gyrus 20 30 -42 -8 3.35
R inferior frontal gyrus 17 42 42 8 3.33
R middle frontal gyrus 17 30 60 10 3.28

Table 7: Brain areas whose activity correlated more with performance in the Alternate
than in the Natural condition, at the within-subject level (p<0.001, uncorrected). 
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Table 8: Performance effects: between subjects correlations.

Impoverished Natural Recognition Alternate

1) Lateral temporal areas
Superior temporal gyrus R: 58 -4 0 
Middle temporal gyrus L: -60 -36 0 # R: 54 -28 -14

R: 66 -34 0 #
Inferior temporal gyrus R: 42 -16 -24

2)Medial temporal structures
Hippocampus L: -22 -14 -24 *

3) Parietal areas
Inferior parietal lobule R: 52 -60 44 # L: -54 -52 38 R: 52 -64 46
Post-central gyrus
Supramarginal gyrus R: 54 -58 36 L: -62 -48 24

4) Occipital areas
Precuneus L: -2 -54 32 # R: 2 -56 34 L: -4 -52 32

R: 20 -50 36

5) Frontal areas
Superior frontal gyrus L: -8 58 28 # L: -16 56 16 L: -12 56 14
Middle frontal gyrus L: -40 14 48 L: -48 38 -2
Inferior frontal gyrus L: -50 30 4 R: 54 30 8

R: 54 30 0
Precentral gyrus R: 20 -26 78 R: 22 -26 51
Anterior cingulate gyrus R: 10 34 8 L: -16 38 4
Insula L: -36 -14 20 R: 42 -16 8

6) Other structures
Cerebellum L: -26 -88 -38 R: 28 -82 -38 L: -32 -84 -38

R: 30 -86 -40

All regions listed are statistically significant, at least, at the p<0.001 level. For brevity, each region
that correlated with performance is listed only once; when several peaks were observed in the same
region, the coordinates (x, y, z) refer to the strongest activation. L: left; R :
right; #: p<0.05 (FWE corrected); *: psvc<0.05.

Region
Condition
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