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Abstract

Cystatin C is a low-molecular-weight protein which
has been proposed as a marker of renal function that
could replace creatinine. Indeed, the concentration of
cystatin C is mainly determined by glomerular filtra-
tion and is particularly of interest in clinical settings
where the relationship between creatinine production
and muscle mass impairs the clinical performance of
creatinine. Since the last decade, numerous studies
have evaluated its potential use in measuring renal
function in various populations. More recently, other
potential developments for its clinical use have
emerged. This review summarises current knowledge
about the physiology of cystatin C and about its use
as a renal marker, either alone or in equations devel-
oped to estimate the glomerular filtration rate. This
paper also reviews recent data about the other appli-
cations of cystatin C, particularly in cardiology, oncol-
ogy and clinical pharmacology.
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History

In 1961, three different studies independently
described a new protein found on immunoelectropho-
resis. Clausen, and Macpherson and Cosgrove found
the protein in cerebrospinal fluid (CSF) of healthy
patients but not in their blood (1, 2). Butler and Flynn
found the protein in 79% of urines of 31 patients with
tubular disease (3) and advanced the hypothesis that
the protein originated from plasma but could simply
not be measured because of a lack of methodological
sensitivity. This alkaline low-molecular-weight protein
appears in an electrophoresis after the g globulin
band, hence the first names given to it, such as ‘‘post-
g protein’’ or ‘‘g trace’’. Slightly later, different
authors confirmed that it was present in serum and
other body fluids (colostrum, saliva, seminal fluid and
ascites) (4–6). In 1979, Lofberg and Grubb from the
Lund University (Malmö, Sweden) described the
assay of g trace protein by radial immunodiffusion,
with a limit of detection of 300 mg/L and confirmed its
presence in blood, saliva and CSF but in different
amounts: its concentration in CSF was 5 times higher
than in plasma, explaining why it was initially discov-
ered in CSF (7). The same authors found far higher
serum concentrations in three dialysed patients than
in healthy people that, combined with the rise in uri-
nary concentrations observed in tubulopathy, sug-
gested to them that although the physiology of the
protein was completely unknown, it underwent glo-
merular filtration and was catabolised in the renal
tubule. It was only after its amino acid sequence and
molecular weight (13260 Da) were described in 1982
(8) that Brzin and colleagues noted the similarity
between the protein and a cysteine proteinase inhib-
itor protein belonging to the cystatin family (9). This
was subsequently confirmed by Barret and co-work-
ers who renamed g trace protein ‘‘cystatin C’’ (10).

Cystatin C (CysC) is one of the family of cysteine
proteinase inhibitor proteins described for the first
time in chick egg white in 1968 (11). Cysteine protein-
ases (such as the cathepsins B, H and L and the cal-
pains) play a major role in the intracellular catabolism
of peptides and proteins through a process of pro-
hormone and proenzyme proteolysis, destruction of
collagen and in cancer cells crossing basal mem-
branes. These proteinases can also be produced by
micro-organisms (12).

The clinical history of CysC continued in 1984 when
Grubb and colleagues suggested that its measure-
ment in CSF may contribute to the diagnosis of hered-
itary cerebral haemorrhage with amyloidosis, where
CSF levels are being abnormally low (13). It was, how-
ever, above all as a biological marker of glomerular
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filtration rate (GFR) that CysC raised real interest from
1985 and after two other articles by Grubb and col-
leagues (14, 15). Although these two preliminary arti-
cles were not methodologically perfect, and the
physiological bases supporting the use of CysC as a
marker of GFR were weak and the authors did not
show CysC to be superior to creatinine, the interest in
this new marker had been raised.

Twenty years later this article proposes to review
knowledge about CysC around four areas:

• Analytical aspects.
• Physiological bases of its use as a marker of glo-

merular filtration.
• Nephrology applications.
• Future perspectives for its application beyond esti-

mation of GFR: cardiovascular diseases, cancer
and clinical pharmacology.

Analytical aspects

After its initial determination by radial immunodiffu-
sion and numerous tracer immunoassay methods
(RIA, EIA), it was only in 1994 that rapid and entirely
automated methods, all based on liquid agglutination
of latex particles coated with polyclonal antibodies
against CysC, were developed. Depending on the
nature of the signal measured, these involved PETIA
(particle-enhanced turbidimetric immuno-assay:
measurement of transmitted light) or PENIA (particle-
enhanced nephelometric immuno-assay: measure-
ment of diffused light). The main difference between
these two methods is that PETIA can be performed on
a multi-analyte automated biochemistry analyser
(wavelength approximately 340–650 nm depending
on applications), whereas PENIA requires an infra-red
wavelength and can only be performed on a dedicat-
ed automated immunonephelometer. Currently, only
the PENIA and PETIA methods are used in clinical
studies and we shall therefore focus on these
methods.

PENIA and PETIA applications available in 2008

The antibodies have few sources and whilst the Sie-
mens PENIA method (ex Dade-Behring, Siemens,
Deerfield, IL, USA) uses its own polyclonal antibody,
the great majority of other methods use the same re-
agents marketed by DakoCytomation (Glostrup, Den-
mark), consisting of latex particles coated with poly-
clonal rabbit antibodies. The DakoCytomation
reagents can be used in PETIA or PENIA. Avian anti-
bodies marked by Gentian AS (Moss, Norway) have
recently been developed and assessed for use in
PETIA (16).

It is essential to stress that for a long period of time
Siemens was the only company to offer PENIA and
its acronym must not be associated exclusively with
it, as the Siemens kit can be used in PETIA (17) and
the DakoCytomation reagents are sold to be used in
PETIA or PENIA.

Human recombinant CysC is available, although
there is at present no reference material to act as a

primary standard. Two types of calibration material
are used: i) the DakoCytomation and Gentian AS
applications use human CysC – stripped serum spiked
with recombinant CysC, and ii) the Siemens applica-
tion used purified urinary CysC.

Immunonephelometric applications are only avail-
able on immunonephelometers belonging to the
Siemens gamma BN� range and the Beckman-Coulter
IMMAGE range (Beckman-Coulter, Fullerton, CA,
USA). Since the initial assessment performed on a
Cobas Fara� (Roche SA, Basel, Switzerland), the
DakoCytomation kit is currently being used or is being
evaluated in PETIA on numerous automated biochem-
istry analysers as the installation procedures are
available on the DakoCytomation internet website
(www.dako.com).

Performances and comparison of methods

Since initially described (18), the Siemens PENIA
method has been the most widely evaluated and is
currently the reference method. The PETIA methods
using DakoCytomation antibodies have been develop-
ed on numerous different automated instruments and
have not been subject to an inter-method assessment.
The only published data are those from a Swedish
external quality assessment reported by Flodin et al.
which, although not providing much detail, reported
a range of results in a control sample from 0.66 to
1.09 mg/L for 17 laboratories using the Dako-
Cytomation kit (19). The Gentian AS method has been
introduced too recently to have sufficient analytical
experience (16).

The main results obtained from the initial evalua-
tions of the three antibody systems are shown in
Table 1. A review of the evaluations published in 2002
concluded that the Siemens PENIA method was
slightly superior to the DakoCytomation method in
terms of the limit of detection, sensitivity to interfer-
ences, and intra- and inter-batch precision (21). In the
only evaluation published, the Gentian AS method
performed excellently. It should be noted that com-
pared to the Siemens PENIA method, it produced very
similar results for approximately 80 human sera
between 0.5 and 6 mg/L, whether on the P Modular
(Roche Diagnostics, Basel, Switzerland) or Architect
ci8200 (Abbott, Abbott Park, IL, USA), both methods
being calibrated with calibrants provided by the man-
ufacturers (16).

The DakoCytomation PETIA and Siemens PENIA (ex
Dade-Behring) methods were directly compared in
two studies, which produced inconsistent results. In
the older study on 120 samples containing between
0.5 and 9 mg/L by PENIA (18), the two methods cor-
related excellently (rs0.97), although when each was
calibrated with the calibrator provided by the manu-
facturer, the PETIA (used on a Monarch 2000 auto-
mated centrifugal analyser) produced far higher
values (PENIAs0.76xPETIAq0.15). Conversely, when
a common calibrator was used the slope of the Pass-
ing-Bablock line was not significantly different from 1.
The recent work by Flodin on samples containing
between 0.5 and 8 mg/L by PENIA reported very dif-
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Table 1 The main analytical features of the three methods when they were initially described.

Siemens (Dade-Behring) DakoCytomation Gentian AS

Reference Finney et al., 1997 (18) Kyhse-Andersen et al., 1994 (20) Sunde et al., 2007 (16)

Principle PENIA PETIA PETIA

Instrument BNA 100 Cobas Fara� Architect ci8200 (A)
Modular P (MP)

Calibrating Polyclonal, rabbit Polyclonal, rabbit Polyclonal, chick

Antibody Purified human urinary Recombinant human CysC Recombinant human
CysC (Escherichia coli) CysC (Escherichia coli)

Analytical time 6 min 7 min f10 min on both
instruments

Limit of detection 0.23 mg/L 0.15 mg/L A: 0.33 mg/L
MP: 0.28 mg/L

Intra-batch CV Between 2% and 3.2% -2% A: not performed
MP: between 1.7% and 2.2%

Inter-batch CV Between 3.2% and 4.4% -2.2% A: not performed
MP: between 0.3% and 3.5%

Interferences
Bilirubin None up to 488 mmol/L None up to 150 mmol/L A: none up to 420 mg/L

Over-estimate -10% MP: none up to 800 mg/L
between 150 and 300 mmol/L

Haemoglobin None up to 8 g/L None up to 1.2 g/L A: none up to 8 g/L
MP: none up to 7 g/L
Present on both
instruments at 10 g/L

Triglycerides None up to 23 g/L None up to 9.4 g/L A: none up to 11 g/L
MP: none up to 16 g/L

Rheumatoid factor None up to 2000 kUI/L None up to 323 kUI/L None (no cross-reactions
with mammal Ig)

Passing-Bablock Not applicable PENIA not available in 1994 A: Gentians0.9693=
equation vs. Siemens–0.0527
Siemens PENIA (r) MP: Gentians1.0141=

Siemens–0.0157

Percentage recovery 95"2.2% (1 FE) for 0.52 mg/L f100% for concentrations f100% for concentrations
109"0.03% (1 FE) for 0.93 mg/L between 1.5 and 6.5 mg/L between 1.5 and 6.5 mg/L

A, Architect ci8200; MP, Modular P; CV, coefficient of variation.

ferent results (19). Linearity of both methods was lost
above 2 mg/L for serum samples (but not for control
samples): above this threshold the DakoCytomation
method on an Architect ci8200 produced far lower
results. In addition and in contrast to what was
observed for control and calibration fluids provided
by DakoCytomation, linearity was lost after dilution in
serum samples at concentrations of )7 mg/L, sug-
gesting a zone effect. This appears to indicate a dif-
ference in antibody reactivity against control/
calibration fluids and serum samples. This effect did
not exist in the same study either to the Siemens
PENIA method or for the Gentian AS method on the
Architect ci8200.

A final study compared the Siemens N-latex CysC
kit (including calibrants) either in PENIA on a BN
ProSpec (Siemens) or in PETIA on an Architect ci8200.
The two methods displayed an excellent correlation
and very low bias on 202 samples (PETIAs
1.0072xq0.0042; r2s0.987) (17).

The results currently available to compare the dif-
ferent applications to measure serum CysC do not
provide a precise outline of the transferability of
results. The few studies which are available, however,
particularly the one conducted by Flodin et al. on
CysC (17) and the study by Thuillier et al. for other
specific proteins (22) tend to suggest that it is the
nature of the antibodies which is most important in
inter-method variability rather than the type of detec-
tion (nephelometry or turbidimetry).

This situation therefore argues in support of greater
between-method comparison, which is becoming
increasingly necessary as the parameter appears to
be increasing in clinical use.

Stability of CysC

The stability of CysC in serum has been examined in
three main studies. These suggested that CysC
was stable for 7 days at ambient temperature, for
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1–2 months at –208C and for at least 6 months at
–808C (18, 23, 24). In our personal experience, the
length of stability at –808C can be extended to several
years. Freeze/thaw cycles have also been shown to
have no effect on CysC.

Physiological bases for the use of CysC

as a marker of glomerular filtration

Since the founding definition, mandatory properties
that should characterise an ideal endogenous GFR
marker have been clarified:

• Constant production and constant plasma concen-
tration in the absence or variation of GFR.

• Low intra-individual variability.
• No plasma protein binding, allowing complete glo-

merular filtration.
• No secretion, reabsorption or tubular metabolism.
• No extra-renal clearance.

We shall confirm in the next section that these prop-
erties partially apply to CysC.

Is the production of CysC constant?

CysC is produced by all nucleated cells in the human
body. Studies performed on sections of human tissue
or cell lines have shown that when visualised by
immunohistochemical labelling or messenger RNA
detected by Northern blot, the protein is present in all
types of cells studied (25–27). CysC is coded by a
housekeeping gene, i.e., a gene expressed both con-
stitutively and in an unregulated manner, the classical
argument supporting constant production (25, 28).

CysC has long been considered dogmatically to be
produced constantly, as this has been confirmed by
work on large cohorts, which was unable to link the
production of the protein to any pathophysiological
situation other than impaired glomerular filtration
(29). This certainty is now being questioned by
numerous in vitro and clinical findings.

Physiological determinants of CysC production

Amongst the extra renal factors which may influence
CysC values in healthy people, the most recent work
has shown that in adults under 60 years old, CysC
concentrations are lower in women than in men, the
difference disappearing over the age of 60 years old
(30–32). These results contradict the older studies
which did not recommend establishing sex-related
reference values (24, 33–37), except for results found
by Pergande and Jung (38).

Age is also a factor involved in CysC variability.
Higher values are found in neonates regardless of
sex, weight or the child’s height (39–41), including
premature infants (35): falling after birth to return to
identical values to those in adults by the age of
4 years old (30). Caution is however required in very
young children and premature infants in whom high
CysC values may reflect low GFR as part of the renal
maturation process (35, 42). Most studies in adults

show that age has a significant impact on CysC con-
centrations, implying different reference values for
people over 50–60 years old (30, 33, 34, 37). It is
important to note that reference values in both adults
and children are systematically lower when measured
by the Dade-Behring Siemens PENIA method (vs. the
various PETIA applications of the DakoCytomation kit)
(Table 2).

Intra-individual variability

In 1998, Keevil et al., using the PETIA method with
DAKO reagents, described very considerable intra-
individual variability of blood cystatin concentrations,
suggesting that it could not be used for longitudinal
assessment of glomerular filtration (46). This initial
study has recently been refuted by works which have
shown that the intra-individual variability of CysC,
measured by the PENIA method with Siemens re-
agents is equivalent to that of creatinine (47, 48).

Influence of muscle mass

The major limitation of creatinine is its dependency
for production on muscle mass (49). For the same
GFR, an anorexic patient and weightlifter would have
very different serum creatinine concentrations. Initial-
ly, Vinge et al. described blood cystatin concentra-
tions as being independent from muscle mass (50).
This study has recently been criticised in terms of its
statistical and clinical methodology. Recently, Mac-
Donald et al. showed more convincingly that serum
cystatin is indeed partly dependent on muscle mass
(51) (GFR determined by inulin clearance and lean
mass by densitometry). In doing this, these authors
confirmed the hypothesis put forward by Knight et al.,
who found that serum cystatin was dependent on
height and weight in their cohort involving measure-
ment of creatinine clearance (32). The influence of
muscle mass on CysC production is explained by the
fact that muscle cells constitute the largest number of
nucleated cells in the body (51). Nevertheless, the var-
iability of CysC due to muscle mass is far less than
for creatinine. The advantage of CysC over creatinine
in a patient with reduced muscle mass is therefore
still considerable (52–55). In particular, malnutrition
has been shown in children not to affect equations
based on CysC concentrations in contrast to the
serum creatinine-based Schwartz equation (53).

Hormonal influences

In vitro, CysC production by cultured HeLa cells was
described as early as 1995 as being transcriptionally
stimulated by corticosteroids (56). Although no rise in
serum CysC concentrations was found in children suf-
fering from nephrotic syndrome treated with high
dose corticosteroids (57), contradictory results were
found in other studies. An increase in CysC concen-
trations, dependent on corticosteroid doses was dem-
onstrated in asthmatics (58) and in studies including
adult renal transplant patients (59, 60) and in children
suffering from cancerous or renal disease (61). But it
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Table 2 Reference values for children and adults.

References Method Sample, n Age, years Reference values, mg/L

Filler et al. (43) PETIAb 216 0.8–18 0.18–1.38

Bokenkamp et al. (39) PETIAb 200 1–18 0.7–1.38

Randers et al. (41) PENIAa 96 1–14.1 0.51–0.95

Finney et al. (35) PENIAa 30 Premature 0.43–2.77
79 1 day to 1 year 0.59–1.97
182 1–17 0.5–1.27

Harmoinen et al. (44) PENIAa 58 Premature 1.34–2.57
50 Neonates 1.34–2.23
65 8 days to 1 0.75–1.87
72 1–3 0.68–1.60
162 3–16 0.51–1.31

Galteau et al. (30) PENIAa 246 4–19 0.58–0.92

Fischbach et al. (45) PENIAa 51 1 month to 18 0.7–1.18
47 months 0.44–0.94

18 months to 18

Bahar et al. (42) PENIAa 98 3 days 0.72–1.98

Norlund et al. (37) PETIAb 249 (124 men, M -50 0.79–1.05
125 women) M )50 0.88–1.34

F -50 0.75–0.99
F )50 0.85–1.35

Sunde et al. (16) PETIAc 138 Not stated 0.57–1.09

Galteau et al. (30) PENIAa 1223 (530 men, H -60 0.64–0.84
693 women) F -60 0.565–0.735

)60 (M and F) 0.727–0.933
aSiemens reagent; bDakoCytomation reagent; cGentian AS reagent.

appears that the corticosteroid dose-dependent ele-
vation of CysC concentration has little impact on the
estimation of GFR in patients with low or moderately
high glucocorticosteroid doses.

Hyperthyroidism increases serum CysC concentra-
tions (62–66). As CysC production and GFR move in
opposite directions in response to thyroid hormones,
the use of CysC would appear inappropriate in dys-
thyroid states; in addition, this suggests that thyroid
function should be measured in any study designed
to validate diagnostic instruments using serum cys-
tatin concentrations.

Influence of inflammation

Whilst it was previously believed that CysC produc-
tion was independent of inflammation (67), it now
appears that interleukin-6 causes a fall in CysC
expression at least in dendritic cells (68). Knight et al.
also showed in a large cohort (ns8058) that C-reac-
tive protein (CRP) was an independent determinant of
CysC concentration in univariate analysis. CRP values
in this study, however, were more a reflection of
microinflammation (and associated cardiovascular
risk) than acute inflammation as seen in infection or
inflammatory disease. It should also be noted that in
study by Knight et al. GFR was measured by creati-
nine clearance, which is open to criticism (32).
Regardless, whilst the influence of inflammation on
plasma CysC concentrations remains somewhat con-

tentious, it appears to be far less than for other medi-
um molecular weight proteins in severe inflammation
(such as b2 microglobulin).

Influence of neoplasia

Tumours have been suggested to influence CysC pro-
duction, although this is still widely debated, as dis-
cussed further on in this article. GFR was not
measured using a reference method in any of the
available studies.

Others

Some studies found that smoking (30–32) and alcohol
consumption (31) influence CysC concentrations.
These should be assessed as possible factors
contributing to CysC variability.

What is the renal fate of CysC?

There are relatively few specific physiological studies
on CysC, the main one of which was conducted in the
rat (69). After being filtered without restriction by the
glomeruli because of its low molecular mass and
absence of protein binding, CysC is entirely reabsor-
bed by the proximal tubules, where it is almost
entirely catabolised (26, 27, 69). Tubular reabsorption
occurs through a receptor, megalin (common to many
proteins including albumin) by endocytosis (70–72). It
is widely accepted that no tubular secretion of CysC
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occurs, although one study in human beings pub-
lished data which may suggest the opposite (73). The
methodology in this study was widely criticised and
its conclusions must, however, be interpreted with
caution (74–76).

Physiological urinary CysC concentrations are
therefore extremely low in the region of a tenth of
1 mg/L and can be measured by immunonephelo-
metry (77, 78). In addition, the absence of circadian
variation allows a measurement to be performed rap-
idly on a random sample (79). Raised urinary CysC
concentrations are believed to indicate a tubular
abnormality (77, 80–82).

Whilst the features of the urinary CysC excretion
open future perspectives for its use as a marker of
tubular dysfunction, they preclude the use of its uri-
nary clearance as a measurement of GFR. The use of
serum cystatin concentration alone corrected for pro-
duction variation factors should, however, theoreti-
cally enable satisfactory GFR estimation.

In conclusion, CysC therefore appears to be an
interesting marker for the estimation of GFR. It does
offer several advantages over creatinine or other sim-
ilar molecular weight proteins. The inability to meas-
ure urinary clearance is not a major problem for an
endogenous marker of GFR, such as CysC. Although
measurable, creatinine clearance is progressively
being abandoned in international recommendations
in favour of formulae to estimate the GFR. This choice
is guided in particular by the great difficulty in obtain-
ing reliable urinary collections.

CysC is not, however, a perfect marker for GFR in
the strict sense of the term. Whilst its renal fate is
consistent with that of an ideal endogenous marker
of GFR, its production appears to depend on physio-
logical determinants and hormonal, humeral or
anthropometric factors. These factors should be taken
into account when serum cystatin concentrations are
interpreted and when any equation to estimate GFR
based on CysC is constructed and validated. In gen-
eral terms, more rigorous studies could still improve
our physiological knowledge, particularly the renal
fate, of the protein.

Nephrological use of CysC as a marker

of low GFR

The use of serum cystatin as an endogenous marker
of GFR in general populations of renal failure patients
has been widely assessed. Two meta-analyses are
available (83, 84). Although the patients included in
the studies were clinically heterogeneous, the two
analyses reached almost identical conclusions (Table
3) and agree that serum cystatin is superior to serum
creatinine to rule in renal impairment in the cut-off
range of GFR between 60 and 79 mL/min/1.73 m2 (83).

In this article, we shall describe the most recent
studies using GFR measurement algorithms based on
serum cystatin and focus on knowledge obtained in
certain specific populations, in whom measurement

of GFR is both essential and unsatisfactory using the
serum creatinine.

GFR measurement algorithms incorporating CysC

Whilst CysC was firstly studied as an early detection
marker for reduced GFR, several authors quickly intro-
duced the concept of estimating GFR more precisely
and more accurately from equations based on CysC,
analogous to the equations based on serum creati-
nine wsuch as the Cockcroft and the ‘‘Modification of
Diet in Renal Disease’’ (MDRD) equationsx (21, 85).
Since then we have seen a real ‘‘epidemic’’ of equa-
tions based on CysC (21, 110–115), particularly as
simultaneously with the discovery of extra renal
effects on serum cystatin, some authors have logical-
ly developed different equations depending on
patient type or equations expressing a corrective fac-
tor based on age, sex or disease (115–117) (Table 4).
Some authors have also recently advanced the
hypothesis that an equation combining creatinine and
CysC may be useful (111, 115–117, 125, 126). More-
over, the performance of a CysC-based equation in
predicting GFR may differ from one study to another.
Amongst other factors, the techniques of GFR meas-
urement used as a reference method are quite het-
erogeneous across studies and may have contributed
to this variability (Table 4).

Some equations, however, have been constructed
from sample sizes which have been too small and/or
populations which are too specific. Others are com-
plex as they use additional non-biological parameters
which do not provide any apparent advantage. In gen-
eral, it can also be stated that these equations have
been subject to very limited validation in populations
other than those in which they were constructed
(110–115). At present, these equations appear to offer
very limited advantage compared to the MDRD equa-
tion, which is based on serum creatinine, age, sex and
race, at least for the general population (110–115, 127,
128). These equations also appear to offer limited pre-
cision (52, 110, 113, 116, 124, 129, 130). As we shall
see below, they could be more useful in certain sub-
populations in which creatinine-based equations are
particularly inaccurate, as in paediatrics (116, 117,
124), transplantation (113, 115, 131–133) or oncology
(134). Validation studies on large independent popu-
lations, however, would appear to be needed.

As applies to equations based on the serum crea-
tinine (135, 136), problems of methodological differ-
ence and calibration problems in CysC measurement
can have important consequences. It is unlikely there-
fore that an equation constructed with serum cystatin
measured by the Siemens PENIA method would offer
a precise measurement of GFR if it incorporated a
serum cystatin measurement using different antibod-
ies and/or calibrants and/or reading method and vice
versa (18, 19, 127, 137, 138). As the relationship
between GFR and serum CysC is exponential, the
impact of the precision of the equation would, as for
the MDRD equations, be less with lower CysC values.
This problem has been clearly emphasised by Lars-
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son et al. who has published two different method-
specific equations for measurement of CysC (120).

Paediatric populations

New biological markers of GFR are perhaps even
more difficult to study in paediatrics than in adults. In
addition to the methodological constraints which may
be seen in adults (use of a reference method for GFR,
robust statistics, sufficient representative sample,
etc.), some more paediatric-specific difficulties are
often encountered. It is, for example, difficult to justify
performing GFR measurements using a reference
method in healthy people. The control populations in
these studies are usually therefore children with nor-
mal GFR but who also have underlying renal or uro-
logical disease (vesico-ureteric reflux, nephrotic
syndrome) and cannot strictly be considered to be a
true healthy control population (86). Even more prob-
lematic in measuring markers of GFR is the lack of a
clear consensus on the very definition of normal GRF
values themselves in children. Some believe that age-
related reference values should be reported, which
makes analysis of the sensitivity and specificity of
new markers difficult (139). The lack of simple data on
normal GFR values in paediatric practice explains
why the values considered to be ‘‘normal’’ for GFR in
receiver operator characteristic (ROC) curve analyses
vary depending on the author from 60 to 100 mL/min/
1.73 m2 (124, 140).

The fact that CysC does not depend much, if at all,
on muscle mass is an important theoretical advantage
over creatinine in paediatric practice (50, 51). Creati-
nine reference values must therefore be interpreted
as a function of patient age (141–143). Several
authors have demonstrated that CysC reference val-
ues are identical (or very similar) in adults and chil-
dren over 1 year old (Table 2). Several studies have
examined the ability of CysC in paediatrics to detect
renal failure earlier than the serum creatinine or cre-
atinine-based estimated GFR equations wthe best
known being the Schwartz equation which includes
patient height (143)x. Results are contradictory, some
being in favour of CysC (55, 85–87, 144–146), whereas
others find that it has no added value (87–89, 104,
140). This may be explained by the inherent limita-
tions of specifically studying children, discussed
above, and also by the fact that many authors did not
separate out children who were or were not receiving
corticosteroid therapy (144, 147, 148). The use of dif-
ferent creatinine assay methods (Jaffé vs. enzymatic)
and more or less appropriate correct use of the
Schwartz equation (with or without a laboratory-spe-
cific correction factor) could also explain some dis-
crepancies between the results (117, 124).

Of the studies supporting CysC, those conducted by
Filler et al. are based on a large database of GFR
measurements (86). Apart from an advantage found
in an overall population (86) and in a ‘‘sub-popula-
tion’’ of transplant patients (144), Filler et al. demon-
strated the utility of CysC in patients with spina bifida
who very often had greatly reduced muscle mass (55).

Several authors have developed equations to cal-
culate GFR based on CysC, some combined with
creatinine (Table 4). The equations by Filler et al. (con-
structed using the Siemens PENIA method) (121) and
Grubb et al. (DakoCytomation PETIA on P Modular)
(124) were constructed based on a study on a large
number of patients (both ns536), although these
have not been validated in paediatric populations oth-
er than those of which they were constructed. Zap-
pitelli et al. have been alone in validating a few
equations and obtained good results provided that
they were corrected in order to be applicable to their
own methodology (regression factor). Uncorrected,
the results were far less useful. In addition to this val-
idation work, Zappitelli et al. also developed two GFR
estimation equations, one using only CysC and the
other using CysC and creatinine. It is interesting to
note that Zappitelli et al. used correction factors in
these equations depending on the clinical context
(presence of a renal transplant, spina bifida) (117).
Bouvet et al. also developed an equation combining
creatinine and CysC in a smaller number of patients
(ns67) also incorporating height and weight and
again highlighting the importance of non-renal fac-
tors. This equation was validated by the same authors
in an independent population of 33 children (116).

In conclusion, because its reference values are
independent of age and although not all studies
agree, serum cystatin is undoubtedly a tool of choice
to screen for and monitor renal failure in paediatric
patients. In contrast to many studies in adults, its clin-
ical performance has been evaluated against a refer-
ence method for GFR measurement which makes the
good results obtained particularly robust. The equa-
tions for estimating GFR based on CysC require pro-
spective validation studies before they can be
recommended in everyday clinical practice (116, 117,
120, 124) and particularly before they can replace GFR
measurement by a reference method when this is
required in children (117, 124, 119).

Utility of CysC in transplantation

CysC is of significant theoretic use in transplantation,
as there is a high risk that renal function will deteri-
orate in transplant patients because, amongst other
things, of the very widespread use of nephrotoxic cal-
cineurin inhibitors (149). In addition, creatinine can be
very inappropriate in these patients as they often
have important co-morbidities and are treated with
steroids, which have a negative effect on muscle
mass (150); furthermore, cyclosporine can also influ-
ence tubular creatinine secretion (151). In this context,
several groups have tried to establish whether CysC
could be a more sensitive marker than creatinine for
the early detection of deterioration in GFR in renal
transplant patients. Results are inconsistent, some
authors finding CysC to offer improved sensitivity (90,
91, 122, 152), whereas according to others the diag-
nostic performance (assessed by ROC curve methods)
does not differ significantly between the two markers,
in particular for the critical GFR threshold of 60
mL/min (52, 92, 153).
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Despite these contradictory results about the utility
of serum cystatin in isolation, it is now seeing a return
in interest for equations incorporating CysC designed
to estimate GFR. This is partly explained by the fact
that equations based on creatinine considerably over-
estimate GFR in renal transplantation (154–156).
Overall, equations using CysC appear to offer better
predictive performance, although it remains to be
shown that this improvement in prediction is clinically
significant (52, 131, 133, 157, 158). They provide a
more accurate estimate of GFR than the MDRD equa-
tion (133) and improve classification of renal trans-
plant patients into the different stages of chronic renal
disease (158). It should be noted, however, that in a
recently published study, the superiority of GFR esti-
mation based on CysC compared to serum creatinine
was not confirmed in renal transplantation (130). This
study, however, had a number of methodological lim-
itations which could have influenced its results (137).

In heart transplantation, the Rule equation (115)
incorporating CysC significantly increases the accur-
acy of GFR prediction compared to the MDRD equa-
tion (52). Equations based on CysC have also been
reported to offer better predictive performance in liver
transplantation (131).

Of the different equations using CysC, which have
been tested in transplantation, the equation providing
the best estimate of GFR is not always consistent
between studies. It is possible that equations specific
for transplant patients may be needed. Rule et al. con-
firmed previous results which had already suggested
that CysC may underestimate GFR and found that
GFR was 19% higher in transplanted patients (148),
compared to renal failure patients with their own kid-
neys (115). The most widely proposed explanation for
this is that CysC production is increased by immu-
nosuppressant treatments, particularly steroids (59).
This had led some authors to construct specifically
developed equations for adult (115, 122) or child (117)
transplant patients. The Rule and Le Bricon equations
are often found to be amongst the best performing
equations in transplantation (115, 122). It remains to
be demonstrated, however, that any equation devel-
oped specifically for transplantation offers a signifi-
cantly better estimate of GFR.

Diabetic patients

In view of the increasing incidence and high preva-
lence of diabetic nephropathy (159), it is not surpris-
ing that CysC has been specifically studied in diabetic
patients. It has a potentially important use in early
screening for diabetic nephropathy, early manage-
ment of which is undoubtedly beneficial. In this sec-
tion, we shall consider the studies which have
specifically examined either type 1 or type 2 diabetic
populations. We will highlight the studies which have
been best constructed methodologically (reference
measurement for the GFR, adequate statistical analy-
sis, sufficient population in terms of patient number
and range of GFR studied). CysC (or the reciprocal of
CysC) has correlated as well and occasionally better
than creatinine with GFR in all of the studies which

have compared the utility of CysC to that of creatinine
in the early detection of renal failure in diabetic
patients (GFR )60 mL/min/1.73 m2) (93–96, 160–162).
The only exception is the study by Oddoze et al. (95)
in which the performance of creatinine can be consid-
ered to be abnormally good. Perlemoine et al. did not
find CysC to offer any advantage in detecting GFR
-80 mL/min/1.73 m2, except in the sub-group of
patients with a creatinine of less than 1 mg/dL
(88 mmol/L) (96). Of these different studies, the study
by Pucci et al. which examined 288 diabetic patients
(both types) with GFR measurement by plasma
iohexol clearance and a wide range of GFR is
undoubtedly one of the most important studies (162).
The authors found a significantly better correlation
between CysC and GFR than between creatinine
and GFR. CysC had a higher product (sensitivity=
specificity) for detecting GFR of less than 90 and
75 mL/min/1.73 m2, although its diagnostic value was
no greater than that of creatinine to detect a GFR of
less than 60 mL/min/1.73 m2. This was predictable
given the good performance of creatinine at this level
of renal failure (163). The best threshold (positive pre-
dictive value of 93% and negative predictive value
of 87%) to detect a GFR -90 mL/min/1.73 m2 was
0.98 mg/L, i.e., a value very close to the upper end of
the reference interval in a general population (30)
(Table 2).

The diabetic population lends itself relatively well
to longitudinal follow-up studies of renal function.
This type of study is extremely important in order to
compare the performance of biological markers in
early diagnosis. Three authors have conducted this
type of study on CysC in diabetic patients, all of which
reported the marker to be useful (119). The most con-
vincing study both methodologically and in terms of
its results was undoubtedly the study by Perkins et al.
(164). Perkins et al. followed 30 diabetic type 2 obese
hyperfiltrating diabetic Pima Indians (GFR )120
mL/min) longitudinally for 4 years with at least one
measurement of GFR per year (urinary iothalamate
clearance). Of these 30 patients at risk of developing
nephropathy because of their hyperfiltrating state
(165), 20 subsequently did. The fall in GFR was better
reflected by change in serum cystatin in these 20
patients (although this remained within reference val-
ues) than by changes in serum creatinine or derived
equations, all of which under-estimated the fall in GFR
(164). In a study on 20 subjects with reduced GFR,
Beauvieux et al. showed that GFR estimation equa-
tions based on CysC better reflected changes in meas-
ured GFR at 2 years (urinary 51Cr-EDTA clearance)
than creatinine-based equations (110).

CysC therefore appears to be a useful detection
marker in the diabetic population (transverse use or
in longitudinal follow-up) for early nephropathy. The
use of equations based on CysC (alone or in associ-
ation with creatinine) to estimate GFR has not been
greatly studied and results of the few published stud-
ies on the subject are contradictory and difficult to
compare (110, 112, 126). It should be noted that, with
two exceptions, none of the equations based on CysC
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have been constructed from a strictly diabetic popu-
lation (112, 118). This could be important in terms of
the influence of extra renal determinants of CysC.

The elderly

Epidemiological studies have highlighted the high
prevalence of nephropathy in the elderly. American
registers report the prevalence of microalbuminuria
to be 18% in people between 60 and 69 years old and
30% in people over 70 years old (166). Similarly, the
prevalence of stage 3 renal insufficiency in people
over 70 years old (estimated GFR -60 mL/min/
1.73 m2) is estimated to be around 35% (167). French
data confirm the increase in the prevalence of renal
failure with age. The REIN register in France reported
a prevalence of 2042 dialysed patients per one million
over 75 years old, with a clear male preponderance
w(REIN) Réseau Epidémiologie et Information en
Néphrologie register www.soc-nephrologie.org,
nephro/register space)x. The presence of pre-dialysis
chronic renal failure (CRF) is far less clearly docu-
mented. In practice, renal function estimation in the
elderly is based on measurement of the creatinine
and predictive equations based on it. Age-related sar-
copaenia, however, causes a fall in creatinine produc-
tion. Predictive equations, including age and sex,
partially take this factor into account. The Cockcroft-
Gault equation, however, systematically underesti-
mates GFR in the elderly (168). The more reliable
MDRD equation, however, can only take into account
the mean fall in muscle mass and creatinine associ-
ated with age (169). Inflammation, malnutrition and
loss of muscle bulk (often associated with chronic dis-
eases, such as heart failure and bronchopneumonia)
can further accentuate the muscle metabolic abnor-
malities and influence the value of creatinine-based
predictive equations (170–172).

CysC therefore emerges as an alternative marker.
Serum cystatin values in the population increase with
age, particularly over 70 years old (30, 31, 97, 173).
An increase of 0.045 mg/L every 10 years has recently
been reported (31). This increase may theoretically be
due to renal factors (age-related deterioration in renal
function) (30, 173) or extra renal factors (174) raising
the question of specific reference values in the eld-
erly. In the elderly diabetic, for example (64–100 years
old), the prevalence of nephropathy estimated from
CysC is 64.7% compared to only 21.4% if age-adjusted
reference values are used (175). Amongst the extra
renal factors most often found are inflammation (but
which may however be a consequence of the CRF
itself) (176–178) and corticosteroid treatments (174).
Finally, despite contradictory results, a relationship
between the CysC gene polymorphism (CST3 on exon
1) and Alzheimer’s disease has been strongly sug-
gested (179–181). A very recent Taiwanese study has
shown that circulating CysC concentrations are neg-
atively associated with the presence of CST3 poly-
morphism and were significantly lower in Alzheimer
subjects (180). Overall, CysC appears to be less sen-
sitive to metabolic and extra renal factors than cre-
atinine in the elderly (174). Potential sources of bias

between these two markers may explain the discrep-
ancies seen in the elderly between GFR estimation by
CysC, measured clearance and predictive equations
(182, 183). These discrepancies are seen above all in
people with co-morbidities (183) and may result in dif-
ferences in the reported prevalence of CRF. There are
still too few studies which have compared CysC con-
centrations with a reference measurement. Hojs et al.
have recently reported a better correlation between
the reciprocal of CysC and 51Cr-EDTA clearance com-
pared to the reciprocal of creatinine or measured cre-
atinine clearance in elderly patients with renal failure
(184). A simple comparison of correlations is not,
however, statistically sufficient to confirm that CysC
is superior to creatinine. CysC could be a more sen-
sitive marker than creatinine to investigate for mod-
erate reductions in GFR in the elderly (69–92 years
old) (185, 186), although the results reported are
inconclusive (98, 99).

In conclusion, CysC appears to be a promising
marker for the early diagnosis of renal dysfunction in
the elderly. However, the interactions between poten-
tial confounding variables, such as inflammation or
the presence of concomitant diseases (such as, neu-
rological), need to be better defined.

CysC and acquired immunodeficiency

syndrome (AIDS)

Many studies have examined the utility of CysC mea-
surement in populations with reduced muscle mass.
Few studies, however, have been conducted in people
infected with the human immunodeficiency virus
(HIV) who may, however, differ from the general
population as a result of malnutrition and common
changes in body morphology.

End stage CRF is no longer particularly rare in this
population and the number of HIV-infected patients
dialysed is increasing in the United States and Europe
(187). A prevalence of CRF in different populations of
HIV-infected people (whether or not treated, con-
trolled or otherwise) may be as high as 5% to 25%
(188–190). Highly active anti-retroviral therapy
(HAART) treatment has not eliminated HIV-specific
renal disease, the HIV-associated nephropathy
(HIVAN), which is responsible for 40% to 60% of the
histological renal disease (191), or the need for trans-
plantation in HIV-infected patients (192). Apart from
the specific role of the virus, people infected with HIV
have a large number of risk factors for non-specific
CRF, including age, hypertension, non-insulin-depen-
dent diabetes and exposure to multiple long-term
drug treatments (193).

The American Society for Infectious Diseases pub-
lished the initial recommendations on the manage-
ment of renal function in HIV-infected people in 2005
and recommended creatinine measurement if muscle
mass was normal and GFR estimation equations in
other situations (194). The Cockcroft-Gault equation is
frequently used to adjust dosages for renal function,
as most clinical studies consulted to produce the
recommendations used this equation (195, 196). No
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equation, however, can be formally recommended as
none has been validated in the group of people infect-
ed with HIV. This population also has significantly
lower muscle mass than seronegative patients (197)
and it should be noted that this is one of the clinical
situations in which the experts of the Kidney Disease
Improving Global Outcome (KDIGO) recommended
GFR measurement using a reference method and not
simply by estimation (166).

Recent studies have shown that CysC concentra-
tions are higher in HIVq subjects than seronegative
patients, even if creatinine concentrations are normal
(198, 199). Serum cystatin concentrations correlate
positively with viral load and negatively with duration
of anti-retroviral treatments (which delay the progres-
sion of the renal disease). This suggests that serum
cystatin may be a good marker of progression, either
deterioration or improvement, of the viral disease.
The authors also propose that CysC be used as an
early marker of improvement in renal function on
HAART (198).

Measurement of CysC may therefore be a useful
alternative for estimating GFR in HIVq patients,
although this proposal, however, needs to be con-
firmed in studies in which GFR is measured by a
reference method.

CysC and hepatocellular failure

When examined in populations of patients with cir-
rhosis, CysC has been shown to be equivalent or even
superior (100, 101, 113) than creatinine (200) in
assessing renal function. In a recent study, CysC was
the only marker to correlate with measured GFR in all
stages of hepatocellular failure (201). In addition,
serum cystatin concentrations also appear to be a bet-
ter marker than creatinine and the Cockcroft equation
for the earlier diagnosis of renal disease in end stage
liver failure (202). It has also been recommended for
the follow-up of renal function after liver transplan-
tation (203). The Hoek et al. (119) and Larsson et al.
(120) equations perform at least as well as the MDRD
equation in these populations (131). CysC appears to
be a better predictor of acute renal failure after liver
transplantation (204), including children (146), and to
provide better follow-up for moderate changes in
renal function (152).

As the model for end stage liver disease (MELD)
score, which measures the extent of end stage hepa-
tocellular failure, includes measurement of serum
creatinine to assess the impact of renal function on
patient prognosis and is used to prioritise liver trans-
plantation candidates (205), the use of CysC appears
to be promising in these cirrhotic patients, particularly
as creatinine measurement is subject to interferences
with high bilirubin levels (which does not apply to
CysC) (206).

Future perspectives for CysC applications

CysC as a cardiovascular risk marker

End stage CRF (207) or stage 3 of the Kidney Disease
Outcome Quality Initiative (KDOQI) of the National

Kidney Foundation (208) is currently recognised to be
an independent risk factor for cardiovascular dis-
eases. The appearance of a biological marker ena-
bling potentially earlier deterioration in renal function
and one which is less dependent on extra renal fac-
tors than creatinine has led several groups, particu-
larly the Shlipak group, to examine the relationships
between cardiovascular diseases, mortality and cir-
culating CysC (209).

The immediate interest of CysC in cardiovascular
diseases is, however, related to its role as a protease
inhibitor and not as a marker of glomerular filtration.
The proteinases, particularly cathepsins K and S, were
implicated very early on in the rupture of the tunica
elastica of the arterial wall and a hypothesis of in situ
imbalance between arterial wall cathepsins and inhib-
itors was proposed. Reduced tissue CysC concentra-
tions have been found in atheromatous plaques,
aneurysms (210) and angioplasty lesions in animal
models (211) and implicated in the pathophysiology
of aneurysms. CysC has been confirmed to play a pro-
tective role in situ in genetic models of arterial dis-
ease. Apolipoprotein E (ApoE)–/– mice in which the
CysC gene has been incapacitated (Cyst–/–) develop
aneurysmal lesions and rupture of the limiting inter-
nal elastic lamina compared to ApoE–/–, Cystq/q
mice (212, 213). These studies on animal models are
supported by occasional human genetic data (214,
215). Patients with mutations in the CysC promoter
gene have low circulating CysC concentrations (214,
215). The same mutations are associated with a high-
er number of coronary artery stenoses in a sub-group
of patients (ns237) undergoing coronary angio-
graphy during an infarction, although they had no
influence on the severity of the stenoses (214). These
genotypes also do not influence patient survival at
3 years (215). These experimental and clinical findings
suggest that CysC may have a role in vascular
remodelling.

Epidemiological studies based on large patient
cohorts have clearly demonstrated increased CysC
values (above 1.30 mg/L) to be an independent risk
factor for cardiovascular disease. However, most of
these studies do not use a reference method to deter-
mine GFR which could hamper interpretations of
results.

The initial studies established the prognostic impor-
tance of CysC in the follow-up of heart disease. In a
cohort of 1033 people who were suffering from cor-
onary artery disease, increased CysC concentration
(1.24 mg/L) was a significant predictive factor for a
second cardiovascular accident even after adjusting
for classical risk factors, CRP and converting enzyme
inhibitor treatment. Conversely, neither creatinine nor
creatinine clearance displayed the same association
(216). At the same time, Shlipak et al. (217) showed
that CysC was a better predictive factor for death in
patients with heart failure. Retrospective studies on
existing cohorts very rapidly extended these findings
to the entire population and in particular to the eld-
erly. CysC was significantly associated with all cause
mortality (209, 217–223), cardiovascular mortality
(209, 217–219, 222, 223), myocardial infarction (209,
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224), cerebrovascular accident (209, 225) and periph-
eral arterial disease (226). Whilst the association with
all cause or cardiovascular mortality was found sys-
tematically, other authors failed to find relationships
between CysC concentrations and non-coronary vas-
cular accidents (218) mostly in middle-aged men
(227). These relationships between cardiovascular
disease and increased CysC concentrations have been
described both in cohorts or sub-groups of patients
selected on the basis of a past history of cardiovas-
cular disease (216, 217, 219, 221, 225, 226) and in
patients without cardiovascular history (220, 222–224,
228, 229). Some also consider that increased CysC
values may be associated with morphological cardiac
abnormalities, such as left ventricular hypertrophy or
left ventricular dysfunction on echocardiography
(228), functional abnormalities, such as heart failure
(230), or poor exercise tolerance (231). In all of these
studies, the association between cardiovascular dis-
ease and CysC appeared to be stronger than with
creatinine or GFR estimation algorithms based on cre-
atinine. Furthermore, the association between cardi-
ovascular disease and CysC appears to be linear,
increasing with the CysC level. In particular, in the
MDRD cohort, a linear progression in risk was
observed between values of 1.45 and 3.17 mg/L (222).
Establishing a significance threshold obviously
depends on the population selected and whether or
not patients with renal failure are excluded. The sig-
nificance threshold generally found without stratifi-
cation by renal failure is around values of 1.30 mg/L.
The significance threshold in populations without CRF
detected by predictive equations, however, can be
reduced to 1 mg/L (219, 223).

Following these epidemiological studies and after
adjusting for the major classical risk factors, CysC has
been proposed as an independent population marker
of vascular risk, which is superior to creatinine-based
GFR estimation. However, the association between
CysC and cardiovascular disease appears somewhat
complex and this connection should be carefully
discussed taking into account at least three factors:
i) recognition of moderate alteration in GFR with CysC
unmasking an early association between cardiovas-
cular disease and renal injury, ii) the interaction
between CysC and non-traditional risk factors present
in renal failure, such as inflammation, and iii) a direct
action of CysC on the arterial wall.

CysC is more sensitive than creatinine to

screen for early renal failure

The limitations of creatinine as a marker of glomeru-
lar filtration are partly due to extra renal factors, such
as age, diet, physical activity, and, above all, muscle
mass. These limitations must be taken into account
particularly in the elderly, in whom many studies
have been conducted on the predictive value of CysC
for vascular disease. Estimation of glomerular filtra-
tion using creatinine is also imprecise for stages 1 and
2 KDOQI with GFR )60 mL/min. In these situations,
CysC may therefore be better at identifying vascular
risk due to a moderate decline in renal function (232).

The vascular risk associated with nephropathy may
be revealed by other early markers of injury, such as
microalbuminuria. At present, however, there are
only a few studies comparing the predictive value of
CysC and microalbuminuria (227). Finally, very few
studies have compared the predictive value of CysC,
creatinine and a reference method for measuring GFR
in cardiovascular diseases. The study by Menon et al.
(222) found CysC to have the same or even closer
association with cardiovascular mortality wRRs1.64
for a reduction of 1 SD (1.28–2.08)x than GFR meas-
urement from iothalamate clearance wRRs1.28
(1.04–1.59)x or creatinine clearance wRRs1.32
(1.05–1.64)x from data from the MDRD cohort. How-
ever, the generalisability is limited because the MDRD
study cohort consists of patients recruited with stage
3 and 4 renal failure, leading to an artificial restriction
of GFR range, and because most of them (66%)
reached end stage renal failure during a median fol-
low-up of approximately 6 years.

High CysC concentrations may reflect the existence

of a low noise inflammatory process

A link between CysC and inflammation has previously
been found in large population studies (32, 174). This
association between inflammatory markers (CRP,
interleukin-6 and tumour necrosis factor) and serum
cystatin concentrations has been reported in most of
the studies which showed a relationship between
CysC and cardiovascular disease (218, 224, 229, 233)
or in populations at high renal or cardiac risk, such as
diabetics (234). Except for the PRIME study (224),
however, the association of CysC/cardiovascular
event remains when inflammatory markers are
included in the multivariate analysis (218, 229). Inter-
estingly, the association between inflammatory mark-
ers and CysC appeared to be linear in the
‘‘Cardiovascular Health Study’’ cohort, whereas it pro-
duces a U-shaped curve with creatinine (177). These
associations between inflammation, CysC and cardio-
vascular disease suggest that inflammation may be
the unifying link (235). Alternatively, the association
between inflammation and CysC may partly explain
the predictive value of CysC for non-cardiovascular
mortality including neoplasia (236).

Direct role of CysC in the arterial wall

Finally, it is not possible to exclude CysC having a
specific role in the arterial wall, which is strongly sug-
gested from in vitro studies and on animal models.
Recent work by Niccoli et al. describes a possible rela-
tionship between fundamental and epidemiological
findings. Niccoli et al. studied coronary lesions in 70
consecutive patients with acute coronary syndrome
and normal renal function (defined as estimated GFR
)90 mL/min/1.73 m2) and found a positive associa-
tion between serum cystatin concentrations and num-
ber of stenoses in this small sample, although
increased CysC values appeared to be associated with
a stable fibro-muscular plaque phenotype as deter-
mined by the angiographic index. This result, which
needs to be confirmed on larger studies, may confirm
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the role of CysC in vascular remodelling, including
that which occurs in coronary disease. The possible
consequences of changes in arterial wall CysC
expression on circulating concentrations remain to be
defined (237).

In conclusion, CysC therefore appears to be an
independent risk marker for cardiovascular diseases
and could reflect complex interactions between the
detection of early renal abnormalities, cystatin rela-
tionship with inflammation and its role in vascular
remodelling. Further studies, including GFR determi-
nation by reference methods, are needed to better
determine the relative contribution of each factor.

CysC and cancer

Cystatin is of interest to the oncology community at
two levels: its tissue expression is being studied as a
prognostic indicator, whereas serum concentrations
may represent a useful alternative to serum creati-
nine, which performs poorly in a group of patients
many of whom have reduced muscle mass, for
assessment of renal function.

CysC is a major inhibitor of the cathepsins,
enzymes able to proteolyse the extracellular matrix
and therefore facilitate degradation of basal mem-
branes by tumour cells and by the metastatic process
itself. Cathepsin B in particular has been widely
shown to have a role through a correlation between
expression of cathepsin B in tumour tissues, disease
progression and adverse clinical prognosis in several
types of tumour: gastric (238), pulmonary (239),
breast (240), and head and neck carcinoma (241). Con-
versely, expression correlates with poorer in vivo and
in vitro invasive potential for glioblastomas (242),
improved survival of patients suffering from upper
respiratory tract tumours (243) and a lower Gleason
score in prostate tumours (244). The anti-tumour
effect of CysC may also be due to a ‘‘cytokine-like’’
role independent of its protease inhibitor function.
CysC and a mutant devoid of inhibitory activity on
cathepsin B are both antagonists of the tumour
growth factor-b (TGF-b) receptor and inhibitors of the
TGF-b signalling pathway in fibrosarcoma cells (245).
The promoter events for the metastatic process
caused by TGF-b in mammary tumour cells (reduced
cell polarisation, loss of inter-cellular adhesion, induc-
tion of invasive and migratory abilities) are inhibited
by CysC expression induced by retroviral infection
(246).

Curiously, other studies indicate that CysC may
have a potential promoting effect on the metastatic
process. Specifically, seven times fewer pulmonary
metastatic colonies developed following intravenous
injection of the highly metastatic B16-F10 murine mel-
anoma line in mice inactivated for the CysC gene,
compared to wild type animals (247). Our understand-
ing of the relationships between CysC expression and
oncogenesis appears therefore only to be in its
infancy.

As in many other clinical situations, serum CysC
concentrations have been measured in oncology as a
marker of glomerular filtration. The major question

which arises is that of the influence of tumour pres-
ence on circulating CysC which could make CysC lose
its relevance as a glomerular marker. As we have
observed, the expression of CysC is probably
involved in oncogenesis. Serum cystatin concentra-
tions may also be a marker of tumour mass as CysC
is expressed by all nucleated cells. All of the studies
which have endeavoured to answer this question
have conflicted with the major difficulty of using a ref-
erence method to measure GFR in patients whose
management is already complex.

Some studies describe an increase in serum CysC
in patients with neoplasia compared to healthy indi-
viduals, although renal function was either not
assessed (248–250) or an assessment was based on
the serum creatinine alone (243, 248, 251–253) in
these studies, greatly limiting their relevance, as
acknowledged later by some of the authors them-
selves (254).

Four studies have compared serum CysC concen-
trations in patients with malignancy to those in
healthy volunteers, all of whom have been shown to
have normal equivalent renal function. Their results
are inconsistent. Two studies showed no difference
between the groups: the Al Tonbary et al. study (255)
(34 children mostly with malignant blood dyscrasias
vs. 13 controls, GFR assessed by measured creatinine
clearance adjusted for body surface area) and a study
by Mojiminiyi et al. (256) (29 adults with malignant
blood dyscrasias vs. 27 controls, GFR measured using
the Cockcroft-Gault equation). On the other hand,
Demirtas et al. showed that mean cystatin concentra-
tion was 5 times higher in 19 patients with blood
dyscrasias before bone marrow transplantation com-
pared to 20 controls (GFR assessed by measured cre-
atinine clearance adjusted for body surface area). It
should be noted that values as high as those reported
by Demirtas et al. are very rare in the literature,
including patients with end stage renal failure (257).
A fourth study, which assessed GFR from carboplatin
elimination clearance (equal to GFRq25 mL/min) in
40 patients with malignancy and 40 healthy volun-
teers, also concluded that serum cystatin concentra-
tions were significantly higher in cancer patients
(258).

The only study to date to have used a reference
method to measure GFR in individuals suffering from
cancer did not compare the serum cystatin concentra-
tions of patients to those of individuals without cancer
and with equivalent renal function, which could have
identified the contribution of tumour presence to the
increase in CysC concentrations. In addition, as this
study included renal failure patients (inulin clearance
between 43.6 and 115.1 mL/min) it is impossible to
compare the serum cystatin concentrations found
with reference values in the literature (134).

The question on the impact of tumour presence on
CysC therefore remains. Without a study which for-
mally measures GFR in a sufficient number of
patients, it remains impossible to attribute higher
CysC values to the influence of tumour load or to low
level deterioration in renal function.
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The difficulty raised by interpretation of isolated
serum cystatin concentrations in oncology is less
critical when follow-up is being considered. Several
studies have examined the use of serum CysC in
assessing nephrotoxicity from drugs used to treat
cancer, particularly cisplatin (134, 254, 255, 259). Most
of these have been performed in children, in whom
measurement of urinary creatinine clearance is par-
ticularly difficult and all agree that serum cystatin is
a far more sensitive marker than serum creatinine to
detect reduced GFR or creatinine clearance after
cisplatin administration. The most convincing is the
Benohr study which showed a 21% increase in serum
cystatin on day 5 of cisplatin administration in parallel
with a 23% fall in inulin clearance (134). Serum cys-
tatin also appears to be an effective tool to predict a
clinically significant fall in urinary creatinine clearance
(254, 255). Combined with its use in predicting the
development of some cytotoxic agents (see below),
CysC appears therefore to be a promising tool in
patient chemotherapy management. Other studies on
this subject, however, would be useful, including
more patients, homogeneous chemotherapy proto-
cols and measurement of GFR using a reference
method.

It should be noted that at the time when this text
was written no GFR estimation equation based on
serum cystatin had been assessed in an oncological
context (Table 3).

CysC and drug monitoring

Many drugs require drug monitoring in renal failure.
This monitoring is usually necessary because the
clearance of the drug is mostly renal but also occa-
sionally because of nephrotoxicity of the drug which
must therefore be used with caution in pre-existing
renal disease. Both difficulties occasionally co-exist
as, for example, with the aminoglycosides or cis-
platin.

In most cases, the dosage adjustment recommend-
ed in the Summaries of Product Characteristics (SPC)
refers to GFR ‘‘range’’ or usually a Cockcroft-Gault
clearance range. Sometimes, and this applies to
drugs with a very narrow therapeutic margin, such as
the cardiac glycosides or cisplatin, adaptation is indi-
vidual and is based on measurement or usually esti-
mation of the clearance of the drug. This calculation
is made from equations combining demographic
(age, sex), morphometric (height, weight) and biologi-
cal (serum creatinine, Cockcroft-Gault clearance)
details.

The first publication which examined the use of
CysC in this area referred to the dosage adjustment
for digoxin in the elderly (260). It concluded that this
new parameter was not superior to creatinine in pre-
dicting drug clearance. However, these results were
rapidly refuted (261) and two studies based on popu-
lation pharmacokinetics methodology, the most
robust in this field, definitively demonstrated the util-
ity of CysC in predicting the clearance of drugs which
were eliminated either exclusively or only partially by
the kidneys, i.e., two cytotoxic agents, topotecan (262)

and carboplatin (263). Interestingly, both of these
studies showed an advantage of combining CysC with
creatinine rather than using either individually. This
suggests that the two parameters are not entirely
redundant and that serum cystatin does not only
depend on GFR. Since these two studies, others also
conducted using population pharmacokinetics have
published equivalent conclusions for cefuroxime
(264) and vancomycin (265).

Conclusions

This review of recent information on CysC raises sev-
eral issues:

• There is an urgent need to assess the transferabil-
ity of automated methods for the measurement of
serum CysC. In order to avoid repeating the same
difficulties observed with creatinine, estimated
GFR equations based on serum cystatin must be
able to rely on low inter-method variability in order
to maximise their application in the populations
concerned. A project is currently being set up in
collaboration with AFSSAPS, the Société de
Néphrologie, the Société Francophone d’Hémodia-
lyse and the SFBC.

• In order to use this marker optimally, there appears
to be a need to complete our knowledge about its
physiological variability and factors contributing to
variability of production, the major of which are
inflammation and cancer.

• Of the sub-populations in which CysC has been
assessed as a marker of GFR, it is undoubtedly the
paediatric populations which will benefit most
from this new marker of glomerular filtration.

• Since 2005 and the KDIGO recommendations (266),
we have moved into the era of estimator GFR
equations. Given the increasingly numerous dem-
onstrations that non-renal factors may influence
serum cystatin, it is likely that CysC will need to be
associated with other non-biological co-variables
in these algorithms. A major study on 3418 Amer-
ican and European CRF patients shows that an
equation combining CysC, serum creatinine, sex,
age and race produces a better estimate of GFR
than the MDRD equation. This equation was devel-
oped in a sample of 1935 subjects and was vali-
dated internally (in the USA) in 1045 subjects and
externally (France) in 438 subjects (125).

• Many equations for measuring GFR based on
serum cystatin have been proposed. There is, how-
ever, a serious lack of validation studies for these
instruments against a GFR reference measure-
ment, particularly in sub-populations in which
serum creatinine-based equations are used by
default (the elderly, AIDS, cancer, etc.).

Composition of the SFBC ‘‘Renal function and chronic
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nard Canaud, Marie Christine Carlier, Etienne Cava-
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Guerber, Jean Michel Halimi, Anne-Marie Hanser,
Pascal Houillier, Michele Kessler, Christophe Mariat,
Marie Monge, Laurence Piéroni, Jerôme Rossert,
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