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Belgium

Dedication...

Acknowledgments...



Contents

I FOUNDATIONS 13

1 Fundamental concepts and applications 15
1.1 Boolean functions: definitions and examples . . . . . . . . . . . . . . . . . 16
1.2 Boolean expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5 Transforming an arbitrary expression into a DNF . . . . . . . . . . . . . . 33
1.6 Orthogonal DNFs and number of true points . . . . . . . . . . . . . . . . . 38
1.7 Implicants and prime implicants . . . . . . . . . . . . . . . . . . . . . . . . 41
1.8 Restrictions of functions, essential variables . . . . . . . . . . . . . . . . . . 45
1.9 Geometric interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.10 Monotone Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.10.1 Definitions and examples . . . . . . . . . . . . . . . . . . . . . . . . 52
1.10.2 DNFs and prime implicants of positive functions . . . . . . . . . . . 54
1.10.3 Minimal true points and maximal false points . . . . . . . . . . . . 57

1.11 Recognition of functional and DNF properties . . . . . . . . . . . . . . . . 59
1.12 Other representations of Boolean functions . . . . . . . . . . . . . . . . . . 63

1.12.1 Representations over GF(2) . . . . . . . . . . . . . . . . . . . . . . 63
1.12.2 Representations over the reals . . . . . . . . . . . . . . . . . . . . . 65
1.12.3 Binary decision diagrams and decision trees . . . . . . . . . . . . . 66

1.13 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.13.1 Propositional logic and artificial intelligence . . . . . . . . . . . . . 71
1.13.2 Electrical and computer engineering . . . . . . . . . . . . . . . . . . 74
1.13.3 Game theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
1.13.4 Reliability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
1.13.5 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
1.13.6 Integer programming . . . . . . . . . . . . . . . . . . . . . . . . . . 84

1



2 CONTENTS

1.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2 Boolean equations 91
2.1 Definitions and applications . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.2 The complexity of Boolean equations: Cook’s theorem . . . . . . . . . . . 97
2.3 On the role of DNF equations . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.4 What does it mean to “solve a Boolean equation”? . . . . . . . . . . . . . 104
2.5 Branching procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.5.1 Branching rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
2.5.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.6 Variable elimination procedures . . . . . . . . . . . . . . . . . . . . . . . . 114
2.7 The consensus procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.8 Mathematical programming approaches . . . . . . . . . . . . . . . . . . . . 124

2.8.1 Integer linear programming . . . . . . . . . . . . . . . . . . . . . . 124
2.8.2 Nonlinear programming . . . . . . . . . . . . . . . . . . . . . . . . 129
2.8.3 Local search heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 131

2.9 Recent trends and algorithmic performance . . . . . . . . . . . . . . . . . . 132
2.10 More on the complexity of Boolean equations . . . . . . . . . . . . . . . . 133

2.10.1 Complexity of equation solving procedures . . . . . . . . . . . . . . 133
2.10.2 Random equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
2.10.3 Constraint satisfaction problems and Schaefer’s theorem . . . . . . 138

2.11 Generalizations of consistency testing . . . . . . . . . . . . . . . . . . . . . 141
2.11.1 Counting the number of solutions . . . . . . . . . . . . . . . . . . . 141
2.11.2 Generating all solutions . . . . . . . . . . . . . . . . . . . . . . . . 142
2.11.3 Parametric solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 144
2.11.4 Maximum satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . 146

2.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

3 Prime implicants and minimal DNFs 155
Peter L. Hammer and Alexander Kogan

3.1 Prime implicants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.1.1 Applications to propositional logic and artificial intelligence . . . . 156
3.1.2 Short prime implicants . . . . . . . . . . . . . . . . . . . . . . . . . 158

3.2 Generation of all prime implicants . . . . . . . . . . . . . . . . . . . . . . . 160
3.2.1 Generation from the set of true points . . . . . . . . . . . . . . . . 161
3.2.2 Generation from a DNF representation: The consensus method . . 163



CONTENTS 3

3.2.3 Generation from a DNF representation: Complexity . . . . . . . . . 172
3.2.4 Generation from a CNF representation . . . . . . . . . . . . . . . . 176

3.3 Logic minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
3.3.1 Quine-McCluskey approach: Logic minimization as set covering . . 179
3.3.2 Local simplifications of DNFs . . . . . . . . . . . . . . . . . . . . . 182
3.3.3 Computational complexity of logic minimization . . . . . . . . . . . 187
3.3.4 Efficient approximation algorithms for logic minimization . . . . . . 194

3.4 Extremal and typical parameter values . . . . . . . . . . . . . . . . . . . . 198
3.4.1 Number of prime implicants . . . . . . . . . . . . . . . . . . . . . . 198
3.4.2 Extremal parameters of minimal DNFs . . . . . . . . . . . . . . . . 200
3.4.3 Typical parameters of Boolean functions and their DNFs . . . . . . 201

3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

4 Duality theory 207
Yves Crama and Kazuhisa Makino

4.1 Basic properties and applications . . . . . . . . . . . . . . . . . . . . . . . 207
4.1.1 Dual functions and expressions . . . . . . . . . . . . . . . . . . . . 207
4.1.2 Normal forms and implicants of dual functions . . . . . . . . . . . . 209
4.1.3 Dual-comparable functions . . . . . . . . . . . . . . . . . . . . . . . 211
4.1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

4.2 Duality properties of positive functions . . . . . . . . . . . . . . . . . . . . 218
4.2.1 Normal forms and implicants of dual functions . . . . . . . . . . . . 218
4.2.2 Dual-comparable functions . . . . . . . . . . . . . . . . . . . . . . . 220
4.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

4.3 Algorithmic aspects: The general case . . . . . . . . . . . . . . . . . . . . . 225
4.3.1 Definitions and complexity results . . . . . . . . . . . . . . . . . . . 225
4.3.2 Dualization by sequential distributivity . . . . . . . . . . . . . . . . 229

4.4 Algorithmic aspects: Positive functions . . . . . . . . . . . . . . . . . . . . 233
4.4.1 Some complexity results . . . . . . . . . . . . . . . . . . . . . . . . 233
4.4.2 A quasi-polynomial dualization algorithm . . . . . . . . . . . . . . . 236
4.4.3 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

II SPECIAL CLASSES 247

5 Quadratic functions 249



4 CONTENTS

Bruno Simeone

5.1 Basic definitions and properties . . . . . . . . . . . . . . . . . . . . . . . . 249
5.2 Why are quadratic Boolean functions important? . . . . . . . . . . . . . . 251
5.3 Special classes of quadratic functions . . . . . . . . . . . . . . . . . . . . . 254

5.3.1 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
5.3.2 Functional characterizations . . . . . . . . . . . . . . . . . . . . . . 255

5.4 Quadratic Boolean functions and graphs . . . . . . . . . . . . . . . . . . . 256
5.4.1 Graph models of quadratic functions . . . . . . . . . . . . . . . . . 256
5.4.2 The matched graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
5.4.3 The implication graph . . . . . . . . . . . . . . . . . . . . . . . . . 259
5.4.4 Conflict codes and quadratic graphs . . . . . . . . . . . . . . . . . . 264

5.5 Reducibility of combinatorial problems
to quadratic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
5.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
5.5.2 Bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
5.5.3 Balance in signed graphs . . . . . . . . . . . . . . . . . . . . . . . . 269
5.5.4 Split graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
5.5.5 Forbidden-color graph bipartition . . . . . . . . . . . . . . . . . . . 270
5.5.6 Totally unimodular matrices with two nonzero entries per column . 271
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