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Phase space theory in its orbiting transition state 
version is a very useful tool to calculate the kinetic 
energy release distribution in an ionic dissociation 
[1]. This model assumes an ion-induced dipole 
interaction between receding fragments and an 
equal probability for all decay states, provided 
energy E and angular momentum J are conserved. 
We used it in the cases of three dissociations :  
C6H5X+ → C6H5

+ + X with X = I, Br and Cl. 
 
Statistically, the kinetic energy release 

distribution, i.e., the probability to release a 
relative translational energy ε on the fragments if 
the internal energy of the parent is equal to E and 
its angular momentum is J , is proportional to the 
convolution product of the vibrational density of 
states and the rotational-orbital density of states: 
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The crux point of phase space theory  is the 

calculation of ρro(Er,ε,J).  Let j and ℓ be 
respectively the C6H5X+ rotational and the orbital 
momenta.  ρro(Er,ε,J) results from integration of the 
C6H5X+ rotational density of states ρ(Er,j) over 
accessible (j, ℓ) states: 
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where Ω is defined by three conditions: 
• The centrifugal barrier induced by the orbital 

motion must be smaller than the kinetic  
energy :  ℓ ≤ ℓmax(ε) 

• The energy conservation prevents j from being 
too large:   j ≤ jmax(Er); 

• The angular momentum conservation : 
|J-j| ≤ ℓ ≤ |J+j| 

The molecular fragment is assumed to rotate as a 
spherical top of rotational constant B, so ρ(Er,j) is 
equal to 2j δ(Er-Bj2). The calculation of Equation 
(2) shows that the shape of ρro(Er,ε,J) depends on ε, 
Er and J (Figure 1). 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 2 displays an example of kinetic energy 

release distribution calculated via Equations (1) 
and (2).  Compared to a prior distribution 
conserving only E, the conservation of J leads to a 
reduction of phase space sampling by 5% as shown 
by a maximum entropy analysis.  The experimental 
distribution [2] is also seen to be more constrained 
than the PST one, since it involves a reduction of 
23% in phase space sampling. 
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Figure 1: The rotational-orbital states density.  The 
upper black line corresponds to ℓmax(ε)= jmax(Er)+J, 
the lower one to ℓmax(ε)=| jmax(Er)-J|. 

Figure 2 : The calculated and experimental kinetic 
energy release distributions for the dissociation 
C6H5Br+ → C6H5

+ + Br. 


