THE SPECTRUM OF a^2 CANUM VENATICORUM

O. STRUVE AND P. SWINGS

Yerkes and McDonald Observatories

Received July 25, 1943

ABSTRACT

A new list of wave lengths containing 3107 absorption lines between λ 3087.9 and λ 4740.6 has been obtained from 28 spectrograms taken at the Mount Wilson and the McDonald observatories. Of these plates, 18 were obtained with a dispersion of around 3 A/mm, while the other plates, used in the ultraviolet region, had 20 A/mm. The identifications are based upon all available laboratory material and show that all singly ionized rare earths which have been measured in the laboratory and which have a sufficient number of lines in the region covered by the stellar spectrograms are present. One doubly ionized rare earth, Ce III, is almost certainly present, and others may contribute to blends. The intensities of all rare-earth lines are variable in a period of 5.5 days and follow the pattern of the Eu II lines (designated as group A). The lines of Cr II and some other elements vary in the opposite sense (group B), while certain other lines—Si II, Mg II, etc.—do not appreciably change in intensity (group C). The radial velocities as measured from the lines of different elements also fall into three groups, designated as a, b, and c, which roughly correspond to the intensity groups A, B, and C. Group a, consisting of the rare earths and some other elements predominantly of low ionization potential, shows a shallow minimum of velocity at phase 4.5 days after maximum Eu II intensity and a sharp maximum of velocity at phase 1.5 days. Group b, represented by Cr II and some other elements, shows a velocity-curve with a double wave. The highest maximum is at phase 5.0 days and the deepest minimum at phase 0.7 day. Group c, consisting of Mg II, Si II, H, and Ca II, shows no appreciable variation.

A recent review of the problem presented by the variable line-intensities in a^2 Canum Venaticorum has shown that several important conclusions rested upon somewhat inadequate observational data. In particular, there exists as yet no satisfactory list of the absorption lines in this remarkable spectrum. The most complete previous set of measurements was obtained by W. W. Morgan on Yerkes single-prism spectrograms and covers the region $\lambda\lambda$ 3913–4572, with a linear dispersion of 30 A/mm at λ 4500. The more recent work by Tai contains fewer lines and therefore adds relatively little to Morgan's identifications. The spectrum is exceedingly rich in lines. With small, or even with moderately large, dispersion the great majority of the lines are blends—many of which have never before been identified or even measured. Since Baxandall's discovery in 1910 of five strong absorption lines, measured by Belopolsky and found by the latter to have variable intensities, were due to the rare earth europium, several other ionized rare-earth atoms have been identified in a^2 CVn, though until recently there existed little agreement among different observers.

The purpose of this investigation is to present as complete a list of wave lengths and identifications as can be obtained at the present time and to study the variations in radial velocities presented by lines of different atoms. There has been some controversy concerning the reality of the changes in radial velocity first observed by Belopolsky for Eu II; and for a number of years the opinion appeared justified that, in some of these lines at least, the observed variations were caused by disturbing blends near minimum intensity of Eu II. The reality of the changes in velocity was definitely established by our preliminary measurements of McDonald Observatory coudé spectrograms.

* Contributions from the McDonald Observatory, University of Texas, No. 78.

1 Struve, Proc. Amer. Phil. Soc., 85, 349, 1942; Struve and Swings, Observatory, 64, 291, 1942. Since these reviews were written, Nikonov and Brodskaja (Bull. Acad. Sci. Georgian S.S.R., 3, No. 7, 657, 1942) have found that the star changes in color-temperature by about 2000°, being bluest when the total light is at minimum.

3 M.N., 100, 94, 1939.

4 Observatory, 36, 440, 1913.
The tables presented in this paper are based upon a number of spectrograms obtained at the Mount Wilson and McDonald observatories. The nine McDonald coudé plates have already been used in part. They extend from about λ 3900 to λ 4800. The dispersing system consists of two large prisms of Chance glass, figured by Hilger and giving excellent definition over the entire range. The emulsion used was Eastman Ia0. The dispersion varies from 1.9 A/mm at λ 3933 to 4.5 A/mm at λ 5000.

We are greatly indebted to Dr. W. S. Adams, director of the Mount Wilson Observatory, for extending to us the use of his exquisite coudé spectrograms, also nine in number, which were taken with various adjustments of a large plane grating ruled on aluminum on glass. These spectrograms extend over a very large range in wave lengths and are uniformly of excellent quality. The dispersion is 3 A/mm. We have reproduced in Plates XXIII–XXX a number of the best spectrograms of each observatory. The changes in the line-intensities with phase are very conspicuous. The McDonald plates were taken through the glass (a practice which was necessitated by the large amount of curvature of our plateholders and which has since been abandoned because of a new technique which permits us to bend the plates sufficiently without breaking them), and this accounts for some of the irregular spots on the reproductions. The extreme ultraviolet region, from λ 3087.9 to λ 3408.0, has been measured on McDonald Observatory Cassegrain quartz spectrograms, having a dispersion of 20 A/mm at λ 3250 or 40 A/mm at λ 3933. These plates were obtained on Eastman Process emulsion and are of fine quality, but the dispersion was insufficient to resolve many of the blends. The Cassegrain quartz plates (CQ) were measured by Swings. All high-dispersion plates were measured by Struve. The identifications were made by Swings and were later in part re-examined by Struve. Because of the unusually large amount of work involved in these measurements, Struve measured all eighteen coudé plates in one direction and later remeasured two of them, Cd 81 and MtW 1992, in the reverse direction. The reductions were made quite independently, and the comparisons of direct and reverse measures furnish a valuable indication of the precision and of the essential absence of systematic differences in the two sets. Although a small tendency exists in each plate for strong and weak lines to differ slightly in the direct and the reverse measurements, the trend of the two spectrograms is opposite in sense. Hence it may be concluded that for the relatively broad lines of α^2 CVn no systematic errors in excess of 0.01 A have been introduced into the results. The actual precision of the faintest lines should be of the order of 0.02 A, and of the stronger lines it should be more nearly of the order of 0.01 A.

The phases used in this paper were computed with the formula established by Miss G. Farnsworth.\footnote{\textit{Ap. J.}, 75, 364, 1932.}

$$\text{Maximum intensity of } Eu\, \Pi = JD\ 2419869.720 + 5.46939 E.$$

This formula satisfactorily predicts the phase of the maximum $Eu\, \Pi$ intensity, but it is possible that there are small departures from one cycle to another in the curve of intensity plotted against time. Hence the combination of observations made in different years may not be rigorously correct; unfortunately, the high-dispersion material is not sufficient to study possible departures from the mean curves.

Table 1 covers the region $\lambda\lambda$ 3088–3315 and is based upon only one spectrogram at phase 3$^{d}7$, where the rare-earth lines should be weak. The contributions of these lines to blends, which should become important at other phases, are indicated in a separate column.

Table 2 gives the region $\lambda\lambda$ 3317–3408 and is based upon three spectrograms at phases 0$^{d}47$, 1$^{d}46$, and 4$^{d}93$, which were measured from λ 3317 to λ 3369, and upon six spectrograms, which were measured from λ 3369 to λ 3408.
Table 3 is based upon nine Mount Wilson coudé plates and one McDonald coudé plate. The manner in which the phases of some of the plates were combined for the forming of average wave lengths and intensities is shown in Table 7.

All wave lengths have been corrected to the sun in the usual manner. The curvature correction was applied to the McDonald plates but was, of course, neglected for the Mount Wilson plates, which were taken with a grating.

The intensities of the star lines are rough estimates and are not intended for a study of the variations of the intensities, because they are affected by underexposure or overexposure of the region in question. The illustrations give a far better idea of the variations. Intensities greater than 9 are shown by the symbol x in the tables. An intensity of 0 does not mean that the line is absent, but a single measure of such a line is rather doubtful and may not be real.

The work of identification was especially difficult for the following reasons:

a) The variation of λ with phase. This variation may be so different for two atoms, A and B, that a line may be single at one phase and become double at another phase.

b) The unsatisfactory state of laboratory data for certain rare earths.

c) Considerable differences which may exist between the laboratory and the stellar intensities. Let us adopt $T_{exc} = 10,000^\circ$ for $a^2\mathrm{CVn}$ and $T_{exc} = 5,000^\circ$ for an arc. Table 8 gives the ratio $(I_1/I_2)_{arc}/(I_1/I_2)_{a^2\mathrm{CVn}}$ for various differences in excitation potential of the two lines. Hence high-level lines may be considerably enhanced in $a^2\mathrm{CVn}$ relative to their laboratory intensities. The criterion of "arc intensity" (as applied by Tai, for example) is not reliable, although it may still be the best one could use in many cases when a term classification is not available. Whenever a term classification is known, the identifications have been discussed on the basis of multiplet intensity relations.

d) A contribution of minor importance at a specific phase may become important at some other phase (at least as far as v_{rad} is concerned). Hence many minor contributions have been included in the tables.

The list of identifications gives the probable major contributors first. These are followed by minor, but appreciable, contributors. Less important contributors and uncertain contributors are given in parentheses.

The laboratory material used for identifications consisted of the following:

a) Miss Moore's original multiplet table, combined with new M.I.T. wave lengths wherever advisable.

b) New material on Ne II, A II, P II, Fe I, etc.

c) Considerable unpublished material generously supplied by Mrs. Sitterly (parts of her revised multiplet table) and by Dr. A. S. King for: Fe II, Cr II, Ti II, Mn II, Co II, Ni II, Sc II, Cu II, Ce II, Pr II, Nd II, Sm II, Eu II, Gd II, Dy II, Tm II, Yb II, Lu II.

d) Meggers' and Moore's analysis of V II.

e) No term analysis is available for Tb II, Dy II, Ho II, Er II. For Dy II, a temperature classification by A. S. King is available over the whole astronomical region, but it seems to concern only the strong lines. A summarized copy belonging to Mrs. Sitterly was used.

For Ho II and Tb II, King's temperature classification covers only the region $\lambda\lambda 3836$–4680. Hence the M.I.T. table had to be used for $\lambda<3836$. Only the Ho and Tb lines have been entered, which are observed in the spark (the separation of Ho I–II and Tb I–II is not known for $\lambda<3836$). The corresponding identifications are marked Ho (I?) and Tb (II?), and the intensities denoted by S are taken from the spark column of the M.I.T. table.

A recent temperature classification of Gd II extending over the whole astronomical region was received from Dr. A. S. King prior to publication; it was used with considerable success.

For erbium, only the old work of Exner and Hascheck and of Eder is available. This does not separate Er I and Er II. Over the whole astronomical region the wave lengths

were taken from the M.I.T. table, for the lines only which appear in the spark. These wave lengths may be less satisfactory than for most other elements.

Generally speaking, the term analyses are still very incomplete for the rare earths. Hence the temperature classifications were used extensively.

f) Nothing has been published on the doubly ionized rare earths, except Ce III. Yet it is very probable that a number of unidentified lines are due to Eu II, Gd III, Dy III, etc.

g) Each wave length of a² CVn was compared with the neighboring wave lengths in the M.I.T. table.

With regard to the elements represented in a² CVn the following notes are pertinent:

a) Ne II and A II. Probably pure chance coincidences or minor contributions.

b) Sc II. Extremely weak compared with a Cygni.

c) Singly ionized rare earths. The evidence is probably satisfactory for all singly ionized rare earths, except Yb II and Er II. Yb II is very faint, yet almost certainly present. The uncertainty of Er II is due to the lack of reliable laboratory data.

d) Doubly ionized rare earths. These identifications were made with the help of unpublished data kindly supplied by Dr. A. S. King.

Ce III.—The stellar evidence is summarized in Table 9. The following multiplets are present:

\[\text{fsF}^9 - \text{fpF}^9, \text{fsF}^9 - \text{fpG}^9, \text{fsF}^9 - \text{fpF}^9, \text{fsF}^9 - \text{dG}^9, \text{fsF}^9 - \text{fG}^9, \text{fsF}^9 - \text{fG}^9, \text{fsF}^9 - \text{dG}^9. \]

Eu III (\(\lambda 2900-3194\)).—The region covered by King's list was taken only on CQ spectrograms and cannot provide reliable identifications. The Eu III line \(\lambda 3183.7(100)\) may contribute, but it is badly blended by Cr II.

Gd III (\(\lambda 2900-3177\)).—\(\lambda 3118.0 (1000)\) may contribute. This region was taken only on CQ spectrograms.

Sm III (\(\lambda 2903-3398.4\)).—No definite evidence; Sm III contributes probably in a number of blends, but the region is too crowded.

Nd III (\(\lambda 2899-3431\)).—Contributions by Nd III probably improve the identifications of blends.

Pr III (\(\lambda 3147-3568\)).—Most lines are blended; but their contributions improve the identification of the blends; \(\lambda 3397.5(600)\) cannot be appreciably blended and is probably present.

La III.—\(\lambda 3517.14\) may be present.

Table 4 contains the best lines for a number of atoms and ions, selected for lack of seriously disturbing blends. The selection was made without regard to any changes in wave length. The radial velocities determined from the individual lines are, of course, corrected to the sun and represent in each case the true velocity as determined from each individual line on each plate. These velocities are arranged in order of phase and are given individually, not only for the ten plates used in Table 3, but also for the remaining eight McDonald coude spectrograms. For each atom or ion the mean radial velocity has been derived individually for each plate, together with the number of measures used in forming each mean. The mean velocities are plotted in Figures 1–5 as functions of the phase. The value of the period, 5.5 days, is indicated along the abscissae, so that the amount of repetition of each set of points can be clearly seen in all diagrams.

The velocity-curves fall into three distinct groups:

a) Lines which show a large range in velocity, with a pronounced minimum at phase 4.5 days after the epoch of maximum of Eu II intensity. Maximum velocity occurs at phase 1.5 days, and the curve is characterized by a sharp maximum and a shallow minimum. This type of variation is best determined for Eu II and Dy II. Probably all rare earths share in this type of variation, with the exception of Ho II, for which the material is inadequate. The following elements belong to group a: Al II, Ca I, Mn I, Ni I, Ce II, Pr II, Nd II, Sm II, Eu II, Gd II, Dy II, and perhaps Sr II. The range of the

The Spectrum of α² Canum Venaticorum
PLATE XXV

The Spectrum of α² Canum Venaticorum
PLATE XXIX

THE SPECTRUM OF α² CANUM VENATICORUM
PLATE XXX

The Spectrum of α² Canum Venaticorum

<table>
<thead>
<tr>
<th>Phase</th>
<th>5.430</th>
<th>4.520</th>
<th>3.530</th>
</tr>
</thead>
<tbody>
<tr>
<td>4434</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II 51.5</td>
<td>Fe II 52.7</td>
<td>Fe II 61.8</td>
<td></td>
</tr>
<tr>
<td>Cr II 67.5</td>
<td>Cr II 68.0</td>
<td>Cr II 68.5</td>
<td></td>
</tr>
<tr>
<td>Fe II 73.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 II 01.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II 20.2</td>
<td>Fe II 22.6</td>
<td>Fe II 41.5</td>
<td></td>
</tr>
<tr>
<td>Cr II 65.8</td>
<td>Cr II 66.0</td>
<td>Cr II 66.5</td>
<td></td>
</tr>
<tr>
<td>Fe II 49.6</td>
<td>Cr II 56.0</td>
<td>Cr II 56.9</td>
<td></td>
</tr>
<tr>
<td>Cr II 57.7</td>
<td>Cr II 58.2</td>
<td>Cr II 58.7</td>
<td></td>
</tr>
<tr>
<td>Fe II 62.1</td>
<td>Cr II 65.8</td>
<td>Cr II 65.9</td>
<td></td>
</tr>
<tr>
<td>Cr II 69.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 II 08.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II 10.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II 15.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II 20.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Wave Length and Int.</th>
<th>Principal Contributors</th>
<th>Rare Earths and Minor Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3087.94 (2)</td>
<td>Ti II 88.03 (500) Cr II 87.90 (20)</td>
<td>Ce III 88.7 (100) Eu II 89.09 (10) Gd II 89.20 (30) Gd II 89.25 (20)</td>
</tr>
<tr>
<td>3089.17 (0)</td>
<td>Fe II 89.39 (4) Ti II 89.40 (100)</td>
<td>Fe II 90.04 (8) Cr II 89.75 (1) Eu II 89.64 (3)</td>
</tr>
<tr>
<td>3089.86 (2)</td>
<td>Ti II 90.05 (100) Gd II 89.95 (400)</td>
<td>Gd II 91.46 (8)</td>
</tr>
<tr>
<td>3091.49 (1)</td>
<td>Fe I 91.58 (300) (Eu II 91.29 (10))</td>
<td>V II 93.11 (2500) Dy II 93.11 (60) Sa III 93.1 (20) Gd II 93.85 (25)</td>
</tr>
<tr>
<td>3093.64 (Ar)</td>
<td>Cr II 93.48 (40) Cr II 93.97 (15)</td>
<td>Sa III 98.3 (80) Sa III 98.6 (250)</td>
</tr>
<tr>
<td>3098.28 (1)</td>
<td>Cr II 98.16 (18) (Nd II 98.48 (50))</td>
<td>V II 92.60 (2000) Gd II 92.55 (1000) Dy II 92.19 (70)</td>
</tr>
<tr>
<td>3102.26 (2)</td>
<td>Cr II 92.30 (2) Cr II 92.58 (2)</td>
<td>Cr II 93.80 (200)</td>
</tr>
<tr>
<td>3103.62 (1)</td>
<td>Cr II 03.48 (30) Tl II 03.80 (200)</td>
<td>Ce III 03.38 (125) Dy II 03.84 (60) Dy II 03.25 (60)</td>
</tr>
<tr>
<td>3105.25 (1)</td>
<td>Fe II 05.55 (5) Fe II 05.17 (5)</td>
<td>TI II 05.08 (100) Dy II 05.00 (40) Gd II 05.53 (80) Nd II 05.42 (30)</td>
</tr>
<tr>
<td>3106.61 (1)</td>
<td>Fe II 06.56 (4) (Tl II 06.23 (15))</td>
<td>Ce III 06.97 (200) Zr II 06.58 (35)</td>
</tr>
<tr>
<td>3107.57 (2)</td>
<td>Cr II 07.58 (50)</td>
<td></td>
</tr>
<tr>
<td>3108.94 (1)</td>
<td>Cr II 08.66 (10)</td>
<td></td>
</tr>
<tr>
<td>3110.64 (2n)</td>
<td>V II 10.71 (1500) (Tl II 10.67 (100))</td>
<td>Ce III 10.52 (200) Sa III 10.0 (150) Zr II 10.87 (8)</td>
</tr>
<tr>
<td>3111.97 (1)</td>
<td>Cr II 11.95 (15) (Ce II 12.20 (8 15))</td>
<td>Tl II 12.05 (70) Gd II 11.99 (20) Sa III 12.0 (20)</td>
</tr>
<tr>
<td>3114.49 (2n)</td>
<td>Fe II 14.29 (7) Fe II 14.68 (4)</td>
<td>Fe II 15.49 (1) Fe II 15.35 (2) Sa III 15.6 (50) Gd II 15.77 (10)</td>
</tr>
<tr>
<td>3115.56 (2)</td>
<td>Cr II 15.65 (20) Cr II 15.28 (12)</td>
<td>Fe II 15.49 (1) Fe II 15.35 (2) Sa III 15.6 (50) Gd II 15.77 (10)</td>
</tr>
<tr>
<td>3116.84 (2)</td>
<td>Cr II 16.76 (20) Cr II 17.28 (15)</td>
<td>Fe II 16.59 (6) Sa III 16.9 (150) Gd II 17.01 (15)</td>
</tr>
<tr>
<td>3118.70 (2n)</td>
<td>Cr II 18.65 (60) Cr II 18.14 (10)</td>
<td>Gd II 18.60 (150) Gd II 18.0 (1000) Sm III 18.13 (40) Sm III 18.8 (80) Fe II 18.30 (0) Fe II 18.71 (0)</td>
</tr>
<tr>
<td>3120.06 (1)</td>
<td>Fe II 20.02 (1) (Tl II 19.80 (150))</td>
<td>Dy II 20.18 (80) Gd II 19.94 (800) Gd II 20.18 (125) Nd II 19.75 (15)</td>
</tr>
<tr>
<td>3120.58 (3)</td>
<td>Cr II 20.37 (75)</td>
<td></td>
</tr>
<tr>
<td>3122.00 (1)</td>
<td>Cr II 21.97 (7) Cr II 21.84 (10)</td>
<td>Tl II 22.06 (50) Gd II 21.76 (80)</td>
</tr>
<tr>
<td>3122.74 (1)</td>
<td>Cr II 22.60 (30)</td>
<td></td>
</tr>
<tr>
<td>3125.11 (5)</td>
<td>Cr II 24.98 (100) Cr II 25.46 (7)</td>
<td>Cr II 25.02 (15) V II 25.28 (600) Sm III 24.9 (150)</td>
</tr>
<tr>
<td>3126.30 (1)</td>
<td>Dy II 26.18 (50) (V II 26.21 (150))</td>
<td>Zr II 25.92 (12)</td>
</tr>
<tr>
<td>Wave Length and Int.</td>
<td>Principal Contributors</td>
<td>Rare Earths and Minor Contributors</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>3127.93 (1)</td>
<td>Ti II 27.88 (35) Gd II 27.70 (100)</td>
<td>Ce II 27.53 (80)</td>
</tr>
<tr>
<td>3128.87 (4)</td>
<td>Cr II 28.70 (40) Fe II 29.01 (1)</td>
<td>Dy II 28.41 (150) Gd II 28.56 (200)</td>
</tr>
<tr>
<td>3128.64 (70)</td>
<td>Ti II 28.64 (70)</td>
<td>Sm III 29.0 (60) Zr II 29.16 (10)</td>
</tr>
<tr>
<td>3130.10 (1)</td>
<td>V II 30.26 (100) (Zr II 29.76 (12))</td>
<td>Gd II 29.95 (100) Gd II 29.70 (80)</td>
</tr>
<tr>
<td>3130.71 (2)</td>
<td>Fe II 30.56 (2) Ti II 30.80 (100)</td>
<td>Cr II 30.55 (1) Gd II 30.81 (200)</td>
</tr>
<tr>
<td>3132.08 (5)</td>
<td>Cr II 32.06 (125) Fe II 31.72 (4)</td>
<td>Eu II 30.73 (80)</td>
</tr>
<tr>
<td>3133.42 (1)</td>
<td>Fe II 33.05 (4) (Fe II 33.72 (1))</td>
<td>Sm III 31.6 (25) Sm III 32.5 (125)</td>
</tr>
<tr>
<td>3133.21 (2)</td>
<td>Cr II 33.33 (150) Nd II 33.60 (100)</td>
<td>Eu II 32.16 (40)</td>
</tr>
<tr>
<td>3134.36 (2)</td>
<td>Cr II 34.33 (25) (Eu II 34.69 (15))</td>
<td>Zr II 33.49 (25)</td>
</tr>
<tr>
<td>3135.65 (4)</td>
<td>Cr II 35.74 (30) Fe II 35.36 (9)</td>
<td>Cr II 35.35 (20) Dy II 35.37 (500)</td>
</tr>
<tr>
<td>3136.70 (3)</td>
<td>Cr II 36.68 (40) (Eu II 36.96 (12))</td>
<td>Pr II 36.79 (20)</td>
</tr>
<tr>
<td>3137.44 (2)</td>
<td>Cr II 37.55 (8) Cr II 37.11 (3)</td>
<td>Nd II 37.25 (30)</td>
</tr>
<tr>
<td>3138.40 (1)</td>
<td>Cr II 38.25 (7) Fe II 38.21 (1n)</td>
<td>Zr II 38.66 (25)</td>
</tr>
<tr>
<td>3140.06 (4)</td>
<td>Cr II 39.91 (8) (Gd II 39.72 (15))</td>
<td></td>
</tr>
<tr>
<td>3140.34 (4)</td>
<td>Cr II 40.21 (25) Fe II 40.69 (1)</td>
<td>Dy II 40.64 (150) Eu II 40.36 (15)</td>
</tr>
<tr>
<td>3141.43 (1)</td>
<td>Cr II 41.80 (4) Ce III 41.25 (250)</td>
<td>Dy II 41.13 (200) Nd II 41.48 (40)</td>
</tr>
<tr>
<td>3142.21 (1)</td>
<td>Fe II 42.22 (0) V II 42.48 (150)</td>
<td>Fe I 42.45 (125) Dy II 42.30 (40)</td>
</tr>
<tr>
<td>3142.91 (1)</td>
<td>Cr II 42.74 (10) Cr II 42.97 (8)</td>
<td>Ce II 42.31 (25) Nd II 42.44 (30)</td>
</tr>
<tr>
<td>3143.15 (1)</td>
<td>Gd II 43.13 (400) (Fe I 43.24 (60))</td>
<td></td>
</tr>
<tr>
<td>3145.03 (2)</td>
<td>Cr II 45.10 (10) Fe II 44.75 (5)</td>
<td>Gd II 45.00 (2500) Ce II 45.28 (150)</td>
</tr>
<tr>
<td>3145.96 (1)</td>
<td>Cr II 45.77 (15) Gd II 45.52 (800)</td>
<td>Ce III 43.96 (200) Sm III 45.1 (30)</td>
</tr>
<tr>
<td>3147.35 (4n)</td>
<td>Cr II 47.23 (50) Ce III 47.05 (300)</td>
<td>Pr III 47.0 (60) Pr III 47.7 (100)</td>
</tr>
<tr>
<td>3149.33 (1n?)</td>
<td>Cr II 49.12 (4) Sm III 49.4 (20)</td>
<td>Gd II 48.88 (250) Eu II 47.43 (20)</td>
</tr>
<tr>
<td>3149.53 (1n?)</td>
<td>Cr II 49.12 (4) Sm III 49.4 (20)</td>
<td>Dy II 47.53 (30)</td>
</tr>
<tr>
<td>3150.20 (3)</td>
<td>Cr II 50.11 (20) Cr II 49.83 (20)</td>
<td>Eu II 49.88 (60)</td>
</tr>
<tr>
<td>3151.32 (1)</td>
<td>Fe I 51.35 (300) V II 51.32 (100)</td>
<td>Ta II 51.04 (200) Pr II 51.54 (25)</td>
</tr>
<tr>
<td>3152.25 (3)</td>
<td>Cr II 52.21 (40) Ti II 52.25 (125)</td>
<td>Sm II 52.52 (300) Gd II 51.91 (20)</td>
</tr>
<tr>
<td>3154.33 (5)</td>
<td>Fe II 54.20 (12) Cr II 54.04 (5)</td>
<td>Dy II 51.89 (50)</td>
</tr>
<tr>
<td>3155.91 (1)</td>
<td>Fe II 55.95 (2) Ti II 55.67 (125)</td>
<td>Cr II 54.10 (2) Ti II 54.19 (100)</td>
</tr>
<tr>
<td>3155.92 (10)</td>
<td>Nd III 56.0 (10) Ce II 55.70 (20)</td>
<td>Zr II 55.68 (10) Nd II 55.76 (10)</td>
</tr>
<tr>
<td>3158.11 (1)</td>
<td>Cr II 58.03 (20)</td>
<td></td>
</tr>
<tr>
<td>3159.13 (2)</td>
<td>Cr II 59.10 (5) (Fe II 59.32 (pr))</td>
<td>Zr II 59.12 (5) Nd II 59.22 (10)</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Wave Length and Int.</th>
<th>Principal Contributors</th>
<th>Rare Earths and Minor Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3160.18 (1)</td>
<td>Cr II 59.86 (5) Cr II 60.11 (3)</td>
<td>Dy II 60.50 (40) Eu II 60.33 (10) Pr III 60.0 (150)</td>
</tr>
<tr>
<td>3161.41 (1)</td>
<td>Cr II 61.37 (650) Ti II 61.20 (125)</td>
<td>Ti II 61.77 (150)</td>
</tr>
<tr>
<td>3162.19 (1)</td>
<td>Cr II 62.46 (10) Fe II 61.94 (5)</td>
<td>Ti II 62.57 (200) Fe I 61.95 (200)</td>
</tr>
<tr>
<td>3163.13 (1)</td>
<td>Fe II 62.80 (8) Fe II 63.09 (5)</td>
<td>Nd III 63.3 (10)</td>
</tr>
<tr>
<td>3164.12 (2)</td>
<td>Cr II 63.93 (10) Cr II 64.28 (4)</td>
<td>Cr II 64.48 (1) Ce II 64.15 (200) Zr II 64.32 (20)</td>
</tr>
<tr>
<td>3165.54 (1)</td>
<td>Ce III 65.54 (25) Sm III 65.5 (150)</td>
<td>Zr II 65.45 (7) Zr II 65.98 (10)</td>
</tr>
<tr>
<td>3166.48 (2)</td>
<td>Fe II 66.67 (4) Fe II 66.22 (pr)</td>
<td>Eu II 66.49 (25) Zr II 66.29 (8)</td>
</tr>
<tr>
<td>3168.03 (3)</td>
<td>Fe II 67.85 (11) (Cr II 68.39 (2))</td>
<td>Sm III 68.0 (50) Sm III 68.2 (80) Ce III 68.02 (25) Gd II 68.13 (50) Gd II 68.29 (60)</td>
</tr>
<tr>
<td>3168.86 (1)</td>
<td>Cr II 69.20 (25) Ti II 68.52 (300)</td>
<td>Ce II 69.18 (150) Yb II 69.06 (10)</td>
</tr>
<tr>
<td>3170.22 (1)</td>
<td>Fe II 70.34 (6) (Cr II 69.85 (2))</td>
<td>Dy II 69.98 (300) Eu II 70.41 (50) Sm II 69.87 (250) Pr III 70.2 (50)</td>
</tr>
<tr>
<td>3172.33 (2)</td>
<td>Cr II 72.08 (40) (Nd III 71.7 (40))</td>
<td>Eu II 71.94 (50) Pr II 72.31 (50) Gd II 72.17 (30)</td>
</tr>
<tr>
<td>3172.92 (1)</td>
<td>Ta II 72.83 (180) Pr III 72.9 (100)</td>
<td>Gd II 72.86 (40)</td>
</tr>
<tr>
<td>3173.71 (1)</td>
<td>Cr II 73.58 (15) Eu II 73.61 (100)</td>
<td></td>
</tr>
<tr>
<td>3175.33 (2)</td>
<td>Fe II 75.08 (4) Fe I 75.45 (200)</td>
<td>Ti II 75.66 (20)</td>
</tr>
<tr>
<td>3177.70 (3)</td>
<td>Fe II 77.53 (10) (Cr II 77.90 (1))</td>
<td>Dy II 77.88 (125) Gd II 77.49 (30)</td>
</tr>
<tr>
<td>3178.72 (1)</td>
<td>Cr II 78.79 (7) (Ti II 78.63 (25))</td>
<td>Eu II 78.71 (12) Gd II 78.94 (12)</td>
</tr>
<tr>
<td>3179.31 (2)</td>
<td>Fe II 79.50 (8) Cr II 79.45 (8)</td>
<td></td>
</tr>
<tr>
<td>3180.18 (1)</td>
<td>Fe II 80.16 (7) Fe I 80.23 (300)</td>
<td>Ti II 80.22 (20) Gd II 80.03 (10)</td>
</tr>
<tr>
<td>3180.80 (2)</td>
<td>Cr II 80.73 (75)</td>
<td></td>
</tr>
<tr>
<td>3181.54 (2)</td>
<td>Cr II 81.43 (20) (Zr II 81.58 (8))</td>
<td></td>
</tr>
<tr>
<td>3182.04 (1)</td>
<td>Ti II 81.84 (50) Fe I 82.06 (80)</td>
<td>Zr II 81.94 (7)</td>
</tr>
<tr>
<td>3182.73 (1)</td>
<td>Fe I 82.97 (125) (Fe II 83.11 (8))</td>
<td>Ti II 82.57 (40) Zr II 82.86 (35) Gd II 82.55 (60) Eu II 82.98 (12)</td>
</tr>
<tr>
<td>3183.56 (4)</td>
<td>Cr II 83.32 (40) Ce II 83.52 (250)</td>
<td>Eu III 83.7 (100) Sm II 83.92 (400)</td>
</tr>
<tr>
<td>3184.52 (2)</td>
<td>Cr II 84.36 (15) Pr III 84.8 (150)</td>
<td>Dy II 84.78 (40)</td>
</tr>
<tr>
<td>3185.30 (1)</td>
<td>Fe II 85.31 (5) Eu II 85.54 (70)</td>
<td>Sm III 85.6 (10)</td>
</tr>
<tr>
<td>3186.74 (5)</td>
<td>Fe II 86.74 (11) Cr II 86.75 (18)</td>
<td>Sm II 87.01 (200) Dy II 86.37 (80)</td>
</tr>
<tr>
<td>3187.59 (1)</td>
<td>Fe II 87.29 (8) V II 87.72 (200)</td>
<td>Sm II 87.22 (300) Sm II 87.79 (200) Dy II 87.68 (60) He I 87.74 (200)</td>
</tr>
<tr>
<td>3188.75 (1)</td>
<td>Fe I 88.57 (100) Fe I 88.82 (150)</td>
<td>V II 88.52 (300)</td>
</tr>
<tr>
<td>3190.75 (3)</td>
<td>Cr II 90.69 (6) Ti II 90.87 (200)</td>
<td>V II 90.68 (150) Fe II 90.84 (pr) Eu II 90.60 (15)</td>
</tr>
<tr>
<td>3192.00 (1)</td>
<td>Fe II 92.06 (3) Pr III 91.8 (60)</td>
<td>Ti I 91.99 (100) Zr II 91.93 (12)</td>
</tr>
<tr>
<td>Wave Length and Int.</td>
<td>Principal Contributors</td>
<td>Rare Earths and Minor Contributors</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>3193.00 (1)</td>
<td>Fe II 92.92 (9) Sm II 93.01 (300)</td>
<td>Cr II 93.41 (2) Gd II 93.17 (200) Dy II 93.31 (80) Yb II 92.88 (50)</td>
</tr>
<tr>
<td>3193.96 (3)</td>
<td>Fe II 93.81 (11)</td>
<td></td>
</tr>
<tr>
<td>3194.81 (1)</td>
<td>Cr II 94.63 (10) Ce II 94.82 (200) Ti II 94.76 (40) Eu II 95.10 (10) Sm III 94.8 (15) Sm III 95.0 (15)</td>
<td></td>
</tr>
<tr>
<td>3196.14 (4)</td>
<td>Fe II 96.07 (10) Sm II 96.18 (150) Pr II 96.04 (50)</td>
<td></td>
</tr>
<tr>
<td>3197.08 (4)</td>
<td>Cr II 97.12 (75) Cr II 96.96 (20) Fe I 96.93 (500) Sm III 96.7 (15) Sm III 97.2 (10) Nd III 96.7 (20)</td>
<td></td>
</tr>
<tr>
<td>3198.62 (1)</td>
<td>(Eu II 98.76 (20)) (Yb III) 98.64 (8 20)</td>
<td></td>
</tr>
<tr>
<td>3199.91 (1n)</td>
<td>Cr II 99.87 (10) Cr II 00.45 (10) Fe I 99.52 (300) Ti I 99.91 (200) Sm III 99.6 (50) Gd II 00.31 (50)</td>
<td></td>
</tr>
<tr>
<td>3201.45 (1)</td>
<td>Cr II 01.26 (25) Ce II 01.71 (300) Nd III 01.5 (40) Yb II 01.16 (25)</td>
<td></td>
</tr>
<tr>
<td>3202.60 (1)</td>
<td>Cr II 02.52 (15) Ti II 02.54 (200)</td>
<td></td>
</tr>
<tr>
<td>3203.53 (1)</td>
<td>Cr II 03.53 (15) Fe II 03.51 (1) Fe II 03.74 (9) Ti II 03.43 (15) Nd III 03.46 (30)</td>
<td></td>
</tr>
<tr>
<td>3205.14 (3)</td>
<td>Cr II 05.11 (25) Fe I 05.40 (300) Sm III 05.4 (20)</td>
<td></td>
</tr>
<tr>
<td>3206.32 (1)</td>
<td>Gd II 06.47 (400) Dy II 06.40 (80) Fe II 06.21 (0) Ti II 05.99 (15)</td>
<td></td>
</tr>
<tr>
<td>3207.22 (1)</td>
<td>Sm II 07.18 (400) Dy II 07.10 (60) Eu II 07.31 (20)</td>
<td></td>
</tr>
<tr>
<td>3208.67 (2)</td>
<td>Cr II 08.62 (20) Dy II 08.81 (80) Ti II 08.61 (20)</td>
<td></td>
</tr>
<tr>
<td>3209.42 (2)</td>
<td>Cr II 09.21 (50) Fe I 09.60 (1) Fe I 09.30 (200) Sm III 09.3 (40) Gd II 09.66 (60)</td>
<td></td>
</tr>
<tr>
<td>3210.49 (1)</td>
<td>Fe II 10.45 (10) Eu II 10.16 (10)</td>
<td></td>
</tr>
<tr>
<td>3211.89 (1)</td>
<td>Cr II 11.50 (3) Sm II 11.73 (460) Gd II 11.57 (50) Fe I 11.99 (70)</td>
<td></td>
</tr>
<tr>
<td>3213.30 (3)</td>
<td>Fe II 13.31 (13) Cr II 12.91 (18) Cr II 13.46 (3)</td>
<td></td>
</tr>
<tr>
<td>3214.74 (1)</td>
<td>Y II 14.75 (120) Ti II 14.75 (80) Sm III 14.9 (20)</td>
<td></td>
</tr>
<tr>
<td>3215.69 (1)</td>
<td>Fe I 15.94 (300) Dy II 15.19 (125)</td>
<td></td>
</tr>
<tr>
<td>3216.62 (3)</td>
<td>Cr II 16.55 (20) Sm II 16.85 (300) Dy II 16.63 (150) Y II 16.68 (70)</td>
<td></td>
</tr>
<tr>
<td>3217.28 (3)</td>
<td>Cr II 17.44 (50) V II 17.12 (400) Ti II 17.06 (160) Sm III 17.5 (30) Gd II 17.03 (25) Gd II 17.13 (40) Nd II 17.12 (25)</td>
<td></td>
</tr>
<tr>
<td>3218.85 (1)</td>
<td>Ce II 18.94 (200) Sm II 18.60 (300) Zr II 18.52 (7)</td>
<td></td>
</tr>
<tr>
<td>3220.91 (1n)</td>
<td>Fe II 20.83 (0) Ce II 21.17 (250) Sm III 21.2 (40)</td>
<td></td>
</tr>
<tr>
<td>3222.99 (3)</td>
<td>Fe II 23.44 (1) Ti II 22.84 (150) Fe II 22.94 (0) Sm III 22.7 (100) Dy II 23.29 (80)</td>
<td></td>
</tr>
<tr>
<td>3224.20 (1)</td>
<td>Ti II 24.24 (150) Gd II 23.74 (1000)</td>
<td></td>
</tr>
<tr>
<td>3225.66 (2)</td>
<td>Cr II 25.44 (8) Cr II 25.39 (12) Fe I 25.79 (300) Gd II 25.46 (600) Sm III 25.4 (50) Dy II 25.96 (80)</td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Wave Length and Int.</th>
<th>Principal Contributors</th>
<th>Rare Earths and Minor Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3226.61 (1)</td>
<td>Fe II 26.38 (2) Cr II 26.36 (4)</td>
<td>Gd II 26.32 (1000) Ti II 26.77 (35)</td>
</tr>
<tr>
<td>3227.73 (3)</td>
<td>Fe II 27.73 (13) (Cr II 27.48 (3))</td>
<td>Sm III 27.5 (25) Nd II 28.05 (20)</td>
</tr>
<tr>
<td>3228.72 (1)</td>
<td>Fe II 28.60 (3) Ti II 28.60 (100)</td>
<td>Sm III 28.78 (200) Ce III 28.56 (400)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sm III 29.1 (80) Zr II 28.81 (15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gd II 28.04 (15)</td>
</tr>
<tr>
<td>3229.58 (2)</td>
<td>Cr II 29.89 (10) Cr II 29.38 (8)</td>
<td>Ti II 29.42 (70) Ti II 29.19 (60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nd III 29.9 (300) Pr III 29.2 (30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gd II 29.32 (25) Ce II 29.36 (25)</td>
</tr>
<tr>
<td>3230.54 (1)</td>
<td>Fe II 30.50 (1) Sm II 30.56 (400)</td>
<td></td>
</tr>
<tr>
<td>3231.78 (3)</td>
<td>Fe II 31.70 (5) Cr II 31.64 (8)</td>
<td>Zr II 31.69 (30) Eu II 31.87 (10)</td>
</tr>
<tr>
<td>3232.15 (1)</td>
<td>Ti II 32.28 (100) Fe II 32.05 (0)</td>
<td>Eu II 32.31 (20)</td>
</tr>
<tr>
<td>3233.08 (3)</td>
<td>Fe II 32.79 (7) (Fe I 33.05 (100))</td>
<td>Gd II 32.95 (80) Gd II 32.70 (50)</td>
</tr>
<tr>
<td>3234.28 (3n)</td>
<td>Cr II 34.06 (50) Ti II 34.52 (500)</td>
<td>Ce II 34.27 (300) Ce II 34.16 (300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eu II 34.31 (15) Pr II 34.22 (20)</td>
</tr>
<tr>
<td>3236.60 (2)</td>
<td>Ti II 36.57 (300) Sm II 36.64 (500)</td>
<td>Ce II 36.73 (150) Fe II 36.85 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dy II 36.63 (40)</td>
</tr>
<tr>
<td>3237.77 (2)</td>
<td>Fe II 37.8 (8) Fe II 37.40 (5)</td>
<td>V II 37.88 (350) Gd II 37.62 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nd III 37.7 (200) Eu II 37.37 (15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nd II 37.91 (20)</td>
</tr>
<tr>
<td>3238.95 (2)</td>
<td>Cr II 38.77 (50) Ti II 39.04 (300)</td>
<td>Gd II 38.62 (300) Pr II 38.87 (15)</td>
</tr>
<tr>
<td>3239.49 (1)</td>
<td>Fe I 39.44 (400) Ti II 39.66 (80)</td>
<td></td>
</tr>
<tr>
<td>3239.99 (1)</td>
<td>Cr II 40.07 (7) Sm II 39.66 (300)</td>
<td>Fe II 39.87 (pr) Tm II 40.23 (125)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eu II 40.11 (10)</td>
</tr>
<tr>
<td>3241.87 (2)</td>
<td>Fe II 41.68 (2) Ti II 41.99 (300)</td>
<td>Y II 42.28 (100) Sm III 42.3 (20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sm III 42.6 (50) Sm II 41.59 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tm II 41.53 (180)</td>
</tr>
<tr>
<td>3243.69 (2)</td>
<td>Fe II 43.72 (8) Ce II 43.37 (200)</td>
<td></td>
</tr>
<tr>
<td>3244.03 (1)</td>
<td>Fe I 44.19 (300) (Eu I 44.21 (8))</td>
<td>Eu II 44.47 (12)</td>
</tr>
<tr>
<td>3245.67 (1)</td>
<td>Fe I 45.98 (200) Cr II 45.31 (5)</td>
<td>Pr II 45.46 (25)</td>
</tr>
<tr>
<td>3247.45 (4)</td>
<td>Fe II 47.17 (9) Fe II 47.39 (3)</td>
<td>Cr II 47.33 (8) Sm III 47.17 (400)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nd III 47.1 (30) Eu II 47.32 (30)</td>
</tr>
<tr>
<td>3248.64 (1)</td>
<td>Ti II 48.60 (200) (Gd II 48.46 (25))</td>
<td></td>
</tr>
<tr>
<td>3249.77 (2)</td>
<td>Fe II 49.66 (4) Fe II 49.91 (1)</td>
<td>Cr II 49.52 (3) Nd III 49.4 (80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gd II 50.19 (300) Gd II 49.75 (40)</td>
</tr>
<tr>
<td>3251.73 (1n)</td>
<td>Ti II 51.91 (150) Fe II 51.34 (2)</td>
<td>V II 51.87 (200) Dy II 51.26 (300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dy II 51.90 (50) Dy II 52.19 (50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eu II 51.04 (20)</td>
</tr>
<tr>
<td>3252.94 (1)</td>
<td>Ti II 52.91 (200) Cr II 52.50 (5)</td>
<td>Gd II 52.74 (30)</td>
</tr>
<tr>
<td>3254.47 (2)</td>
<td>Ti II 54.25 (125) Fe I 54.38 (200)</td>
<td>V II 54.77 (300) Sm II 54.38 (500)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nd III 54.7 (250) Lu II 54.32 (90)</td>
</tr>
<tr>
<td>3256.02 (2)</td>
<td>Fe II 55.88 (8) Dy II 56.20 (80)</td>
<td>Nd III 56.4 (40) Gd II 55.82 (150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gd II 56.38 (80)</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Wave Length and Int.</th>
<th>Principal Contributors</th>
<th>Rare Earths and Minor Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3257.08 (1)</td>
<td>Fe II 57.36 (1) Gd II 57.07 (100)</td>
<td>Nd II 56.90 (15)</td>
</tr>
<tr>
<td>3257.97 (2)</td>
<td>Fe II 57.89 (3) Cr II 58.01 (3)</td>
<td>V II 57.89 (100) Tm II 58.05 (150)</td>
</tr>
<tr>
<td>3258.98 (3)</td>
<td>Fe II 59.05 (10) Fe II 58.77 (10)</td>
<td>Cr II 58.77 (30) Gd II 59.25 (250)</td>
</tr>
<tr>
<td></td>
<td>(Ce II 60.97 (60))</td>
<td>Eu II 58.68 (20) Nd II 59.23 (30)</td>
</tr>
<tr>
<td>3260.57 (1)</td>
<td>(Ti II 60.26 (30))</td>
<td>Dy II 60.69 (50) Nd III 60.9 (15)</td>
</tr>
<tr>
<td></td>
<td>(Ce II 60.97 (60))</td>
<td>Nd II 60.66 (20)</td>
</tr>
<tr>
<td>3261.45 (2)</td>
<td>Ti II 61.60 (300) Cr II 61.56 (4)</td>
<td>Fe II 61.51 (1) Sm III 61.2 (50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nd III 61.3 (400) Tb II 61.51 (10)</td>
</tr>
<tr>
<td>3262.01 (3)</td>
<td>Cr II 61.89 (0) Fe I 62.28 (50)</td>
<td>Nd III 62.3 (300) Sm II 62.26 (...)</td>
</tr>
<tr>
<td>3263.80 (1)</td>
<td>Ti II 63.69 (70)</td>
<td></td>
</tr>
<tr>
<td>3264.49 (2)</td>
<td>Cr II 64.26 (35)</td>
<td></td>
</tr>
<tr>
<td>3266.94 (2)</td>
<td>Fe II 66.94 (4) Fe II 67.03 (3)</td>
<td>Eu II 66.39 (200) Gd II 67.08 (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nd II 67.25 (30)</td>
</tr>
<tr>
<td>3268.73 (1n)</td>
<td>Cr II 68.48 (10) Cr II 69.11 (10)</td>
<td>Fe II 68.51 (3) Fe II 68.92 (pr)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dy II 69.12 (80)</td>
</tr>
<tr>
<td>3270.24 (1)</td>
<td>Cr II 70.14 (40) GdII 70.51 (100)</td>
<td></td>
</tr>
<tr>
<td>3271.59 (1)</td>
<td>Ti II 71.65 (125) V II 71.12 (1200)</td>
<td>Cr II 71.40 (0)</td>
</tr>
<tr>
<td>3272.04 (1)</td>
<td>Ti II 72.08 (100) Ce II 72.25 (250)</td>
<td>Zr II 72.21 (8)</td>
</tr>
<tr>
<td>3273.34 (1)</td>
<td>Fe II 73.50 (3) Cr II 73.20 (1)</td>
<td>Zr II 73.04 (75) Sm II 73.48 (500)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nd III 73.2 (25) Gd II 73.16 (12)</td>
</tr>
<tr>
<td>3276.55 (1)</td>
<td>Fe II 76.61 (5) Cr II 76.28 (1)</td>
<td>V II 76.12 (1500) Ce II 76.25 (18)</td>
</tr>
<tr>
<td>3278.81 (1)</td>
<td>Cr II 78.79 (2) Ti II 78.92 (150)</td>
<td>Sm III 78.7 (20)</td>
</tr>
<tr>
<td>3280.85 (1)</td>
<td>Pr III 81.0 (200) Zr II 80.75 (3)</td>
<td></td>
</tr>
<tr>
<td>3281.72 (1n)</td>
<td>Fe II 81.29 (7) Ti II 82.33 (150)</td>
<td>Gd II 81.61 (200) Gd II 82.30 (400)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sm III 81.6 (25) Nd III 81.7 (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nd III 82.1 (20)</td>
</tr>
<tr>
<td>3283.07 (1)</td>
<td>Cr II 83.04 (20) Zr II 82.84 (22)</td>
<td>Dy II 82.79 (100) Nd II 82.78 (8)</td>
</tr>
<tr>
<td>3284.17 (1)</td>
<td>Ce II 84.22 (20) Eu II 83.87 (10)</td>
<td>Nd III 83.6 (200)</td>
</tr>
<tr>
<td>3285.60 (1)</td>
<td>Cr II 85.96 (20) Fe II 85.42 (3)</td>
<td>Sm II 85.66 (200) Eu II 85.88 (12)</td>
</tr>
<tr>
<td>3288.03 (2)</td>
<td>Cr II 88.04 (15) Ti II 87.65 (600)</td>
<td>Sm III 88.1 (40) Dy II 87.95 (50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nd III 87.4 (60) Nd III 88.0 (15)</td>
</tr>
<tr>
<td>3291.76 (2)</td>
<td>Cr II 91.75 (40) Gd II 92.21 (800)</td>
<td>Nd III 91.4 (15)</td>
</tr>
<tr>
<td>3295.44 (4)</td>
<td>Cr II 95.43 (50) Fe II 95.24 (4)</td>
<td>Fe II 95.81 (6) Ce II 95.29 (80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pr III 96.1 (250) Pr II 95.53 (15)</td>
</tr>
<tr>
<td>3298.04 (1)</td>
<td>Fe II 97.89 (5) Sm II 98.10 (500)</td>
<td>Eu II 98.30 (25) Dy II 97.61 (20)</td>
</tr>
<tr>
<td>3299.97 (1)</td>
<td>Fe II 99.77 (1) FeII 100.06 (tr)</td>
<td>Ce II 00.15 (60) Nd II 00.15 (70)</td>
</tr>
<tr>
<td>3301.41 (1)</td>
<td>Cr II 01.21 (18) Sm II 01.68 (100)</td>
<td>Nd III 02.0 (40)</td>
</tr>
<tr>
<td>3303.17 (1)</td>
<td>Fe II 02.86 (4) Fe II 03.47 (4)</td>
<td>Cr II 02.93 (1)</td>
</tr>
</tbody>
</table>

370

© American Astronomical Society • Provided by the NASA Astrophysics Data System
TABLE 1 -- Continued

<table>
<thead>
<tr>
<th>Wave Length and Int.</th>
<th>Principal Contributors</th>
<th>Rare Earths and Minor Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>3304.83 (1)</td>
<td>Cr II 04.73 (5) (Zr II 05.15 (15))</td>
<td>Ce II 04.84 (60) Sm II 05.18 (200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nd II 04.65 (10)</td>
</tr>
<tr>
<td>3306.86 (1)</td>
<td>Cr II 06.95 (50) Cr II 07.04 (50)</td>
<td>Sm II 07.02 (500)</td>
</tr>
<tr>
<td>3308.03 (1)</td>
<td>Cr II 08.15 (18) (Fe II 08.14 (br))</td>
<td>Eu II 08.02 (200)</td>
</tr>
<tr>
<td>3309.16 (1)</td>
<td>Ti II 08.81 (100)</td>
<td>Dy II 08.89 (200)</td>
</tr>
<tr>
<td></td>
<td>(Nd III 09.15 (150))</td>
<td></td>
</tr>
<tr>
<td>3310.69 (1)</td>
<td>Cr II 10.65 (35)</td>
<td>Eu II 10.80 (10) Eu II 10.59 (60)</td>
</tr>
<tr>
<td></td>
<td>(Sm II 10.66 (500))</td>
<td>Nd II 10.36 (15) Nd II 10.90 (30)</td>
</tr>
<tr>
<td>3312.19 (3)</td>
<td>Cr II 12.18 (40) Cr II 11.93 (40)</td>
<td>Ce II 12.21 (50) Eu II 12.15 (10)</td>
</tr>
<tr>
<td>3313.69 (1)</td>
<td>Gd II 13.73 (600) Eu II 13.33 (400)</td>
<td>Gd II 13.37 (80) Zr II 13.70 (8)</td>
</tr>
<tr>
<td>3314.36 (1)</td>
<td>Cr II 14.57 (35) Cr II 14.06 (18)</td>
<td>Sm III 14.9 (40) Ce II 14.72 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zr II 14.49 (10) Pr II 14.38 (12)</td>
</tr>
</tbody>
</table>

TABLE 2

α² CVn. Region λ 3317 – λ 3408

<table>
<thead>
<tr>
<th>Phase</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>2.93</td>
<td></td>
</tr>
<tr>
<td>3.94</td>
<td></td>
</tr>
<tr>
<td>4.93</td>
<td></td>
</tr>
<tr>
<td>3317.39 (1)</td>
<td>(Dy II 7.12 (40) (Eu II 7.35 (8))</td>
</tr>
<tr>
<td>3318.00 (2)</td>
<td>(Ti II 8.02 (125) Ce II 7.80 (30)</td>
</tr>
<tr>
<td>3318.96 (1)</td>
<td>(Gd II 8.06 (100)</td>
</tr>
<tr>
<td>3320.03 (2)</td>
<td>(Fe II 8.86 (0) (Zr II 9.03 (8))</td>
</tr>
<tr>
<td>3320.87 (1)</td>
<td>(Gd II 0.44 (300) Eu II 9.89 (80)</td>
</tr>
<tr>
<td>3321.46 (2)</td>
<td>(Gd II 9.89 (400) Sm II 0.15 (600)</td>
</tr>
<tr>
<td>3322.95 (3)</td>
<td>(Gd II 0.3 (200) (Gd II 9.83 (15))</td>
</tr>
<tr>
<td>3324.21 (2)</td>
<td>(Sm II 1.12 (800) (Ce II 0.94 (10))</td>
</tr>
<tr>
<td>3325.31 (1)</td>
<td>(Sm II 0.79 (8))</td>
</tr>
<tr>
<td>3326.22 (1)</td>
<td></td>
</tr>
<tr>
<td>3326.01 (1)</td>
<td></td>
</tr>
</tbody>
</table>

371
<table>
<thead>
<tr>
<th>Phase</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47</td>
<td>1.46 2.93 3.94</td>
</tr>
<tr>
<td>3326.91 (3)</td>
<td>6.73 (2n)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3328.10 (3)</td>
<td>8.30 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3329.23 (3)</td>
<td>9.24 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3330.70 (1)</td>
<td>0.73 (1)</td>
</tr>
<tr>
<td>3331.28 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3332.06 (2)</td>
<td>1.97 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3333.09 (1)</td>
<td>3.12 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3334.01 (1)</td>
<td>4.10 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3335.21 (4)</td>
<td>5.21 (4)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3336.13 (3)</td>
<td>6.16 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3337.34 (1)</td>
<td>7.35 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3338.49 (1)</td>
<td>8.67 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3339.64 (3)</td>
<td>9.50 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3340.49 (2)</td>
<td>0.38 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3341.81 (3)</td>
<td>1.53 (3)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3342.60 (2)</td>
<td>2.41 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3343.39 (1)</td>
<td>3.57 (2)</td>
</tr>
<tr>
<td>3344.03 (1)</td>
<td>3.84 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3344.80 (1)</td>
<td>4.63 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3345.62 (1)</td>
<td>5.62 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase</td>
<td>Identification</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>0.47</td>
<td>1.46</td>
</tr>
<tr>
<td>3346.80 (3)</td>
<td>6.58 (2)</td>
</tr>
<tr>
<td>3347.81 (3)</td>
<td>7.78 (2)</td>
</tr>
<tr>
<td>3348.88 (3)</td>
<td>8.82 (3)</td>
</tr>
<tr>
<td>3349.41 (3)</td>
<td>9.47 (4)</td>
</tr>
<tr>
<td>3350.48 (1)</td>
<td>0.44 (1)</td>
</tr>
<tr>
<td>3351.65 (1)</td>
<td>1.76 (1)</td>
</tr>
<tr>
<td>3353.21 (3)</td>
<td>3.10 (4)</td>
</tr>
<tr>
<td>3354.99 (1n)</td>
<td>4.94 (1n)</td>
</tr>
<tr>
<td>3355.29 (1)</td>
<td>5.27 (1)</td>
</tr>
<tr>
<td>3356.14 (1)</td>
<td>6.10 (1)</td>
</tr>
<tr>
<td>3357.35 (2)</td>
<td>7.31 (2)</td>
</tr>
<tr>
<td>3358.48 (3)</td>
<td>8.40 (3)</td>
</tr>
<tr>
<td>3359.52 (1)</td>
<td>9.37 (1)</td>
</tr>
<tr>
<td>3360.24 (2)</td>
<td>0.25 (3)</td>
</tr>
<tr>
<td>3361.22 (2)</td>
<td>1.13 (2)</td>
</tr>
<tr>
<td>3361.78 (1)</td>
<td>1.78 (2)</td>
</tr>
<tr>
<td>3362.27 (1)</td>
<td>2.04 (1)</td>
</tr>
<tr>
<td>3363.58 (1)</td>
<td>3.64 (1)</td>
</tr>
<tr>
<td>3364.60 (2)</td>
<td>4.74 (1)</td>
</tr>
<tr>
<td>3366.22 (1n)</td>
<td>5.87 (1)</td>
</tr>
<tr>
<td>Phase</td>
<td>0.47</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>3367.30</td>
<td>7.23</td>
</tr>
<tr>
<td>3368.10</td>
<td>8.12</td>
</tr>
<tr>
<td>3369.84</td>
<td>8.93</td>
</tr>
<tr>
<td>3369.60</td>
<td>9.57</td>
</tr>
<tr>
<td>3371.05</td>
<td>1.19</td>
</tr>
<tr>
<td>3371.98</td>
<td>2.14</td>
</tr>
<tr>
<td>3372.82</td>
<td>2.70</td>
</tr>
<tr>
<td>3374.04</td>
<td>4.16</td>
</tr>
<tr>
<td>3375.88</td>
<td></td>
</tr>
<tr>
<td>3376.22</td>
<td>6.33</td>
</tr>
<tr>
<td>3377.15</td>
<td>7.33</td>
</tr>
<tr>
<td>3378.24</td>
<td>8.38</td>
</tr>
<tr>
<td>3379.38</td>
<td>9.45</td>
</tr>
<tr>
<td>3380.07</td>
<td>0.15</td>
</tr>
<tr>
<td>3381.43</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3382.69</td>
<td>2.69</td>
</tr>
<tr>
<td>3383.86</td>
<td>3.83</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

374
<table>
<thead>
<tr>
<th>TABLE 2 -- Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Phase</td>
</tr>
<tr>
<td>0.47</td>
</tr>
<tr>
<td>1.46</td>
</tr>
<tr>
<td>2.93</td>
</tr>
<tr>
<td>3.94</td>
</tr>
<tr>
<td>4.93</td>
</tr>
<tr>
<td>Identification</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3384.77 (4)</td>
</tr>
<tr>
<td>4.74 (1)</td>
</tr>
<tr>
<td>3385.08 (2)</td>
</tr>
<tr>
<td>4.98 (1)</td>
</tr>
<tr>
<td>3.52 (2)</td>
</tr>
<tr>
<td>3385.87 (17)</td>
</tr>
<tr>
<td>5.85 (1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3386.61 (2)</td>
</tr>
<tr>
<td>6.75 (1)</td>
</tr>
<tr>
<td>6.53 (1)</td>
</tr>
<tr>
<td>6.60 (1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3387.87 (4)</td>
</tr>
<tr>
<td>7.48 (1)</td>
</tr>
<tr>
<td>7.93 (3)</td>
</tr>
<tr>
<td>7.62 (4)</td>
</tr>
<tr>
<td>7.98 (5)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3388.89 (1)</td>
</tr>
<tr>
<td>8.69 (1)</td>
</tr>
<tr>
<td>8.68 (1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3389.90 (1)</td>
</tr>
<tr>
<td>9.88 (1)</td>
</tr>
<tr>
<td>9.82 (1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3391.28 (3)</td>
</tr>
<tr>
<td>1.49 (2)</td>
</tr>
<tr>
<td>1.42 (2)</td>
</tr>
<tr>
<td>1.19 (3)</td>
</tr>
<tr>
<td>1.25 (2)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3392.10 (1)</td>
</tr>
<tr>
<td>2.04 (1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3392.89 (2)</td>
</tr>
<tr>
<td>2.88 (2)</td>
</tr>
<tr>
<td>3.07 (3)</td>
</tr>
<tr>
<td>2.65 (2)</td>
</tr>
<tr>
<td>2.85 (2)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3393.82 (2)</td>
</tr>
<tr>
<td>3.81 (1)</td>
</tr>
<tr>
<td>3.96 (2)</td>
</tr>
<tr>
<td>3.68 (2)</td>
</tr>
<tr>
<td>3.95 (2)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3394.32 (2)</td>
</tr>
<tr>
<td>4.39 (2)</td>
</tr>
<tr>
<td>4.54 (2)</td>
</tr>
<tr>
<td>4.35 (3)</td>
</tr>
<tr>
<td>4.55 (2+ (2)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3395.39 (2)</td>
</tr>
<tr>
<td>5.54 (2)</td>
</tr>
<tr>
<td>5.61 (3)</td>
</tr>
<tr>
<td>5.63 (2)</td>
</tr>
<tr>
<td>5.62 (1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3396.64 (2)</td>
</tr>
<tr>
<td>6.68 (1)</td>
</tr>
<tr>
<td>6.55 (1)</td>
</tr>
<tr>
<td>6.72 (2)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3397.53 (1)</td>
</tr>
<tr>
<td>7.44 (1)</td>
</tr>
<tr>
<td>7.73 (1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8.12 (1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3398.71 (2)</td>
</tr>
<tr>
<td>8.90 (2)</td>
</tr>
<tr>
<td>8.88 (2)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>9.46 (1mm)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3399.93 (2)</td>
</tr>
<tr>
<td>9.82 (2)</td>
</tr>
<tr>
<td>9.77 (1)</td>
</tr>
<tr>
<td>0.01 (2)</td>
</tr>
<tr>
<td>3401.28 (1)</td>
</tr>
<tr>
<td>1.21 (1)</td>
</tr>
<tr>
<td>1.67 (1)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phase</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0.47</td>
</tr>
<tr>
<td>3402.22 (2) 2.24 (2) 2.37 (2) 2.26 (2) 2.31 (3) Cr II 2.43 (25) Gd II 2.07 (1000) Tl II 2.42 (90) Sm II 2.46 (500) (Eu II 2.44 (15))</td>
</tr>
<tr>
<td>3403.28 (5) 3.31 (3) 3.30 (3) 3.37 (4) 3.44 (3) Cr II 3.32 (100) Gd II 3.08 (150) (Eu II 3.16 (12)) (Zr II 3.69 (8)) (Gd II 3.34 (40))</td>
</tr>
<tr>
<td>3404.42 (1) 4.69 (1) 4.11 (1) Fe I 4.36 (100)</td>
</tr>
<tr>
<td>3404.98 (2) 5.12 (1) 4.80 (1) 4.80 (2) Gd II 5.04 (150) (Zr II 4.84 (12))</td>
</tr>
<tr>
<td>3405.95 (1) 5.52 (1) 5.70 (1) 5.85 (1) 5.81 (1) Ce II 5.98 (100) Cr II 5.3 (1n) (Eu II 5.43 (15)) (Eu II 6.14 (25))</td>
</tr>
<tr>
<td>3406.65 (2) 6.51 (1) 6.72 (1) 6.70 (1) 7.00 (2) Fe I 6.80 (100) (Fe II 6.76 (pr))</td>
</tr>
<tr>
<td>3407.45 (2) 7.27 (2) 7.40 (1) 7.45 (1) 7.66 (2) Fe I 7.46 (400) Tl II 7.20 (50) Ni II 7.30 (8) Gd II 7.61 (1500) Gd II 7.56 (600) (Dy II 7.17 (40))</td>
</tr>
<tr>
<td>8.05 (1) 8.24 (1) 8.04 (1) 8.03 (1) Dy II 7.80 (800) (Dy II 8.16 (60)) (Zr II 8.09 (10))</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.363</td>
</tr>
<tr>
<td>3407.32 (1) Tl II .20 (50) Ni II .30 (8) (Fe I .46 (400))</td>
</tr>
<tr>
<td>3408.11 (1) Dy II .80 (800) Zr II .08 (9) (Dy II .16 (60))</td>
</tr>
<tr>
<td>3408.85 (2) Cr II .76 (150) (Sm II .68 (400))</td>
</tr>
<tr>
<td>3416.05 (0) Fe II .02 (5)</td>
</tr>
<tr>
<td>3416.85 (0) Tl II .96 (50) Gd II .95 (2500) (Eu II .74 (60)) (Eu II .88 (30))</td>
</tr>
<tr>
<td>3419.47 (0) Cr II .31 (1) Dy II .64 (50) (Pr II .24 (12))</td>
</tr>
<tr>
<td>3421.16 (3) Cr II .21 (75) (Eu II .23 (12))</td>
</tr>
<tr>
<td>3421.68 (1) Cr II .62 (4) (Eu II .67 (25))</td>
</tr>
<tr>
<td>3422.74 (2) Cr II .74 (125) Ce II .71 (300) Tl II .66 (8 10) Gd II .75 (500) (Fe I .66 (100)) (Dy II .88 (25))</td>
</tr>
<tr>
<td>3423.88 (ln) Gd II .92 (1500) Co II .83 (20) (Fe I .29 (200)) (Ni I .71 (600)) (Fe II .17 (pr))</td>
</tr>
<tr>
<td>3424.62 (0) Gd II .59 (1200) Cr II .65 (1) (Zr II .82 (7))</td>
</tr>
<tr>
<td>3425.57 (1) Fe II .58 (3) (Sm II .63 (150)) (Gd II .62 (50))</td>
</tr>
<tr>
<td>3426.19 (1) Cr II .13 (8) Gd II .93 (600) Gd II .34 (50) Ce II .21 (250) (Fe I .39 (80))</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>1.323</th>
<th>2.363</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.18 (1n)</td>
<td>Pr III .0 (300) Ce III .33 (125) Gd II .36 (80) Cr II 7.92 (1) (Cr II .11 (1)) (Fe II 6.81 (pr) (Eu II .04 (6)) (Eu II 8.33 (5))</td>
<td></td>
</tr>
<tr>
<td>8.45 (0)</td>
<td>Gd II .47 (500) Cr II .94 (7) (Al II .92 (50)) (Eu II .76 (15)) (Nd II .92 (14)) (Eu II .92 (12)) (Eu II 9.25 (15)) (Eu II 9.33 (12)) (by II 9.44 (60))</td>
<td></td>
</tr>
<tr>
<td>0.49 (1)</td>
<td>Cr II .42 (3) Cr II .67 (0) Zr II .53 (30) Gd II .24 (40) (Eu II .37 (15))</td>
<td></td>
</tr>
<tr>
<td>1.46 (0)</td>
<td>Nd III .4 (30) Gd II .50 (40) (Zr II .57 (6))</td>
<td></td>
</tr>
<tr>
<td>2.19 (1)</td>
<td>Cr II .32 (2) (Cr II .12 (pr))</td>
<td></td>
</tr>
<tr>
<td>3.30 (5)</td>
<td>Cr II .31 (75)</td>
<td></td>
</tr>
<tr>
<td>4.15 (2)</td>
<td>Dy II .37 (200) (Zr II .90 (8))</td>
<td></td>
</tr>
<tr>
<td>5.02 (0)</td>
<td>Eu II .05 (40)</td>
<td></td>
</tr>
<tr>
<td>6.08 (1)</td>
<td>Fe II .11 (5)</td>
<td></td>
</tr>
<tr>
<td>6.60 (0)</td>
<td>Cr II .75 (1) (Pr III .4 (150))</td>
<td></td>
</tr>
<tr>
<td>7.30 (0)</td>
<td>Pr III .3 (600) (Zr II .16 (10)) (Ni I .28 (600))</td>
<td></td>
</tr>
<tr>
<td>7.90 (0)</td>
<td>Cr II .93 (2) (Gd II .84 (10))</td>
<td></td>
</tr>
<tr>
<td>8.22 (1)</td>
<td>Zr II .23 (100) (Cr II .46 (0))</td>
<td></td>
</tr>
<tr>
<td>8.98 (1)</td>
<td>Mn II .97 (20) Gd II .21 (3000) (Dy II .95 (40)) (Yb II .84 (15))</td>
<td></td>
</tr>
<tr>
<td>9.76 (1)</td>
<td>Gd II .99 (6000) Gd II .78 (1500) Ce II .83 (60) (Eu II .59 (10))</td>
<td></td>
</tr>
<tr>
<td>3440.71 (1)</td>
<td>0.58 (1) Pr III .6 (100) Fe I .61 (500) Sm II .50 (100) Cr II .60 (1)</td>
<td></td>
</tr>
<tr>
<td>1.00 (1)</td>
<td>Fe I .99 (300) Dy II .94 (60) (Eu II .00 (80)) (Eu II .82 (30))</td>
<td></td>
</tr>
<tr>
<td>3441.31 (1)</td>
<td>1.36 (0) Ce II .21 (150) Dy II .45 (100) (Eu II .50 (200))</td>
<td></td>
</tr>
<tr>
<td>3441.95 (3)</td>
<td>1.99 (4) Mn II .99 (75) (Gd II .79 (400)) (Fe II .90 (0)) (Ce II .87 (100))</td>
<td></td>
</tr>
<tr>
<td>3442.50 (0)</td>
<td>Fe II .24 (3) Ce II .38 (75)</td>
<td></td>
</tr>
<tr>
<td>2.72 (0)</td>
<td>Fe II .79 (pr)</td>
<td></td>
</tr>
<tr>
<td>3.15 (0)</td>
<td>(Nd II .31 (20)) (Ti II .39 (35))</td>
<td></td>
</tr>
<tr>
<td>3443.55 (1)</td>
<td>3.66 (1) Ce III .61 (150) (Eu II .54 (6)) (Nd II .60 (15)) (Zr II .57 (7))</td>
<td></td>
</tr>
<tr>
<td>3444.28 (1)</td>
<td>4.34 (1) Cr II .34 (4) Ti II .31 (150)</td>
<td></td>
</tr>
<tr>
<td>3444.67 (0)</td>
<td>Fe II .76 (pr)</td>
<td></td>
</tr>
<tr>
<td>3445.08 (1)</td>
<td>5.08 (1) Cr II .04 (5) Pr III .3 (1000) (Eu II .18 (30))</td>
<td></td>
</tr>
<tr>
<td>3445.67 (0)</td>
<td>5.55 (0) Dy II .58 (300) Fe II .58 (pr)</td>
<td></td>
</tr>
<tr>
<td>3446.45 (0)</td>
<td>6.28 (1) Co II .39 (60) Ni I .26 (1000) (Eu II .37 (20))</td>
<td></td>
</tr>
<tr>
<td>7.30 (0)</td>
<td>Fe I .28 (100) (Dy II .00 (60))</td>
<td></td>
</tr>
<tr>
<td>3447.86 (0)</td>
<td>7.72 (1) (Nd II .62 (8))</td>
<td></td>
</tr>
<tr>
<td>8.47 (1)</td>
<td>Fe II .43 (1) (Gd II .32 (20))</td>
<td></td>
</tr>
<tr>
<td>3449.39 (1)</td>
<td>9.21 (1n) Cr II .28 (2) Gd II .16 (30) Gd II .62 (800)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identification</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>3450.31 (0)</td>
<td>0.29 (1)</td>
<td>Gd II .38 (4000) Fe I .33 (150)</td>
</tr>
<tr>
<td></td>
<td>0.89 (0)</td>
<td>Cr II .84 (3)</td>
</tr>
<tr>
<td>3451.34 (1)</td>
<td>1.29 (1n)</td>
<td>Fe II .23 (2) Fe II .32 (2) Gd II .23 (2000) (Fe II .61 (2))</td>
</tr>
<tr>
<td>3452.55 (1)</td>
<td>2.42 (1)</td>
<td>Ti II .47 (1000) (Fe I .28 (150))</td>
</tr>
<tr>
<td>3453.62 (0)</td>
<td>3.43 (1)</td>
<td>Fe II .60 (2) Eu II .47 (50)</td>
</tr>
<tr>
<td></td>
<td>3.84 (0)</td>
<td>Tm II .66 (200)</td>
</tr>
<tr>
<td>3454.12 (0)</td>
<td>4.25 (2)</td>
<td>Ni II .16 (5) Gd II .14 (1500) Pr III .1 (40) Yb II .07 (60) (Eu II .15 (15))</td>
</tr>
<tr>
<td>3454.45 (0)</td>
<td>Ce III .37 (150) Dy II .33 (150) (By II .52 (40)) (Nd II .39 (10))</td>
<td></td>
</tr>
<tr>
<td>3454.91 (2)</td>
<td>4.99 (2)</td>
<td>Cr II .98 (35) Gd II .90 (2000)</td>
</tr>
<tr>
<td>3455.66 (0)</td>
<td>5.71 (0)</td>
<td>Ho II ? .70 (5)</td>
</tr>
<tr>
<td>3456.36 (0)</td>
<td>6.36 (1)</td>
<td>Ti II .39 (125) (By II .57 (80))</td>
</tr>
<tr>
<td>3456.79 (0)</td>
<td>6.88 (1)</td>
<td>Fe II .93 (5) (Gd II .05 (300))</td>
</tr>
<tr>
<td>3457.58 (1)</td>
<td>7.60 (2)</td>
<td>Cr II .62 (30) (Zr II .56 (12)) (Eu II .57 (30))</td>
</tr>
<tr>
<td>3458.08 (0)</td>
<td>8.06 (1)</td>
<td>(Nd II .00 (10) (Yb III? .28 (8 100))</td>
</tr>
<tr>
<td>3458.89 (1)</td>
<td>8.77 (0)</td>
<td>(Zr II .93 (10)) (Nd II .95 (15))</td>
</tr>
<tr>
<td>3459.38 (2)</td>
<td>9.29 (3)</td>
<td>Cr II .29 (25) (Ce III .37 (200)) (Eu II .36 (10))</td>
</tr>
<tr>
<td>3459.97 (1)</td>
<td>0.07 (1)</td>
<td>Mn II .02 (8) Cr II .03 (1) Fe I .92 (80)</td>
</tr>
<tr>
<td>3460.28 (2)</td>
<td>0.37 (4)</td>
<td>Mn II .33 (75) (Eu II .29 (15))</td>
</tr>
<tr>
<td>3460.94 (0)</td>
<td>0.96 (0)</td>
<td>Dy II .97 (300) Cr II .80 (0)</td>
</tr>
<tr>
<td></td>
<td>1.36 (2)</td>
<td>Cr II .28 (3) (Eu II .38 (80))</td>
</tr>
<tr>
<td>3461.59 (1)</td>
<td>Ti II .50 (125) (Ni I .65 (800))</td>
<td></td>
</tr>
<tr>
<td>3462.03 (0)</td>
<td>Gd II .95 (300) Tm II .20 (300)</td>
<td></td>
</tr>
<tr>
<td>3462.67 (1)</td>
<td>2.79 (1)</td>
<td>Cr II .73 (6)</td>
</tr>
<tr>
<td>3463.36 (0)</td>
<td>3.36 (0)</td>
<td>Mn II .33 (6) (Eu II .28 (12))</td>
</tr>
<tr>
<td>3463.96 (1)</td>
<td>3.99 (2)</td>
<td>Gd II .98 (5000) Mn II .04 (7) Cr II .02 (4) Fe II .97 (1)</td>
</tr>
<tr>
<td></td>
<td>4.47 (2)</td>
<td>Fe II .50 (3) Sr II .46 (200)</td>
</tr>
<tr>
<td>3464.44 (1)</td>
<td>4.96 (0)</td>
<td>Mn II .04 (8)</td>
</tr>
<tr>
<td>3465.53 (1)</td>
<td>5.44 (0)</td>
<td>Ti II .56 (60) Ni II .62 (1)</td>
</tr>
<tr>
<td>3466.10 (1)</td>
<td>(Fe I .86 (500))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.30 (1)</td>
<td>Mn II .34 (9) Cr II .25 (2) Eu II .41 (40) (Gd II .50 (150))</td>
</tr>
<tr>
<td>3466.98 (1)</td>
<td>7.08 (1)</td>
<td>Gd II .95 (600) Gd II .27 (3500) Eu II .86 (20) (Fe II .85 (pr))</td>
</tr>
<tr>
<td>3467.74 (0)</td>
<td>7.92 (0)</td>
<td>Sm II .87 (100) (Gd II .66 (40))</td>
</tr>
<tr>
<td>3468.12 (0)</td>
<td>Gd II .08 (200) (Ce II .11 (6))</td>
<td></td>
</tr>
</tbody>
</table>

378
<table>
<thead>
<tr>
<th>1.323</th>
<th>2.363</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3468.56 (2)</td>
<td>8.69 (3)</td>
<td>Fe II .68 (8) (Dy II .44 (60))</td>
</tr>
<tr>
<td>3468.99 (1)</td>
<td></td>
<td>Gd II .99 (3000)</td>
</tr>
<tr>
<td>3469.47 (0)</td>
<td></td>
<td>Gd II .31 (100)</td>
</tr>
<tr>
<td>3470.17 (0)</td>
<td>0.14 (1)</td>
<td>Fe II .24 (1)</td>
</tr>
<tr>
<td>3470.94 (0)</td>
<td>0.87 (2)</td>
<td>Ce III .89 (300) Nd II .87 (20) (O II .77 (100)) (P II .82 (850) (Dy II .15 (50))</td>
</tr>
<tr>
<td></td>
<td>1.48 (1)</td>
<td>Ni II .35 (2) Dy II .53 (40 + 30) (Fe I .34 (40))</td>
</tr>
<tr>
<td>3471.97 (3)</td>
<td>2.04 (2)</td>
<td>Cr II .07 (25)</td>
</tr>
<tr>
<td>3472.92 (0n)</td>
<td>3.03 (0)</td>
<td>Fe II .89 (0)</td>
</tr>
<tr>
<td>3473.28 (0)</td>
<td></td>
<td>Gd II .22 (2000)</td>
</tr>
<tr>
<td></td>
<td>3.84 (1)</td>
<td>Fe II .82 (2) Dy II .70 (50) (Pr II .85 (30))</td>
</tr>
<tr>
<td>3474.04 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.17 (3)</td>
<td>Mn II .04 (50) Mn II .12 (40) Dy II .29 (30)</td>
</tr>
<tr>
<td>3474.42 (1)</td>
<td></td>
<td>Pr III .5 (60) Eu II .50 (15)</td>
</tr>
<tr>
<td></td>
<td>4.92 (0)</td>
<td>Sr II .89 (50) (La II .84 (8))</td>
</tr>
<tr>
<td>3475.10 (4)</td>
<td>5.18 (2)</td>
<td>Cr II .13 (20)</td>
</tr>
<tr>
<td>3475.69 (1)</td>
<td>5.72 (1)</td>
<td>(Fe II .74 (pr))</td>
</tr>
<tr>
<td>3476.12 (0)</td>
<td>6.26 (0)</td>
<td>Gd II .31 (200)</td>
</tr>
<tr>
<td>3476.66 (0)</td>
<td>6.70 (1)</td>
<td>Fe I .70 (300) (Eu II .60 (30))</td>
</tr>
<tr>
<td>3477.10 (1n)</td>
<td>7.10 (1)</td>
<td>Ti II .18 (100) Dy II .07 (100) (Eu II .98 (25)) (Ce II .84(150) (Ti II .98 (8))</td>
</tr>
<tr>
<td>3478.00 (0)</td>
<td>7.84 (0)</td>
<td>Cr II .17 (3) (Gd II .03 (20)) (Gd II .07 (15))</td>
</tr>
<tr>
<td>3478.60 (0)</td>
<td>8.57 (1)</td>
<td>(Fe II .55 (pr)) (Yb II .84 (80)) (Zr II .50 (3))</td>
</tr>
<tr>
<td>3479.36 (0)</td>
<td>9.36 (1)</td>
<td>Zr II .39 (30)</td>
</tr>
<tr>
<td>3479.86 (1)</td>
<td>9.85 (1)</td>
<td>Fe II .91 (2) (Cr II .84 (0)) (Cr II .13 (0))</td>
</tr>
<tr>
<td>3480.48 (0)</td>
<td></td>
<td>Gd II .55 (60) (Zr II .40 (5)) (Eu II .40 (6))</td>
</tr>
<tr>
<td></td>
<td>1.24 (1n)</td>
<td>Gd II .28 (5000) (Zr II .14 (35))</td>
</tr>
<tr>
<td>3482.00 (0)</td>
<td></td>
<td>Gd II .80 (3000) (Mn II .06 (1))</td>
</tr>
<tr>
<td>3482.47 (1)</td>
<td>2.50 (0n)</td>
<td>Cr II .58 (12) Fe II .43 (2) Gd II .60 (800) (Eu II .53 (12))</td>
</tr>
<tr>
<td>3482.90 (3)</td>
<td>2.96 (3)</td>
<td>Mn II .91 (40) (Gd II .95 (10))</td>
</tr>
<tr>
<td>3483.83 (1)</td>
<td>3.63 (1)</td>
<td>Ti II .80 (70) Gd II .76 (25) Gd II .94 (12) (Zr II .54 (12))</td>
</tr>
<tr>
<td>3484.12 (2)</td>
<td>4.20 (2)</td>
<td>Cr II .15 (20) (Fe II .35 (1))</td>
</tr>
<tr>
<td>3484.95 (0)</td>
<td></td>
<td>Ce II .05 (400)</td>
</tr>
<tr>
<td></td>
<td>5.06 (0n)</td>
<td></td>
</tr>
<tr>
<td>3485.26 (0)</td>
<td></td>
<td>Fe I .34 (100) Eu II .16 (15) Eu II .43 (25) (Zr II .31 (5))</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>1.323</th>
<th>2.363</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3486.41 (0)</td>
<td>6.49 (0)</td>
<td>(Ho II) 0.34 (S 6)</td>
</tr>
<tr>
<td>3486.90 (0)</td>
<td>6.92 (0)</td>
<td></td>
</tr>
<tr>
<td>3487.58 (0)</td>
<td>7.41 (0)</td>
<td>Cr II 0.30 (1) Pr II 0.57 (25) Dy II 0.58 (30)</td>
</tr>
<tr>
<td>3487.95 (1)</td>
<td>7.93 (1)</td>
<td>Fe II 0.99 (3) Fe I 0.84 (200)</td>
</tr>
<tr>
<td>3488.64 (4)</td>
<td>8.69 (3)</td>
<td>Mn II 0.68 (40) Co II 0.55 (75)</td>
</tr>
<tr>
<td>3489.08 (1)</td>
<td>9.22 (1)</td>
<td>Cr II 0.07 (2) Pr II 0.01 (15)</td>
</tr>
<tr>
<td>3489.36 (1)</td>
<td>0.27 (6)</td>
<td>Cr II 0.45 (2) Gd II 0.28 (40) Eu II 0.25 (25)</td>
</tr>
<tr>
<td>3489.81 (0)</td>
<td>0.07 (0)</td>
<td>Ti II 0.74 (S 20) Gd II 0.76 (30)</td>
</tr>
<tr>
<td>3490.19 (0)</td>
<td>0.07 (0)</td>
<td>Er (III) 0.06 (S 3)</td>
</tr>
<tr>
<td>3490.58 (2)</td>
<td>0.60 (1)</td>
<td>Fe I 0.58 (400) Eu II 0.48 (15)</td>
</tr>
<tr>
<td>3491.06 (3)</td>
<td>0.13 (1)</td>
<td>Ti II 0.05 (S 8) Eu II 0.11 (12)</td>
</tr>
<tr>
<td>3491.40 (0)</td>
<td>0.65 (1)</td>
<td>Gd II 0.51 (10)</td>
</tr>
<tr>
<td>3491.96 (0)</td>
<td>0.76 (0)</td>
<td>Gd II 0.95 (2000) Gd II 1.74 (150) Pr II 0.94 (12)</td>
</tr>
<tr>
<td>3492.38 (1)</td>
<td>2.30 (1)</td>
<td>Ti II 0.5 (S 35)</td>
</tr>
<tr>
<td>3492.72 (0)</td>
<td>2.80 (0)</td>
<td></td>
</tr>
<tr>
<td>3493.46 (4)</td>
<td>3.43 (5)</td>
<td>Fe II 0.47 (10)</td>
</tr>
<tr>
<td>3493.81 (0)</td>
<td>0.60 (1)</td>
<td>(Tb II) 0.90 (S 3) Gd II 0.03 (80) La II 0.97 (2)</td>
</tr>
<tr>
<td>3494.53 (3)</td>
<td>4.60 (4)</td>
<td>Fe II 0.67 (5) Gd II 0.40 (3000) Dy II 0.50 (300) Cr II 0.52 (4)</td>
</tr>
<tr>
<td>3494.99 (0)</td>
<td>0.60 (1)</td>
<td>Eu II 0.13 (15)</td>
</tr>
<tr>
<td>3495.38 (4)</td>
<td>5.42 (7)</td>
<td>Cr II 0.38 (25) Cr II 0.56 (20) Fe I 0.29 (100)</td>
</tr>
<tr>
<td>3495.74 (3)</td>
<td>5.91 (1)</td>
<td>Mn II 0.83 (40) Fe II 0.62 (4) Co I 0.69 (1000) Gd II 0.94 (20)</td>
</tr>
<tr>
<td>3496.30 (1)</td>
<td>6.31 (1)</td>
<td>Zr II 0.18 (50) Dy II 0.27 (50) Fe II 0.34 (0)</td>
</tr>
<tr>
<td>3496.78 (2)</td>
<td>6.78 (1)</td>
<td>Mn II 0.81 (20)</td>
</tr>
<tr>
<td>3497.12 (0)</td>
<td>7.25 (0)</td>
<td>Fe I 0.11 (200) V II 0.03 (200)</td>
</tr>
<tr>
<td>3497.50 (3)</td>
<td>7.67 (4)</td>
<td>Mn II 0.54 (25)</td>
</tr>
<tr>
<td>3497.87 (4)</td>
<td>7.87 (2)</td>
<td>Fe II 0.81 (2) Fe I 0.84 (200) Ce III 0.76 (60) Dy II 0.84 (40) Fe II 0.73 (pr) Cr II 0.90 (12) Eu II 0.84 (10)</td>
</tr>
<tr>
<td>3498.25 (0)</td>
<td>8.35 (1)</td>
<td>Cr II 0.35 (1)</td>
</tr>
<tr>
<td>3498.77 (0)</td>
<td>8.88 (0)</td>
<td>Dy II 0.67 (60) Dy II 0.94 (30)</td>
</tr>
<tr>
<td>3499.47 (0)</td>
<td>9.78 (1)</td>
<td>Fe II 0.88 (4) Cr II 0.65 (0)</td>
</tr>
<tr>
<td>3500.36 (1)</td>
<td>1.30 (1)</td>
<td>Ti II 0.34 (S 25) Gd II 0.18 (30) Zr II 0.15 (4)</td>
</tr>
<tr>
<td>3500.82 (0)</td>
<td>1.06 (1)</td>
<td>Cr II 0.27 (2)</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>1.323</th>
<th>2.363</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3501.66 (1n)</td>
<td>1.61 (3)</td>
<td>Ce II .45 (60) Cr II .53 (1) Co II .72 (100) Dy II .44 (40)</td>
</tr>
<tr>
<td></td>
<td>2.16 (1)</td>
<td>Gd II .50 (15) Gd II .58 (30) (F II .45 (200))</td>
</tr>
<tr>
<td></td>
<td>2.70 (0)</td>
<td>Fe II .78 (0) (Eu II .79 (20))</td>
</tr>
<tr>
<td>3502.20 (0)</td>
<td>3.39 (1)</td>
<td>Cr II .36 (3) Fe II .47 (2) (Gd II .21 (60))</td>
</tr>
<tr>
<td>3503.34 (1n)</td>
<td>4.70 (5n)</td>
<td>Ti II .89 (150) Ce III .60 (100) Dy II .52 (50) Gd II .91 (30)</td>
</tr>
<tr>
<td>3504.77 (4n)</td>
<td>5.48 (1)</td>
<td>Gd II .51 (2000) Zr II .47 (15) Dy II .46 (50) (Eu II .30 (20))</td>
</tr>
<tr>
<td></td>
<td>6.12 (0)</td>
<td>(Zr II .04 (4))</td>
</tr>
<tr>
<td>3505.82 (0)</td>
<td>6.70 (1)</td>
<td>Cr II .61 (1) Dy II .82 (150)</td>
</tr>
<tr>
<td>3506.81 (1)</td>
<td>7.24 (1)</td>
<td>Fe II .39 (3)</td>
</tr>
<tr>
<td>3507.32 (1)</td>
<td>7.78 (1)</td>
<td>Ce II .94 (125) Zr II .66 (4)</td>
</tr>
<tr>
<td>3508.23 (0)</td>
<td>8.24 (1)</td>
<td>Fe II .21 (1)</td>
</tr>
<tr>
<td>3509.01 (0)</td>
<td>9.11 (1)</td>
<td>Eu II .85 (20)</td>
</tr>
<tr>
<td>3509.37 (0)</td>
<td>9.77 (1)</td>
<td>Ti II .84 (20)</td>
</tr>
<tr>
<td>3509.90 (1)</td>
<td>0.00 (0)</td>
<td>Mn II .97 (0) Gd II .13 (30) (La II .00 (15))</td>
</tr>
<tr>
<td>3510.35 (0)</td>
<td>0.77 (2)</td>
<td>Ti II .84 (125) (Nd II .69 (20))</td>
</tr>
<tr>
<td>3510.87 (3)</td>
<td>1.41 (0)</td>
<td>(Sm II .23 (150) (Zr II .55 (2))</td>
</tr>
<tr>
<td>3511.80 (3)</td>
<td>1.84 (3)</td>
<td>Cr II .84 (35) (Eu II .86 (10))</td>
</tr>
<tr>
<td>3512.22 (0)</td>
<td>2.53 (0)</td>
<td>Gd II .22 (800) (Eu II .27 (5))</td>
</tr>
<tr>
<td>3513.00 (2)</td>
<td>3.05 (1)</td>
<td>Cr II .03 (10) (La II .93 (10))</td>
</tr>
<tr>
<td>3513.84 (1)</td>
<td>3.98 (2)</td>
<td>N1 II .93 (8) Fe I .82 (400)</td>
</tr>
<tr>
<td>3514.13 (0)</td>
<td>4.84 (0)</td>
<td>(Er II .89 (8 5) (Tb II .04 (8 8)) (La II .87 (2))</td>
</tr>
<tr>
<td>3514.46 (0)</td>
<td>5.64 (1)</td>
<td>Cr II .37 (1) (N1 I .05 (1000))</td>
</tr>
<tr>
<td>3515.76 (0)</td>
<td>6.36 (1)</td>
<td>Fe II .82 (2) (Fe I .42 (40))</td>
</tr>
<tr>
<td>3517.01 (0)</td>
<td>6.84 (1)</td>
<td>La III .14 (1) Gd II .78 (60)</td>
</tr>
<tr>
<td>3517.38 (0)</td>
<td>7.40 (2)</td>
<td>Ce II .38 (300) V II .30 (800) Dy II .27 (40) (Co II .45 (10))</td>
</tr>
<tr>
<td></td>
<td>8.05 (0)</td>
<td>Cr II .01 (1) (Gd II .89 (60))</td>
</tr>
</tbody>
</table>

381
<table>
<thead>
<tr>
<th>1.323</th>
<th>2.363</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3518.56 (1)</td>
<td>8.55 (0)</td>
<td>Cr II .62 (3) Eu II .48 (25) (Gd II .63 (30))</td>
</tr>
<tr>
<td>3519.20 (0)</td>
<td></td>
<td>Ce II .08 (257)</td>
</tr>
<tr>
<td>3520.24 (2)</td>
<td>0.14 (1)</td>
<td>Ti II .25 (18) (Eu II .14 (8)) (Yb II .29 (20))</td>
</tr>
<tr>
<td>3521.18 (1)</td>
<td>0.94 (0)</td>
<td>Eu II .91 (10) Eu II .09 (100) Fe I .26 (300) (Zr II .87 (5))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(La II .72 (10))</td>
</tr>
<tr>
<td>3521.65 (0)</td>
<td>1.58 (0)</td>
<td></td>
</tr>
<tr>
<td>3522.11 (2)</td>
<td>2.20 (1)</td>
<td>Cr II .14 (7) Pr III .6 (150) (Nd II .04 (25)) (Fe I .28 (50))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Ce II .38 (200))</td>
</tr>
<tr>
<td></td>
<td>2.64 (0)</td>
<td>Pr III .5 (40) (Gd II .45 (50))</td>
</tr>
<tr>
<td></td>
<td>3.47 (1)</td>
<td>Eu II .49 (30)</td>
</tr>
<tr>
<td></td>
<td>3.82 (0)</td>
<td>(Tb II?) .66 (80)</td>
</tr>
<tr>
<td>3524.03 (0)</td>
<td>4.13 (0)</td>
<td>Gd II .20 (1000) Dy II .03 (300) (Fe I .07 (50)) (Fe I .24 (60))</td>
</tr>
<tr>
<td></td>
<td>4.88 (1)</td>
<td>Tl II .87 (5)</td>
</tr>
<tr>
<td></td>
<td>5.52 (0)</td>
<td>(Cr II .28 (1)) (Sm II .5 (82)) (Tb II?) .61 (8)</td>
</tr>
<tr>
<td>3526.17 (1)</td>
<td>6.08 (1n)</td>
<td>Zr II .81 (8) (Fe I .04 (80)) (Fe I .17 (50))</td>
</tr>
<tr>
<td></td>
<td>6.60 (0)</td>
<td>Eu II .65 (8) Fe I .68 (80)</td>
</tr>
<tr>
<td>3526.94 (0)</td>
<td>6.78 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.33 (0)</td>
<td>Cr II .24 (1) Zr II .42 (7)</td>
</tr>
<tr>
<td></td>
<td>7.92 (1)</td>
<td>Fe II .80 (100) Eu II .87 (30)</td>
</tr>
<tr>
<td>3528.85 (0)</td>
<td>8.82 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.31 (0)</td>
<td>(Eu II .34 (6))</td>
</tr>
<tr>
<td>3529.56 (0)</td>
<td>9.79 (1)</td>
<td>Cr II .73 (2) Fe I .82 (125) (Zr II .99 (5))</td>
</tr>
<tr>
<td>3530.62 (1)</td>
<td>0.52 (1)</td>
<td>Pr III .5 (60) Sm II .60 (150) Cr II .72 (1) (La II .67 (8))</td>
</tr>
<tr>
<td></td>
<td>0.87 (0)</td>
<td>V IX .77 (100) Zr II .85 (6) (X II .71 (40))</td>
</tr>
<tr>
<td>3531.69 (2)</td>
<td>1.64 (0)</td>
<td>Dy II .71 (1500) (Eu II .73 (15)) (Nd II .71 (10)) (Cr II .12 (9))</td>
</tr>
<tr>
<td>3532.59 (1)</td>
<td>2.70 (1)</td>
<td>Fe II .65 (2)</td>
</tr>
<tr>
<td>3533.16 (1)</td>
<td>3.22 (1)</td>
<td>Fe I .20 (50)</td>
</tr>
<tr>
<td>3533.63 (0)</td>
<td></td>
<td>Nd II .59 (30) Pr II .75 (25) (La II .67 (3))</td>
</tr>
<tr>
<td></td>
<td>3.90 (0)</td>
<td>Ti II .87 (35) Ce II .05 (300) Eu II .12 (20) Cr II .13 (2)</td>
</tr>
<tr>
<td></td>
<td>4.46 (0)</td>
<td>Cr II .37 (1) Gd II .24 (40)</td>
</tr>
<tr>
<td>3534.89 (0)</td>
<td></td>
<td>Dy II .90 (200) Mg II .04 (8) (Gd II .98 (20))</td>
</tr>
<tr>
<td>3535.49 (2)</td>
<td>5.32 (1)</td>
<td>Ti II .41 (125) Fe II .63 (2) Cr II .50 (1) (Tm II .52 (100))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Sm II .65 (150))</td>
</tr>
<tr>
<td>3536.06 (1)</td>
<td></td>
<td>Dy II .02 (400)</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Identification</th>
<th>1.323</th>
<th>2.363</th>
<th>3.042</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gd II .15 (30)</td>
<td>Cr II .02 (1)</td>
<td>Fe I .08 (40)</td>
</tr>
<tr>
<td>3538.99 (1)</td>
<td>8.98 (1)</td>
<td>Cr II .00 (4)</td>
<td>Ce II .09 (300)</td>
</tr>
<tr>
<td>3539.55 (0)</td>
<td>Fe II .55 (37)</td>
<td>Dy II .38 (30)</td>
<td>Pr II .92 (25)</td>
</tr>
<tr>
<td>3540.41 (0)</td>
<td>Dy II .46 (15)</td>
<td>Fe I .09 (200)</td>
<td>Fe I .08 (150)</td>
</tr>
<tr>
<td>3541.05 (1)</td>
<td>0.92 (0)</td>
<td>2.18 (0)</td>
<td>Nd II .85 (50)</td>
</tr>
<tr>
<td>3543.30 (0)</td>
<td>3.26 (0n)</td>
<td>Ce III .00 (80)</td>
<td>Eu II .85 (60)</td>
</tr>
<tr>
<td>3545.11 (1)</td>
<td>V II .19 (1000)</td>
<td>Co II .04 (30)</td>
<td>Gd II .98 (60)</td>
</tr>
<tr>
<td>3545.89 (0n)</td>
<td>5.79 (0)</td>
<td>Gd II .80 (3000)</td>
<td>Ce II .19 (150)</td>
</tr>
<tr>
<td>3546.93 (On)</td>
<td>7.04 (0)</td>
<td>Cr II .10 (3)</td>
<td>Dy II .84 (100)</td>
</tr>
<tr>
<td>3551.87 (0)</td>
<td>Dy II .20 (20)</td>
<td>Yb II .82 (15)</td>
<td>Dy II .23 (300)</td>
</tr>
<tr>
<td>3554.11 (0)</td>
<td>0.62 (0)</td>
<td>La II .82 (6)</td>
<td></td>
</tr>
<tr>
<td>3555.35 (0)</td>
<td>Zr II .94 (18)</td>
<td>Dy II .59 (150)</td>
<td></td>
</tr>
<tr>
<td>3556.11 (0)</td>
<td>Cr II .7 (2)</td>
<td>Fe I .83 (80)</td>
<td></td>
</tr>
<tr>
<td>3556.83 (1)</td>
<td>3.64 (0)</td>
<td>Fe I .74 (100)</td>
<td>Gd II .72 (40)</td>
</tr>
<tr>
<td>3557.63 (1)</td>
<td>*4.99 (1)</td>
<td>Fe I .93 (400)</td>
<td>Ce II .99 (150)</td>
</tr>
<tr>
<td>3558.15 (0)</td>
<td>5.84 (0)</td>
<td>Co II .94 (6)</td>
<td>Nd II .72 (25)</td>
</tr>
<tr>
<td>3559.38 (0)</td>
<td>Cr II .13 (1)</td>
<td>Zr II .61 (30)</td>
<td>P II .48 (100)</td>
</tr>
<tr>
<td>3560.08 (0)</td>
<td>6.44 (0)</td>
<td>V II .80 (1500)</td>
<td>Gd II .05 (1000)</td>
</tr>
<tr>
<td>3561.01 (1)</td>
<td>7.46 (1)</td>
<td>Fe II .55 (2)</td>
<td></td>
</tr>
<tr>
<td>3561.01 (1)</td>
<td>8.28 (1)</td>
<td>Gd II .19 (400)</td>
<td></td>
</tr>
<tr>
<td>3561.01 (1)</td>
<td>8.57 (1)</td>
<td>Fe I .52 (400)</td>
<td>Gd II .47 (250)</td>
</tr>
<tr>
<td>3561.01 (1)</td>
<td>9.04 (0)</td>
<td>Sm II .10 (300)</td>
<td>Eu II .09 (6)</td>
</tr>
<tr>
<td>3561.01 (1)</td>
<td>0.14 (0)</td>
<td>Yb II .33 (30)</td>
<td></td>
</tr>
<tr>
<td>3561.01 (1)</td>
<td>0.54 (0)</td>
<td>Cr II .48 (1)</td>
<td>V II .59 (90)</td>
</tr>
<tr>
<td>3561.01 (1)</td>
<td>1.01 (2)</td>
<td>Ce II .80 (500)</td>
<td></td>
</tr>
</tbody>
</table>

* Phase 3.042 begins at wavelength 3554.99
TABLE 3 -- Continued

<table>
<thead>
<tr>
<th>1.323</th>
<th>3.042</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3561.69 (1)</td>
<td>1.71 (1)</td>
<td>Ti II .58 (20) Ti II .91 (12) Tb (II?) .74 (200) Nd II .59 (15)</td>
</tr>
<tr>
<td>2.77 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3563.08 (1n)</td>
<td>2.95 (1)</td>
<td>Dy II .15 (200)</td>
</tr>
<tr>
<td>3563.80 (1)</td>
<td>3.84 (1)</td>
<td>Cr II .92 (5) Dy II .70 (40) Gd II .05 (60) Eu II .79 (3)</td>
</tr>
<tr>
<td>3564.51 (1)</td>
<td>4.50 (2)</td>
<td>Cr II .31 (1) Gd II .64 (40)</td>
</tr>
<tr>
<td>3565.32 (2)</td>
<td>5.34 (2)</td>
<td>Cr II .31 (5) Fe I .38 (400) (Ti II .33 (5) (Zr II .41 (5))</td>
</tr>
<tr>
<td>3566.08 (2)</td>
<td>6.13 (2)</td>
<td>Fe II .15 (3) Fe II .05 (2) (Ti II .99 (8 25)) (Cr II .37 (1))</td>
</tr>
<tr>
<td>3566.91 (1)</td>
<td>6.93 (1)</td>
<td>Sm II .84 (150) Cr II .75 (1) Gd II .12 (30) Gd II .21 (30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Fe I .04 (50)) (S II .17 (40))</td>
</tr>
<tr>
<td>3567.63 (0)</td>
<td>7.65 (0)</td>
<td>Sc II .70 (40) Gd II .65 (40)</td>
</tr>
<tr>
<td>3568.87 (0)</td>
<td>8.82 (On)</td>
<td>Cr II .70 (1) Nd II .88 (40)</td>
</tr>
<tr>
<td>9.33 (0)</td>
<td></td>
<td>(Cr II .16 (1))</td>
</tr>
<tr>
<td>3569.70 (0)</td>
<td></td>
<td>Cr II .73 (1) Dy II .67 (20) Gd II .57 (40)</td>
</tr>
<tr>
<td>3570.04 (1)</td>
<td>0.08 (2)</td>
<td>Fe I .10 (300) Eu II .10 (40) (La II .10 (30))</td>
</tr>
<tr>
<td>3570.51 (0)</td>
<td>0.69 (1)</td>
<td>Gd II .41 (30)</td>
</tr>
<tr>
<td>3571.29 (1)</td>
<td>1.35 (1)</td>
<td>Cr II .37 (3)</td>
</tr>
<tr>
<td>3571.99 (1)</td>
<td>1.88 (1)</td>
<td>Fe I .00 (100) Gd II .93 (300) (Nd I .87 (1000))</td>
</tr>
<tr>
<td>3572.48 (1)</td>
<td>2.56 (1)</td>
<td>Sc II .52 (50) Zr II .47 (30) (Eu II .58 (20))</td>
</tr>
<tr>
<td>3573.12 (0)</td>
<td></td>
<td>Zr II .09 (8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.35 (0) Fe I .40 (50)</td>
</tr>
<tr>
<td>3573.80 (1)</td>
<td>3.69 (1)</td>
<td>Ti II .74 (40) Dy II .84 (60)</td>
</tr>
<tr>
<td>3574.56 (0)</td>
<td>4.49 (1)</td>
<td>(Gd II .74 (150))</td>
</tr>
<tr>
<td>3575.23 (1n)</td>
<td>5.23 (1)</td>
<td></td>
</tr>
<tr>
<td>3576.23 (1)</td>
<td>6.18 (1)</td>
<td>Dy II .25 (300) Sc II .34 (45)</td>
</tr>
<tr>
<td>3576.79 (0)</td>
<td>6.78 (0)</td>
<td>Nd II .76 (3) Dy II .87 (150) Zr II .88 (20) Gd II .77 (25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fe I .76 (80)</td>
</tr>
<tr>
<td>3577.20 (0)</td>
<td>7.25 (1)</td>
<td></td>
</tr>
<tr>
<td>3578.02 (0)</td>
<td>7.92 (1)</td>
<td>Dy II .99 (60) Co II .03 (30)</td>
</tr>
<tr>
<td>3578.63 (2)</td>
<td>8.68 (1)</td>
<td>Gd II .60 (30) Cr I .69 (500) Eu I .49 (8) (Ti II .69 (5))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(La II .89 (5))</td>
</tr>
<tr>
<td>3579.54 (0)</td>
<td>9.33 (1)</td>
<td>Gd II .55 (25) (Tb (II?) .20 (8 50))</td>
</tr>
<tr>
<td>3580.09 (0)</td>
<td></td>
<td>Dy II .04 (40) (La II .10 (8))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.51 (On) Gd II .62 (40)</td>
</tr>
<tr>
<td>3581.19 (1)</td>
<td>1.12 (2)</td>
<td>Fe I .20 (1000)</td>
</tr>
<tr>
<td>3581.70 (0)</td>
<td></td>
<td>La II .68 (20)</td>
</tr>
</tbody>
</table>

384
<table>
<thead>
<tr>
<th>1.323</th>
<th>3.042</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1.82 (ln)</td>
</tr>
<tr>
<td>3582.10 (1)</td>
<td></td>
<td>Gd II .91 (200) Dy II .03 (20) (Zr II .08 (2))</td>
</tr>
<tr>
<td>3582.60 (0)</td>
<td>2.43 (0)</td>
<td></td>
</tr>
<tr>
<td>3583.93 (0)</td>
<td>3.90 (1)</td>
<td>(Cr II .01 (pr))</td>
</tr>
<tr>
<td>3584.60 (1)</td>
<td>4.50 (1)</td>
<td>Y II .52 (100) Fe I .66 (100) Dy II .43 (40)</td>
</tr>
<tr>
<td>3585.34 (10)</td>
<td>5.42 (9)</td>
<td>Cr II .30 (60) Cr II .51 (40) (Fe I .32 (150)) (Dy II .07 (250)) (Dy II .78 (100))</td>
</tr>
<tr>
<td>3586.13 (1)</td>
<td>6.09 (ln)</td>
<td>Dy II .12 (50) (Fe I .11 (80))</td>
</tr>
<tr>
<td>3586.60 (0)</td>
<td></td>
<td>Al II .55 (200) Al II .69 (200) (Gd II .58 (10))</td>
</tr>
<tr>
<td>3587.06 (1)</td>
<td>7.01 (2)</td>
<td>Ti II .13 (25) Fe I .99 (200) (Al II .06 (100)) (Al II .91 (500)) (Gd II .19 (40))</td>
</tr>
<tr>
<td>3587.76 (0)</td>
<td>7.84 (0)</td>
<td>Fe I .76 (50) Zr II .98 (7) 8.88 (0) (Er (II?) .76 (8 1)) (Er (II?) .95 (8 2)) (Zr II .80 (2))</td>
</tr>
<tr>
<td>3589.50 (0)</td>
<td>9.48 (1)</td>
<td>V II .74 (1000) (Fe I .46 (50))</td>
</tr>
<tr>
<td>3590.29 (0)</td>
<td>0.26 (1)</td>
<td>Gd II .47 (100) Eu II .15 (15)</td>
</tr>
<tr>
<td>3590.79 (0)</td>
<td></td>
<td>Cr II .71 (1) Cr II .01 (1) Ce II .60 (125)</td>
</tr>
<tr>
<td>3592.02 (1)</td>
<td>1.89 (0)</td>
<td>V II .01 (800) Gd II .91 (30) Dy II .82 (40) 2.28 (0) Dy II .12 (30) (Ho (II?) .22 (8 10))</td>
</tr>
<tr>
<td>3592.66 (0)</td>
<td></td>
<td>Sm II .60 (1500) Gd II .71 (1500) (Nd II .60 (60))</td>
</tr>
<tr>
<td>3593.34 (2)</td>
<td>3.42 (1)</td>
<td>Gd II .44 (60) Cr I .49 (500) (V II .32 (600)) 4.19 (0) Cr I .33 (1) (Tb (II?) .25 (8 8))</td>
</tr>
<tr>
<td>3594.62 (0)</td>
<td>4.68 (1)</td>
<td>Fe I .64 (125) 4.96 (0) Dy II .05 (125)</td>
</tr>
<tr>
<td>3595.21 (0)</td>
<td>5.40 (0)</td>
<td></td>
</tr>
<tr>
<td>3596.09 (1)</td>
<td>5.92 (1)</td>
<td>Ti II .06 (60) Dy II .07 (20) (Eu II .15 (10))</td>
</tr>
<tr>
<td>3596.55 (1)</td>
<td>6.45 (0)</td>
<td>Cr II .34 (1) Cr II .67 (2) (Ti II .55 (8 2))</td>
</tr>
<tr>
<td>3597.05 (0)</td>
<td>6.97 (0)</td>
<td>Eu II .85 (20) (Fe I .06 (40))</td>
</tr>
<tr>
<td>3597.60 (1)</td>
<td>7.60 (2)</td>
<td>Cr II .55 (1) (Ml I .70 (1000))</td>
</tr>
<tr>
<td>3598.37 (0m)</td>
<td>8.40 (0)</td>
<td>(Ce II .20 (50))</td>
</tr>
<tr>
<td>3598.90 (0)</td>
<td></td>
<td>Cr II .90 (1) (Ho (II?) .77 (8 30)) 9.69 (0) Cr II .53 (0) Fe I .62 (40)</td>
</tr>
<tr>
<td>3599.93 (0)</td>
<td></td>
<td>(Ce II .97 (10)) (Er (II?) .83 (8 20)) (Zr II .91 (7))</td>
</tr>
<tr>
<td>3600.32 (1)</td>
<td></td>
<td>Dy II .34 (50) (Tb II .44 (8 50))</td>
</tr>
<tr>
<td>3600.68 (1)</td>
<td>0.69 (1)</td>
<td>Ce II .58 (60) Y II .73 (300) (Er (II?) .74 (8 20))</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th></th>
<th>1.323</th>
<th>3.042</th>
<th>4.956</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3601.60 (1n)</td>
<td>1.35 (1)</td>
<td>Sm II .69 (200) (Al III .62 (6))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.90 (0)</td>
<td>Y II .92 (60) Gd II .00 (20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.52 (1)</td>
<td>Cu Fe II .60 (pr) (Fe I .53 (50)) (Eu II .49 (12))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3602.88 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3603.27 (0)</td>
<td>3.11 (1)</td>
<td>Eu II .20 (200) Fe I .21 (150)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3603.68 (10)</td>
<td>3.74 (8)</td>
<td>Cr II .80 (40) Cr II .86 (20) Cr II .61 (20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3604.62 (0)</td>
<td>4.56 (1n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3605.31 (1)</td>
<td>5.28 (1)</td>
<td>Gd II .26 (100) Fe I .46 (300) Cr I .33 (500) (Eu II .33 (8))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3606.00 (0)</td>
<td>5.96 (1)</td>
<td>Dy II .13 (150)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3606.64 (0)</td>
<td>6.64 (1)</td>
<td>Eu II .70 (80) Fe I .68 (200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.72 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3607.00 (0)</td>
<td></td>
<td>Gd II .12 (40) (Fe II .05 (pr))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.43 (1)</td>
<td>Cr II .32 (1) (Zr II .39 (7))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3607.81 (0)</td>
<td>7.73 (0)</td>
<td>Gd II .90 (20) Ce II .62 (200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.89 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.26 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.31 (0)</td>
<td>La II .18 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3608.62 (1)</td>
<td>8.72 (2n)</td>
<td>Cr II .66 (3) Eu II .70 (20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.58 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3608.86 (1)</td>
<td></td>
<td>Fe I .86 (500) Gd II .75 (200) (Sm II .77 (200))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.93 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3609.34 (0)</td>
<td>9.37 (1)</td>
<td>Sm II .49 (1200) (La II .22 (4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3609.72 (0)</td>
<td>9.66 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.75 (1)</td>
<td>Ce II .69 (250) Nd II .79 (40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3610.38 (0)</td>
<td>0.20 (1)</td>
<td>Ni I .46 (1000) La II .25 (30) Fe I .16 (100) (Fe II .33 (pr))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.46 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.90 (0)</td>
<td>Gd II .76 (200) Gd II .91 (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.05 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.14 (1)</td>
<td>Y II .05 (60) Eu II .36 (25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.66 (1)</td>
<td>Eu II .57 (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3611.81 (0)</td>
<td>2.00 (1)</td>
<td>Zr II .90 (15) Fe I .07 (80) (Pr II .94 (30))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3612.34 (1)</td>
<td>2.30 (1)</td>
<td>Eu II .19 (20) Eu II .46 (8) Zr II .34 (3) (La II .34 (50))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.48 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3613.12 (5)</td>
<td>3.13 (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.12 (2)</td>
<td>Cr II .21 (20) Cr II .26 (15) Dy II .06 (15) (Zr II .08 (12))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3613.64 (0)</td>
<td></td>
<td>Ce II .70 (150) Sc II .84 (70) (Mg II .80 (4)) (Gd II .49 (80))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3614.13 (1n)</td>
<td>3.95 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.23 (1)</td>
<td>Fe II .96 (2) (Eu II .07 (15))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.10 (1)</td>
<td>Cr II .26 (2) Gd II .21 (100) (Dy II .08 (20)) (Eu II .26 (8))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3614.84 (2)</td>
<td>4.85 (2)</td>
<td>Fe II .87 (5) (Zr II .79 (18))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>1.323</th>
<th>3.042</th>
<th>4.956</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3615.29 (1)</td>
<td>5.22 (1) Fr II .16 (25)</td>
<td>(Mg II .64 (2)) (Cr II .45 (pr)) (Tb (II?) .66 (8 15))</td>
<td></td>
</tr>
<tr>
<td>3615.81 (1)</td>
<td>5.92 (0) Cr II .79 (1) Nd II .82 (30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3616.28 (0)</td>
<td></td>
<td>Eu II .15 (100)</td>
<td></td>
</tr>
<tr>
<td>3616.65 (0)</td>
<td>6.51 (1) Pr II .68 (25) Gd II .46 (12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3617.25 (1)</td>
<td>7.24 (1) Cr II .32 (7) Gd II .16 (200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3617.73 (0)</td>
<td>7.80 (1) 7.65 (1) Fe I .79 (125)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3618.27 (0)</td>
<td>8.26 (1) 8.28 (1) Dy II .07 (20) Gd II .06 (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3618.65 (1)</td>
<td>8.73 (2) 8.84 (1) Fe I .77 (400) Dy II .52 (40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3619.19 (0)</td>
<td>9.30 (0) Ni I .39 (2000) Eu II .17 (8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3619.56 (0)</td>
<td></td>
<td>Dy II .47 (15)</td>
<td></td>
</tr>
<tr>
<td>3620.12 (1)</td>
<td>0.17 (0) 0.46 (0) Gd II .46 (150)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3620.74 (0)</td>
<td></td>
<td>Eu II .89 (30)</td>
<td></td>
</tr>
<tr>
<td>3621.23 (5)</td>
<td>1.20 (4) 1.16 (5) Fe II .27 (6) (Co II .18 (50)) (Sm II .23 (600))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3621.60 (0)</td>
<td>1.68 (0) Cr II .51 (1) Fe I .46 (125) (La II .77 (4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.04 (1) 1.92 (1) Fe I .00 (125) Eu II .89 (50) (Ce II .14 (100))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.44 (0) 2.34 (1) Cr II .42 (1) Eu II .54 (150) Sm II .50 (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Pr II .38 (25))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.70 (0) Gd II .81 (60)</td>
<td></td>
</tr>
<tr>
<td>3623.09 (0)</td>
<td>3.24 (0) 3.32 (1) Fe I .19 (100) Sm II .32 (200) (Eu II .43 (12))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3623.80 (0)</td>
<td>3.77 (1) Ce II .84 (200) (Eu II .65 (10)) (Eu II .72 (10))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.96 (0) 4.12 (1) Dy II .25 (30) Lu II .98 (40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3624.87 (3)</td>
<td>4.87 (3) 4.87 (5n) Fe II .89 (5) Fe II .49 (2) Tm II .82 (125)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Ga II .89 (80)) (Nd II .65 (15)) (Cr II .63 (1))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3625.35 (0)</td>
<td>5.34 (1) Gd II .26 (60) (Fe I .15 (70))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3625.66 (0)</td>
<td>5.58 (0) (Tb (II?) .54 (8 15))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.96 (0) 6.04 (0) (Cr II .92 (pr))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3626.46 (0)</td>
<td>Cr II .31 (1) Gd II .32 (40) Gd II .41 (30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.07 (0) Sm II .01 (400) Gd II .90 (15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3627.36 (0)</td>
<td>7.23 (0) Fe II .17 (1) Eu II .41 (25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.15 (1) Ce II .25 (107) Sm II .97 (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.73 (0) Y II .71 (50) La II .83 (60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.88 (0) 0.09 (1) Dy II .18 (250) Eu II .80 (40) Cr II .19 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Zr II .03 (10)) (Nd II .93 (10))</td>
<td></td>
</tr>
</tbody>
</table>

387
<table>
<thead>
<tr>
<th>Identification</th>
<th>3.323</th>
<th>3.042</th>
<th>4.956</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd II .25 (20) Eu II .50 (12) Dy II .46 (25)</td>
<td>0.82 (0)</td>
<td>1.01 (1)</td>
<td>0.82 (0)</td>
</tr>
<tr>
<td>Sc II .74 (70) Ce II .19 (125) Pr II .97 (40) Sm II .13 (400) Nd II .02 (20) Gd II .88 (30)</td>
<td>1.54 (6)</td>
<td>1.66 (2)</td>
<td>1.54 (6)</td>
</tr>
<tr>
<td>Cr II .49 (50) Cr II .69 (40) Fe I .46 (500)</td>
<td>1.80 (2)</td>
<td>2.22 (1)</td>
<td>1.80 (2)</td>
</tr>
<tr>
<td>Eu II .79 (15) Eu II .97 (8) Fe I .04 (50)</td>
<td>2.22 (1)</td>
<td>2.38 (1)</td>
<td>2.22 (1)</td>
</tr>
<tr>
<td>Fe II .29 (3) Eu II .18 (80) Ce II .11 (107)</td>
<td>3.17 (1)</td>
<td>3.37 (0)</td>
<td>3.17 (1)</td>
</tr>
<tr>
<td>Y II .12 (100) Dy II .00 (15)</td>
<td>3.37 (0)</td>
<td>3.94 (0n)</td>
<td>3.37 (0)</td>
</tr>
<tr>
<td>Zr II .49 (10) Tb II .29 (8) Sm II .29 (1500) Nd II .28 (40)</td>
<td>4.14 (1)</td>
<td>4.46 (0)</td>
<td>4.14 (1)</td>
</tr>
<tr>
<td>Cr II .04 (10)</td>
<td>4.73 (1)</td>
<td>4.73 (1)</td>
<td>4.73 (1)</td>
</tr>
<tr>
<td>Sm II .93 (200) Nd II .87 (15)</td>
<td>5.26 (0)</td>
<td>5.89 (0)</td>
<td>5.26 (0)</td>
</tr>
<tr>
<td>Pr II .28 (30) Dy II .26 (30) Y II .33 (12)</td>
<td>6.46 (0)</td>
<td>6.46 (0)</td>
<td>6.46 (0)</td>
</tr>
<tr>
<td>Eu II .85 (20)</td>
<td>6.77 (0)</td>
<td>7.21 (0)</td>
<td>6.77 (0)</td>
</tr>
<tr>
<td>Fe I .72 (10) Fe II .90 (pr) Gd II .80 (10)</td>
<td>8.27 (0)</td>
<td>8.24 (0)</td>
<td>8.27 (0)</td>
</tr>
<tr>
<td>Dy II .27 (25) La II .15 (40) Nd II .23 (30)</td>
<td>8.91 (1)</td>
<td>9.36 (0)</td>
<td>8.91 (1)</td>
</tr>
<tr>
<td>Sm II .77 (400)</td>
<td>(La II .25 (3))</td>
<td>(La II .25 (3))</td>
<td>(La II .25 (3))</td>
</tr>
<tr>
<td>Gd II .05 (30) Gd II .88 (10) Sm II .77 (400)</td>
<td>9.70 (1)</td>
<td>9.84 (1)</td>
<td>9.70 (1)</td>
</tr>
<tr>
<td>A II .85 (25)</td>
<td>0.12 (0)</td>
<td>0.12 (0)</td>
<td>0.12 (0)</td>
</tr>
<tr>
<td>Gd II .18 (50) Dy II .24 (100) Nd II .24 (30)</td>
<td>0.35 (0)</td>
<td>0.35 (0)</td>
<td>0.35 (0)</td>
</tr>
<tr>
<td>Fe I .39 (300)</td>
<td>0.36 (0)</td>
<td>0.36 (0)</td>
<td>0.36 (0)</td>
</tr>
<tr>
<td>Eu II .19 (20)</td>
<td>4.42 (2n)</td>
<td>4.42 (2n)</td>
<td>4.42 (2n)</td>
</tr>
<tr>
<td>Eu II .46 (12)</td>
<td>4.71 (1)</td>
<td>4.71 (1)</td>
<td>4.71 (1)</td>
</tr>
<tr>
<td>Cr II .69 (10)</td>
<td>5.32 (1)</td>
<td>5.32 (1)</td>
<td>5.32 (1)</td>
</tr>
<tr>
<td>La II .43 (200) Dy II .42 (1000) Sc II .31 (50) Sm II .29 (300) Sm II .39 (200) Eu II .18 (50)</td>
<td>5.37 (0)</td>
<td>5.37 (0)</td>
<td>5.37 (0)</td>
</tr>
<tr>
<td>(Pr II .54 (60))</td>
<td>5.32 (1)</td>
<td>5.32 (1)</td>
<td>5.32 (1)</td>
</tr>
</tbody>
</table>

388
<table>
<thead>
<tr>
<th>1.323</th>
<th>3.042</th>
<th>4.460</th>
<th>4.956</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3646.29(0)</td>
<td>6.10(0)</td>
<td>5.80(0)</td>
<td>Dy II .86 (25) F Fe I .82 (80) Pr II .66 (75) Gd II .62 (300) (Fe II .78 (pr)) (Nd II .78 (15)) Gd II .19 (3000) (Pr II .30 (60))</td>
<td></td>
</tr>
<tr>
<td>3646.80(0)</td>
<td>6.90(0)</td>
<td>6.90(0)</td>
<td>Ce II .96 (200) Eu II .65 (30) Eu II .75 (35) (Eu II .92 (12))</td>
<td></td>
</tr>
<tr>
<td>3647.30(2)</td>
<td>7.36(1)</td>
<td>7.46(0)</td>
<td>Cr II .39 (8)</td>
<td></td>
</tr>
<tr>
<td>3647.91(2)</td>
<td>7.87(2)</td>
<td>7.87(1)</td>
<td>Fe I .84 (500)</td>
<td></td>
</tr>
<tr>
<td>3648.43(1)</td>
<td>8.39(1)</td>
<td>8.74(1)</td>
<td>Eu II .26 (15) Pr II .30 (15)</td>
<td></td>
</tr>
<tr>
<td>3648.89(1)</td>
<td>8.70(1)</td>
<td>8.74(1)</td>
<td>Ti II .86 (10) Dy II .81 (60)</td>
<td></td>
</tr>
<tr>
<td>3649.49(1)</td>
<td>9.39(0)</td>
<td>9.12(1)</td>
<td>Cr II .20 (1) Gd II .00 (10) (Al II .18 (5))</td>
<td></td>
</tr>
<tr>
<td>3649.70(1)</td>
<td>9.70(1)</td>
<td>9.80(0)</td>
<td>Sm II .53 (500) Fe I .30 (60) Fe I .51 (100) Gd II .44 (80)</td>
<td></td>
</tr>
<tr>
<td>3650.26(2)</td>
<td>0.38(2)</td>
<td>0.35(1)</td>
<td>0.27(1)</td>
<td>Cr II .34 (40) (Nd II .42 (15)) (Sm II .17 (200))</td>
</tr>
<tr>
<td>3651.60(2)</td>
<td>1.52(1)</td>
<td>1.79(0)</td>
<td>Al II .06 (50) Al II .09 (18) Gd II .95 (100)</td>
<td></td>
</tr>
<tr>
<td>3651.92(0)</td>
<td>2.50(0)</td>
<td>2.50(0)</td>
<td>Gd II .54 (200) Mo II .33 (25)</td>
<td></td>
</tr>
<tr>
<td>3652.44(1)</td>
<td>3.04(0)</td>
<td>3.08(1)</td>
<td>Ce II .11 (125) Nd II .15 (15)</td>
<td></td>
</tr>
<tr>
<td>3653.73(1)</td>
<td>3.87(0)</td>
<td>3.87(0)</td>
<td>Ti I .50 (500)</td>
<td></td>
</tr>
<tr>
<td>3654.27(0)</td>
<td>4.66(1)</td>
<td>4.60(1)</td>
<td>Gd II .62 (2000)</td>
<td></td>
</tr>
<tr>
<td>3655.73(3)</td>
<td>5.68(0)</td>
<td>5.51(0)</td>
<td>Ce II .85 (500) Zr II .56 (7)</td>
<td></td>
</tr>
<tr>
<td>3656.34(1)</td>
<td>6.43(0)</td>
<td>6.40(0)</td>
<td>Gd II .15 (1500) Sm II .22 (200)</td>
<td></td>
</tr>
<tr>
<td>3657.09(0)</td>
<td>6.60(0)</td>
<td>6.60(0)</td>
<td>Cr II .45 (3)</td>
<td></td>
</tr>
<tr>
<td>3658.04(1)</td>
<td>7.35(0)</td>
<td>7.35(0)</td>
<td>Eu II .38 (12)</td>
<td></td>
</tr>
<tr>
<td>3658.66(0)</td>
<td>8.07(2)</td>
<td>8.05(1)</td>
<td>8.12(1)</td>
<td>Cr II .17 (20) Cr II .94 (1)</td>
</tr>
<tr>
<td>3659.26(1)</td>
<td>8.78(0)</td>
<td>8.82(0)</td>
<td>Tb (II?) .88 (8 100) Eu II .77 (10)</td>
<td></td>
</tr>
<tr>
<td>3659.68(3)</td>
<td>9.66(1)</td>
<td>9.57(1n)</td>
<td>9.64(2)</td>
<td>Ti II .76 (150) Fe I .52 (125)</td>
</tr>
<tr>
<td>3660.34(0)</td>
<td>9.60(0)</td>
<td>9.60(0)</td>
<td>Pr II .38 (30)</td>
<td></td>
</tr>
</tbody>
</table>

389
<table>
<thead>
<tr>
<th>1.323</th>
<th>3.042</th>
<th>4.460</th>
<th>4.956</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3660.84(1) 0.56(0)</td>
<td>0.73(0)</td>
<td>Ce II .64(250) Eu II .58(15) Eu II .63(12) (Zr II .92(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3661.39(1) 1.36(1) 1.52(1) 1.60(0)</td>
<td></td>
<td>Cr II .44(3) Sm II .36(1000) Gd II .66(30) (Y II .38(200)) (Nd II .34(10)) (Pr II .62(25)) (Zr II .33(4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3661.92(0)</td>
<td></td>
<td>Dy II .75(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3662.22(1) 2.14(1) 2.11(1) 2.18(1)</td>
<td></td>
<td>Ti II .24(100) Gd II .26(800) (Zr II .14(8)) (Eu II .33(20)) (Nd II .26(30)) (La II .08(30)) (Sm II .25(850))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3662.63(1)</td>
<td></td>
<td>Sm II .69(200) Eu II .50(25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3663.10(0) 2.86(1)</td>
<td></td>
<td>Cr II .84(8) Eu II .94(30) Sm II .90(200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3663.72(0) 3.53(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3664.21(1) 4.00(0)</td>
<td></td>
<td>Ne II .11(250) P II .19(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.46(0) (Br (III) .44(820))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.68(0)</td>
<td>Gd II .60(2000) Y II .61(100) (Dy II .63(20))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3664.80(2) 4.94(2) 4.95(1) 5.08(1)</td>
<td></td>
<td>Cr II .94(30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3665.25(0)</td>
<td></td>
<td>Cr II .29(1) Nd II .18(50) Dy II .20(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3665.57(0) 5.53(1)</td>
<td></td>
<td>(Cr II .48 (pr))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3665.93(1) 5.98(1) 5.95(0) 5.82(0)</td>
<td></td>
<td>Cr II .02(pr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3666.38(1)</td>
<td>6.46(0)</td>
<td>Eu II .27(15) Ti II .59(1) Sc II .54(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3667.02(1) 6.99(1) 7.15(0) 7.16(0)</td>
<td></td>
<td>Fe I .26(80) (Ho (III) .05(810)) (Zr II .06(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3668.02(0)</td>
<td></td>
<td>Ce II .98(400) Sm II .93(150) (Fe I .00(60)) (Tm II .09(120))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.45(0)</td>
<td>Y II .49(20) Gd II .32(25) (Zr II .48(8))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3668.68(1)</td>
<td>9.01(0) 8.91(0)</td>
<td>Ce II .72(127)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3669.49(1) 9.40(1)</td>
<td></td>
<td>Pr II .83(150) S II .05(60) Eu II .14(10) Dy II .91(15) (Ti I .97(100)) (Fe I .16(50))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3670.03(0)</td>
<td></td>
<td>Fe I .52(200) Y II .41(300)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3670.37(1)</td>
<td></td>
<td>Fe I .07(200) Fe I .03(100) (Ho (III) .29(86)) (La II .23(4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.59(0)</td>
<td>Sm II .68(150)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3670.84(0)</td>
<td></td>
<td>Sm II .84(1000) (Eu II .81(12))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3671.31(1) 1.08(0) 1.11(1) 1.24(1)</td>
<td></td>
<td>Gd II .20(1500) Zr II .28(20) (Gd II .36(30))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3672.33(1)</td>
<td></td>
<td>Dy II .31(125) Nd II .36(50) (Ce II .17(5d ?))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.89(1) 2.90(1)</td>
<td>Ce II .79(60) Dy II .67(40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3673.12(0)</td>
<td></td>
<td>Eu II .19(80) Dy II .15(40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3673.72(1)</td>
<td></td>
<td>Nd II .54(50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3674.18(1)</td>
<td>3.92(0)</td>
<td>Dy II .09(200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.691</td>
<td>1.323</td>
<td>3.042</td>
<td>4.460</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1943</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.74(0)</td>
<td>4.79(0)</td>
<td>4.64(0)</td>
<td>Zr II .74(40)</td>
<td>(Eu II .63(50)</td>
</tr>
<tr>
<td>5.35(0)</td>
<td>5.32(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.93(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.07(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.32(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.55(1)</td>
<td>6.50(1)</td>
<td>6.49(0)</td>
<td>6.69(0)</td>
<td>Dy II .56(200)</td>
</tr>
<tr>
<td>7.04(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.33(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3677.68(3)</td>
<td>7.72(x)</td>
<td>7.79(x)</td>
<td>7.81(7)</td>
<td>7.89(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.41(1)</td>
<td>8.36(0)</td>
<td>8.28(1)</td>
<td>8.26(100)</td>
<td>8(Sc II .34 (15))</td>
</tr>
<tr>
<td>9.32(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3679.02(0n)</td>
<td>8.94(0)</td>
<td>8.72(1n)</td>
<td>8.72(0)</td>
<td>8.92(1)</td>
</tr>
<tr>
<td>3679.57(0)</td>
<td>9.77(1)</td>
<td>9.60(0n)</td>
<td>9.67(1)</td>
<td>9.76(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.97(0)</td>
<td>0.10(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25(1)</td>
<td></td>
<td>0.28(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3680.82(1)</td>
<td>0.79(0)</td>
<td>0.81(1)</td>
<td>0.75(0)</td>
<td>0.76(25)</td>
</tr>
<tr>
<td>3681.50(1)</td>
<td>1.48(0)</td>
<td>1.30(1)</td>
<td>1.28(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.03(0)</td>
<td></td>
<td>1.95(0)</td>
<td>2.00(0)</td>
<td></td>
</tr>
<tr>
<td>2.25(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3682.75(0)</td>
<td>2.70(1n)</td>
<td>2.82(0)</td>
<td>2.61(1)</td>
<td></td>
</tr>
<tr>
<td>3.44(1)</td>
<td>3.49(1)</td>
<td>3.44(1n)</td>
<td>3.65(1n)</td>
<td></td>
</tr>
<tr>
<td>3684.06(1)</td>
<td>4.16(3)</td>
<td>4.23(3)</td>
<td>4.20(1)</td>
<td>4.33(2)</td>
</tr>
<tr>
<td>4.67(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3685.12(5)</td>
<td>5.16(8)</td>
<td>5.11(4n)</td>
<td>5.05(2)</td>
<td>5.15(4)</td>
</tr>
<tr>
<td></td>
<td>5.80(1)</td>
<td>5.80(0)</td>
<td>5.64(0)</td>
<td>5.85(1)</td>
</tr>
<tr>
<td>6.21(0)</td>
<td>6.11(1)</td>
<td>6.23(1)</td>
<td>6.21(100)</td>
<td>Fe I .00(150)</td>
</tr>
<tr>
<td>6.37(2)</td>
<td>6.65(2)</td>
<td>6.70(1)</td>
<td>6.79(1)</td>
<td>6.79(20)</td>
</tr>
<tr>
<td>7.01(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3687.33(0)</td>
<td>7.31(0)</td>
<td></td>
<td>7.26(1)</td>
<td></td>
</tr>
<tr>
<td>7.51(0)</td>
<td>7.49(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3687.86(0)</td>
<td>7.70(1)</td>
<td></td>
<td>7.84(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.15(0)</td>
<td>8.33(1)</td>
<td>8.15(0)</td>
<td>8.33(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.56(0)</td>
<td>8.65(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Wavelength (Å)</th>
<th>Intensity (arb. units)</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3689.59</td>
<td>9.24(0) 8.98(0) 9.01(1)</td>
<td>(Tb(III)) .128(88)</td>
</tr>
<tr>
<td>3690.06</td>
<td>9.40(0) 9.46(0) 9.72(0)</td>
<td>Fe I .46(200) Cr II .62(1)</td>
</tr>
<tr>
<td>3692.62</td>
<td>2.46(1) 2.43(0) 2.30(1) 2.38(2)</td>
<td>Sm II .22(180) (Ho(III)) .65(815) (Er(III)) .165(812)</td>
</tr>
<tr>
<td>3693.47</td>
<td>3.25(0) 3.23(1n) 3.35(1)</td>
<td>Cr II .12(1)</td>
</tr>
<tr>
<td>3694.87</td>
<td>5.00(1) 4.93(1) 4.77(0) 4.82(1)</td>
<td>Tb II .20(100) Gd II .21(15) Dy II .36(15) (La II) .27(7)</td>
</tr>
<tr>
<td>3695.86</td>
<td>5.91(0) 5.89(0) 5.91(1n)</td>
<td>Fe I .05(200) Cr II .97(4)</td>
</tr>
<tr>
<td>3696.42</td>
<td>6.58(0) 6.75(1) 6.82(0n) 6.82(1)</td>
<td>Ti II .39(12)</td>
</tr>
<tr>
<td>3697.15</td>
<td>7.06(0) 7.18(1)</td>
<td>H 17 .15(3) (Dy II) .25(25)</td>
</tr>
<tr>
<td>3698.42</td>
<td>7.46(1) 7.56(1)</td>
<td>Fe I .43(100) Zr II .49(20)</td>
</tr>
<tr>
<td>3700.36</td>
<td>8.00(2) 8.04(2) 8.18(2)</td>
<td>Cr II .00(35) Gd II .73(1000) (Eu II) .94(12) (Pr II) .07(25)</td>
</tr>
<tr>
<td>3701.28</td>
<td>1.28(1) 1.21(1) 1.14(1) 1.27(1)</td>
<td>Fe I .09(300) Tm II .36(250)</td>
</tr>
<tr>
<td>0.691</td>
<td>1.323</td>
<td>3.042</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1.81(1)</td>
<td>2.04(0)</td>
<td>2.03(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.74(1)</td>
<td>2.80(1)</td>
<td>2.98(0)</td>
</tr>
<tr>
<td>3703.38(1n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.81(5n)</td>
<td>3.72(1n)</td>
<td>3.71(On)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3704.07(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3705.04(0)</td>
<td>5.02(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3705.45(0)</td>
<td>5.54(1)</td>
<td>5.48(0)</td>
</tr>
<tr>
<td>3705.80(0)</td>
<td>5.90(1)</td>
<td></td>
</tr>
<tr>
<td>3706.14(5)</td>
<td>6.23(3)</td>
<td>6.07(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3706.84(1n)</td>
<td>6.98(1)</td>
<td>7.03(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3707.51(On)</td>
<td>7.57(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3708.88(0)</td>
<td>8.61(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3709.25(1)</td>
<td>9.25(2)</td>
<td>9.20(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3709.86(0)</td>
<td>9.93(1)</td>
<td>9.83(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3710.38(1)</td>
<td>0.27(1n)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3711.18(1n)</td>
<td>1.06(1n)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3711.94(2n)</td>
<td>1.78(8n)</td>
<td>1.75(2n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3712.82(2)</td>
<td>2.87(0)</td>
<td>2.93(6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3713.89(0)</td>
<td>3.87(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

393
<table>
<thead>
<tr>
<th>0.691</th>
<th>1.323</th>
<th>3.042</th>
<th>4.460</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3714.71(0)</td>
<td>4.78(0)</td>
<td>4.77(1)</td>
<td>4.84(1)</td>
<td>Eu II .90(100) Zr II .77(15) (Nd II .73(12)) (Nd II .81(20)) (Nd II .05(15)) (La II .87(40))</td>
<td></td>
</tr>
<tr>
<td>3715.06(3n)</td>
<td>5.34(6)</td>
<td>5.25(6n)</td>
<td>5.38(3)</td>
<td>5.43(3n)</td>
<td>Cr II .19(20) Dy II .28(15) Gd II .23(8)</td>
</tr>
<tr>
<td></td>
<td>5.45(4)</td>
<td>5.50(2)</td>
<td></td>
<td></td>
<td>Cr II .43(20) V II .48(1200) (La II .53(50)) (Nd II .39(15))</td>
</tr>
<tr>
<td></td>
<td>5.78(1)</td>
<td></td>
<td></td>
<td></td>
<td>Fe I .92(80) PiI .85(50) (Nd II .68(20))</td>
</tr>
<tr>
<td>3716.36(1n)</td>
<td>6.46(1)</td>
<td>6.20(1)</td>
<td>6.25(1)</td>
<td>6.36(1n)</td>
<td>Ce II .94(600) Gd II .36(1000) (Fe I .42(150)) (Nd II .58(10))</td>
</tr>
<tr>
<td>3716.98(1)</td>
<td>7.11(0)</td>
<td>7.02(0n)</td>
<td>6.94(0)</td>
<td>6.98(1)</td>
<td>Eu II .94(60) Dy II .93(15) (Ce II .93(107)) (Zr II .02(4))</td>
</tr>
<tr>
<td></td>
<td>7.55(0)</td>
<td>7.62(0)</td>
<td>7.59(0)</td>
<td></td>
<td>Eu II .69(80) Mn II .53(1) (P II .62(70)) (Gd II .49(850))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ce II .19(150) (A II .21(15))</td>
</tr>
<tr>
<td>3718.28(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe I .41(80) Ce II .38(200)</td>
</tr>
<tr>
<td>3718.73(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sm II .88(500) (Zr II .86(6))</td>
</tr>
<tr>
<td>3719.48(1)</td>
<td>9.55(0)</td>
<td>9.39(1)</td>
<td>9.37(1)</td>
<td>Gd II .45(800) Gd II .53(300)</td>
<td></td>
</tr>
<tr>
<td>3719.83(0)</td>
<td>9.92(2)</td>
<td>9.94(1)</td>
<td>0.04(1)</td>
<td>Fe I .94(1000) (Ce II .80(157)) (Cr II .72(4))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.58(0)</td>
<td>0.45(0)</td>
<td>0.73(1)</td>
<td>Eu II .72(10) Eu II .39(8)</td>
<td></td>
</tr>
<tr>
<td>3721.77(9n)</td>
<td>1.71(9n)</td>
<td>1.82(4n)</td>
<td>1.63(1)</td>
<td>1.83(9n)</td>
<td>H II .94(6) Ti II .64(125) (Sm II .85(400)) (Cr II .14(1)) (Gd II .07(100))</td>
</tr>
<tr>
<td>2.46(0)</td>
<td></td>
<td>2.52(0)</td>
<td></td>
<td>Fe I .56(500)</td>
<td></td>
</tr>
<tr>
<td>3.28(0)</td>
<td>3.41(1)</td>
<td>3.40(1)</td>
<td>3.48(0)</td>
<td>Cr II .40(15) (Ti II .63(15)) (Nd II .51(50)) (Gd II .24(8)) (Gd II .69(20))</td>
<td></td>
</tr>
<tr>
<td>3724.08(0)</td>
<td>4.22(0)</td>
<td>4.22(1n)</td>
<td>4.19(1)</td>
<td>Ti II .11(18) Fe I .38(200) (Dy II .42(125))</td>
<td></td>
</tr>
<tr>
<td>3724.96(2)</td>
<td>5.02(1)</td>
<td>4.70(1)</td>
<td>4.75(1)</td>
<td>4.83(2)</td>
<td>Eu II .94(4000) (Mn II .81(1)) (Nd II .88(30)) (La II .05(20)) (Sm II .90(200))</td>
</tr>
<tr>
<td>3725.23(0)</td>
<td>5.22(1)</td>
<td>5.33(1)</td>
<td>5.38(0)</td>
<td>Fe II .30(3) (Mn II .29(1))</td>
<td></td>
</tr>
<tr>
<td>3725.82(1n)</td>
<td>5.87(1)</td>
<td>5.83(1n)</td>
<td>5.81(1)</td>
<td>5.69(2n)</td>
<td>Fe II .90(2) Gd II .47(200) (Ce II .68(407))</td>
</tr>
<tr>
<td>3726.33(0)</td>
<td>6.40(0)</td>
<td></td>
<td>6.54(1)</td>
<td>(Pr II .31(15))</td>
<td></td>
</tr>
<tr>
<td>3726.92(1)</td>
<td>6.96(2)</td>
<td>6.96(2)</td>
<td>6.94(2)</td>
<td>7.05(4)</td>
<td>Fe II .04(4) Fe I .92(100) (Sm II .80(100)) (Ne II .08(125))</td>
</tr>
<tr>
<td>3727.23(2)</td>
<td>7.32(3)</td>
<td>7.44(2)</td>
<td>7.44(1)</td>
<td>7.48(2)</td>
<td>Cr II .36(40) V II .35(1000) (O II .30(50))</td>
</tr>
<tr>
<td></td>
<td>7.69(1)</td>
<td></td>
<td>7.77(1)</td>
<td>Fe I .62(200) Zr II .72(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.02(1)</td>
<td></td>
<td></td>
<td>Nd II .13(50)</td>
<td></td>
</tr>
<tr>
<td>3728.22(0n)</td>
<td>8.43(0)</td>
<td>8.41(0)</td>
<td>8.32(0)</td>
<td>Ce II .42(250) Sm II .47(400) (V II .34(200))</td>
<td></td>
</tr>
<tr>
<td>3728.71(0)</td>
<td>8.89(0)</td>
<td></td>
<td>8.58(1)</td>
<td>(P II .66(50))</td>
<td></td>
</tr>
<tr>
<td>0.691</td>
<td>1.323</td>
<td>3.042</td>
<td>4.460</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>3729.52(0)</td>
<td>9.43(1)</td>
<td>9.43(0)</td>
<td>9.45(2)</td>
<td>Mn II .49(1) Pr II .40(15)</td>
<td></td>
</tr>
<tr>
<td>9.78(1)</td>
<td>Eu II .68(30) Eu II .74(20) (Ti I .82(500)) (Zr II .74(5))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3730.09(0)</td>
<td>0.10(1)</td>
<td>9.96(1)</td>
<td>(Ta(II) .91(815))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.47(0)</td>
<td>0.70(0)</td>
<td>0.64(0m) Nd II .58(30) Pr II .58(30) Fe I .39(70)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3730.84(0)</td>
<td>Gd II .84(1000) (Fe I .95(50))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.33(1)</td>
<td>1.07(0)</td>
<td>1.18(0) Ze II .26(35) Sm II .26(600) Nd II .22(20) (La II .42(8))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.67(1)</td>
<td>Cr II .64(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.93(0)</td>
<td>Eu II .84(25) (Al II .95(2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.52(0)</td>
<td>2.52(0) Fe I .40(200) Gd II .45(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.18(1)</td>
<td>2.98(1) Gd II .08(300) Pr II .03(60) (Nd II .76(10))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.31(0)</td>
<td>3.44(1) Fe I .32(400) Eu II .65(25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3734.34(xm)</td>
<td>4.47(xm)</td>
<td>4.25(9n)</td>
<td>4.37(3n)</td>
<td>4.42(xm)</td>
<td>H I .37(8)</td>
</tr>
<tr>
<td>4.86(0)</td>
<td>Fe I .87(1000) (Eu II .85(15))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.78(0)</td>
<td>5.92(1) Sm II .98(500) Cr II .90(2) Eu II .94(20) Eu II .06(10) (Pr II .76(40)) (La II .85(10))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3736.44(0)</td>
<td>6.66(0) Cr II .56(1) (Pr II .50(40)) (La II .41(15))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3737.02(2)</td>
<td>7.06(1)</td>
<td>6.88(1)</td>
<td>7.11(1)</td>
<td>6.84(1) Fe I .13(1000) Ga II .90(50) (Sm II .14(200)) (Gd II .26(10))</td>
<td></td>
</tr>
<tr>
<td>7.26(0)</td>
<td>Cr II .55(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.51(1n)</td>
<td>7.48(1)</td>
<td>7.59(1)</td>
<td>7.48(1)</td>
<td>7.64(1)</td>
<td></td>
</tr>
<tr>
<td>7.91(0)</td>
<td>7.96(1)</td>
<td>8.00(0) Eu II .08(80) Nd II .06(40) (A II .89(15)) (Al II .00(10))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3738.21(2)</td>
<td>8.28(7)</td>
<td>8.33(6)</td>
<td>8.38(2)</td>
<td>8.46(1) Cr II .38(25) (Fe I .31(100)) (Zr II .13(5))</td>
<td></td>
</tr>
<tr>
<td>3738.83(0)</td>
<td>8.87(1)</td>
<td>9.04(0)</td>
<td>8.90(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.20(1)</td>
<td>9.32(0m)</td>
<td>9.24(0)</td>
<td>9.28(1) Sm II .12(300) Dy II .36(25) Sm II .20(200) (Pr II .39(100))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3739.50(2)</td>
<td>9.66(1)</td>
<td>(Fe I .53(80))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3740.08(1)</td>
<td>0.17(1)</td>
<td>9.83(0)</td>
<td>0.09(0)</td>
<td>0.14(1) Gd II .02(150) (O II .92(35))</td>
<td></td>
</tr>
<tr>
<td>3740.27(0)</td>
<td>Fe I .25(70) Eu II .25(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3740.86(0n)</td>
<td>0.69(0)</td>
<td>0.82(0)</td>
<td>0.93(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3741.51(6)</td>
<td>1.58(9)</td>
<td>1.54(4)</td>
<td>1.56(3)</td>
<td>1.64(5) Ti II .66(200) Eu II .31(400) (Eu II .62(12)) (Nd II .43(50))</td>
<td></td>
</tr>
<tr>
<td>2.18(0)</td>
<td>2.27(0)</td>
<td>2.25(0)</td>
<td>Eu II .34(15) (Cr II .20(pr))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.691</th>
<th>1.323</th>
<th>3.042</th>
<th>4.460</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3742.40(0)</td>
<td>2.54(1)</td>
<td>2.58(1)</td>
<td>(Fe I .62(50))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.05(1)</td>
<td>2.89(0)</td>
<td>Cr II .97(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3743.40(9)</td>
<td>3.41(3)</td>
<td>3.33(5)</td>
<td>3.28(3)</td>
<td>3.35(9)</td>
<td>Gd II .47(2000) (Fe I .36(200))</td>
</tr>
<tr>
<td>Bu II .56(100))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3743.92(0)</td>
<td>3.98(0)</td>
<td>4.01(1)</td>
<td>3.96(1)</td>
<td>4.03(1)</td>
<td>Sm II .87(500) Pr II .99(20)</td>
</tr>
<tr>
<td>3744.34(0)</td>
<td>4.54(1)</td>
<td>Eu II .54(20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.78(0)</td>
<td>4.96(0)</td>
<td>4.84(1)</td>
<td>4.91(1)</td>
<td>(Gd II ?) .80(812)</td>
<td></td>
</tr>
<tr>
<td>3745.12(0)</td>
<td>5.30(1)</td>
<td>(Fe II .56(pr))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3745.50(1)</td>
<td>5.58(0)</td>
<td>5.43(1)</td>
<td>5.49(0n)</td>
<td>Fe I .56(500) Nd II .60(200)</td>
<td></td>
</tr>
<tr>
<td>3745.83(3)</td>
<td>5.89(3)</td>
<td>5.75(3n)</td>
<td>5.76(1)</td>
<td>5.73(7n)</td>
<td>V II .81(400) Fe I .90(150)</td>
</tr>
<tr>
<td>Zr II .97(40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3746.49(1)</td>
<td>6.55(1)</td>
<td>6.55(1)</td>
<td>6.39(1)</td>
<td>6.62(1)</td>
<td>(Fe II .56(pr)) (Gd II .44(8))</td>
</tr>
<tr>
<td>3746.99(0)</td>
<td>6.97(1)</td>
<td>(Fe I .93(40))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3747.54(0)</td>
<td>7.62(0)</td>
<td>7.48(0)</td>
<td>7.51(0)</td>
<td>Fe II .50(2)</td>
<td></td>
</tr>
<tr>
<td>7.98(0)</td>
<td>8.03(1)</td>
<td>Fe I .26(500) Tl II .90(25) (Ce II .06(150)) (Er II .12(20)) (Eu II .83(100))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.63(2)</td>
<td>8.65(1)</td>
<td>8.59(1)</td>
<td>Fe II .49(8) Cr II .68(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.44(1)</td>
<td>(Gd II .88(50))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3750.08(xn)</td>
<td>0.13(xn)</td>
<td>0.09(xn)</td>
<td>0.02(3n)</td>
<td>0.14(xn)</td>
<td>H I .15(10)</td>
</tr>
<tr>
<td>1.14(0)</td>
<td>1.50(0)</td>
<td>Cr II .60(3) Cr II .43(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Zr II .60(75))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.49)</td>
<td>Nd II .50(40) Nd II .68(30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Bu II .51(5)) (Gd II .66(8))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.88(0)</td>
<td>2.92(0)</td>
<td>Eu II .05(30) Ru II .83(15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tl I .86(200) (Nd II .68(30))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3753.70(2)</td>
<td>3.60(1)</td>
<td>3.55(1)</td>
<td>3.69(0)</td>
<td>3.59(1n)</td>
<td>Dy II .76(200) Dy II .51(150)</td>
</tr>
<tr>
<td>(Fe I .61(150)) (Gd II .56(10))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00(1)</td>
<td>4.05(0)</td>
<td>4.19(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.38(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3754.42(1)</td>
<td>4.53(2)</td>
<td>4.59(6)</td>
<td>4.59(3)</td>
<td>4.67(4)</td>
<td>Cr II .58(20)</td>
</tr>
<tr>
<td>3754.83(1)</td>
<td>(Sm II .86(310))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.07(1)</td>
<td>5.16(1)</td>
<td>5.15(1)</td>
<td>5.19(1)</td>
<td>Cr II .13(2) Sm II .28(200)</td>
<td></td>
</tr>
<tr>
<td>(Gd II .42(30)) (Tb ? ? ? .24(100))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3755.46(2)</td>
<td>5.61(2)</td>
<td>5.60(2)</td>
<td>5.60(1)</td>
<td>5.63(1)</td>
<td>Fe II .56(4) Ce II .42(75)</td>
</tr>
<tr>
<td>(Gd II .56(40)) (Nd II .66(30))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.15(0)</td>
<td>6.31(0)</td>
<td>6.08(0)</td>
<td>6.28(1)</td>
<td>(Gd II .09(10))</td>
<td></td>
</tr>
<tr>
<td>3756.50(ln)</td>
<td>6.50(1)</td>
<td>6.57(1)</td>
<td>6.50(1)</td>
<td>6.63(0)</td>
<td>Cr II .55(3) Sm II .41(600)</td>
</tr>
<tr>
<td>7.07(1)</td>
<td>7.05(0)</td>
<td>6.88(0)</td>
<td>Fe I .94(80) (Zr II .96(1))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.323</td>
<td>3.042</td>
<td>4.460</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>3757.40(0)</td>
<td>7.44(1)</td>
<td>7.18(1)</td>
<td>7.27(2)</td>
<td>Dy II .37(500) Eu II .42(15)</td>
<td></td>
</tr>
<tr>
<td>3757.69(3n)</td>
<td>7.72(2)</td>
<td>7.66(1)</td>
<td>7.66(2)</td>
<td>Ti II .69(100) Sm II .53(300) Gd II .74(80) Eu II .64(50) Ce II .86(157) Nd II .82(30) Zr II .80(8)</td>
<td></td>
</tr>
<tr>
<td>3758.16(2)</td>
<td>8.22(2)</td>
<td>8.19(4)</td>
<td>8.23(3)</td>
<td>8.29(4) Fe II .24(700) Gd II .31(200) Eu II .29(30)</td>
<td></td>
</tr>
<tr>
<td>3758.43(1)</td>
<td>8.67(1)</td>
<td>8.79(0)</td>
<td>8.80(1)</td>
<td>8.94(1) Gd II .00(300) La II .08(300) Sm II .97(200) Nd II .94 (40)</td>
<td></td>
</tr>
<tr>
<td>3759.27(9n)</td>
<td>9.36(8)</td>
<td>9.36(9)</td>
<td>9.38(5)</td>
<td>9.36(9n) Ti II .30(400) Fe II .46 (6)</td>
<td></td>
</tr>
<tr>
<td>3759.80(0)</td>
<td>9.85(1)</td>
<td>0.06(9)</td>
<td>0.01(0)</td>
<td>Cr II .92(1) Pr II .61(75) Nd II .80(20)</td>
<td></td>
</tr>
<tr>
<td>3760.15(1)</td>
<td>0.21(1)</td>
<td>0.04(1)</td>
<td>Fe I .05(10) Eu II .33(50) Pr II .08(30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>†3760.80(1)</td>
<td>0.64(1n)</td>
<td>0.58(0)</td>
<td>0.58(1)</td>
<td>0.66(1) Sm II .69(500) Fe I .53(100) Gd II .71(200) Gd II .92 (100) Ce II .69(6)</td>
<td></td>
</tr>
<tr>
<td>3761.26(3)</td>
<td>1.27(6)</td>
<td>1.24(3n)</td>
<td>1.26(3)</td>
<td>1.24(5) Ti II .32(300) Eu II .12(300) Tm II .33(800)</td>
<td></td>
</tr>
<tr>
<td>3761.52(0)</td>
<td>1.80(6)</td>
<td>1.80(5)</td>
<td>1.81(4)</td>
<td>1.89(5) Cr II .70(7) Cr II .87(8) Ti II .89 (15) Fe II .87 (250) P II .81 (30) Tm II .91 (600)</td>
<td></td>
</tr>
<tr>
<td>3762.05(0)</td>
<td>2.39(0)</td>
<td>2.36(0)</td>
<td>2.41(1)</td>
<td>2.28(0) Tm II .91(600)</td>
<td></td>
</tr>
<tr>
<td>3762.87(2n)</td>
<td>2.90(2n)</td>
<td>2.88(3)</td>
<td>2.91(2)</td>
<td>2.99(2) Fe I .89(5) Gd II .00(50)</td>
<td></td>
</tr>
<tr>
<td>3763.33(0)</td>
<td>3.79(3)</td>
<td>3.74(3)</td>
<td>3.74(1)</td>
<td>3.65(1) Fe I .79(500)</td>
<td></td>
</tr>
<tr>
<td>3764.19(0)</td>
<td>4.19(1)</td>
<td>4.09(1)</td>
<td>4.10(2)</td>
<td>4.16(3) Ce II .12(150) Fe II .09(?) Gd II .15 (15) Gd II .20 (50)</td>
<td></td>
</tr>
<tr>
<td>3764.85(1)</td>
<td>4.79(0)</td>
<td>4.92(0)</td>
<td>4.65(0)</td>
<td>Pr II .81(125) Gd II .60 (50)</td>
<td></td>
</tr>
<tr>
<td>3765.15(0)</td>
<td>5.18(0)</td>
<td>5.12(0)</td>
<td>5.06(1n)</td>
<td>Cr II .28(3) Cr II .32 (1) Tb (II?) .14 (100) Ce II .04(12)</td>
<td></td>
</tr>
<tr>
<td>3765.45(2)</td>
<td>5.57(3)</td>
<td>5.58(3)</td>
<td>5.58(2)</td>
<td>5.67(1) Cr II .61 (8) Fe I .54 (200)</td>
<td></td>
</tr>
<tr>
<td>3766.20(0)</td>
<td>5.97(0)</td>
<td>6.09(0)</td>
<td>Eu II .93 (150)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3766.39(0)</td>
<td>6.31(1)</td>
<td>(Ne II .29(75))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3766.49(1)</td>
<td>6.63(2)</td>
<td>6.58(2n)</td>
<td>6.61(1n)</td>
<td>6.51(1) Cr II .65 (4) Zr II .83 (25) Ce II .51 (74) La II .58 (3)</td>
<td></td>
</tr>
</tbody>
</table>

* Phase 1.482 begins at wave length 3758.22
† Phase 0.756 begins at wave length 3760.80
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.460</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3767.14(1)</td>
<td>7.21(2)</td>
<td>7.18(2)</td>
<td>7.08(1)</td>
<td>7.26(1)</td>
<td>Fe I .19(500) Gd II .04(500) Sm II .36(200) (La II .05(5))</td>
</tr>
<tr>
<td>3767.95(0)</td>
<td>7.77(0)</td>
<td>7.78(0)</td>
<td>7.76(5)</td>
<td>7.76(5)</td>
<td>Sm II .76(150) Er II .89(5)</td>
</tr>
<tr>
<td>3768.52(1)</td>
<td>8.33(1)</td>
<td>8.29(1)</td>
<td>8.36(2)</td>
<td>8.36(2)</td>
<td>Gd II .38(2000) (Gd II .50(60))</td>
</tr>
<tr>
<td>3770.53(1)</td>
<td>9.66(0)</td>
<td>Nd II .64(40) Gd II .45(100) (Pr II .70(30)) (Nf II .46(5))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3770.53(x)</td>
<td>0.36(xm)</td>
<td>0.52(xm)</td>
<td>0.55(6n)</td>
<td>0.62(xm)</td>
<td>H II .63(15) (Gd II .69(300))</td>
</tr>
<tr>
<td>3772.02(0)</td>
<td>2.45(0)</td>
<td>2.46(0)</td>
<td>Cr II .00(1) Cr II .10(1) Nd II .06(15) (Er II .06(4)) (Er II .98(2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3772.02(0)</td>
<td>2.45(0)</td>
<td>2.46(0)</td>
<td>Cr II .00(1) Cr II .10(1) Nd II .06(15) (Er II .06(4)) (Er II .98(2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3773.56(0)</td>
<td>3.06(0)</td>
<td>3.19(0)</td>
<td>La II .12(150)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3774.35(1n)</td>
<td>4.22(2)</td>
<td>4.25(1)</td>
<td>4.03(0)</td>
<td>4.22(1)</td>
<td>Dy II .32(25) Fe I .70(40)</td>
</tr>
<tr>
<td>3774.91(0)</td>
<td>4.75(1)</td>
<td>4.75(1)</td>
<td>Fe I .83(100) (Tl II .65(1))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3775.26(0)</td>
<td>5.31(0)</td>
<td>5.13(0)</td>
<td>Cr II .09(1) Eu II .47(4) (P II .02(30))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3775.26(0)</td>
<td>5.31(0)</td>
<td>5.13(0)</td>
<td>Cr II .09(1) Eu II .47(4) (P II .02(30))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.36(0)</td>
<td>5.81(0)</td>
<td>5.87(0)</td>
<td>5.56(1)</td>
<td>Cr II .73(0) Nd II .50(20) (Nd I .57(500)) (Eu II .69(5))</td>
<td></td>
</tr>
<tr>
<td>3775.97(2)</td>
<td>6.22(1)</td>
<td>6.14(1)</td>
<td>5.99(1)</td>
<td>6.02(1)</td>
<td>Tl II .06(60) Fe I .46(125)</td>
</tr>
<tr>
<td>3776.66(0)</td>
<td>6.69(1)</td>
<td>6.58(0)</td>
<td>6.52(0)</td>
<td>6.70(0)</td>
<td>Y II .35(12) (Eu II .51(5)) (Tb(III) .49(S10))</td>
</tr>
<tr>
<td>3777.64(1)</td>
<td>7.70(1)</td>
<td>7.49(1)</td>
<td>7.43(1)</td>
<td>7.46(1)</td>
<td>Pr II .63(50) Eu II .61(15)</td>
</tr>
<tr>
<td>3778.23(1)</td>
<td>8.21(1)</td>
<td>8.24(1)</td>
<td>8.23(0)</td>
<td>8.02(0)</td>
<td>Sm II .14(400)</td>
</tr>
<tr>
<td>3778.54(1)</td>
<td>8.62(1n)</td>
<td>8.60(2n)</td>
<td>8.69(1)</td>
<td>8.40(0)</td>
<td>Cr II .69(6) Fe I .51(60) (Fe II .37(pr))</td>
</tr>
<tr>
<td>3779.48(2)</td>
<td>9.58(2)</td>
<td>9.52(1n)</td>
<td>9.50(2)</td>
<td>9.67(2)</td>
<td>Fe I .45(100) Nd II .47(40)</td>
</tr>
<tr>
<td>3779.84(0)</td>
<td>0.14(0)</td>
<td>0.97(0)</td>
<td>0.83(20) (Eu II .87(6))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3780.56(0)</td>
<td>0.49(1n)</td>
<td>0.62(1n)</td>
<td>0.41(1)</td>
<td>Cr II .49(2) Eu II .54(10) Nd II .39(20) (La II .53(50))</td>
<td></td>
</tr>
<tr>
<td>3780.88(1)</td>
<td>0.74(1)</td>
<td>0.74(1)</td>
<td>0.90(1)</td>
<td>0.90(1)</td>
<td>Sm II .93(150) Sm II .76(200) Pr II .66(50) (Fe I .19(40)) (La II .67(50)) (A II .84(8))</td>
</tr>
<tr>
<td>3781.45(2)</td>
<td>1.49(2)</td>
<td>1.48(2)</td>
<td>1.44(1)</td>
<td>1.53(2)</td>
<td>Fe II .51(1) Eu II .40(50) (Ce II .62(150)) (Nd II .32(20))</td>
</tr>
<tr>
<td>3781.93(0)</td>
<td>1.95(0)</td>
<td>2.04(1)</td>
<td>398</td>
<td>398</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.460</td>
<td>5.003</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>3782.38(2n)</td>
<td>2.28(1)</td>
<td>2.22(1)</td>
<td>2.21(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3782.82(1)</td>
<td></td>
<td>2.54(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3783.25(2)</td>
<td>2.98(1)</td>
<td>3.06(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3783.70(1)</td>
<td>3.30(3)</td>
<td>3.30(3)</td>
<td>3.40(2)</td>
<td>3.43(2)</td>
<td></td>
</tr>
<tr>
<td>3784.04(0)</td>
<td></td>
<td></td>
<td></td>
<td>3.84(1)</td>
<td></td>
</tr>
<tr>
<td>3784.25(1)</td>
<td>4.40(1)</td>
<td>4.17(1)</td>
<td>4.14(1)</td>
<td>4.39(1)</td>
<td></td>
</tr>
<tr>
<td>3784.68(0)</td>
<td>4.75(0)</td>
<td>4.67(0)</td>
<td>4.90(0)</td>
<td>4.96(1)</td>
<td></td>
</tr>
<tr>
<td>3785.12(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3785.46(1n)</td>
<td>5.45(1)</td>
<td>5.41(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3786.22(3)</td>
<td>6.07(0)</td>
<td>5.84(0)</td>
<td>6.06(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3786.61(0)</td>
<td>6.66(1)</td>
<td>6.23(1n)</td>
<td>6.37(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3787.00(0)</td>
<td>7.02(1)</td>
<td>6.64(1)</td>
<td>6.73(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3787.79(1n)</td>
<td>7.41(1)</td>
<td>7.20(0)</td>
<td></td>
<td>7.11(1)</td>
<td></td>
</tr>
<tr>
<td>3788.39(3n)</td>
<td>7.77(2)</td>
<td>7.84(1)</td>
<td>7.86(0)</td>
<td>7.85(1)</td>
<td></td>
</tr>
<tr>
<td>3788.61(1n)</td>
<td>8.51(2)</td>
<td>8.64(0)</td>
<td>8.77(0)</td>
<td>8.82(0)</td>
<td></td>
</tr>
<tr>
<td>3789.23(0)</td>
<td>9.31(0n)</td>
<td>9.22(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3789.97(1)</td>
<td>1.05(1)</td>
<td>9.65(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3790.47(1)</td>
<td>0.65(0)</td>
<td>0.24(0)</td>
<td>0.35(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3791.17(1)</td>
<td>1.20(1)</td>
<td>1.05(0n)</td>
<td>1.10(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3791.89(1)</td>
<td>1.82(0)</td>
<td>1.70(1n)</td>
<td>1.71(1)</td>
<td>1.73(3)</td>
<td></td>
</tr>
<tr>
<td>3792.47(2)</td>
<td>2.43(1)</td>
<td>2.33(1n)</td>
<td>2.39(0)</td>
<td>2.34(1)</td>
<td></td>
</tr>
<tr>
<td>3793.06(0)</td>
<td></td>
<td></td>
<td></td>
<td>3.09(0)</td>
<td></td>
</tr>
<tr>
<td>3793.50(0)</td>
<td></td>
<td></td>
<td></td>
<td>(P II .60(30)) (Tb(II) .55(815))</td>
<td></td>
</tr>
<tr>
<td>3794.19(0)</td>
<td></td>
<td></td>
<td></td>
<td>9.75(80) Fe I .34(80)</td>
<td></td>
</tr>
<tr>
<td>3794.71(0)</td>
<td>4.62(0)</td>
<td></td>
<td></td>
<td>4.63(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.43(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.06(0)</td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.460</td>
<td>5.003</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>3797.86(x)</td>
<td>7.80(xn)</td>
<td>7.94(xn)</td>
<td>7.79(8n)</td>
<td>7.87(xn)</td>
<td>H 10 .90(20) (Sm II .73(600))</td>
</tr>
<tr>
<td></td>
<td>8.89(0)</td>
<td></td>
<td></td>
<td></td>
<td>(Cr II .95(1))</td>
</tr>
<tr>
<td></td>
<td>9.53(0)</td>
<td>9.46(0)</td>
<td></td>
<td>9.67(0)</td>
<td>Eu II .01(100)</td>
</tr>
<tr>
<td></td>
<td>0.34(0)</td>
<td>0.26(0)</td>
<td></td>
<td>0.66(0)</td>
<td>Fe I .55(400) Sm II .54(300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.64(0)</td>
<td>Cr II .62(1) (Eu II .69(10))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.44(0)</td>
<td>Mn II .24(2) Pr II .30(200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.37(0)</td>
<td>Sm II .37(100)</td>
</tr>
<tr>
<td>3801.06(0)</td>
<td>1.15(0)</td>
<td>1.21(1)</td>
<td></td>
<td>1.32(0)</td>
<td>Fe I .21(10) Gd II .29(400)</td>
</tr>
<tr>
<td>3801.40(1)</td>
<td>1.58(1)</td>
<td>1.77(0)</td>
<td></td>
<td>1.63(1)</td>
<td>Ce II .53(500) Sm II .63(3)</td>
</tr>
<tr>
<td></td>
<td>0.10(0)</td>
<td></td>
<td></td>
<td>0.64(0)</td>
<td>(Eu II .58(8)) (Fe I .68(50))</td>
</tr>
<tr>
<td>3801.99(0)</td>
<td>1.99(0)</td>
<td></td>
<td></td>
<td>2.48(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.89(0)</td>
<td>2.82(0)</td>
<td></td>
<td>3.25(0)</td>
<td>Gd II .85(40) Mn II .96(0)</td>
</tr>
<tr>
<td>3803.42(0)</td>
<td>3.50(0)</td>
<td>3.21(0)</td>
<td></td>
<td>3.98(0)</td>
<td>Ce II .10(200) Nd II .47(40)</td>
</tr>
<tr>
<td>3804.08(1)</td>
<td>4.09(0)</td>
<td>3.88(0)</td>
<td>4.00(1n)</td>
<td>4.77(1n)</td>
<td>Cr II .10(1) Dy II .15(40)</td>
</tr>
<tr>
<td>3804.72(1)</td>
<td>4.85(0)</td>
<td></td>
<td></td>
<td>5.48(3)</td>
<td>(Mn II .88(0)) (Fe I .01(40))</td>
</tr>
<tr>
<td>3805.24(1)</td>
<td>5.36(1)</td>
<td>5.28(1)</td>
<td>5.38(2)</td>
<td>5.48(3)</td>
<td>Fe I .34(400) Nd II .26(100)</td>
</tr>
<tr>
<td>3805.65(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Nd II .55(40)) (Gd II .52(200)) (Sm II .09(80))</td>
</tr>
<tr>
<td>3806.09(1)</td>
<td>6.10(1)</td>
<td>0.09(1)</td>
<td></td>
<td>6.17(2)</td>
<td>Sm II .63(200)</td>
</tr>
<tr>
<td>3806.35(1)</td>
<td>6.37(0)</td>
<td></td>
<td></td>
<td>6.78(2)</td>
<td>Dy II .28(50) (Fe I .22(40))</td>
</tr>
<tr>
<td>3806.60(1)</td>
<td>6.78(0)</td>
<td>6.68(1n)</td>
<td></td>
<td>7.05(1)</td>
<td>Fe I .70(200)</td>
</tr>
<tr>
<td>3806.95(2)</td>
<td>7.02(2)</td>
<td></td>
<td></td>
<td>7.54(1)</td>
<td>Fe II .82(pr) Nd II .23(15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.54(1)</td>
<td>(TbIII .85(850))</td>
</tr>
<tr>
<td>3807.52(1)</td>
<td>7.51(1)</td>
<td>7.49(1)</td>
<td>7.61(1)</td>
<td>7.54(1)</td>
<td>Fe I .54(150) Cr II .34(1) (Eu II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.54(1)</td>
<td>.54(30)) (Gd II .65(25)) (Zr II .41(2))</td>
</tr>
<tr>
<td>3808.08(1)</td>
<td>8.17(1)</td>
<td>8.07(1n)</td>
<td>8.09(0)</td>
<td>8.22(1)</td>
<td>Ce II .12(300)</td>
</tr>
<tr>
<td>3808.62(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3809.06(2n)</td>
<td>8.80(1)</td>
<td>8.89(2)</td>
<td></td>
<td>9.19(0)</td>
<td>Nd II .05(25) Nd II .77(30)</td>
</tr>
<tr>
<td>3809.42(0)</td>
<td>9.19(0)</td>
<td>9.14(1)</td>
<td>9.35(1)</td>
<td>9.76(0)</td>
<td>Fe I .73(100) Dy II .04(25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.76(0)</td>
<td>Cr II .54(1) Ce II .22(25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.81(1)</td>
<td>(Pr II .16(30)) (A II .49(25))</td>
</tr>
<tr>
<td>3810.05(2)</td>
<td>0.09(2)</td>
<td>0.22(0)</td>
<td>9.89(2)</td>
<td>0.31(0)</td>
<td>Nd II .48(40)</td>
</tr>
<tr>
<td>3810.50(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3810.84(1)</td>
<td>0.81(1n)</td>
<td>0.69(1)</td>
<td>0.74(1)</td>
<td>0.72(2)</td>
<td>Cr II .74(1) Fe I .76(70)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Nd II .07(50)) (HoIII .70(640))</td>
</tr>
<tr>
<td>Identification</td>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.460</td>
<td>5.003</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Nd II .77(20)</td>
<td>1.46(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm II .07(150)</td>
<td>2.38(1)</td>
<td>1.97(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .96(400)</td>
<td></td>
<td>3.11(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti II .39(20)</td>
<td></td>
<td>3.50(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy II .68(40)</td>
<td></td>
<td>3.84(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .12(4)</td>
<td></td>
<td>4.04(4)</td>
<td>4.07(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr II .00(12)</td>
<td></td>
<td>4.64(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .97(2000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd II .72(60)</td>
<td></td>
<td>4.64(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr II .97(2)</td>
<td></td>
<td>4.69(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .74(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .40(80)</td>
<td></td>
<td>5.06(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V II .38(200)</td>
<td></td>
<td>5.07(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .50(80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .84(700)</td>
<td></td>
<td>5.33(1)</td>
<td>5.38(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr II .77(2)</td>
<td></td>
<td>5.44(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .82(250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr II .17(125)</td>
<td></td>
<td>5.81(4)</td>
<td>5.81(1n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La II .25(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr II .28(125)</td>
<td></td>
<td>5.95(3n)</td>
<td>6.03(5n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y II .34(50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .64(250)</td>
<td></td>
<td>6.24(1)</td>
<td>6.24(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm II .37(15)</td>
<td></td>
<td>7.33(2)</td>
<td>7.33(2n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .66(25)</td>
<td></td>
<td>7.41(1n)</td>
<td>7.47(4n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .66(50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr II .59(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .67(6000)</td>
<td></td>
<td>7.92(1)</td>
<td>7.81(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr II .87(30)</td>
<td></td>
<td>7.72(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y II .88(2)</td>
<td></td>
<td>8.08(1)</td>
<td>8.08(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .82(125)</td>
<td></td>
<td>8.19(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .75(150)</td>
<td></td>
<td>8.28(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr II .44(25)</td>
<td></td>
<td>8.81(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd II .47(1)</td>
<td></td>
<td>8.68(0)</td>
<td>8.80(2n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .69(1)</td>
<td></td>
<td>8.76(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .74(1)</td>
<td></td>
<td>9.14(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .67(6000)</td>
<td></td>
<td>9.42(1)</td>
<td>9.47(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .83(800)</td>
<td></td>
<td>9.55(3)</td>
<td>9.55(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr II .48(2)</td>
<td></td>
<td>9.59(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .51(2n)</td>
<td></td>
<td>0.06(0)</td>
<td>0.19(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .43(800)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .87(57)</td>
<td></td>
<td>0.39(5)</td>
<td>0.39(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .48(2)</td>
<td></td>
<td>0.41(3)</td>
<td>0.41(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge II .97(57)</td>
<td></td>
<td>0.19(1)</td>
<td>0.19(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .51(2n)</td>
<td></td>
<td>0.51(2n)</td>
<td>0.51(2n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .18(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr II .82(50)</td>
<td></td>
<td>0.94(2)</td>
<td>0.94(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .84(50)</td>
<td></td>
<td>1.16(2)</td>
<td>1.16(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .92(50)</td>
<td></td>
<td>1.25(2)</td>
<td>1.25(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .17(80)</td>
<td></td>
<td>1.32(1)</td>
<td>1.32(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd II .47(20)</td>
<td></td>
<td>1.93(2)</td>
<td>1.93(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy II .59(20)</td>
<td></td>
<td>1.85(2)</td>
<td>1.85(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy II .59(20)</td>
<td></td>
<td>1.88(3)</td>
<td>1.88(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy II .59(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy II .59(20)</td>
<td></td>
<td>2.29(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .74(3)</td>
<td></td>
<td>2.40(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .74(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .74(3)</td>
<td></td>
<td>2.47(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .74(3)</td>
<td></td>
<td>2.67(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .74(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .74(3)</td>
<td></td>
<td>2.76(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.460</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3824.90(1)</td>
<td>1.00(0)</td>
<td>3.00(0)</td>
<td>3.08(1)</td>
<td>(Gd II .20(12)) (Pr II .18(75))</td>
<td></td>
</tr>
<tr>
<td>3823.41(1n)</td>
<td>3.41(0n)</td>
<td>3.37(1n)</td>
<td>Fr II .57(10) (Zr II .41(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3823.86(1)</td>
<td>3.87(1)</td>
<td>3.84(0)</td>
<td>Ce II .90(50) (Zr II .72(1))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3824.31(3n)</td>
<td>4.39(1)</td>
<td>4.31(2)</td>
<td>4.36(1)</td>
<td>4.41(2n)</td>
<td>Fe I .44(150)</td>
</tr>
<tr>
<td>3824.84(3)</td>
<td>4.97(2)</td>
<td>4.89(2)</td>
<td>4.94(3)</td>
<td>5.03(4)</td>
<td>Fe II .91(4) (Gd II .02(50))</td>
</tr>
<tr>
<td>3825.26(1)</td>
<td>5.34(2)</td>
<td>5.40(1)</td>
<td>5.39(1)</td>
<td>5.44(1)</td>
<td></td>
</tr>
<tr>
<td>3825.77(5n)</td>
<td>5.84(3)</td>
<td>5.86(4)</td>
<td>5.88(4)</td>
<td>5.98(7)</td>
<td>Fe I .88(500) Dy II .6(30)</td>
</tr>
<tr>
<td>3826.12(2n)</td>
<td>6.06(1)</td>
<td>Sm II .20(400) Gd II .05(200) (Pr II .29(100)) (Dy II .0(20))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3826.35(0)</td>
<td>6.38(0)</td>
<td>6.42(1)</td>
<td>6.55(1)</td>
<td>6.51(1)</td>
<td>Nd II .42(60)</td>
</tr>
<tr>
<td>3826.77(0)</td>
<td>6.74(0)</td>
<td>Eu II .68(50)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3826.99(2)</td>
<td>7.06(2)</td>
<td>7.06(3n)</td>
<td>7.11(2)</td>
<td>7.16(3)</td>
<td>Fe II .08 (A) Cr II .95(1) (Cr II .06(0))</td>
</tr>
<tr>
<td>3827.70(4)</td>
<td>7.82(3)</td>
<td>7.78(3)</td>
<td>7.90(1)</td>
<td>7.90(2n)</td>
<td>Fe I .82(200)</td>
</tr>
<tr>
<td>3828.22(2)</td>
<td>8.36(1)</td>
<td>8.18(0)</td>
<td>8.01(2)</td>
<td>Gd II .00(30) Nd II .99(30)</td>
<td></td>
</tr>
<tr>
<td>3829.00(0)</td>
<td>8.58(0)</td>
<td>8.71(0)</td>
<td>Gd II .69(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3829.95(0)</td>
<td>9.02(0)</td>
<td>Fe II .86(2) Nd II .84(40) (EuIII .93(30))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.28(0)</td>
<td>Mg I .35(100) Nd II .15(30) (Ne II .77(40))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3830.57(0)</td>
<td>0.54(0)</td>
<td>0.34(1)</td>
<td>Sm II .29(200) Nd II .48(20) (N I .39(150)) (A II .43(10))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3831.13(0)</td>
<td>1.08(1)</td>
<td>Gd II .98(30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3831.66(1)</td>
<td>1.56(1)</td>
<td>1.62(1)</td>
<td>Sm II .50(400) Dy II .64(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.16(0)</td>
<td>Mg I .31(250) (Gd II .80(100))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.49(0)</td>
<td>Cr II .40(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3833.03(0n)</td>
<td>2.90(0)</td>
<td>2.90(1)</td>
<td>Fe II .96(27) (Cr II .74(1) (Y II .89(80)) (Ce II .74(47)) (Zr II .94(1)) (Fe I .31(100))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.16(0)</td>
<td>4.12(0)</td>
<td>Fe I .22(400) (Sm II .83(200))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3835.48(xn)</td>
<td>5.40(xn)</td>
<td>5.32(xn)</td>
<td>5.42(9n)</td>
<td>5.40(xn)</td>
<td>H 9 .39(40)</td>
</tr>
<tr>
<td>6.68(0)</td>
<td>6.83(0)</td>
<td>6.92(0)</td>
<td>Dy II .51(200) Gd II .91(300) Nd II .54(60) (Zr II .76(60))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.34(0)</td>
<td>Cr II .51(1) Ce II .21(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.30(0)</td>
<td>8.48(0)</td>
<td>Mg I .26(300) Ce II .54(150) Eu II .24(30) (Zr II .28(5))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.94(0)</td>
<td>8.76(0)</td>
<td>Sm II .94(200) Nd II .98(80) Dy II .67(5))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
TABLE 3 -- Continued

<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.460</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3839.55(1)</td>
<td>9.62(1)</td>
<td>9.38(0)</td>
<td>9.37(1n)</td>
<td>9.50(0)</td>
<td>Gd II .64(300) Fe I .26(100)</td>
</tr>
<tr>
<td>(Nd II .50(15))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3840.14(0)</td>
<td>9.95(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3840.35(1n)</td>
<td>0.49(1n)</td>
<td>0.41(2)</td>
<td>0.41(1)</td>
<td>0.49(2)</td>
<td>Fe I .44(100) (La II .72(60))</td>
</tr>
<tr>
<td>3840.98(2n)</td>
<td>1.06(2)</td>
<td>1.02(2)</td>
<td>1.09(1n)</td>
<td>1.14(1)</td>
<td>Fe I .05(500) (Pr II .01(60))</td>
</tr>
<tr>
<td>1.60(0)</td>
<td>Dy II .32(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3841.98(1n)</td>
<td>2.08(1)</td>
<td>2.09(1)</td>
<td>2.08(1n)</td>
<td>1.93(1n)</td>
<td>Al II .04(10) (Ho II .05(4))</td>
</tr>
<tr>
<td>2.41(0)</td>
<td>2.28(0)</td>
<td>Gd II .20(400) Pr II .36(60) Cr II .45(1) (Eu II .59(8)) (Tb II .49(40))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cr II .66(1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.09(1n)</td>
<td>3.06(1n)</td>
<td>2.95(1)</td>
<td>3.02(1)</td>
<td>Mn II .98(1) Zr II .03(30)</td>
<td></td>
</tr>
<tr>
<td>3843.14(2)</td>
<td>3.17(0)</td>
<td>3.24(0)</td>
<td>3.20(1n)</td>
<td>Fe I .26(125) Gd II .27(500)</td>
<td></td>
</tr>
<tr>
<td>(Eu II .15(50))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3843.65(0)</td>
<td>3.68(0)</td>
<td>3.42(1)</td>
<td>3.69(0)</td>
<td>Sm II .50(200)</td>
<td></td>
</tr>
<tr>
<td>3843.97(1n)</td>
<td>3.59(1)</td>
<td>3.92(1)</td>
<td>Gd II .80(25) (Ho II .86(8))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3844.19(1n)</td>
<td>4.16(1)</td>
<td>4.15(1)</td>
<td>4.12(0)</td>
<td>Eu II .23(8)</td>
<td></td>
</tr>
<tr>
<td>3844.67(2)</td>
<td>4.67(1)</td>
<td>4.64(0)</td>
<td>4.43(1)</td>
<td>4.54(1)</td>
<td>Gd II .58(500) (Pr II .56(60))</td>
</tr>
<tr>
<td>4.83(1n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3845.10(2)</td>
<td>5.22(2)</td>
<td>5.24(2)</td>
<td>5.28(1)</td>
<td>5.29(3)</td>
<td>Fe II .18(4) Fe I .17(100)</td>
</tr>
<tr>
<td>(Cr II .10(1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3845.52(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gd II .47(20) Co I .47(500)</td>
</tr>
<tr>
<td>(Cl II .42(50))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3845.74(1)</td>
<td>5.66(1)</td>
<td>5.72(0)</td>
<td>5.69(1n)</td>
<td>5.79(1)</td>
<td>(Cl II .82(30)) (Cl II .68(75))</td>
</tr>
<tr>
<td>(Tb II .61(10))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3846.46(1n)</td>
<td>6.38(0)</td>
<td>6.44(0)</td>
<td>6.51(1n)</td>
<td>6.26(1)</td>
<td>Dy II .36(25) Fe I .42(50)</td>
</tr>
<tr>
<td>3846.80(1n)</td>
<td>6.79(1n)</td>
<td>6.77(1)</td>
<td>6.65(2)</td>
<td>Fe I .80(125) Pr II .61(125)</td>
<td></td>
</tr>
<tr>
<td>(Ho II .68(10))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3847.39(0n)</td>
<td>7.33(0)</td>
<td>7.44(1)</td>
<td>7.47(0)</td>
<td>7.35(0)</td>
<td>Sm II .51(150) V II .32(100)</td>
</tr>
<tr>
<td>7.80(1)</td>
<td>Eu II .85(50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3848.07(1)</td>
<td>8.18(1)</td>
<td></td>
<td>8.23(0)</td>
<td>8.23(0)</td>
<td>Tb II .02(1000) Mg II .24(10)</td>
</tr>
<tr>
<td>(Nd II .23(50)) (Nd II .31(40))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3848.53(1)</td>
<td>8.64(1)</td>
<td>8.54(0)</td>
<td>8.50(1)</td>
<td>8.62(3)</td>
<td>Eu II .40(10) Ce II .60(150)</td>
</tr>
<tr>
<td>Nd II .52(80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3848.76(1n)</td>
<td>8.76(0)</td>
<td></td>
<td></td>
<td></td>
<td>Sm II .78(200) Tb II .75(100)</td>
</tr>
<tr>
<td>3848.93(1)</td>
<td>9.07(0)</td>
<td></td>
<td></td>
<td></td>
<td>La II .01(100)</td>
</tr>
<tr>
<td>3849.44(3)</td>
<td>9.43(2)</td>
<td>9.52(1)</td>
<td>9.43(0)</td>
<td>9.28(2)</td>
<td>Dy II .40(20)</td>
</tr>
<tr>
<td>9.56(0)</td>
<td>9.57(0)</td>
<td>Ni II .58(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3849.87(1)</td>
<td>9.93(1n)</td>
<td>9.91(1)</td>
<td></td>
<td>9.81(0)</td>
<td>Fe I .97(500)</td>
</tr>
<tr>
<td>3850.30(0)</td>
<td>0.20(1)</td>
<td></td>
<td></td>
<td></td>
<td>Mg II .40(3) Nd II .23(20)</td>
</tr>
<tr>
<td></td>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.460</td>
<td>5.000</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>0.54(0)</td>
<td>0.55(0)</td>
<td>0.54(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3850.80(2n)</td>
<td>0.87(2n)</td>
<td>0.75(1)</td>
<td>0.82(2)</td>
<td>0.91(4)</td>
<td></td>
</tr>
<tr>
<td>3851.32(1n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3851.70(1n)</td>
<td>1.60(1n)</td>
<td>1.43(0)</td>
<td>1.60(1)</td>
<td>1.52(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3852.16(1)</td>
<td>2.18(0)</td>
<td>2.15(0n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3852.52(2)</td>
<td>2.49(1)</td>
<td>2.40(1)</td>
<td>2.40(1)</td>
<td>2.42(2)</td>
<td></td>
</tr>
<tr>
<td>3853.07(4)</td>
<td>3.14(2)</td>
<td></td>
<td>2.85(1)</td>
<td>2.93(3)</td>
<td></td>
</tr>
<tr>
<td>3853.63(8)</td>
<td>3.64(8)</td>
<td>3.62(8)</td>
<td>3.65(3)</td>
<td>3.58(5n)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.03(0)</td>
<td></td>
</tr>
<tr>
<td>3854.25(4)</td>
<td>4.35(2)</td>
<td>4.17(1)</td>
<td>4.22(1)</td>
<td>4.19(1n)</td>
<td></td>
</tr>
<tr>
<td>3854.70(1)</td>
<td>4.53(0)</td>
<td>4.79(0)</td>
<td>4.75(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3854.97(1)</td>
<td>4.95(1n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3855.59(0)</td>
<td>5.46(0)</td>
<td>5.50(0n)</td>
<td>5.43(1n)</td>
<td>5.45(1)</td>
<td></td>
</tr>
<tr>
<td>3855.99(x)</td>
<td>6.00(9)</td>
<td>5.99(x)</td>
<td>5.97(6)</td>
<td>5.99(9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.39(1)</td>
<td>6.50(1)</td>
<td>6.43(1)</td>
<td>6.53(1)</td>
<td></td>
</tr>
<tr>
<td>3856.69(1)</td>
<td>6.75(0)</td>
<td>6.94(1)</td>
<td>6.98(2)</td>
<td>6.88(2)</td>
<td></td>
</tr>
<tr>
<td>3857.11(0)</td>
<td>7.19(0)</td>
<td></td>
<td></td>
<td>7.39(0)</td>
<td></td>
</tr>
<tr>
<td>3857.69(0)</td>
<td>7.68(1n)</td>
<td>7.55(1)</td>
<td>7.64(1)</td>
<td>7.71(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.02(0)</td>
<td></td>
</tr>
<tr>
<td>3858.18(0)</td>
<td>8.19(0)</td>
<td></td>
<td>8.17(0)</td>
<td>8.29(1)</td>
<td></td>
</tr>
<tr>
<td>3858.49(1)</td>
<td>8.51(1)</td>
<td></td>
<td></td>
<td>8.54(1)</td>
<td></td>
</tr>
<tr>
<td>3858.80(0)</td>
<td>8.89(1)</td>
<td>9.00(0)</td>
<td>9.03(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3859.29(2)</td>
<td>9.36(1)</td>
<td>9.30(1n)</td>
<td>9.46(1)</td>
<td>9.16(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.73(1)</td>
<td></td>
<td></td>
<td>9.62(0)</td>
<td></td>
</tr>
<tr>
<td>3859.82(5)</td>
<td>9.93(3)</td>
<td>9.89(3)</td>
<td>9.90(2)</td>
<td>0.02(3)</td>
<td></td>
</tr>
<tr>
<td>3860.23(0)</td>
<td>0.19(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.51(1)</td>
<td>0.57(0)</td>
<td>0.69(1n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3860.80(2n)</td>
<td>0.78(1)</td>
<td></td>
<td></td>
<td>0.84(3n)</td>
<td></td>
</tr>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.460</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>3862.23(1n)</td>
<td>1.26(1)</td>
<td>1.26(1)</td>
<td>Eii .18(80) Gd ii .14(50) Fe i .34(80) Cr ii .34(1) (Pr ii .31(30))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3861.68(0)</td>
<td>1.75(1)</td>
<td>1.70(1)</td>
<td>1.73(0n)</td>
<td>Ho ii .68(40)</td>
<td></td>
</tr>
<tr>
<td>3861.99(1)</td>
<td>2.04(3)</td>
<td>Sm ii .05(150)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3862.57(x)</td>
<td>2.59(9)</td>
<td>2.56(x)</td>
<td>2.52(7)</td>
<td>2.56(8)</td>
<td>Si ii .60(6) (Nd ii .49(15))</td>
</tr>
<tr>
<td></td>
<td>3.13(1)</td>
<td>3.14(1)</td>
<td>3.07(1)</td>
<td>Gd ii .05(150)</td>
<td></td>
</tr>
<tr>
<td>3863.28(5)</td>
<td>3.40(2)</td>
<td>3.42(1)</td>
<td>3.31(2n)</td>
<td>3.38(2n)</td>
<td>Fe ii .41(1) Cr ii .46(1) Nd ii .41(60) (Nd ii .39(20))</td>
</tr>
<tr>
<td>3863.91(4n)</td>
<td>3.95(2)</td>
<td>3.96(3)</td>
<td>3.94(3)</td>
<td>4.01(3)</td>
<td>Fe ii .95(1) Eu ii .11(40) (Mo i .11(1000))</td>
</tr>
<tr>
<td>3864.59(1)</td>
<td>4.67(1)</td>
<td>4.47(1)</td>
<td>4.57(2)</td>
<td>La ii .49(100)</td>
<td></td>
</tr>
<tr>
<td>3864.98(1)</td>
<td>5.02(1)</td>
<td>4.83(1)</td>
<td>4.98(1)</td>
<td>5.01(1)</td>
<td>(Eu ii .29(15))</td>
</tr>
<tr>
<td></td>
<td>5.43(2)</td>
<td>5.44(1)</td>
<td>Pr ii .46(100) Dy ii .45(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3865.50(5)</td>
<td>5.58(4)</td>
<td>5.61(4)</td>
<td>5.58(5)</td>
<td>5.68(4)</td>
<td>Cr ii .59(75) Fe i .53(600)</td>
</tr>
<tr>
<td>3865.90(2)</td>
<td>6.04(2)</td>
<td>6.02(1)</td>
<td>6.04(2)</td>
<td>6.12(1)</td>
<td>Cr ii .01(5) Nd ii .99(10)</td>
</tr>
<tr>
<td></td>
<td>6.33(0)</td>
<td>Eu ii .19(20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3866.41(2)</td>
<td>6.56(2)</td>
<td>6.50(2)</td>
<td>6.53(3)</td>
<td>6.57(3)</td>
<td>Cr ii .55(7) Dy ii .59(30) (Nd ii .52(15))</td>
</tr>
<tr>
<td>3866.68(1)</td>
<td>6.91(0)</td>
<td>Nd ii .80(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3867.15(1)</td>
<td>7.22(1)</td>
<td>7.05(1)</td>
<td>7.09(1)</td>
<td>7.06(2)</td>
<td>Fe i .22(150) Gd ii .26(60)</td>
</tr>
<tr>
<td>3867.48(0)</td>
<td>Pr ii .55(30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3867.89(1)</td>
<td>7.68(1)</td>
<td>7.62(1)</td>
<td>7.72(2)</td>
<td>Cr ii .80(1) Cr ii .86(1) (Dy ii .84(5))</td>
<td></td>
</tr>
<tr>
<td>3868.49(2)</td>
<td>8.44(1)</td>
<td>8.32(1)</td>
<td>8.35(1)</td>
<td>8.40(3n)</td>
<td>Cr ii .32(2) Dy ii .45(50) (La ii .35(3))</td>
</tr>
<tr>
<td>3869.11(1)</td>
<td>9.17(1)</td>
<td>9.03(0)</td>
<td>8.96(1)</td>
<td>9.10(2n)</td>
<td>Nd ii .04(30)</td>
</tr>
<tr>
<td></td>
<td>9.28(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3869.48(2)</td>
<td>9.61(1)</td>
<td>9.47(0)</td>
<td>9.70(0)</td>
<td>9.71(1)</td>
<td>Cr ii .62(2) Dy ii .43(60) Fe i .56(100)</td>
</tr>
<tr>
<td>3869.91(1)</td>
<td>9.92(1)</td>
<td>9.95(0)</td>
<td>Dy ii .87(60) (Tb ii .75(15))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3870.23(0)</td>
<td>0.16(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3870.62(2n)</td>
<td>0.64(1)</td>
<td>0.43(1)</td>
<td>0.40(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3870.96(1)</td>
<td>0.96(0)</td>
<td>0.85(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3871.37(0)</td>
<td>1.24(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3871.57(1n)</td>
<td>1.56(1)</td>
<td>1.56(1n)</td>
<td>1.51(1)</td>
<td>1.60(2)</td>
<td>Gd ii .54(80) La ii .63(200) Sm ii .78(300) Cr ii .76(1) (Dy ii .64(30)) (Fe i .75(100))</td>
</tr>
<tr>
<td></td>
<td>1.85(0)</td>
<td>Cr ii .85(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3872.15(1)</td>
<td>2.19(1)</td>
<td>2.01(1)</td>
<td>2.03(2)</td>
<td>Dy ii .12(600)</td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.460</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3872.46(0)</td>
<td>2.51(1)</td>
<td>2.58(2n)</td>
<td>2.55(1)</td>
<td>2.56(2)</td>
<td>Fe I .50(300) Cr II .57(17)</td>
</tr>
<tr>
<td>3872.68(3)</td>
<td>2.77(3)</td>
<td>2.71(3)</td>
<td>2.72(2)</td>
<td>2.72(2)</td>
<td>Gd II .62(60) Fe II .76(pr)</td>
</tr>
<tr>
<td>3873.28(1)</td>
<td>3.39(0)</td>
<td>3.02(0)</td>
<td>3.15(1)</td>
<td>3.15(1)</td>
<td>Gd II .32(15)</td>
</tr>
<tr>
<td>3873.86(1)</td>
<td>3.71(1)</td>
<td>3.70(1)</td>
<td>3.82(1)</td>
<td>3.89(2)</td>
<td>Cr II .51(2)</td>
</tr>
<tr>
<td>3874.32(0)</td>
<td>4.25(1)</td>
<td>4.43(1)</td>
<td>4.56(1)</td>
<td>4.58(2)</td>
<td>Pr II .45(25) Cr II .41(pr)</td>
</tr>
<tr>
<td>3874.72(2)</td>
<td>4.73(1)</td>
<td>5.12(1)</td>
<td>5.20(1n)</td>
<td>5.11(1)</td>
<td>Tb II .18(200) Ho II .11(2)</td>
</tr>
<tr>
<td>3875.34(0)</td>
<td>5.46(0)</td>
<td>5.58(3)</td>
<td>5.58(3)</td>
<td>5.98(0)</td>
<td>Nd II .87(40) Nd II .74(20)</td>
</tr>
<tr>
<td>3875.71(3)</td>
<td>5.77(1)</td>
<td>5.77(1)</td>
<td>5.77(1)</td>
<td>5.77(1)</td>
<td>Ho II .70(6) Cr II .76(pr)</td>
</tr>
<tr>
<td>3876.17(2)</td>
<td>6.25(1)</td>
<td>6.10(0)</td>
<td>6.59(1n)</td>
<td>6.25(2n)</td>
<td>Eu II .04(40)</td>
</tr>
<tr>
<td>3876.63(1)</td>
<td>6.68(1)</td>
<td>6.46(1)</td>
<td>6.53(1)</td>
<td>6.53(1)</td>
<td>Lu II .65(100)</td>
</tr>
<tr>
<td>3877.28(1)</td>
<td>7.15(1)</td>
<td>7.10(1)</td>
<td>7.13(1)</td>
<td>7.24(3n)</td>
<td>Sm II .19(100) Eu II .10(8)</td>
</tr>
<tr>
<td>3877.63(0)</td>
<td>7.42(1)</td>
<td>7.56(0)</td>
<td>7.42(0)</td>
<td>7.42(0)</td>
<td>Tb II .18(200)</td>
</tr>
<tr>
<td>3877.99(1)</td>
<td>7.96(1)</td>
<td>7.98(1)</td>
<td>7.83(1)</td>
<td>7.88(2)</td>
<td>Eu II .88(10)</td>
</tr>
<tr>
<td>3878.54(1)</td>
<td>8.53(1)</td>
<td>8.55(1)</td>
<td>8.68(1)</td>
<td>8.68(1)</td>
<td>Fe I .58(300) Ce II .37(150) Nd II .58(50)</td>
</tr>
<tr>
<td>3879.13(3)</td>
<td>9.21(1)</td>
<td>9.13(0)</td>
<td>9.47(0)</td>
<td>9.60(1)</td>
<td>Gd II .54(40)</td>
</tr>
<tr>
<td>3879.64(1)</td>
<td>9.69(1)</td>
<td>9.55(0)</td>
<td>9.47(0)</td>
<td>9.60(1)</td>
<td>Nd II .38(30) Pr II .47(100)</td>
</tr>
<tr>
<td>3880.29(1)</td>
<td>0.24(0)</td>
<td>0.13(0)</td>
<td>0.70(2)</td>
<td>0.70(2)</td>
<td>Pr II .47(100) Fe II .78(1)</td>
</tr>
<tr>
<td>3880.76(2)</td>
<td>0.77(0)</td>
<td>0.50(0m)</td>
<td>0.70(2)</td>
<td>0.70(2)</td>
<td>Sm II .77(150) Cr II .80(2)</td>
</tr>
<tr>
<td>3881.51(1)</td>
<td>1.60(0)</td>
<td>1.21(0)</td>
<td>1.37(2)</td>
<td>1.37(2)</td>
<td>Nd II .78(40) Mg II .37(30)</td>
</tr>
<tr>
<td>3881.93(0)</td>
<td>1.78(1)</td>
<td>1.92(2)</td>
<td>1.92(2)</td>
<td>1.92(2)</td>
<td>Gd II .84(50) Sm II .38(100)</td>
</tr>
<tr>
<td>3882.46(2n)</td>
<td>2.44(1)</td>
<td>2.25(1)</td>
<td>2.33(1)</td>
<td>2.35(1)</td>
<td>Ce II .45(75)</td>
</tr>
<tr>
<td>3882.98(1)</td>
<td>3.19(0)</td>
<td>3.35(0)</td>
<td>3.04(1)</td>
<td>3.04(1)</td>
<td>Mn II .28(3) Fe I .29(70)</td>
</tr>
<tr>
<td>3883.52(0)</td>
<td>3.59(1n)</td>
<td>3.59(1n)</td>
<td>3.59(1n)</td>
<td>3.59(1n)</td>
<td>Eu II .64(20) Tm II .44(200)</td>
</tr>
<tr>
<td>3884.63(0)</td>
<td>4.47(0m)</td>
<td>4.47(0m)</td>
<td>4.47(0m)</td>
<td>4.47(0m)</td>
<td>Gd II .66(15)</td>
</tr>
<tr>
<td>3885.35(0)</td>
<td>5.27(0)</td>
<td>5.27(0)</td>
<td>5.27(0)</td>
<td>5.27(0)</td>
<td>Sm II .29(1000) Pr II .19(75)</td>
</tr>
<tr>
<td></td>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.460</td>
<td>5.003</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>3886.16(0)</td>
<td>6.35(0)</td>
<td>6.19(0)</td>
<td>6.26(1)</td>
<td>6.29(1)</td>
<td>Fe I 0.28(600) La II 0.37(150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3886.16(0)</td>
<td>6.86(1n)</td>
<td>6.96(0)</td>
<td></td>
<td></td>
<td>Gd II 0.16(40) Tb II 0.83(20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3886.16(0)</td>
<td>8.06(0)</td>
<td></td>
<td></td>
<td></td>
<td>Nd II 0.87(30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3889.08(xn)</td>
<td>9.04(xn)</td>
<td>9.00(xn)</td>
<td>8.99(xn)</td>
<td>8.99(xn)</td>
<td>H β 0.05(60) (Dy II 0.99(20))</td>
</tr>
<tr>
<td>3889.78(0)</td>
<td>9.93(1)</td>
<td></td>
<td></td>
<td></td>
<td>Ce II 0.99(300) Nd II 0.66(20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3890.16(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sm II 0.08(200) Nd II 0.22(8)</td>
</tr>
<tr>
<td>3891.10(0)</td>
<td>0.85(0)</td>
<td>0.77(0)</td>
<td>0.90(1)</td>
<td></td>
<td>Gd II 0.85(30) Cr II 0.86(1) Ho II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3892.06(0n)</td>
<td>2.13(1)</td>
<td>2.11(0)</td>
<td>2.14(1)</td>
<td></td>
<td>Cr II 0.14(4) Fe I 0.93(100) (Dy II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3893.09(ln)</td>
<td>3.10(0)</td>
<td></td>
<td></td>
<td></td>
<td>2.65(0) (La II 0.47(3))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3893.89(0)</td>
<td>3.96(1)</td>
<td>3.98(0)</td>
<td></td>
<td></td>
<td>1.53(1) (Nd II 0.51(20) Pr II 0.70(12))</td>
</tr>
<tr>
<td>3894.54(0)</td>
<td>4.57(0)</td>
<td>4.55(1)</td>
<td>4.54(1)</td>
<td>4.67(1)</td>
<td>Cr II 0.14(4) Fe I 0.93(100) (Dy II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3895.38(1)</td>
<td>5.54(1)</td>
<td></td>
<td></td>
<td></td>
<td>Dy II 0.35(26) Nd II 0.38(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3895.96(2)</td>
<td>6.04(1)</td>
<td>6.12(1)</td>
<td>5.95(0n)</td>
<td>6.14(2)</td>
<td>Gd II 0.14(10) V II 0.16(60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3896.34(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3896.83(2)</td>
<td>6.89(2)</td>
<td>6.72(1n)</td>
<td>6.64(1)</td>
<td>6.78(4)</td>
<td>Ce II 0.80(100) Cr II 0.62(1) (Pr II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3897.42(0)</td>
<td>7.55(1n)</td>
<td>7.51(1)</td>
<td></td>
<td></td>
<td>7.07(0) 7.19(1) Sm II 0.98(600) Pr II 0.04(12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3897.13(1)</td>
<td>8.13(1)</td>
<td>8.02(1)</td>
<td>8.13(1)</td>
<td>7.97(1)</td>
<td>Fe I 0.01(80) Ce II 0.27(100) (Fe I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3898.51(3n)</td>
<td>8.60(3)</td>
<td>8.56(1)</td>
<td>8.42(1)</td>
<td>8.42(5)</td>
<td>Dy II 0.54(500) Cr II 0.49(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3899.03(1)</td>
<td>9.18(1)</td>
<td>9.27(0)</td>
<td></td>
<td></td>
<td>V II 0.14(200) Cr II 0.80(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3899.98(1)</td>
<td>9.47(0)</td>
<td></td>
<td></td>
<td></td>
<td>Eu II 0.49(10) (Tb II 0.54(15))</td>
</tr>
<tr>
<td>TABLE 3 -- Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.460</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>3899.69(1)</td>
<td>9.77(1)</td>
<td>9.67(ln)</td>
<td>9.75(0n)</td>
<td>9.62(1)</td>
<td>Fe I .71(500) Cr II .95(2)</td>
</tr>
<tr>
<td>3900.17(0)</td>
<td>0.34(0)</td>
<td></td>
<td></td>
<td></td>
<td>Eu II .18(10) Nd II .23(60)</td>
</tr>
<tr>
<td>3900.51(7)</td>
<td>0.56(4)</td>
<td>0.51(3n)</td>
<td>0.45(3)</td>
<td>0.50(6)</td>
<td>Ti II .54(50) (Fe I .52(60))</td>
</tr>
<tr>
<td>3900.66(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AI II .68(200) Cr II .81(1)</td>
</tr>
<tr>
<td>3901.15(1n)</td>
<td>1.34(1)</td>
<td></td>
<td>1.04(0)</td>
<td>1.04(0)</td>
<td>Cr II .29(0)</td>
</tr>
<tr>
<td>3901.71(2)</td>
<td>1.75(ln)</td>
<td>1.53(ln)</td>
<td>1.46(ln)</td>
<td>1.55(3)</td>
<td>Nd II .85(50) (Eu II .63(3))</td>
</tr>
<tr>
<td>3902.02(0)</td>
<td></td>
<td></td>
<td>2.21(0n)</td>
<td>2.25(1)</td>
<td>Tb II .98(15)</td>
</tr>
<tr>
<td>3902.38(2)</td>
<td>2.49(1)</td>
<td>2.36(1n)</td>
<td>2.62(2)</td>
<td></td>
<td>Ho II .24(4)</td>
</tr>
<tr>
<td>3902.89(2)</td>
<td>2.98(2)</td>
<td>2.95(1)</td>
<td>2.97(1)</td>
<td>3.02(2)</td>
<td>Fe I .95(500) (Mo I .96(1000))</td>
</tr>
<tr>
<td>3903.17(1)</td>
<td>3.28(1)</td>
<td>3.30(0)</td>
<td>3.42(1)</td>
<td></td>
<td>V II .27(250) Sm II .42(500)</td>
</tr>
<tr>
<td>3903.66(2)</td>
<td>3.79(3)</td>
<td>3.73(2)</td>
<td>3.78(3)</td>
<td>3.82(3)</td>
<td>Zr II .77(1)</td>
</tr>
<tr>
<td>3903.99(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe I .90(100) Cr II .15(1)</td>
</tr>
<tr>
<td>3904.47(0)</td>
<td>4.49(0)</td>
<td>4.48(ln)</td>
<td>4.32(0)</td>
<td>4.47(1)</td>
<td>Ce II .34(57))</td>
</tr>
<tr>
<td>3904.83(1)</td>
<td>4.74(0)</td>
<td></td>
<td></td>
<td>4.76(1)</td>
<td></td>
</tr>
<tr>
<td>3905.20(0)</td>
<td>5.04(0)</td>
<td>5.01(0)</td>
<td></td>
<td></td>
<td>Si I .53(20)</td>
</tr>
<tr>
<td>3905.54(6)</td>
<td>5.61(8)</td>
<td>5.58(3n)</td>
<td>5.65(4)</td>
<td>5.72(3)</td>
<td>Cr II .66(25) (Si I .53(20))</td>
</tr>
<tr>
<td>3906.00(4)</td>
<td>6.06(4)</td>
<td>6.05(3n)</td>
<td>6.08(4)</td>
<td>6.16(5)</td>
<td>Fe II .04(5) Nd II .89(100)</td>
</tr>
<tr>
<td>3906.43(1)</td>
<td>6.41(1)</td>
<td>6.52(0)</td>
<td>6.50(1)</td>
<td></td>
<td>Fe I .48(300)</td>
</tr>
<tr>
<td>3906.86(0)</td>
<td>6.91(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3907.21(7)</td>
<td>7.15(2n)</td>
<td>7.10(3)</td>
<td>6.94(2n)</td>
<td>7.02(7)</td>
<td>Eu II .10(3000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.30(1)</td>
<td>7.37(1)</td>
<td></td>
<td>Ce II .29(125) Cr II .36(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Sc I .48(125))</td>
</tr>
<tr>
<td>3907.63(0)</td>
<td>7.69(1)</td>
<td></td>
<td></td>
<td></td>
<td>Tb II .65(3) Tb II .79(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tl II .65(pr))</td>
</tr>
<tr>
<td>3907.98(3)</td>
<td>8.08(2n)</td>
<td>8.07(2n)</td>
<td>8.02(3)</td>
<td>8.16(7)</td>
<td>Fe I .94(100) Pr II .03(150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Gd II .14(8)) (Nd II .84(20))</td>
</tr>
<tr>
<td>3908.37(4n)</td>
<td>8.51(3n)</td>
<td>8.45(2)</td>
<td>8.51(3)</td>
<td></td>
<td>Pr II .43(200) Ce II .41(125)</td>
</tr>
<tr>
<td>3908.68(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ce II .54(100) (Fe II .54(pr))</td>
</tr>
<tr>
<td>3909.14(1n)</td>
<td>9.19(1)</td>
<td>9.21(ln)</td>
<td>8.97(0)</td>
<td>9.04(1)</td>
<td>Cr II .17(1)</td>
</tr>
</tbody>
</table>

408
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.460</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.32(1)</td>
<td>9.31(1)</td>
<td>9.42(2)</td>
<td>Ce II .31(35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3909.59(1n)</td>
<td>9.78(1n)</td>
<td>9.88(0)</td>
<td>0.03(1)</td>
<td>Pr II .62(8) (Fe I .84(40)) (Tb II .15(4))</td>
<td></td>
</tr>
<tr>
<td>3910.23(1)</td>
<td>0.27(0)</td>
<td>0.53(1)</td>
<td>0.46(1)</td>
<td>0.42(1)</td>
<td>Gd II .20(6) Cr II .44(1)</td>
</tr>
<tr>
<td>3910.67(1)</td>
<td>0.74(1)</td>
<td>0.78(1)</td>
<td></td>
<td>Fe II .84(30) (Tb II .57(2)) (La II .81(10))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.15(0)</td>
<td>Nd II .17(60)</td>
</tr>
<tr>
<td>3911.19(1)</td>
<td>1.34(3)</td>
<td>1.35(2)</td>
<td>1.39(3)</td>
<td>1.45(5)</td>
<td>Cr II .32(3)</td>
</tr>
<tr>
<td>3911.53(0)</td>
<td></td>
<td>Cr II .54(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3911.73(1n)</td>
<td>1.67(1)</td>
<td></td>
<td></td>
<td>(Sc I .81(150))</td>
<td></td>
</tr>
<tr>
<td>3912.22(0n)</td>
<td>2.27(1)</td>
<td>2.11(0)</td>
<td>2.04(1n)</td>
<td>2.09(2)</td>
<td>Nd II .23(20) Ce II .19(5) (O II .95(150))</td>
</tr>
<tr>
<td>3912.36(1n)</td>
<td>2.55(1)</td>
<td>2.47(1n)</td>
<td>2.54(2)</td>
<td>2.47(2)</td>
<td>Ce II .42(300)</td>
</tr>
<tr>
<td>3912.78(1n)</td>
<td>2.99(1)</td>
<td></td>
<td>2.70(2)</td>
<td>Pr II .90(125) (Tb II .78(5)) (Dy II .85(3))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.23(0)</td>
<td>Cr II .20(2)</td>
<td></td>
</tr>
<tr>
<td>3913.44(3)</td>
<td>3.56(3)</td>
<td>3.4(2)</td>
<td>3.44(4)</td>
<td>3.43(4)</td>
<td>Ti II .46(70) Cr II .48(1) (Fe I .64(100)) (Nd II .69(8)) (Pr II .56(15))</td>
</tr>
<tr>
<td>3914.06(1)</td>
<td>3.82(0)</td>
<td>3.91(1)</td>
<td>3.91(2)</td>
<td></td>
<td>Eu II .72(10) Gd II .78(20) Cr II .76 (2) Cr II .13(2) Hf II .96(3) Dy II .95(6) Cr II .96(1) (Cl II .92(30))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.29(1)</td>
<td>Cr II .13(12)</td>
<td></td>
</tr>
<tr>
<td>3914.40(2)</td>
<td>4.49(2)</td>
<td>4.43(1)</td>
<td>4.58(2)</td>
<td>4.63(1)</td>
<td>Fe II .48(2) (A II .76(25)) (Pr II .76 (8)) (V II .33(250)) (Zr II .36(7))</td>
</tr>
<tr>
<td>3914.93(2)</td>
<td>4.98(1)</td>
<td>4.99(0)</td>
<td>4.98(0)</td>
<td>Dy II .88(40) Ce II .95(18) (Nd II .12(8))</td>
<td></td>
</tr>
<tr>
<td>3915.51(1)</td>
<td>5.48(1n)</td>
<td>5.30(1n)</td>
<td>5.42(2)</td>
<td>5.49(3)</td>
<td>Dy II .60(40) Cr II .58(1) (Pr II .47(10)) (Eu II .24(15))</td>
</tr>
<tr>
<td>3916.08(0)</td>
<td>5.95(1)</td>
<td>5.83(1)</td>
<td>5.98(1)</td>
<td>Zr II .94(29) Nd II .95(20) (La II .95(100))</td>
<td></td>
</tr>
<tr>
<td>3916.65(3)</td>
<td>6.62(1n)</td>
<td>6.50(1)</td>
<td>6.41(2)</td>
<td>6.55(4)</td>
<td>Gd II .51(3000) V II .42(200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.77(0)</td>
<td>Fe I .73(100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.00(1)</td>
<td>Fe I .18(150)</td>
<td></td>
</tr>
<tr>
<td>3917.43(1n)</td>
<td>7.40(1)</td>
<td>7.44(1n)</td>
<td>7.23(1)</td>
<td>7.32(1)</td>
<td>Eu II .29(60) Sm II .44(200) (Pr II .23(20))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.61(1)</td>
<td>7.69(1)</td>
<td>Eu II .70(10)</td>
</tr>
<tr>
<td>3918.19(2)</td>
<td>8.24(2n)</td>
<td>8.07(0)</td>
<td>8.15(1)</td>
<td>Gd II .06(150) Gd II .24(150)</td>
<td></td>
</tr>
<tr>
<td>3918.47(2n)</td>
<td>8.42(3)</td>
<td>8.41(2n)</td>
<td>8.46(1n)</td>
<td>8.44(2)</td>
<td>Mn II .32(3) Ce II .28(200) (Dy II .54(4)) (Fe II .51(pr))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.69(1)</td>
<td>(Fe I .65(60))</td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Frequency (nm)</th>
<th>Emission Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>3929.39(2n)</td>
<td>9.00(1)</td>
</tr>
<tr>
<td>3920.14(2)</td>
<td>8.98(1) Fe II .09(15) Pr II .86(150) (Tb II .82(8))</td>
</tr>
<tr>
<td>3920.82(0)</td>
<td>9.44(2n) 9.31(1) 9.31(0) 9.36(2) (P O II .28(35)) (Tb II .54(40))</td>
</tr>
<tr>
<td>3920.57(2)</td>
<td>0.68(3n) 0.57(2) *0.63(3) 0.70(3) (C II .68(200)) (Pr II .52(15)) (Tb II .72(10))</td>
</tr>
<tr>
<td>3920.80(0)</td>
<td>1.05(1) 1.22(0) 1.05(1) 1.17(1m) Nd II .96(100)</td>
</tr>
<tr>
<td>3922.46(0)</td>
<td>1.87(1) 1.86(1m) 1.86(1n) 1.82(1) Ce II .73(100) Ce II .00(27)</td>
</tr>
<tr>
<td>3922.86(1)</td>
<td>2.00(3) 2.11(1) 2.21(0) Tb II .09(20)</td>
</tr>
<tr>
<td>3923.37(4)</td>
<td>2.88(1) 2.88(1n) 2.84(0) Fe I .91(600) Tb II .74(50)</td>
</tr>
<tr>
<td>3823.80(0)</td>
<td>3.80(1) 3.89(1) 3.85(1n) 3.90(1)</td>
</tr>
<tr>
<td>3923.99(1)</td>
<td>4.03(1) 4.23(0) 4.28(1) Pr II .14(10)</td>
</tr>
<tr>
<td>3924.50(1)</td>
<td>4.36(1) Ce II .66(60) Tb II .40(4) (Nd II .48 (8)) (By II .46(2)) (Tl I .53(70))</td>
</tr>
<tr>
<td>3924.80(1)</td>
<td>4.80(1) 4.77(1) 4.82(2n) 4.89(3) Tb II .81(10)</td>
</tr>
<tr>
<td>3925.46(1)</td>
<td>5.51(1) 5.39(1) 5.47(2) 5.53(2n) Tb II .45(150) Pr II .46(75) (Fe I .65(80))</td>
</tr>
<tr>
<td>3925.96(0)</td>
<td>6.14(0) 6.01(1) 5.98(1n) 6.05(1) (Fe I .95(50)) (Tb II .09(1))</td>
</tr>
<tr>
<td>3926.47(0m)</td>
<td>6.67(1) 6.76(1) 6.58(1) 6.73(1n)</td>
</tr>
<tr>
<td>3927.30(0)</td>
<td>7.17(0) Nd II .11(40) Tb II .15(4)</td>
</tr>
<tr>
<td>3927.42(1)</td>
<td>7.54(0) 7.37(1) 7.44(1n) 7.53(1) Pr II .45(30) (Ce II .38(4))</td>
</tr>
<tr>
<td>3927.88(2)</td>
<td>7.99(1) 7.99(1) 7.94(1n) 7.86(1n) Fe I .92(500) (Pr II .71(8))</td>
</tr>
<tr>
<td>3928.36(1)</td>
<td>8.43(0) 8.44(0) 8.44(0) Sm II .28(400)</td>
</tr>
<tr>
<td>3928.82(1n)</td>
<td>8.56(1) 8.74(1) 8.56(1) 8.74(1) Eu II .87(15) Pr II .62(10) Pr II .91(10)</td>
</tr>
<tr>
<td>3929.35(1m)</td>
<td>9.09(1) 9.14(2n) 9.14(2n) 9.14(2n)</td>
</tr>
<tr>
<td>3929.35(1n)</td>
<td>9.32(0m) 9.30(2n) 9.29(3n) La II .22(300) Cr II .52(1) (Nd II .26 (15)) (By II .33(15)) (Zr II .54(8))</td>
</tr>
<tr>
<td>3929.80(1)</td>
<td>0.09(1) 9.84(1) 9.80(1) 9.98(1) Eu II .91(6) V II .73(50) (Tl I .88(70))</td>
</tr>
</tbody>
</table>

* Phase 4.490 begins at wavelength 3920.6
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3930.27(3)</td>
<td>0.33(3)</td>
<td>0.32(3)</td>
<td>Fe I .30(600) (Fe II .31(pr))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3930.61(8)</td>
<td>0.69(3)</td>
<td>0.69(0)</td>
<td>0.37(5)</td>
<td>0.45(9)</td>
<td>Eu II .48(4000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.63(1n)</td>
<td>0.68(0n)</td>
<td>Tb II .76(8)</td>
</tr>
<tr>
<td>3930.99(1)</td>
<td>0.96(0)</td>
<td>Cr II .88(pr)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3931.34(1)</td>
<td>1.17(1)</td>
<td>1.13(1)</td>
<td>1.28(2n)</td>
<td>1.36(3n)</td>
<td>Ce II .09(125) (Ce II .37(100))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dy II .29(20) (Fe I .12(35))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3931.50(2)</td>
<td>1.62(1)</td>
<td>Dy II .54(150)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3931.99(1)</td>
<td>2.14(2)</td>
<td>2.01(1)</td>
<td>2.02(3)</td>
<td>2.10(4n)</td>
<td>Ti II .02(30) (G II .94(15))</td>
</tr>
<tr>
<td>3932.30(0)</td>
<td>2.30(0)</td>
<td>Dy II .23(20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3932.58(0)</td>
<td>2.70(1)</td>
<td>2.54(1)</td>
<td>2.62(1n)</td>
<td>2.60(1)</td>
<td>Fe I .63(80) (G II .55(25))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(La II .53(10))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3933.03(1)</td>
<td>3.09(1)</td>
<td>2.81(1n)</td>
<td>2.86(1n)</td>
<td>Fe I .98(50) (Fe II .98(5))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(G II .29(80))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3933.62(9)</td>
<td>3.63(9)</td>
<td>3.62(8)</td>
<td>3.64(4n)</td>
<td>3.61(8n)</td>
<td>Ce II .67(600) (Fe I .61(200))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Ce II .73(60))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3934.17(2)</td>
<td>4.21(1)</td>
<td>4.29(1)</td>
<td>4.10(1)</td>
<td>4.06(3)</td>
<td>Zr II .14(20) (Fe II .17(20))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Nd II .09(6))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3934.87(2)</td>
<td>4.97(2)</td>
<td>4.83(1n)</td>
<td>4.71(2)</td>
<td>4.74(3)</td>
<td>Gd II .82(300) (Zr II .80(20))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Nd II .82(50) Cr II .18(pr))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3935.36(1)</td>
<td>5.41(1)</td>
<td>5.04(0)</td>
<td>5.15(1)</td>
<td>5.23(2)</td>
<td>Tb II .25(50) (Fe I .31(40))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.66(1)</td>
<td>Sm II .76(150)</td>
<td></td>
</tr>
<tr>
<td>3935.85(3)</td>
<td>5.93(4n)</td>
<td>5.92(4)</td>
<td>5.96(5)</td>
<td>6.02(6)</td>
<td>Fe II .94(6) (Fe I .82(100))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Pr II .82(45))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3936.06(2)</td>
<td>Cr II .13(1)</td>
<td>Dy II .03(15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3936.39(1)</td>
<td>6.43(0)</td>
<td>6.49(1)</td>
<td>6.43(2)</td>
<td>6.31(0)</td>
<td>La II .22(50) (Nd II .14(10))</td>
</tr>
<tr>
<td>3936.83(3)</td>
<td>6.89(2)</td>
<td>6.92(1)</td>
<td>6.73(3)</td>
<td>Cr II .95(1)</td>
<td></td>
</tr>
<tr>
<td>3937.19(1)</td>
<td>7.12(0)</td>
<td>7.18(1)</td>
<td>7.24(1)</td>
<td>Fe I .33(80)</td>
<td></td>
</tr>
<tr>
<td>3937.63(3)</td>
<td>7.66(1)</td>
<td>7.71(1n)</td>
<td>7.73(1)</td>
<td>7.88(2)</td>
<td>Cr II .61(1) (Nd II .58(5))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.07(0)</td>
<td>8.14(1)</td>
<td>Gd II .11(40) (Fe II .06(4))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Ce II .09(7)) (Tb II .16(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3938.15(5)</td>
<td>8.39(5)</td>
<td>8.28(3)</td>
<td>8.36(2n)</td>
<td>8.46(3)</td>
<td>Fe II .29(2) (Pr II .31(15))</td>
</tr>
<tr>
<td>3938.57(0)</td>
<td>8.73(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3938.87(6)</td>
<td>8.98(5)</td>
<td>8.95(4)</td>
<td>8.99(2n)</td>
<td>9.01(2)</td>
<td>Fe II .97(4) (Nd II .97(50))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Nd II .87(40))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3939.27(1n)</td>
<td>9.63(1)</td>
<td>9.51(0)</td>
<td>9.46(1)</td>
<td>9.55(1)</td>
<td>Tb II .60(200) (Nd II .55(8))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.07(0)</td>
<td>0.02(1n)</td>
<td>0.94(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Tb II .10(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3940.30(1n)</td>
<td>0.46(1)</td>
<td>0.26(0)</td>
<td>0.30(1)</td>
<td>0.36(1)</td>
<td>Ce II .34(100) (Ti II .32(pr))</td>
</tr>
</tbody>
</table>

411

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.58(0)</td>
<td>0.69(1)</td>
<td>0.89(1)</td>
<td>0.94(0)</td>
<td>1.05(0)</td>
<td>Fe II .88(150) Tb II .16(15)</td>
</tr>
<tr>
<td>1.26(0)</td>
<td>1.44(1)</td>
<td>1.32(0n)</td>
<td>1.35(0)</td>
<td>1.62(0)</td>
<td>Eu II .56(20) Nd II .51(150)</td>
</tr>
<tr>
<td>2.10(2)</td>
<td>2.09(1)</td>
<td>2.16(ln)</td>
<td>2.18(1)</td>
<td>2.33(0)</td>
<td>Eu II .21(30) Sm II .87(300) Ce II .15 (125) Nd II .14(4) Dy II .05(4)</td>
</tr>
<tr>
<td>2.46(2n)</td>
<td>2.46(2n)</td>
<td>2.77(1)</td>
<td>2.85(1)</td>
<td>Ce II .75(150) (Nd II .63(6))</td>
<td></td>
</tr>
<tr>
<td>3.22(1)</td>
<td>2.96(1)</td>
<td>3.00(ln)</td>
<td>3.36(1)</td>
<td>3.53(0)</td>
<td>Eu II .08(40) Eu II .94(8) (Ce II .18(5))</td>
</tr>
<tr>
<td>3.80(0)</td>
<td>3.92(1)</td>
<td>3.93(1)</td>
<td>3.52(1)</td>
<td>3.53(1)</td>
<td>Sm II .24(200) Fe I .35(40)</td>
</tr>
<tr>
<td>3.99(2)</td>
<td>4.26(0)</td>
<td>4.78(3)</td>
<td>4.51(ln)</td>
<td>4.59(4)</td>
<td>Ce II .89(100) Cr II .64(1)</td>
</tr>
<tr>
<td>4.27(50)</td>
<td>4.10(25)</td>
<td>6.13(0)</td>
<td>6.10(0)</td>
<td>6.28(1)</td>
<td>Al I .03(2000) (Gd II .09(6))</td>
</tr>
<tr>
<td>4.87(150)</td>
<td>4.99(100)</td>
<td>7.62(0)</td>
<td>7.63(1)</td>
<td>7.07(1)</td>
<td>Tb II .87(150) Pb I .00(50)</td>
</tr>
<tr>
<td>6.67(20)</td>
<td>6.89(1)</td>
<td>6.85(0)</td>
<td>6.79(0)</td>
<td>6.84(2)</td>
<td>Dy II .94(30) Ce II .68(20)</td>
</tr>
<tr>
<td>7.07(1)</td>
<td>7.98(0)</td>
<td>7.94(0n)</td>
<td>7.95(1)</td>
<td>7.63(1)</td>
<td>Fe I .00(50)</td>
</tr>
<tr>
<td>7.95(1)</td>
<td>7.95(1)</td>
<td>7.98(0)</td>
<td>7.94(0n)</td>
<td>7.62(0)</td>
<td>Pr II .63(100) Fe I .53(70)</td>
</tr>
<tr>
<td>7.95(1)</td>
<td>8.33(0)</td>
<td>8.52(1)</td>
<td>8.52(1)</td>
<td>8.52(1)</td>
<td>Nd II .32(15) Tb II .35(20)</td>
</tr>
<tr>
<td>8.65(1)</td>
<td>8.79(0)</td>
<td>8.79(0)</td>
<td>8.79(0)</td>
<td>8.79(0)</td>
<td>Fe I .78(150) (Ti I .67(80))</td>
</tr>
<tr>
<td>8.51(1)</td>
<td>9.35(1)</td>
<td>9.35(1)</td>
<td>9.35(1)</td>
<td>9.35(1)</td>
<td>Pr II .44(125) Gd II .25(25)</td>
</tr>
<tr>
<td>9.07(0)</td>
<td>9.96(0)</td>
<td>9.96(0)</td>
<td>9.96(0)</td>
<td>9.96(0)</td>
<td>Fe I .96(150) Eu II .84(15)</td>
</tr>
<tr>
<td>9.28(4)</td>
<td>0.48(1)</td>
<td>0.48(1)</td>
<td>0.48(1)</td>
<td>0.48(1)</td>
<td>Y II .36(100)</td>
</tr>
<tr>
<td></td>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>3951.09(1)</td>
<td>1.25(1)</td>
<td>1.07(1)</td>
<td>1.08(1)</td>
<td>1.16(2n)</td>
<td>Nd II .15(150) Fe I .17(150)</td>
</tr>
<tr>
<td>3951.44(0)</td>
<td></td>
<td></td>
<td>1.41(0)</td>
<td></td>
<td>(La II .43(3))</td>
</tr>
<tr>
<td>3951.83(1)</td>
<td>1.71(0)</td>
<td></td>
<td>1.71(0)</td>
<td></td>
<td>Tb II .71(3)</td>
</tr>
<tr>
<td>3952.06(1)</td>
<td>2.08(1n)</td>
<td>1.97(0)</td>
<td>1.93(1n)</td>
<td>1.99(1n)</td>
<td>Gd II .00(300) V II .97(500) (Nd II .20(100))</td>
</tr>
<tr>
<td>3952.54(3)</td>
<td>2.70(1)</td>
<td>2.44(1)</td>
<td>2.48(1)</td>
<td>2.55(2n)</td>
<td>Ce II .57(125) Fe I .61(80) (Nd II .87(25))</td>
</tr>
<tr>
<td>3953.10(1)</td>
<td>3.15(1)</td>
<td></td>
<td>3.03(0)</td>
<td>3.05(1)</td>
<td>Fe I .16(80)</td>
</tr>
<tr>
<td>3953.57(1)</td>
<td>3.65(2)</td>
<td>3.48(1n)</td>
<td>3.48(1n)</td>
<td>3.57(2)</td>
<td>Nd II .52(60) Pr II .62(125) Ce II .66(12) (Nd II .40(10))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.05(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3954.20(0)</td>
<td>4.30(2n)</td>
<td></td>
<td></td>
<td></td>
<td>(O II .37(100))</td>
</tr>
<tr>
<td>3954.53(2n)</td>
<td>4.53(2n)</td>
<td>4.44(2n)</td>
<td>4.38(2n)</td>
<td>4.65(4)</td>
<td>(Dy II .56(25)) (O II .37(100))</td>
</tr>
<tr>
<td>3955.23(1n)</td>
<td>5.38(1n)</td>
<td>5.28(0)</td>
<td>5.32(1n)</td>
<td>5.36(2n)</td>
<td>(Fe I .35(25)) (La II .21(3))</td>
</tr>
<tr>
<td>3955.50(1n)</td>
<td>5.71(0)</td>
<td></td>
<td></td>
<td></td>
<td>(Gd II .70(6))</td>
</tr>
<tr>
<td>3955.88(0)</td>
<td>6.09(0)</td>
<td>6.06(0)</td>
<td>5.93(1n)</td>
<td>5.92(0)</td>
<td>Nd II .97(10) Gd II .14(8)</td>
</tr>
<tr>
<td>3956.27(0)</td>
<td>6.38(1)</td>
<td></td>
<td>6.31(1)</td>
<td>6.18(1)</td>
<td>Ce II .28(150) Gd II .14(8) (Ti I .34(100)) (Tb II .16(8)) (La II .07(4))</td>
</tr>
<tr>
<td>3956.60(0)</td>
<td>6.66(1n)</td>
<td>6.63(1n)</td>
<td>6.66(1)</td>
<td>6.76(1)</td>
<td>Fe I .68(150) Fe I .46(100) (Pr II .76(20))</td>
</tr>
<tr>
<td>3956.89(0)</td>
<td>6.99(1)</td>
<td></td>
<td>7.08(1)</td>
<td></td>
<td>Ce II .90(4) Fe I .03(50)</td>
</tr>
<tr>
<td>3957.40(0)</td>
<td>7.38(0)</td>
<td></td>
<td>7.21(1)</td>
<td>7.22(1)</td>
<td>(Nd II .47(15))</td>
</tr>
<tr>
<td>3957.85(3)</td>
<td>7.92(3)</td>
<td>7.87(1n)</td>
<td>7.64(2)</td>
<td>7.73(3)</td>
<td>Gd II .67(1000) Dy II .80(40)</td>
</tr>
<tr>
<td>3958.26(2)</td>
<td>8.22(2n)</td>
<td>8.13(0)</td>
<td>8.12(1n)</td>
<td>8.08(2)</td>
<td>Cr II .07(1) Nd II .00(40) Tb II .97(40) Tm II .10(200) Eu II .92(15) Ce II .27(6) Er II .24(50) (Ti I .21(15))</td>
</tr>
<tr>
<td>3958.82(1n)</td>
<td>8.80(1)</td>
<td>8.78(0)</td>
<td>8.82(0)</td>
<td>8.82(1)</td>
<td>Tb II .35(60)</td>
</tr>
<tr>
<td>3959.51(3n)</td>
<td>9.44(1)</td>
<td>9.48(1)</td>
<td>9.35(2n)</td>
<td>9.42(3n)</td>
<td>Gd II .52(500) Gd II .44(300) Sm II .53(100) (Dy II .35(3))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.73(1) Cr II .73(1)</td>
</tr>
<tr>
<td>3960.36(1)</td>
<td>0.27(0)</td>
<td>0.33(0)</td>
<td>0.27(1)</td>
<td>0.49(1)</td>
<td></td>
</tr>
<tr>
<td>3960.81(3)</td>
<td>0.90(2)</td>
<td>0.81(2)</td>
<td>0.90(2)</td>
<td>1.00(2)</td>
<td>Fe II .90(3) (Ce II .91(125))</td>
</tr>
<tr>
<td>3961.63(1)</td>
<td>1.60(1)</td>
<td>1.47(1)</td>
<td>1.41(1)</td>
<td>1.49(2)</td>
<td>Al II .53(3000)</td>
</tr>
<tr>
<td></td>
<td>1.90(0)</td>
<td>1.93(0)</td>
<td>1.98(0)</td>
<td></td>
<td>La II .03(10)</td>
</tr>
<tr>
<td>3962.19(0)</td>
<td>2.02(0)</td>
<td>2.14(0)</td>
<td></td>
<td></td>
<td>Gd II .10(30) Nd II .22(15)</td>
</tr>
</tbody>
</table>

413
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3962.56(1)</td>
<td>2.66(0)</td>
<td></td>
<td></td>
<td></td>
<td>Pr II .45(40)</td>
</tr>
<tr>
<td>3962.99(0)</td>
<td>2.80(1)</td>
<td></td>
<td></td>
<td></td>
<td>Sm II .00(200) (Ti I .85(80))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(La II .04(5))</td>
</tr>
<tr>
<td>3963.08(2)</td>
<td>3.06(1)</td>
<td>3.08(0)</td>
<td></td>
<td></td>
<td>Fe I .11(125) Nd II .11(60)</td>
</tr>
<tr>
<td>3963.59(2)</td>
<td>3.60(1)</td>
<td>3.59(1)</td>
<td></td>
<td></td>
<td>Gd II .66(150) Cr I .69(300)</td>
</tr>
<tr>
<td>3963.83(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nd II .91(20) Dy II .80(3)</td>
</tr>
<tr>
<td>3964.19(0)</td>
<td></td>
<td></td>
<td></td>
<td>4.28(0)</td>
<td>Pr II .26(40) Ti I .27(80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Nd II .19(5))</td>
</tr>
<tr>
<td>3964.50(0)</td>
<td>4.49(1)</td>
<td>4.62(1n)</td>
<td></td>
<td>4.58(0)</td>
<td>Fe I .52(80) Dy II .70(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Fe II .57(pr))</td>
</tr>
<tr>
<td>3965.11(0)</td>
<td></td>
<td></td>
<td></td>
<td>5.03(0)</td>
<td>Eu II .90(60) Pr II .82(250)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Eu II .02(15)) (Pr II .26(150))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.15(1)</td>
<td>Sm II .04(150) Fe I .07(100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tb II .29(15))</td>
</tr>
<tr>
<td>3966.55(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe I .63(80) Pr II .57(80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Eu II .59(81)) (Fe II .43(pr))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.17(0)</td>
<td>Ce II .05(100) Nd II .07(15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Gd II .25(4))</td>
</tr>
<tr>
<td>3967.38(0)</td>
<td>7.54(1)</td>
<td></td>
<td></td>
<td></td>
<td>Fe I .42(125)</td>
</tr>
<tr>
<td>3968.36(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dy II .40(1000) Gd II .26(60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tl II .11(150))</td>
</tr>
<tr>
<td>3968.51(4)</td>
<td>8.48(3)</td>
<td>8.46(4)</td>
<td>8.29(3)</td>
<td>8.36(8)</td>
<td>Ca II .47(500) (Dy II .40(1000))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.00(0) Fe I .26(600) (Gd II .29(300))</td>
</tr>
<tr>
<td>3970.14(xm)</td>
<td>0.12(xm)</td>
<td>0.10(xm)</td>
<td>0.06(xm)</td>
<td>0.03(xm)</td>
<td>Fe * .08</td>
</tr>
<tr>
<td></td>
<td>1.02(1)</td>
<td></td>
<td></td>
<td></td>
<td>Gd II .06(100) Pr II .16(40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Eu II .10(8))</td>
</tr>
<tr>
<td>3972.10(3)</td>
<td>2.10(2)</td>
<td>1.80(0)</td>
<td>1.89(0)</td>
<td>1.86(6)</td>
<td>Eu II .96(4000) Gd II .75(300) (Gd II</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.17(30)) (Pr II .69(25)) (Pr II .16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(100)) (Ce II .68(10)) (Tb III .05(20))</td>
</tr>
<tr>
<td></td>
<td>4.52(1)</td>
<td>2.44(0)</td>
<td></td>
<td>2.44(1)</td>
<td></td>
</tr>
<tr>
<td>3973.29(1)</td>
<td>3.22(0m)</td>
<td>3.37(0)</td>
<td></td>
<td>3.22(2)</td>
<td>Nd II .27(80) O II .27(125)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Si II .56(800))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.70(0)</td>
<td>3.75(1)</td>
<td>V II .64(300) Nd II .65(60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Ni II .56(800))</td>
</tr>
<tr>
<td>3974.05(2)</td>
<td>4.04(1n)</td>
<td>4.11(2n)</td>
<td>4.20(1)</td>
<td>4.26(1)</td>
<td>Fe II .16(3) Gd II .98(500)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tb III .30(15)) (Gd II .22(10))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.62(1)</td>
<td>Fe II .54(1)</td>
</tr>
<tr>
<td>3974.90(1)</td>
<td>5.01(1n)</td>
<td>4.96(2n)</td>
<td>5.03(1)</td>
<td>5.14(2)</td>
<td>Fe II .03(2) Gd II .11(60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pr II .86(15))</td>
</tr>
<tr>
<td>3975.35(0)</td>
<td>5.76(0)</td>
<td>5.67(0)</td>
<td>5.69(0)</td>
<td></td>
<td>Sm II .27(200)</td>
</tr>
<tr>
<td>3975.99(0)</td>
<td>6.07(1n)</td>
<td>6.15(1)</td>
<td>6.25(1)</td>
<td>6.20(0)</td>
<td>Sm II .27(200)</td>
</tr>
<tr>
<td>3976.54(0)</td>
<td>6.66(1)</td>
<td>6.68(0)</td>
<td>6.65(0)</td>
<td>6.67(0)</td>
<td>Sm II .43(200) (Cr I .66(300))</td>
</tr>
<tr>
<td></td>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>7.00(0)</td>
<td>6.76(0)</td>
<td>6.86(1)</td>
<td>7.02(0)</td>
<td>7.22(0)</td>
</tr>
<tr>
<td></td>
<td>7.48(1)</td>
<td>7.36(0)</td>
<td>7.22(0)</td>
<td>7.22(0)</td>
<td>7.22(0)</td>
</tr>
<tr>
<td>3977.42(0)</td>
<td>7.85(1)</td>
<td>7.77(0)</td>
<td>7.82(1)</td>
<td>7.90(1)</td>
<td>Fe I .74(300)</td>
</tr>
<tr>
<td>3977.77(0)</td>
<td>8.67(2)</td>
<td>8.49(0)</td>
<td>8.41(3)</td>
<td>8.45(4)</td>
<td>Dy II .57(200) Ce II .65(125)</td>
</tr>
<tr>
<td>3978.60(5)</td>
<td>9.26(0)</td>
<td>9.01(1)</td>
<td>9.01(1)</td>
<td>9.01(1)</td>
<td>Sm II .20(150) La II .08(8)</td>
</tr>
<tr>
<td>3979.03(0)</td>
<td>9.53(6)</td>
<td>9.49(4)</td>
<td>9.52(2)</td>
<td>9.41(2)</td>
<td>Cr II .52(20) Nd II .48(60)</td>
</tr>
<tr>
<td>3979.42(4)</td>
<td>9.62(1)</td>
<td>9.62(1)</td>
<td>9.62(1)</td>
<td>9.62(1)</td>
<td>Eu II .63(8)</td>
</tr>
<tr>
<td>3980.16(0n)</td>
<td>0.15(1)</td>
<td>0.09(0)</td>
<td>0.19(1)</td>
<td>0.19(1)</td>
<td>(Tb II .28(3)) (S II .86(35))</td>
</tr>
<tr>
<td></td>
<td>0.56(1)</td>
<td>0.64(1n)</td>
<td>0.65(2)</td>
<td>0.65(2)</td>
<td>0.65(2)</td>
</tr>
<tr>
<td>3980.87(2)</td>
<td>0.86(2)</td>
<td>0.75(0)</td>
<td>0.83(1n)</td>
<td>0.84(2)</td>
<td>Ce II .90(100) (Tb II .15(20))</td>
</tr>
<tr>
<td>3981.24(0)</td>
<td>1.42(1)</td>
<td>1.38(0)</td>
<td>1.44(0)</td>
<td>1.44(0)</td>
<td>Nd II .22(15) La II .36(10)</td>
</tr>
<tr>
<td>3981.62(1)</td>
<td>1.74(0)</td>
<td>1.74(0)</td>
<td>1.74(0)</td>
<td>1.74(0)</td>
<td>Fe I .77(150) (Fe II .61(pr))</td>
</tr>
<tr>
<td>3981.98(3)</td>
<td>2.12(2)</td>
<td>1.82(1)</td>
<td>1.85(1n)</td>
<td>1.82(3)</td>
<td>Dy II .94(100) Pr II .06(150) Tb II .92(150) Ti II .01(3) (Zr II .01(3))</td>
</tr>
<tr>
<td></td>
<td>2.05(0)</td>
<td>2.11(1)</td>
<td>2.17(2)</td>
<td>2.17(2)</td>
<td>2.17(2)</td>
</tr>
<tr>
<td>3982.29(1)</td>
<td>2.37(1)</td>
<td>2.43(0)</td>
<td>2.42(0)</td>
<td>2.43(1)</td>
<td>Nd II .36(20) Pr II .50(40)</td>
</tr>
<tr>
<td>3983.00(1n)</td>
<td>3.06(1)</td>
<td>2.93(1n)</td>
<td>2.92(2)</td>
<td>3.00(4)</td>
<td>Gd II .01(80) Ce II .90(60)</td>
</tr>
<tr>
<td></td>
<td>3.41(1)</td>
<td>3.55(0)</td>
<td>3.50(0)</td>
<td>3.54(2)</td>
<td>3.54(2)</td>
</tr>
<tr>
<td>3983.70(2)</td>
<td>3.74(3)</td>
<td>3.74(3)</td>
<td>3.74(3)</td>
<td>3.74(3)</td>
<td>Nd II .40(10)</td>
</tr>
<tr>
<td>3984.17(3n)</td>
<td>4.02(2n)</td>
<td>3.94(2)</td>
<td>3.96(4)</td>
<td>4.05(7)</td>
<td>Fe I .96(200) Dy II .23(80)</td>
</tr>
<tr>
<td></td>
<td>4.37(1)</td>
<td>4.15(0)</td>
<td>4.30(1)</td>
<td>4.30(1)</td>
<td>Dy II .23(80)</td>
</tr>
<tr>
<td>3984.75(1)</td>
<td>4.74(2)</td>
<td>4.68(1n)</td>
<td>4.57(1)</td>
<td>4.67(2)</td>
<td>Ce II .68(100) (Dy II .70(2))</td>
</tr>
<tr>
<td></td>
<td>5.27(1)</td>
<td>5.00(0)</td>
<td>5.06(0)</td>
<td>5.06(0)</td>
<td>Tb II .08(5)</td>
</tr>
<tr>
<td>3985.28(1)</td>
<td>5.46(0)</td>
<td>5.46(0)</td>
<td>5.55(0)</td>
<td>5.54(0)</td>
<td>Fe I .39(125)</td>
</tr>
<tr>
<td>3985.94(1n)</td>
<td>6.04(2)</td>
<td>6.03(2n)</td>
<td>6.08(1)</td>
<td>6.00(1)</td>
<td>Fe I .17(125) Mn II .01(1)</td>
</tr>
<tr>
<td></td>
<td>6.51(1)</td>
<td>6.54(0)</td>
<td>6.49(1)</td>
<td>6.50(2n)</td>
<td>Nd II .23(40) Tb II .34(15)</td>
</tr>
<tr>
<td>3986.35(0)</td>
<td>6.74(0)</td>
<td>6.74(0)</td>
<td>6.74(0)</td>
<td>6.74(0)</td>
<td>Nd II .5(5)</td>
</tr>
<tr>
<td>3986.73(1)</td>
<td>6.74(0)</td>
<td>6.74(0)</td>
<td>6.74(0)</td>
<td>6.74(0)</td>
<td>Nd II .5(5)</td>
</tr>
<tr>
<td>3987.18(1)</td>
<td>7.21(1)</td>
<td>7.11(0)</td>
<td>7.02(1)</td>
<td>7.02(1)</td>
<td>Gd II .21(600) (Dy II .06(3))</td>
</tr>
<tr>
<td>3987.70(1)</td>
<td>7.73(1)</td>
<td>7.78(0)</td>
<td>7.58(4)</td>
<td>7.63(2)</td>
<td>Nd II .81(5) Ho II .55(3)</td>
</tr>
<tr>
<td>3988.26(1)</td>
<td>8.30(0)</td>
<td>8.09(1)</td>
<td>8.09(1)</td>
<td>8.09(1)</td>
<td>Eu II .24(8)</td>
</tr>
<tr>
<td>Identification</td>
<td>4.490</td>
<td>3.042</td>
<td>1.482</td>
<td>0.756</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>La II .52(500)</td>
<td>8.52(0)</td>
<td>9.24(1)</td>
<td>9.48(0)</td>
<td>9.05(0)</td>
<td></td>
</tr>
<tr>
<td>Nd II .81(18)</td>
<td>8.94(0)</td>
<td>9.02(0)</td>
<td>9.05(0)</td>
<td>8.54(0)</td>
<td></td>
</tr>
<tr>
<td>Ce II .44(30)</td>
<td>9.25(1)</td>
<td>9.55(0)</td>
<td>9.42(0)</td>
<td>3989.35(0)</td>
<td></td>
</tr>
<tr>
<td>Dy II .35(2)</td>
<td>0.41(0)</td>
<td>0.22(1n)</td>
<td>0.25(1)</td>
<td>9.76(1)</td>
<td></td>
</tr>
<tr>
<td>Ho II .35(11)</td>
<td>9.76(1)</td>
<td>9.76(0)</td>
<td>9.81(1)</td>
<td>9.82(1)</td>
<td></td>
</tr>
<tr>
<td>Fe II .38(70)</td>
<td>0.89(1)</td>
<td>1.04(1)</td>
<td>1.04(1)</td>
<td>0.25(1)</td>
<td></td>
</tr>
<tr>
<td>Gd II .10(60)</td>
<td>0.74(1)</td>
<td>0.89(1)</td>
<td>0.22(1n)</td>
<td>0.22(1n)</td>
<td></td>
</tr>
<tr>
<td>Dy II .32(40)</td>
<td>1.15(3)</td>
<td>1.17(1n)</td>
<td>1.80(2)</td>
<td>1.17(1n)</td>
<td></td>
</tr>
<tr>
<td>Tb II .87(4n)</td>
<td>1.80(2)</td>
<td>2.37(1n)</td>
<td>2.30(0n)</td>
<td>2.31(0n)</td>
<td></td>
</tr>
<tr>
<td>Tb II .89(25)</td>
<td>0.91(15)</td>
<td>3.04(1)</td>
<td>2.90(0)</td>
<td>2.85(1)</td>
<td></td>
</tr>
<tr>
<td>Ne II .57(15)</td>
<td>2.95(0)</td>
<td>3.18(0)</td>
<td>3.11(0)</td>
<td>3.31(0)</td>
<td></td>
</tr>
<tr>
<td>Tb II .95(1)</td>
<td>3.81(1n)</td>
<td>3.87(1n)</td>
<td>3.80(1)</td>
<td>3.74(1)</td>
<td></td>
</tr>
<tr>
<td>Tb II .82(10)</td>
<td>6.56(2)</td>
<td>6.63(2)</td>
<td>6.38(1)</td>
<td>6.30(1)</td>
<td></td>
</tr>
<tr>
<td>Tb II .32(200)</td>
<td>2.4(15)</td>
<td>5.51(1)</td>
<td>5.31(1)</td>
<td>5.38(1)</td>
<td></td>
</tr>
<tr>
<td>Eu II .86(1)</td>
<td>6.43(2)</td>
<td>6.32(0)</td>
<td>5.78(1)</td>
<td>5.90(0)</td>
<td></td>
</tr>
<tr>
<td>Fe II .36(pr)</td>
<td>6.56(2)</td>
<td>6.56(2)</td>
<td>6.95(1)</td>
<td>6.82(2)</td>
<td></td>
</tr>
<tr>
<td>Mn II .52(200)</td>
<td>7.71(1n)</td>
<td>7.52(0)</td>
<td>7.53(0)</td>
<td>7.00(1)</td>
<td></td>
</tr>
<tr>
<td>Tb II .70(150)</td>
<td>7.81(2n)</td>
<td>7.53(0)</td>
<td>7.52(0)</td>
<td>7.53(0)</td>
<td></td>
</tr>
<tr>
<td>Tb II .41(20)</td>
<td>8.40(0)</td>
<td>8.40(0)</td>
<td>8.93(1n)</td>
<td>8.54(0)</td>
<td></td>
</tr>
<tr>
<td>Tb II .81(4)</td>
<td>8.96(1)</td>
<td>9.02(2n)</td>
<td>9.02(1n)</td>
<td>8.93(1n)</td>
<td></td>
</tr>
<tr>
<td>Sr II .79(40)</td>
<td>9.30(1n)</td>
<td>9.73(0)</td>
<td>9.26(1)</td>
<td>9.30(1n)</td>
<td></td>
</tr>
<tr>
<td>Eu II .41(15)</td>
<td>9.84(1)</td>
<td>9.73(0)</td>
<td>0.01(0)</td>
<td>9.99(1)</td>
<td></td>
</tr>
<tr>
<td>Ce II .96(40)</td>
<td>9.99(1)</td>
<td>9.99(1)</td>
<td>0.01(0)</td>
<td>9.99(1)</td>
<td></td>
</tr>
<tr>
<td>Pr II .19(40)</td>
<td>10.00(1)</td>
<td>10.00(1)</td>
<td>10.00(1)</td>
<td>10.00(1)</td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Element</th>
<th>Number</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy II</td>
<td>0.45(800)</td>
<td>(Pr II .48(15))</td>
</tr>
<tr>
<td>Gd II</td>
<td>0.47(30)</td>
<td>(Nd II .56(20))</td>
</tr>
<tr>
<td>Ce II</td>
<td>0.05(4)</td>
<td></td>
</tr>
<tr>
<td>Cr I</td>
<td>0.44(200)</td>
<td></td>
</tr>
<tr>
<td>Fe I</td>
<td>0.67(80)</td>
<td></td>
</tr>
<tr>
<td>Fe II</td>
<td>0.07(2)</td>
<td>(Gd II .96(25))</td>
</tr>
<tr>
<td>Tb II</td>
<td>0.20(50)</td>
<td></td>
</tr>
<tr>
<td>Fe II</td>
<td>0.55(3)</td>
<td>(Cr II .48(53))</td>
</tr>
<tr>
<td>Tb II</td>
<td>0.60(100)</td>
<td></td>
</tr>
<tr>
<td>V II</td>
<td>0.94(80)</td>
<td>(Ho II .70(3))</td>
</tr>
<tr>
<td>Cr II</td>
<td>0.33(25)</td>
<td></td>
</tr>
<tr>
<td>Ce II</td>
<td>0.77(100)</td>
<td>(Gd II .85(30))</td>
</tr>
<tr>
<td>Fe II</td>
<td>0.77(80)</td>
<td>(Ti II .81(50))</td>
</tr>
<tr>
<td>Eu II</td>
<td>0.71(12)</td>
<td>(Tb II .78(15))</td>
</tr>
<tr>
<td>Tb II</td>
<td>0.91(30)</td>
<td></td>
</tr>
<tr>
<td>Nd II</td>
<td>0.01(60)</td>
<td>(Fe II .15(80))</td>
</tr>
<tr>
<td>Eu II</td>
<td>0.59(6)</td>
<td>(Tb II .52(80))</td>
</tr>
<tr>
<td>Gd II</td>
<td>0.94(150)</td>
<td>(Pr II .71(25))</td>
</tr>
<tr>
<td>Fe I</td>
<td>0.25(250)</td>
<td></td>
</tr>
<tr>
<td>V II</td>
<td>0.71(800)</td>
<td>(Tb II .55(200))</td>
</tr>
<tr>
<td>Fe I</td>
<td>0.32(60)</td>
<td></td>
</tr>
<tr>
<td>Cr II</td>
<td>0.75(1)</td>
<td>(Pr II .70(8))</td>
</tr>
<tr>
<td>Fe I</td>
<td>0.27(80)</td>
<td></td>
</tr>
<tr>
<td>Cr II</td>
<td>0.56(2)</td>
<td>(Nd II .44(50))</td>
</tr>
<tr>
<td>Ce II</td>
<td>0.59(15)</td>
<td></td>
</tr>
<tr>
<td>Fe II</td>
<td>0.72(80)</td>
<td>(Gd II .78(5))</td>
</tr>
<tr>
<td>Dy II</td>
<td>0.77(33)</td>
<td>(La II .64(7))</td>
</tr>
<tr>
<td>Er II</td>
<td>0.97(87)</td>
<td></td>
</tr>
<tr>
<td>Gd II</td>
<td>0.91(400)</td>
<td>(Eu II .87(6))</td>
</tr>
<tr>
<td>Pr II</td>
<td>0.71(75)</td>
<td></td>
</tr>
<tr>
<td>Gd II</td>
<td>0.22(80)</td>
<td>(He I .27(10))</td>
</tr>
<tr>
<td>Tb II</td>
<td>0.54(12)</td>
<td></td>
</tr>
<tr>
<td>Fe I</td>
<td>0.72(120)</td>
<td></td>
</tr>
<tr>
<td>Dy II</td>
<td>0.08(3)</td>
<td></td>
</tr>
<tr>
<td>Nd II</td>
<td>0.45(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.756</td>
<td>1.482</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>4010.62(1)</td>
<td>0.62(1)</td>
<td>0.71(1)</td>
</tr>
<tr>
<td>4011.18(1n)</td>
<td>1.39(2n)</td>
<td>1.34(1)</td>
</tr>
<tr>
<td>4011.87(0)</td>
<td>1.75(1)</td>
<td>1.45(1n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4012.37(9)</td>
<td>2.50(9)</td>
<td>2.55(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4012.82(2n)</td>
<td>2.89(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4013.02(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4013.50(0)</td>
<td>3.53(1)</td>
<td>3.50(1n)</td>
</tr>
<tr>
<td>4013.75(1)</td>
<td>3.86(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4014.39(1)</td>
<td></td>
<td>4.26(0)</td>
</tr>
<tr>
<td>4014.43(1)</td>
<td>4.54(1)</td>
<td></td>
</tr>
<tr>
<td>4014.85(1)</td>
<td>4.98(1)</td>
<td>4.75(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4015.50(1n)</td>
<td>5.51(1)</td>
<td>5.24(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.87(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4016.24(1n)</td>
<td>6.32(1n)</td>
<td></td>
</tr>
<tr>
<td>4016.81(0)</td>
<td>6.86(1)</td>
<td>6.75(0)</td>
</tr>
<tr>
<td>4017.05(1)</td>
<td></td>
<td>7.34(1)</td>
</tr>
<tr>
<td>4017.51(1)</td>
<td>7.57(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4017.83(2)</td>
<td>7.97(2)</td>
<td>7.95(1)</td>
</tr>
<tr>
<td>4018.44(1n)</td>
<td>8.34(1)</td>
<td>8.18(0)</td>
</tr>
<tr>
<td>4018.94(0)</td>
<td>8.67(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.10(1)</td>
</tr>
<tr>
<td>4019.36(1n)</td>
<td>9.59(1)</td>
<td></td>
</tr>
<tr>
<td>4020.06(0)</td>
<td>9.96(1)</td>
<td>9.96(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4020.60(0)</td>
<td></td>
<td>0.30(0)</td>
</tr>
<tr>
<td>4020.88(2)</td>
<td>0.92(2n)</td>
<td>0.88(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4021.38(1)</td>
<td>1.26(0)</td>
<td>1.36(0)</td>
</tr>
<tr>
<td>4021.83(1)</td>
<td>1.91(1)</td>
<td>1.78(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

418

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4022.30(3)</td>
<td>2.42(3)</td>
<td>2.24(2n)</td>
<td>2.33(2)</td>
<td>2.40(2n)</td>
<td>Gd II .33(300)</td>
</tr>
<tr>
<td></td>
<td>2.29(1)</td>
<td></td>
<td></td>
<td></td>
<td>(Pr II .20(8))</td>
</tr>
<tr>
<td>4022.40(0)</td>
<td>2.74(1)</td>
<td></td>
<td></td>
<td></td>
<td>Pr II .74(15) (Bo II .86(2))</td>
</tr>
<tr>
<td>4022.95(1)</td>
<td>3.07(1)</td>
<td>3.01(0)</td>
<td>3.00(1)</td>
<td>3.07(2)</td>
<td>Nd II .00(80) Sm II .23(300)</td>
</tr>
<tr>
<td>4023.30(2)</td>
<td>3.36(1)</td>
<td></td>
<td>3.44(1)</td>
<td>3.56(1)</td>
<td>V II .39(600) La II .58(40)</td>
</tr>
<tr>
<td>4023.84(2n)</td>
<td>3.95(2)</td>
<td>3.77(1)</td>
<td>3.80(3)</td>
<td>3.87(3)</td>
<td>Sc I .69(100) Tb II .10(30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.34(0)</td>
<td>4.36(2)</td>
<td>Ce II .49(60) Dy II .44(12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Eu II .24(4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4024.48(5)</td>
<td>4.54(5)</td>
<td>4.49(3)</td>
<td>4.53(4n)</td>
<td>4.60(3)</td>
<td>Fe II .55(5) (Zr II .45(12))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Nd II .78(30))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4025.06(1n)</td>
<td>5.23(1)</td>
<td></td>
<td>5.04(2)</td>
<td>5.09(2)</td>
<td>Ti II .14(25) (F II .01(150))</td>
</tr>
<tr>
<td>4025.56(1n)</td>
<td>5.66(2)</td>
<td>5.50(2n)</td>
<td>5.56(2n)</td>
<td>5.57(2)</td>
<td>Pr II .55(20) F II .50(300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.00(1)</td>
<td>7.08(1n)</td>
<td></td>
<td>Tb II .74(10) Dy II .75(3)</td>
</tr>
<tr>
<td>4027.00(0)</td>
<td>7.13(1)</td>
<td></td>
<td>7.66(3)</td>
<td>7.74(4)</td>
<td>Dy II .79(30)</td>
</tr>
<tr>
<td>4027.42(0)</td>
<td>7.60(0)</td>
<td></td>
<td>7.57(1n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4027.88(3)</td>
<td>7.80(1)</td>
<td></td>
<td>7.66(3)</td>
<td>7.74(4)</td>
<td>Dy II .79(30)</td>
</tr>
<tr>
<td>4028.39(3)</td>
<td>8.46(2)</td>
<td>8.38(1n)</td>
<td>8.27(3n)</td>
<td>8.35(3n)</td>
<td>Ti II .34(80) Ce II .41(150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Dy II .32(8))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4028.77(1)</td>
<td>8.72(0)</td>
<td></td>
<td>8.70(1)</td>
<td>8.81(1)</td>
<td>S II .79(200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.40(0)</td>
<td>9.22(1)</td>
<td>9.29(1n)</td>
</tr>
<tr>
<td>4029.61(3n)</td>
<td>9.74(2)</td>
<td>9.47(1)</td>
<td>9.61(3)</td>
<td>9.71(3n)</td>
<td>Fe I .64(80) Zr II .68(20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Eu II .58(4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4030.26(3)</td>
<td>0.32(3n)</td>
<td>0.30(2)</td>
<td>0.38(3)</td>
<td>0.46(2)</td>
<td>Fe I .49(120) Nd II .47(25)</td>
</tr>
<tr>
<td>4030.88(1)</td>
<td>1.00(1)</td>
<td>0.87(0)</td>
<td>0.80(1)</td>
<td>1.09(1)</td>
<td>Cr II .68(3) Mn I .76(500)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Cr II .13(2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4031.38(3)</td>
<td>1.45(2)</td>
<td>1.43(1)</td>
<td>1.47(1n)</td>
<td>1.52(2n)</td>
<td>Fe II .46(1) Ce II .34(150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Eu II .35(4)) (Nd II .54(10))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4031.82(1)</td>
<td>1.87(1)</td>
<td></td>
<td>1.84(0)</td>
<td>1.99(0)</td>
<td>Nd II .81(100) Fe I .96(80) Pr II .76 (50) (Tb II .65(50)) (La II .68(300))</td>
</tr>
<tr>
<td>4032.46(1)</td>
<td>2.39(1)</td>
<td>2.30(1n)</td>
<td>2.37(2)</td>
<td>2.45(3)</td>
<td>Dy II .48(50) (Pr II .49(15))</td>
</tr>
<tr>
<td>4033.03(3)</td>
<td>2.96(4)</td>
<td>2.92(4)</td>
<td>2.95(4)</td>
<td>3.04(4)</td>
<td>Fe II .95(3) Mn I .07(400) Tb II .05 (200) Gd II .08(8) Pr II .97(15)</td>
</tr>
<tr>
<td>4033.22(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gd II .08(8)</td>
</tr>
<tr>
<td>4033.77(2)</td>
<td>3.80(1n)</td>
<td>3.58(1)</td>
<td>3.53(1)</td>
<td>3.58(3)</td>
<td>Pr II .86(75) Dy II .67(10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(P II .68(15))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4034.20(3)</td>
<td>4.25(2)</td>
<td>4.09(1n)</td>
<td>4.14(2n)</td>
<td>4.09(3n)</td>
<td>(Eu II .10(4)) (Nd II .01(4))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Zr II .10(5))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification</td>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Mn I .49(250)</td>
<td>4.29(2n)</td>
<td>4.38(1)</td>
<td>4.74(0)</td>
<td>4.84(0)</td>
<td>4.90(1)</td>
</tr>
<tr>
<td>Sm II .11(250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .54(25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V II .63(400)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy II .34(15)</td>
<td>6.19(1)</td>
<td>6.18(1n)</td>
<td>6.16(1n)</td>
<td>6.19(4n)</td>
<td>6.80(0)</td>
</tr>
<tr>
<td>Tb II .45(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd II .00(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .33(1500)</td>
<td>7.19(3)</td>
<td>7.29(4)</td>
<td>7.29(4)</td>
<td>7.75(1)</td>
<td>7.75(1)</td>
</tr>
<tr>
<td>Ce II .66(25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr II .03(25)</td>
<td>7.99(2)</td>
<td>8.01(3)</td>
<td>7.99(2)</td>
<td>8.01(3)</td>
<td>8.01(3)</td>
</tr>
<tr>
<td>Nd II .12(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr II .20(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .67(100)</td>
<td>9.44(3)</td>
<td>9.44(3)</td>
<td>9.44(3)</td>
<td>9.44(3)</td>
<td>9.44(3)</td>
</tr>
<tr>
<td>Ce II .66(25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .02(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .14(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb II .36(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .58(200)</td>
<td>2.62(2)</td>
<td>2.62(2)</td>
<td>2.62(2)</td>
<td>2.62(2)</td>
<td>2.62(2)</td>
</tr>
<tr>
<td>Sm II .90(250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm II .72(200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La II .91(300)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd II .15(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu II .50(75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .01(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .61(70)</td>
<td>5.41(1)</td>
<td>5.41(1)</td>
<td>5.41(1)</td>
<td>5.41(1)</td>
<td>5.41(1)</td>
</tr>
<tr>
<td>P II .82(60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd II .15(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu II .50(75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .82(400)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .34(100)</td>
<td>6.68(1)</td>
<td>6.68(1)</td>
<td>6.68(1)</td>
<td>6.68(1)</td>
<td>6.68(1)</td>
</tr>
<tr>
<td>Ce II .34(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .34(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .82(400)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .34(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .34(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .34(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .34(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .34(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>4046.80(2n)</td>
<td>6.87(2n)</td>
<td>6.94(1)</td>
<td>6.91(1)</td>
<td>6.94(2)</td>
<td>Gd II .84(150) (Fe II .81(pr)) (Pr II .10(15))</td>
</tr>
<tr>
<td>4047.27(0n)</td>
<td>7.26(1)</td>
<td></td>
<td></td>
<td></td>
<td>Sm II .16(80) K I .20(400)</td>
</tr>
<tr>
<td>4047.92(2)</td>
<td>7.91(1)</td>
<td>7.84(0n)</td>
<td>7.68(1)</td>
<td>7.75(1n)</td>
<td>Gd II .81(100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.09(1)</td>
<td>8.23(2)</td>
<td>Cr II .02(pr) (Er II? .35(81))</td>
</tr>
<tr>
<td>4048.46(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gd II .60(90)</td>
</tr>
<tr>
<td>4048.74(3)</td>
<td>8.65(3n)</td>
<td>8.76(1)</td>
<td>8.84(1)</td>
<td>8.65(2)</td>
<td>Fe II .83(3) Gd II .60(90) (Zr II .68(25)) (Nd II .81(15))</td>
</tr>
<tr>
<td>4049.00(3)</td>
<td>9.03(4n)</td>
<td>9.06(2n)</td>
<td>9.25(2)</td>
<td>8.94(2)</td>
<td>Cr II .16(18)</td>
</tr>
<tr>
<td>4049.53(1n)</td>
<td>9.42(1)</td>
<td></td>
<td>9.36(1)</td>
<td>9.35(2)</td>
<td>Gd II .43(1200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.67(1)</td>
<td>9.70(1)</td>
<td></td>
</tr>
<tr>
<td>4049.90(1n)</td>
<td>9.84(1)</td>
<td>9.83(0)</td>
<td>9.77(2)</td>
<td>9.89(2)</td>
<td>Gd II .86(2000) (La II .08(200))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.34(1)</td>
<td>0.35(1)</td>
<td>Zr II .32(15)</td>
</tr>
<tr>
<td>4050.54(3)</td>
<td>0.59(2)</td>
<td></td>
<td>0.42(2)</td>
<td>0.45(4)</td>
<td>Dy II .58(100) (Eu II .43(4))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.99(0)</td>
<td>0.91(1n)</td>
<td>0.94(1)</td>
</tr>
<tr>
<td>4051.14(2)</td>
<td>1.24(1)</td>
<td>1.19(1n)</td>
<td>1.26(2n)</td>
<td>1.32(1)</td>
<td>Nd II .14(60) Pr II .15(20) (Fe II .21(pr))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.51(1)</td>
<td>1.69(1)</td>
<td>1.59(1)</td>
</tr>
<tr>
<td>4051.84(3)</td>
<td>1.89(4)</td>
<td>1.93(3)</td>
<td>2.00(4)</td>
<td>2.08(3)</td>
<td>Cr II .97(12) (Tb II .87(30))</td>
</tr>
<tr>
<td>4052.40(1)</td>
<td>2.46(1)</td>
<td>2.39(1)</td>
<td>2.36(1)</td>
<td></td>
<td>(Tb II .43(4))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.50(0)</td>
<td>2.54(1n)</td>
<td>2.67(2)</td>
</tr>
<tr>
<td>4052.94(1)</td>
<td>2.92(1)</td>
<td></td>
<td></td>
<td></td>
<td>(Tb II .87(20)) (A II .94(20))</td>
</tr>
<tr>
<td>4053.37(4)</td>
<td>3.43(4)</td>
<td>3.32(1)</td>
<td>3.20(3)</td>
<td>3.28(4)</td>
<td>Gd II .29(1000) Cr II .45(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.48(1)</td>
<td>3.57(0)</td>
<td>Cr II .45(1) Ce II .51(100)</td>
</tr>
<tr>
<td>4053.84(0)</td>
<td>3.83(3)</td>
<td>3.98(7)</td>
<td>3.85(2)</td>
<td>3.95(4)</td>
<td>Ti II .84(8)</td>
</tr>
<tr>
<td>4054.01(3)</td>
<td>4.06(0)</td>
<td>4.03(3n)</td>
<td>4.16(2)</td>
<td>4.21(1)</td>
<td>Cr II .18(8)</td>
</tr>
<tr>
<td>4054.73(1)</td>
<td>4.53(1)</td>
<td>4.68(1)</td>
<td>4.64(0)</td>
<td>4.62(1)</td>
<td></td>
</tr>
<tr>
<td>4054.90(1)</td>
<td>4.84(1n)</td>
<td>4.81(1)</td>
<td>4.86(2n)</td>
<td>5.01(3)</td>
<td>Ce II .99(50) Pr II .84(80) (Fe I .88(25)) (Nd II .86(10))</td>
</tr>
<tr>
<td>4055.23(1)</td>
<td>5.27(1n)</td>
<td>5.35(1)</td>
<td>5.22(0n)</td>
<td>5.34(1)</td>
<td>Dy II .16(40) Fe I .04(40) (Er II? .47(82))</td>
</tr>
<tr>
<td>4055.60(1)</td>
<td></td>
<td></td>
<td>5.62(1n)</td>
<td>5.77(1)</td>
<td></td>
</tr>
<tr>
<td>4056.00(2)</td>
<td>6.07(2n)</td>
<td>6.03(1)</td>
<td>6.13(2)</td>
<td>6.22(1)</td>
<td>Cr II .05(4) Gd II .01(30) (Ti II .21(22))</td>
</tr>
<tr>
<td>4056.55(1)</td>
<td>6.56(1n)</td>
<td>6.49(1)</td>
<td>6.53(2)</td>
<td>6.63(2)</td>
<td>Pr II .54(80)</td>
</tr>
<tr>
<td>4056.99(1)</td>
<td>6.99(1)</td>
<td>6.84(1)</td>
<td>7.08(1)</td>
<td>7.10(1)</td>
<td>(Nd II .84(4)) (Tb II .06(4))</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th></th>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4057.44(3)</td>
<td>7.45(4)</td>
<td>7.40(2n)</td>
<td>7.48(3)</td>
<td>7.51(3)</td>
<td>Fe II .46(2)</td>
<td>Dy II .40(2)</td>
</tr>
<tr>
<td>4058.01(0)</td>
<td>7.78(0)</td>
<td>La II .08(5)</td>
<td>Pb I .82(2000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4058.37(2n)</td>
<td>8.33(2n)</td>
<td>8.30(1n)</td>
<td>8.35(1n)</td>
<td>8.26(2n)</td>
<td>Fe I .23(80)</td>
<td></td>
</tr>
<tr>
<td>4058.66(0m)</td>
<td>8.81(1n)</td>
<td>8.70(0)</td>
<td>8.71(1n)</td>
<td>8.92(0)</td>
<td>Fe I .76(40)</td>
<td>Pr II .78(15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4059.41(1)</td>
<td>9.41(1)</td>
<td>9.23(1)</td>
<td>9.26(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4059.86(1)</td>
<td>9.81(1)</td>
<td>9.73(1)</td>
<td>9.60(1)</td>
<td>9.70(2)</td>
<td>Nd II .96(50)</td>
<td>Er (II) .78(82)</td>
</tr>
<tr>
<td>4060.27(0)</td>
<td>0.32(0)</td>
<td>0.06(1)</td>
<td>0.09(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4060.67(2)</td>
<td>0.69(1)</td>
<td>0.67(0)</td>
<td>0.42(0)</td>
<td>0.49(1)</td>
<td>Dy II .58(4)</td>
<td>Tb II .86(40)</td>
</tr>
<tr>
<td>4061.09(1)</td>
<td>1.07(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4061.32(0)</td>
<td>1.21(1)</td>
<td>1.19(1n)</td>
<td>Gd II .30(80)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4061.71(6)</td>
<td>1.76(5)</td>
<td>1.59(2)</td>
<td>1.69(3n)</td>
<td>1.67(3n)</td>
<td>Fe II .79(1)</td>
<td>Eu II .57(10)</td>
</tr>
<tr>
<td>4062.26(1)</td>
<td>2.24(0)</td>
<td>2.24(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4062.52(0)</td>
<td>2.36(1)</td>
<td>2.46(1)</td>
<td>2.42(2n)</td>
<td>Fe I .44(120)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4062.77(3)</td>
<td>2.83(2)</td>
<td>2.75(1n)</td>
<td>2.82(1)</td>
<td>2.94(1)</td>
<td>Pr II .82(125)</td>
<td>Tb II .80(10)</td>
</tr>
<tr>
<td>4063.50(6)</td>
<td>3.54(5)</td>
<td>3.52(3)</td>
<td>3.66(3)</td>
<td>3.70(2)</td>
<td>Fe I .60(400)</td>
<td>Gd II .59(200)</td>
</tr>
<tr>
<td>4063.99(0)</td>
<td>4.08(1)</td>
<td>4.06(1)</td>
<td>4.06(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4064.32(1)</td>
<td>4.32(1)</td>
<td>4.44(1)</td>
<td>4.42(2n)</td>
<td>Ti II .40(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4064.70(0)</td>
<td>4.74(0)</td>
<td>4.57(1)</td>
<td>4.75(0)</td>
<td>4.87(2)</td>
<td>Sm II .58(300)</td>
<td>P II .64(30)</td>
</tr>
<tr>
<td>4065.15(2)</td>
<td>5.10(1n)</td>
<td>4.99(1)</td>
<td>5.00(1)</td>
<td>5.13(1n)</td>
<td>Ho II .10(10)</td>
<td>V II .07(100)</td>
</tr>
<tr>
<td>4065.75(1)</td>
<td>5.75(0)</td>
<td>5.85(0)</td>
<td>5.60(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4066.11(0)</td>
<td>6.02(0m)</td>
<td>6.06(0)</td>
<td>5.91(1)</td>
<td>6.03(1n)</td>
<td>Eu II .05(4)</td>
<td>Cr II .16(pr)</td>
</tr>
<tr>
<td>4066.49(0)</td>
<td>6.65(0)</td>
<td>6.57(0)</td>
<td>6.50(0)</td>
<td>6.57(1)</td>
<td>Sm II .74(200)</td>
<td>Gd II .56(5)</td>
</tr>
<tr>
<td>4066.88(0)</td>
<td>6.92(1n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4067.35(0)</td>
<td>7.26(0)</td>
<td>7.15(1)</td>
<td>7.20(1)</td>
<td>7.23(1n)</td>
<td>Ce II .28(50)</td>
<td>Fe I .28(80)</td>
</tr>
<tr>
<td>4068.01(0)</td>
<td>7.94(1)</td>
<td>7.88(1)</td>
<td>7.90(1)</td>
<td>Fe I .98(150)</td>
<td>Ho II .80(2)</td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.14(1)</td>
<td>8.15(0)</td>
<td>8.22(0)</td>
<td>8.25(1)</td>
<td>Sm II .33(100) (Eu II .34(4))</td>
<td></td>
</tr>
<tr>
<td>4068.44(1)</td>
<td>8.52(0)</td>
<td>8.39(1)</td>
<td>8.50(0)</td>
<td>Ce II .88(75) Nd II .90(10) (Pr II .80(15))</td>
<td></td>
</tr>
<tr>
<td>4068.88(0)</td>
<td>9.01(0)</td>
<td>8.99(0n)</td>
<td>8.78(0)</td>
<td>8.86(3)</td>
<td></td>
</tr>
<tr>
<td>9.21(0)</td>
<td>9.18(0)</td>
<td>9.22(0)</td>
<td>9.40(1)</td>
<td>Nd II .27(80) (Tb II .30(1))</td>
<td></td>
</tr>
<tr>
<td>4069.79(1n)</td>
<td>9.86(2n)</td>
<td>9.92(2)</td>
<td>9.98(1n)</td>
<td>9.95(1n) Fe II .88(1) Ce II .09(15)</td>
<td></td>
</tr>
<tr>
<td>4070.16(0)</td>
<td>0.28(0)</td>
<td>0.22(1n)</td>
<td>0.09(2)</td>
<td>Gd II .29(600) (Pr II .26(10))</td>
<td></td>
</tr>
<tr>
<td>0.43(1)</td>
<td>0.40(2n)</td>
<td>Gd II .39(200) (Tb II .58(10))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4070.68(4n)</td>
<td>0.81(4)</td>
<td>0.84(3)</td>
<td>0.92(3)</td>
<td>0.99(2) Cr II .90(10) (Tb II .58(10))</td>
<td></td>
</tr>
<tr>
<td>4071.08(0)</td>
<td>1.18(0)</td>
<td>1.34(0)</td>
<td>1.38(0)</td>
<td>1.32(0) Eu II .38(10)</td>
<td></td>
</tr>
<tr>
<td>4071.65(2)</td>
<td>1.73(4)</td>
<td>1.72(3n)</td>
<td>1.79(3)</td>
<td>1.82(4) Fe I .74(300) Ce II .81(150)</td>
<td></td>
</tr>
<tr>
<td>4072.11(0)</td>
<td>2.28(1)</td>
<td>2.12(1)</td>
<td>2.14(0)</td>
<td>O II .16(300) (P II .13(30))</td>
<td></td>
</tr>
<tr>
<td>4072.48(5)</td>
<td>2.62(5)</td>
<td>2.61(4)</td>
<td>2.60(2n)</td>
<td>2.60(4) Cr II .56(4) (Tb II .35(4))</td>
<td></td>
</tr>
<tr>
<td>4072.68(0)</td>
<td>Dy II .65(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4073.24(3)</td>
<td>3.28(2)</td>
<td>3.32(1)</td>
<td>3.09(4)</td>
<td>3.12(5) Gd II .20(400) Dy II .11(150)</td>
<td></td>
</tr>
<tr>
<td>4073.43(0)</td>
<td>Ce II .48(200) Fe II .45(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.63(1)</td>
<td>3.55(3)</td>
<td>3.59(3)</td>
<td>Gd II .76(1500) Fe II .45(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4073.72(1)</td>
<td>3.79(1)</td>
<td>3.72(1)</td>
<td>3.74(2)</td>
<td>3.88(3) Fe I .78(80)</td>
<td></td>
</tr>
<tr>
<td>4074.18(0)</td>
<td>4.14(1)</td>
<td>4.27(1)</td>
<td>Dy II .02(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.48(1)</td>
<td>4.36(0)</td>
<td>4.47(1)</td>
<td>Fe II .41(2P) Nd II .42(8) (Eu II .48(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4074.72(1n)</td>
<td>4.79(1)</td>
<td>4.78(1n)</td>
<td>4.67(0)</td>
<td>4.84(1) Fe I .79(80)</td>
<td></td>
</tr>
<tr>
<td>5.07(3n)</td>
<td>5.12(60)</td>
<td>Nd II .27(50) (Tb II .22(20))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4075.41(4)</td>
<td>5.48(6)</td>
<td>5.48(4n)</td>
<td>5.37(1n)</td>
<td>5.28(2n) Si II .45(2) (Og II .47(15))</td>
<td></td>
</tr>
<tr>
<td>4075.83(2)</td>
<td>5.97(2)</td>
<td>6.02(1)</td>
<td>5.61(4n)</td>
<td>5.72(3n) Ce II .97(4) Ce II .71(150)</td>
<td></td>
</tr>
<tr>
<td>Sm II .84(250) Ce II .85(125) (O II .87(800)) (Tb II .90(2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4076.24(1)</td>
<td>6.37(1)</td>
<td>6.21(1)</td>
<td>6.14(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4076.74(4)</td>
<td>6.80(9)</td>
<td>6.78(5)</td>
<td>6.84(5)</td>
<td>6.85(6n) Ce II .87(3) Si II .78(1) (Fe I .64(60) (La II .71(40))</td>
<td></td>
</tr>
<tr>
<td>4077.00(0)</td>
<td>Eu II .95(4) Fe II .16(3P) (Zr II .05(3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4077.41(1)</td>
<td>7.53(2)</td>
<td>7.63(3)</td>
<td>Cr II .50(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4077.61(3)</td>
<td>7.63(8n)</td>
<td>7.63(5)</td>
<td>7.77(6)</td>
<td>7.86(8) Sr II .78(500) (Ce II .47(75)) (Cr II .50(4)) (La II .35(300))</td>
<td></td>
</tr>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>4077.97(2n) 8.05(2)</td>
<td>7.86(3)</td>
<td>Dy II .97(800) (Er II? .97(818))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4078.56(2) 8.40(1)</td>
<td>8.35(2)</td>
<td>8.38(3)</td>
<td>8.40(4)</td>
<td>Gd II .44(1200) Ce II .32(60) (Fe I .36(80)) (Ti I .47(122))</td>
<td></td>
</tr>
<tr>
<td>4079.17(1) 8.94(0)</td>
<td>9.05(0)</td>
<td>9.01(1n)</td>
<td>8.97(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.31(1)</td>
<td>9.35(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4079.78(1) 9.73(0)</td>
<td>9.66(0)</td>
<td>9.75(1n)</td>
<td>9.85(3)</td>
<td>Fe I .84(80) Pr II .79(30)</td>
<td></td>
</tr>
<tr>
<td>4080.19(0) 0.25(0)</td>
<td>0.27(0)</td>
<td>Nd II .23(50) (Fe I .22(60))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4080.53(0) 0.65(1)</td>
<td>0.35(1)</td>
<td>0.40(1)</td>
<td>0.48(1)</td>
<td>Ce II .44 (5)</td>
<td></td>
</tr>
<tr>
<td>4081.22(1) 1.35(1)</td>
<td>1.08(1)</td>
<td>1.12(1)</td>
<td>1.13(1)</td>
<td>Ce II .22(150) Cr II .21(1) Pr II .52(50) (Eu II .04(5))</td>
<td></td>
</tr>
<tr>
<td>4081.82(0) 1.72(0)</td>
<td>1.68(1)</td>
<td>1.85(1)</td>
<td>1.85(1)</td>
<td>(Pr II .90(50))</td>
<td></td>
</tr>
<tr>
<td>4082.14(1) 2.24(4)</td>
<td>2.30(2)</td>
<td>2.36(2)</td>
<td>2.43(1)</td>
<td>Cr II .30(10) (Tb II .23(4))</td>
<td></td>
</tr>
<tr>
<td>4082.63(0) 2.77(1)</td>
<td>2.74(1)</td>
<td>2.96(0)</td>
<td>2.81(1)</td>
<td>Fe II .59(1) Sm II .60(100) (Nd II .58(3))</td>
<td></td>
</tr>
<tr>
<td>4083.09(0)</td>
<td>3.09(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4083.44(1) 3.31(2)</td>
<td>3.19(0)</td>
<td>3.28(1)</td>
<td>3.38(2)</td>
<td>Ce II .23(200) (Pr II .34(30))</td>
<td></td>
</tr>
<tr>
<td>4083.79(0) 3.63(2)</td>
<td>3.60(1)</td>
<td>3.66(1)</td>
<td>3.78(1)</td>
<td>Sm II .58(100) (Mn II .67(pr))</td>
<td></td>
</tr>
<tr>
<td>4.10(0)</td>
<td>4.17(0)</td>
<td>(Gd II .95(3))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4084.68(2n) 4.65(2n)</td>
<td>4.55(1)</td>
<td>4.56(2)</td>
<td>4.64(4)</td>
<td>Fe I .50(120) (Gd II .68(30))</td>
<td></td>
</tr>
<tr>
<td>4085.17(1)</td>
<td>Eu II .04(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4085.46(0) 5.38(1)</td>
<td>5.32(1)</td>
<td>5.30(2n)</td>
<td>5.40(3)</td>
<td>Eu II .38(40) Ce II .23(100) Fe I .32(100)</td>
<td></td>
</tr>
<tr>
<td>4085.62(1) 5.66(1)</td>
<td>5.66(1)</td>
<td>5.59(2n)</td>
<td>5.67(1)</td>
<td>Gd II .56(200) Eu II .58(40) (Nd II .82(30)) (Zr II .68(5))</td>
<td></td>
</tr>
<tr>
<td>4086.04(3) 6.09(3)</td>
<td>6.15(2)</td>
<td>6.18(2)</td>
<td>6.14(1)</td>
<td>Cr II .14(8) Eu II .42(8)</td>
<td></td>
</tr>
<tr>
<td>4086.61(0) 6.63(1)</td>
<td>6.74(0)</td>
<td>La II .72(300)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4087.23(1n) 7.33(2)</td>
<td>7.18(1n)</td>
<td>7.17(1)</td>
<td>7.21(3n)</td>
<td>Dy II .21(25) Ce II .30(4) (Fe II .27(pr)) (Pr II .21(15))</td>
<td></td>
</tr>
<tr>
<td>4087.66(1) 7.68(1)</td>
<td>7.58(2n)</td>
<td>7.62(2)</td>
<td>7.68(4n)</td>
<td>Gd II .60(200) Cr II .63(2) (Nd II .47(4))</td>
<td></td>
</tr>
<tr>
<td>4087.92(0)</td>
<td>8.06(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4088.29(1) 8.24(1)</td>
<td>8.17(0)</td>
<td>8.28(1)</td>
<td>8.33(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4088.71(1) 8.79(2)</td>
<td>8.80(1)</td>
<td>8.86(2)</td>
<td>8.89(2n)</td>
<td>Cr II .90(1) Gd II .81(10)</td>
<td></td>
</tr>
<tr>
<td>4089.36(1) 9.55(1)</td>
<td>9.56(1n)</td>
<td>9.53(1)</td>
<td>Cr II .49(3) (Tb II .34(15)) (Nd II .68(4)) (Tb II .50(6))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4089.79(0) 9.80(1)</td>
<td>9.68(1)</td>
<td>9.67(2)</td>
<td>Nd II .68(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4090.39(1) 0.45(1n)</td>
<td>0.37(0)</td>
<td>0.51(0n)</td>
<td>0.39(1)</td>
<td>Zr II .52(10)</td>
<td></td>
</tr>
<tr>
<td>4091.10(0) 1.11(1)</td>
<td>0.92(0)</td>
<td>1.01(0)</td>
<td>Ce II .95(6) (Nd II .99(3))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4091.78(3)</td>
<td>1.72(ln)</td>
<td>1.52(0)</td>
<td>1.59(3)</td>
<td>Dy II .53(20) (Fe II .53(10))</td>
<td></td>
</tr>
<tr>
<td>4092.47(1)</td>
<td>2.32(0)</td>
<td>2.08(0)</td>
<td>2.31(1)</td>
<td>Sm II .27(400)</td>
<td></td>
</tr>
<tr>
<td>4092.70(0)</td>
<td>2.67(1)</td>
<td>2.89(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4093.12(1)</td>
<td>3.19(2)</td>
<td>3.23(1)</td>
<td>3.19(0)</td>
<td>Fe II .24(0)</td>
<td></td>
</tr>
<tr>
<td>4093.89(0)</td>
<td>3.96(0)</td>
<td>3.98(0)</td>
<td></td>
<td>Ce II .96(30)</td>
<td></td>
</tr>
<tr>
<td>4094.58(0)</td>
<td>4.47(0)</td>
<td>4.56(0)</td>
<td>4.64(0)</td>
<td>Gd II .48(300) (Nd II .62(5))</td>
<td></td>
</tr>
<tr>
<td>4095.83(0)</td>
<td>5.72(0)</td>
<td>5.65(1)</td>
<td></td>
<td>Tb II .45(5)</td>
<td></td>
</tr>
<tr>
<td>4096.52(0)</td>
<td>6.56(0)</td>
<td>6.53(1)</td>
<td></td>
<td>Pr II .34(12) (Zr II .63(4))</td>
<td></td>
</tr>
<tr>
<td>4096.90(1)</td>
<td></td>
<td>7.18(1)</td>
<td></td>
<td>Eu II .80(40) (Pr II .82(25))</td>
<td></td>
</tr>
<tr>
<td>4097.47(1)</td>
<td>7.53(2)</td>
<td>7.43(1)</td>
<td>7.34(1)</td>
<td>Fe II .51(1) (Tb II .44(10))</td>
<td></td>
</tr>
<tr>
<td>4098.31(1)</td>
<td>8.36(2)</td>
<td>8.44(1)</td>
<td>8.46(2)</td>
<td>Ce II .44(8) Gd II .61(3000)</td>
<td></td>
</tr>
<tr>
<td>4099.93(1)</td>
<td>0.03(0)</td>
<td>9.87(0)</td>
<td></td>
<td>Pr II .41(10)</td>
<td></td>
</tr>
<tr>
<td>4100.66(0n)</td>
<td></td>
<td>0.64(1)</td>
<td></td>
<td>Mn II .00(1) (N I .94(150))</td>
<td></td>
</tr>
<tr>
<td>4101.77(xn)</td>
<td>1.63(xn)</td>
<td>1.72(xn)</td>
<td>1.73(xn)</td>
<td>Eu II .74(80) Pr II .75(150)</td>
<td></td>
</tr>
<tr>
<td>4102.27(1)</td>
<td></td>
<td></td>
<td></td>
<td>Tb II .54(15)</td>
<td></td>
</tr>
<tr>
<td>4104.18(0)</td>
<td></td>
<td>3.02(0)</td>
<td>3.32(0)</td>
<td>Fe I .13(600) (Mn I .96(100))</td>
<td></td>
</tr>
<tr>
<td>4104.98(1)</td>
<td>5.01(0)</td>
<td>4.02(0)</td>
<td>4.20(0)</td>
<td>Fe I .13(100) (Nd II .23(10))</td>
<td></td>
</tr>
<tr>
<td>4105.65(0)</td>
<td></td>
<td></td>
<td></td>
<td>Mn II .01(2) Ce II .00(50)</td>
<td></td>
</tr>
<tr>
<td>4106.31(0n)</td>
<td></td>
<td></td>
<td></td>
<td>Dy II .05(8) (O II .00(7))</td>
<td></td>
</tr>
<tr>
<td>4106.80(On)</td>
<td></td>
<td></td>
<td></td>
<td>Gd II .79(15) Eu II .84(6)</td>
<td></td>
</tr>
<tr>
<td>4107.40(1)</td>
<td>7.48(1)</td>
<td>7.30(0)</td>
<td>7.39(0)</td>
<td>Pr II .73(8)</td>
<td></td>
</tr>
<tr>
<td>4107.85(0)</td>
<td></td>
<td></td>
<td></td>
<td>Ce II .13(307) Dy II .39(3)</td>
<td></td>
</tr>
<tr>
<td>4108.56(0)</td>
<td>8.46(0)</td>
<td>8.59(0)</td>
<td>8.42(1)</td>
<td>Dy II .70(2) (Nd II .58(8))</td>
<td></td>
</tr>
<tr>
<td>4108.92(0n)</td>
<td>9.18(1)</td>
<td></td>
<td></td>
<td>Ce II .88(547)</td>
<td></td>
</tr>
<tr>
<td>4109.48(0)</td>
<td>9.53(1)</td>
<td>9.48(1)</td>
<td></td>
<td>Ce II .43(200) Fe I .49(120)</td>
<td></td>
</tr>
<tr>
<td>4110.07(0)</td>
<td>9.99(0)</td>
<td>9.72(0)</td>
<td>9.97(0)</td>
<td>Sm II .39(200) (Nd II .45(4))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tb II .45(2))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eu II .90(10) Pr II .75(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nd II .96(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gd II .40(50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nd II .07(100)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sm II .40(150) Nd II .46(200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe I .81(120) (N I .98(1000))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Eu II .93(4)) (Zr II .05(3))</td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4110.54(2)</td>
<td>0.62(2)</td>
<td>0.39(1n)</td>
<td>0.44(2)</td>
<td>0.49(4)</td>
<td>Ce II .38(60) Gd II .60(150) Gd II .43 (30) Nd II .47(40) (Co I .54(600))</td>
</tr>
<tr>
<td>4110.87(3)</td>
<td>1.00(4)</td>
<td>0.99(2)</td>
<td>1.08(2)</td>
<td>1.16(4)</td>
<td>Cr II .01(18) (Mn I .90(80)) (Eu II .07(5))</td>
</tr>
<tr>
<td>4111.39(2)</td>
<td>1.48(3)</td>
<td>1.51(1)</td>
<td>Gd II .44(500) Ce II .59(60) Dy II .35(125)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4111.83(2)</td>
<td>1.87(2)</td>
<td>1.81(1n)</td>
<td>1.86(2)</td>
<td>1.95(3)</td>
<td>Gd II .74(100) Fe II .90(1) (Eu II .04(30)) (Eu II .17(20)) (Pr II .87(22))</td>
</tr>
<tr>
<td>4112.58(1)</td>
<td>2.59(1n)</td>
<td>2.62(1)</td>
<td>2.64(1)</td>
<td>2.50(1)</td>
<td>Cr II .59(1)</td>
</tr>
<tr>
<td>4112.78(0)</td>
<td>2.82(0)</td>
<td>2.96(0)</td>
<td>3.00(1)</td>
<td>0.97(70) Fe I</td>
<td></td>
</tr>
<tr>
<td>4113.14(3)</td>
<td>3.20(3)</td>
<td>3.22(1)</td>
<td>3.27(1)</td>
<td>3.41(1)</td>
<td>Cr II .24(5) (La II .28(40))</td>
</tr>
<tr>
<td>4113.68(1)</td>
<td>3.80(1)</td>
<td>3.70(0)</td>
<td>3.82(0m)</td>
<td>3.91(2)</td>
<td>Gd II .77(15) Sm II .90(100) Ce II .73 (307) Nd II .83(20) Pr II .89(25)</td>
</tr>
<tr>
<td>4114.17(1)</td>
<td>4.09(1)</td>
<td>4.45(1)</td>
<td>4.30(1)</td>
<td>0.45(80) Fe I</td>
<td></td>
</tr>
<tr>
<td>4114.78(2)</td>
<td>4.85(1)</td>
<td>4.63(0)</td>
<td>4.67(2n)</td>
<td>4.70(2)</td>
<td></td>
</tr>
<tr>
<td>4115.34(1)</td>
<td>5.44(2)</td>
<td>5.28(1)</td>
<td>5.30(3)</td>
<td>5.36(3)</td>
<td>Ce II .37(150) Gd II .38(80) (Tb II .34(20))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.73(0) — 5.68(0)</td>
<td></td>
</tr>
<tr>
<td>4116.09(0)</td>
<td>6.06(1)</td>
<td>6.05(0)</td>
<td>6.13(1)</td>
<td>6.02(1)</td>
<td></td>
</tr>
<tr>
<td>4116.36(0)</td>
<td></td>
<td></td>
<td></td>
<td>6.41(1) (F II .55(50))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.68(0) 6.87(1n) 6.89(1n) 6.77(1) Cr II .66(2) Nd II .76(30)</td>
<td></td>
</tr>
<tr>
<td>4117.28(1)</td>
<td>7.04(1)</td>
<td>7.18(2n)</td>
<td>7.12(3)</td>
<td>7.33(1)</td>
<td>Ce II .01(75) (P II .09(50))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.33(1)</td>
<td></td>
</tr>
<tr>
<td>4117.52(0)</td>
<td>7.67(1)</td>
<td>7.68(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4118.10(0)</td>
<td>8.11(1)</td>
<td>8.29(0)</td>
<td>8.04(1)</td>
<td>8.10(0)</td>
<td>Ce II .14(200)</td>
</tr>
<tr>
<td>4118.41(1)</td>
<td>8.45(1)</td>
<td>8.42(1)</td>
<td>8.45(2)</td>
<td>8.45(1)</td>
<td>Pr II .48(200) Sm II .55(400) Fe I .55(200)</td>
</tr>
<tr>
<td>4118.74(0)</td>
<td>8.72(1)</td>
<td>8.84(1)</td>
<td>8.83(0)</td>
<td>Co I .77(1000)</td>
<td></td>
</tr>
<tr>
<td>4118.98(3)</td>
<td>9.07(2)</td>
<td>8.93(0)</td>
<td>9.92(0)</td>
<td>8.97(1)</td>
<td>Ce II .02(25)</td>
</tr>
<tr>
<td>4119.42(2)</td>
<td>9.48(2)</td>
<td>9.32(0)</td>
<td>Gd II .38(80) Dy II .32(20) (Fe II .53(20)) (Eu II .30(15))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4119.84(2)</td>
<td>9.76(2)</td>
<td>9.66(1)</td>
<td>9.73(1n)</td>
<td>9.69(1)</td>
<td>Ce II .78(20) Ce II .88(20)</td>
</tr>
<tr>
<td>4120.16(0)</td>
<td>0.16(0)</td>
<td>0.24(1)</td>
<td>0.01(1)</td>
<td>Fe I .21(80)</td>
<td></td>
</tr>
<tr>
<td>4120.77(1n)</td>
<td>0.66(1)</td>
<td>0.70(0)</td>
<td>0.85(1n)</td>
<td>0.60(1)</td>
<td>Ce II .83(150) Nd II .65(6) (P II .78(2))</td>
</tr>
<tr>
<td>4121.04(1)</td>
<td>1.01(1n)</td>
<td>1.08(0m)</td>
<td>0.95(1)</td>
<td>Ce II .83(150) Gd II .03(8)</td>
<td></td>
</tr>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>1.29(0)</td>
<td>1.31(1)</td>
<td>Co I .32(1000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.69(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.93(1)</td>
<td>2.11(0)</td>
<td>1.96(1)</td>
<td>Fe I .81(100) (Nd II .94(4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.63(7)</td>
<td>2.60(4)</td>
<td>2.64(5)</td>
<td>2.75(4)</td>
<td>Fe II .64(4) (Fe I .51(70))</td>
<td></td>
</tr>
<tr>
<td>3.25(0)</td>
<td>3.23(1)</td>
<td>3.22(1n)</td>
<td>3.31(3)</td>
<td>La II .23(400) Ce II .23(57)</td>
<td></td>
</tr>
<tr>
<td>3.56(2)</td>
<td>Ce II .49(207)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.79(1)</td>
<td>3.80(1)</td>
<td>3.82(1)</td>
<td>3.89(2)</td>
<td>Ce II .87(150) Sm II .96(150) Fe I .75 (80) (Nd II .88(40)) (Tb II .80(5))</td>
<td></td>
</tr>
<tr>
<td>4.28(0)</td>
<td>4.52(1n)</td>
<td>4.56(2)</td>
<td>Eu II .54(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.77(4)</td>
<td>4.72(3)</td>
<td>4.73(2n)</td>
<td>4.80(2n)</td>
<td>Dy II .63(40) Fe II .79(1) (Eu II .89(12) (Tb II .91(18)))</td>
<td></td>
</tr>
<tr>
<td>5.46(0)</td>
<td>5.46(0)</td>
<td>5.38(0)</td>
<td>5.30(1)</td>
<td>Tb II .25(15)</td>
<td></td>
</tr>
<tr>
<td>5.88(1)</td>
<td>5.78(1)</td>
<td>Mn II .86(1) Fe I .62(80) (Ce II .78(27))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.21(1)</td>
<td>6.28(0n)</td>
<td>Fe I .19(80)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.54(1)</td>
<td>6.35(1n)</td>
<td>6.43(2)</td>
<td>Cr I .52(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.83(0)</td>
<td>6.90(1)</td>
<td>6.82(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.08(2)</td>
<td>7.24(1)</td>
<td>7.13(1)</td>
<td>7.18(2)</td>
<td>Ce II .08(3) Ce II .37(150) (Tb II .29(10))</td>
<td></td>
</tr>
<tr>
<td>7.47(1)</td>
<td>7.56(0)</td>
<td>7.49(2)</td>
<td>Fe I .61(100) Gd II .72(25) (Ce II .37(150)) (P II .49(70))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.05(x)</td>
<td>8.03(9)</td>
<td>8.06(8)</td>
<td>8.06(x)</td>
<td>Si II .05(8)</td>
<td></td>
</tr>
<tr>
<td>8.38(0)</td>
<td>8.49(0)</td>
<td>Dy II .24(30) Gd II .39(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.76(3)</td>
<td>8.74(2)</td>
<td>8.77(2)</td>
<td>8.78(2)</td>
<td>Fe II .74(3)</td>
<td></td>
</tr>
<tr>
<td>9.22(3)</td>
<td>8.96(0)</td>
<td>9.12(1n)</td>
<td>9.22(2)</td>
<td>Sm II .23(100) Pr II .15(20) (Ce II .18(57))</td>
<td></td>
</tr>
<tr>
<td>9.47(1)</td>
<td>Dy II .43(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.94(3)</td>
<td>9.62(1n)</td>
<td>9.68(3)</td>
<td>9.71(8)</td>
<td>Eu II .70(5000)</td>
<td></td>
</tr>
<tr>
<td>0.48(1)</td>
<td>0.26(1)</td>
<td>0.25(2)</td>
<td>0.32(2)</td>
<td>Gd II .37(3000)</td>
<td></td>
</tr>
<tr>
<td>0.88(x)</td>
<td>0.87(9)</td>
<td>0.84(9)</td>
<td>0.84(9)</td>
<td>Si II .88(10)</td>
<td></td>
</tr>
<tr>
<td>1.19(1)</td>
<td>1.28(0)</td>
<td>1.22(1)</td>
<td>Ce II .10(100) Fe II .17(pr) (Nd II .72(3)) (Pr II .77(40))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50(1)</td>
<td>1.46(0)</td>
<td>1.39(0)</td>
<td>1.63(1)</td>
<td>Gd II .48(200)</td>
<td></td>
</tr>
<tr>
<td>1.96(1)</td>
<td>2.01(0)</td>
<td>1.76(0)</td>
<td>Fe I .06(300) (A II .73(80)) (La II .74(5))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.37(4)</td>
<td>2.12(1)</td>
<td>2.19(2)</td>
<td>2.21(1)</td>
<td>Gd II .28(2000)</td>
<td></td>
</tr>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>4132.48(3)</td>
<td>2.56(3)</td>
<td>2.46(2)</td>
<td>2.48(6)</td>
<td>2.55(9)</td>
<td>Cr II .44(7) Gd II .28(2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Mn II .28(5) (Pr II .23(30))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Nd II .55(10)) (La II .50(10))</td>
</tr>
<tr>
<td>4132.80(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe I .91(100) (Dy II .85(3))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Gd II .82(100))</td>
</tr>
<tr>
<td>4133.45(1)</td>
<td>3.46(2n)</td>
<td>3.05(1)</td>
<td>3.18(2)</td>
<td>3.24(2)</td>
<td>Eu II .10(6) Nd II .36(50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dy II .37(8) (La II .33(6))</td>
</tr>
<tr>
<td>4133.62(2n)</td>
<td>3.72(1)</td>
<td>3.58(2)</td>
<td>3.65(2)</td>
<td>3.68(1)</td>
<td>Ce II .80(500) (Pr II .62(15))</td>
</tr>
<tr>
<td>4134.08(0)</td>
<td>4.05(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4134.23(1)</td>
<td>4.36(1)</td>
<td>4.48(1)</td>
<td>4.23(0)</td>
<td>4.30(0)</td>
<td></td>
</tr>
<tr>
<td>4134.65(0)</td>
<td>4.84(0)</td>
<td>4.67(0)</td>
<td>4.70(1)</td>
<td>4.72(1)</td>
<td>Fe I .68(150) (Nd II .71(10))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(K II .72(40))</td>
</tr>
<tr>
<td>4134.95(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4135.40(1n)</td>
<td>5.39(1n)</td>
<td>5.26(1)</td>
<td>5.25(2)</td>
<td>5.32(3)</td>
<td>Nd II .32(50) Ce II .44(20)</td>
</tr>
<tr>
<td>4135.79(0)</td>
<td>5.98(0)</td>
<td>5.71(1)</td>
<td>5.93(0)</td>
<td>5.81(0)</td>
<td>Cr II .77(pr) (Nd II .79(3))</td>
</tr>
<tr>
<td>4136.30(1)</td>
<td>6.34(2)</td>
<td>6.23(1)</td>
<td>6.30(2)</td>
<td>6.11(1)</td>
<td>Nd II .23(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Eu II .59(20))</td>
</tr>
<tr>
<td>4136.82(1)</td>
<td>6.90(1)</td>
<td>6.86(1)</td>
<td>6.97(4)</td>
<td>6.85(1)</td>
<td>Mn II .91(2) Nd II .75(10)</td>
</tr>
<tr>
<td>4137.01(0)</td>
<td>7.12(1)</td>
<td>7.03(1)</td>
<td>7.16(2)</td>
<td>7.65(1)</td>
<td>Ce II .65(400)</td>
</tr>
<tr>
<td>4137.54(1n)</td>
<td>7.66(1)</td>
<td>7.52(1)</td>
<td>7.56(2)</td>
<td>7.65(1)</td>
<td>Ce II .65(400)</td>
</tr>
<tr>
<td>4138.26(2n)</td>
<td>7.31(2)</td>
<td>7.21(2)</td>
<td>7.30(2n)</td>
<td>7.23(1)</td>
<td>Fe II .21(pr)</td>
</tr>
<tr>
<td>4138.88(2)</td>
<td>8.85(1)</td>
<td>8.77(1n)</td>
<td>8.76(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4139.21(0)</td>
<td>9.25(0)</td>
<td>9.19(0)</td>
<td>9.32(1)</td>
<td>9.41(1)</td>
<td></td>
</tr>
<tr>
<td>4139.59(1n)</td>
<td>9.66(1n)</td>
<td>9.63(3)</td>
<td>9.74(0)</td>
<td></td>
<td>Eu II .67(15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4140.40(1n)</td>
<td>0.47(1)</td>
<td>0.35(0)</td>
<td>0.40(1n)</td>
<td>0.46(2)</td>
<td>Gd II .45(100)</td>
</tr>
<tr>
<td>4141.09(1)</td>
<td>1.10(1)</td>
<td>0.98(0)</td>
<td>1.13(1n)</td>
<td>0.97(1)</td>
<td>Eu II .02(25) Gd II .02(25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.22(1n) 1.38(2) Pr II .26(80)</td>
</tr>
<tr>
<td>4141.66(0)</td>
<td>1.62(1)</td>
<td></td>
<td></td>
<td></td>
<td>Eu II .72(40) Dy II .52(40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(La II .73(200))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.10(1) 2.19(1) 2.08(0)</td>
</tr>
<tr>
<td>4142.33(1)</td>
<td>2.42(1)</td>
<td>2.40(1)</td>
<td>2.48(1)</td>
<td></td>
<td>Ce II .40(150) (G II .29(150))</td>
</tr>
<tr>
<td>4142.73(1)</td>
<td>2.73(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4143.14(3)</td>
<td>3.24(2)</td>
<td>3.04(1)</td>
<td>3.02(2)</td>
<td>2.97(2n)</td>
<td>Dy II .10(150) Pr II .14(150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Fe II .97(pr))</td>
</tr>
<tr>
<td>4143.32(0)</td>
<td>3.44(0)</td>
<td>3.53(1)</td>
<td>3.49(1)</td>
<td>3.39(2)</td>
<td>Fe I .42(200)</td>
</tr>
<tr>
<td>4143.81(4)</td>
<td>3.90(3)</td>
<td>3.93(1)</td>
<td>3.92(2)</td>
<td>3.98(1)</td>
<td>Fe I .87(400) (La II .77(15))</td>
</tr>
</tbody>
</table>

428

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Identification</th>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb II .47(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .49(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .51(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd II .55(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S II .10(250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb II .23(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .00(60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd II .10(250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca II .80(25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr II .13(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .23(75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .32(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr II .45(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr II .54(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .22(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .67(200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La II .24(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .90(25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr II .22(75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .57(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb II .16(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K II .17(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm II .83(200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .94(60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr II .04(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .26(50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .31(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .61(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr II .00(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .19(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr II .97(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La II .97(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .63(30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .52(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .97(200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm II .21(200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .17(70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La II .98(250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .03(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy II .43(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La II .78(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .98(pr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .26(50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe II .31(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .61(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr II .19(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .31(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .51(125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eu II .44(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Nd II .75(4))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .67(pr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dy II .22(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr II .29(pr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .50(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe I .81(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .86(250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm II .32(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sm II .22(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nd II .08(250)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce II .53(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

429
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>4156.20(3)</td>
<td>6.31(1n)</td>
<td>6.02(0n)</td>
<td>6.04(3)</td>
<td>6.15(3)</td>
<td>Zr II .24(15) Nd II .26(30)</td>
</tr>
<tr>
<td>4157.02(1)</td>
<td>6.90(1)</td>
<td>6.82(1n)</td>
<td>6.86(2)</td>
<td>7.39(0)</td>
<td>Fe I .80(100)</td>
</tr>
<tr>
<td>4157.56(1)</td>
<td>7.61(1)</td>
<td>7.56(1n)</td>
<td>7.54(1n)</td>
<td>7.64(1)</td>
<td>Nd II .58(3)</td>
</tr>
<tr>
<td>4157.91(0)</td>
<td>7.93(1)</td>
<td>7.72(1)</td>
<td>7.67(1)</td>
<td>7.91(0)</td>
<td>Fe I .79(150) Dy II .86(1)</td>
</tr>
<tr>
<td>4158.38(0)</td>
<td>8.44(1)</td>
<td>8.24(0)</td>
<td>8.31(1)</td>
<td>8.24(0)</td>
<td>A I .59(1200) (Tb II .28(6))</td>
</tr>
<tr>
<td>4158.81(0)</td>
<td>8.81(0)</td>
<td>8.91(1)</td>
<td>8.86(1)</td>
<td>8.81(1)</td>
<td>Fe I .80(100)</td>
</tr>
<tr>
<td>4159.02(0)</td>
<td>9.11(1)</td>
<td>9.18(0)</td>
<td>9.14(0)</td>
<td>9.14(0)</td>
<td>Ce II .03(50)</td>
</tr>
<tr>
<td>4159.65(0)</td>
<td>9.53(0)</td>
<td>9.57(1)</td>
<td>9.57(1)</td>
<td>9.57(1)</td>
<td>Al II .45(4) Al II .41(2) (Ti I .64(60)) (Nd II .56(4))</td>
</tr>
<tr>
<td>4159.75(0)</td>
<td>9.84(0)</td>
<td>9.94(1)</td>
<td>9.97(1)</td>
<td>9.92(1)</td>
<td>Al II .72(6) Al II .81(4)</td>
</tr>
<tr>
<td>4160.24(1)</td>
<td>0.22(0)</td>
<td>0.05(1)</td>
<td>0.05(1)</td>
<td>0.05(1)</td>
<td>Al II .24(12) Al II .26(15)</td>
</tr>
<tr>
<td>4160.66(2)</td>
<td>0.59(1)</td>
<td>0.54(3)</td>
<td>0.52(3)</td>
<td>0.58(4)</td>
<td>Eu II .48(12) Nd II .56(30)</td>
</tr>
<tr>
<td>4161.21(1)</td>
<td>1.14(1n)</td>
<td>1.10(2)</td>
<td>1.08(2)</td>
<td>1.18(3)</td>
<td>Ce II .14(50) Ce II .18(187) Cr II .05 (2) (Cr II .27(pr)) (Er II .20(20))</td>
</tr>
<tr>
<td>4161.52(1)</td>
<td>1.59(1)</td>
<td>1.62(1)</td>
<td>1.67(1)</td>
<td>1.70(3)</td>
<td>Ti II .54(30) (Cr II .56(pr))</td>
</tr>
<tr>
<td>4161.88(3)</td>
<td>1.82(1)</td>
<td>1.71(1)</td>
<td>1.71(2)</td>
<td>1.75(3)</td>
<td>(Sr I .80(30))</td>
</tr>
<tr>
<td>4162.30(1)</td>
<td>2.33(0)</td>
<td>2.20(0)</td>
<td>2.03(1)</td>
<td>2.03(1)</td>
<td>Eu II .14(8)</td>
</tr>
<tr>
<td>4162.75(1n)</td>
<td>2.78(1n)</td>
<td>2.62(1)</td>
<td>2.62(2n)</td>
<td>2.73(2n)</td>
<td>Gd II .73(500) (S II .70(600))</td>
</tr>
<tr>
<td>4163.25(0)</td>
<td>3.24(0)</td>
<td>3.43(1)</td>
<td>3.43(1)</td>
<td>3.43(1)</td>
<td></td>
</tr>
<tr>
<td>4163.56(4)</td>
<td>3.68(4n)</td>
<td>3.56(3)</td>
<td>3.54(4)</td>
<td>3.62(4)</td>
<td>Ti II .65(150) (Ce II .52(20)) (Cr I .62(100))</td>
</tr>
<tr>
<td>4163.73(1)</td>
<td>3.88(1)</td>
<td>3.88(1)</td>
<td>3.88(1)</td>
<td>3.88(1)</td>
<td></td>
</tr>
<tr>
<td>4164.13(0)</td>
<td>4.26(1)</td>
<td>4.17(1)</td>
<td>4.28(1)</td>
<td>4.28(1)</td>
<td>Pr II .19(100) A I .18(1000)</td>
</tr>
<tr>
<td>4164.47(0)</td>
<td>4.47(0)</td>
<td>4.47(0)</td>
<td>4.47(0)</td>
<td>4.47(0)</td>
<td></td>
</tr>
<tr>
<td>4164.64(2)</td>
<td>4.78(1n)</td>
<td>4.63(1n)</td>
<td>4.87(1)</td>
<td>4.96(1)</td>
<td></td>
</tr>
<tr>
<td>4165.16(1)</td>
<td>5.15(1)</td>
<td>5.02(1)</td>
<td>5.02(1)</td>
<td>5.02(1)</td>
<td>Nd II .04(5)</td>
</tr>
<tr>
<td>4165.65(1)</td>
<td>5.65(1)</td>
<td>5.60(0)</td>
<td>5.60(2)</td>
<td>5.62(1)</td>
<td>Ce II .61(200) (Cr I .52(80))</td>
</tr>
<tr>
<td>4166.19(1)</td>
<td>6.35(1)</td>
<td>6.35(1)</td>
<td>6.35(1)</td>
<td>6.35(1)</td>
<td></td>
</tr>
<tr>
<td>4166.83(4)</td>
<td>6.90(3)</td>
<td>6.74(1n)</td>
<td>6.63(2)</td>
<td>6.71(2)</td>
<td>Fe II .70(tr) (P II .73(15))</td>
</tr>
<tr>
<td>4167.32(1)</td>
<td>7.15(2n)</td>
<td>7.12(1)</td>
<td>7.13(1n)</td>
<td>7.08(1)</td>
<td></td>
</tr>
<tr>
<td>4167.73(1)</td>
<td>7.75(1n)</td>
<td>7.64(1)</td>
<td>7.67(1)</td>
<td>7.62(0)</td>
<td>Ce II .80(127)</td>
</tr>
<tr>
<td>4167.82(0)</td>
<td>8.21(0)</td>
<td>8.50(0)</td>
<td>8.28(0)</td>
<td>8.42(1)</td>
<td>(S II .41(50))</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<p>| 4168.57(1) | 8.61(1) | 8.76(0) | 8.74(0) | (Fe II .66(pr)) (Nd II .76(3)) |
| 4168.98(0) | 9.10(0) | | | | |
| 4169.34(0) | 9.51(0) | | | Sm II .48(200) Eu II .35(5) |
| 4169.73(1n) | 9.60(1) | 9.73(1n) | 9.78(2) | 9.61(0) | Ce II .77(12?) (Cr I .84(80)) |
| | 9.96(2) | 9.93(0) | 9.93(1) | | Gd II .11(150) Ce II .88(30) |
| | | | | (Fe II .98(pr)) |
| 4170.57(1) | 0.61(2) | | | 0.42(1) | Cr II .58(pr) (Nd II .45(4)) |
| 4170.96(3) | 0.93(2n) | 0.79(2) | 0.79(3n) | 0.86(6) | Cr II .86(1) Fe I .91(80) |
| | | | | (Nd II .75(6)) |
| 4171.34(0) | 1.38(1) | | | 1.36(0) | 1.40(1) |
| 4171.87(8) | 1.97(7) | 1.92(4) | 1.98(4n) | 1.92(6) | Ti II .90(70) Cr II .92(3) |
| | | | | (Pr II .82(40)) |
| 4172.07(1) | | | | | Fe I .13(80) |
| | | | | | 2.34(1) |
| 4172.46(2) | 2.59(3) | 2.63(3) | 2.66(2) | | Cr II .60(2) |
| 4172.87(2) | 2.88(0) | | | 2.76(2) | Eu II .80(30) Fe I .75(60) |
| 4173.41(9) | 3.46(9) | 3.41(6) | 3.45(6) | 3.50(8) | Fe II .45(8) Ti II .55(40) |
| | | | | Gd II .56(100) (Nd II .38(8)) |
| 4174.06(2) | 4.25(2) | 4.13(1) | 3.88(0) | 4.07(1) | Ti II .09(12) (Fe II .92(50)) |
| | | | | Gd II .04(50) (Mn II .33(pr)) |
| 4174.61(0) | 4.54(0) | 4.41(0) | 4.48(0) | | |
| | | | | | 4.91(0) |
| 4175.17(0n) | 5.39(0) | 5.07(0) | 5.35(0) | 5.34(1) | Eu II .16(12) Pr II .30(15) |
| 4175.62(1n) | 5.77(2n) | 5.84(1) | 5.84(1n) | 5.85(1) | Fe I .64(100) Nd II .61(50) |
| | | | | (Pr II .64(15)) |
| | 6.02(1) | | | 6.27(0) | Ce II .08(127) |
| 4176.59(1n) | 6.43(0) | 6.55(1n) | | | Fe I .57(100) Eu II .62(8) |
| | | | | (Mn I .60(100)) |
| 4176.83(1n) | 6.70(2n) | 6.66(2) | 6.73(3) | | (Gd II .79(15)) |
| | | | | | 7.18(1) |
| 4177.56(5) | 7.66(5n) | 7.62(4) | 7.70(7) | 7.76(6) | Fe I .60(100) Eu II .57(15) |
| | | | | | (Y II .55(50)) (Fe II .70(pr)) |
| 4177.91(3) | 7.98(1) | | | 8.11(0) | Sm II .02(100) |
| 4178.29(0) | 8.38(0) | 8.31(7) | 8.36(1) | 8.48(1) | Nd II .64(15) Pr II .64(20) |
| | | | | (Nd II .44(6)) (Nd II .33(8)) |
| 4178.77(5) | 8.82(7) | 8.82(5) | 8.85(5) | 8.94(4) | Fe II .86(8) (Tb II .97(15)) |
| 4179.34(5) | 9.44(6) | 9.46(3) | 9.42(4) | 9.52(3) | Cr II .66(12) Pr II .42(150) (Nd II .58(30)) (Cr I .26(100)) (Eu II .37(4)) |</p>
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4179.91(1)</td>
<td>0.00(ln)</td>
<td>9.99(0)</td>
<td>9.90(0)</td>
<td>9.97(0)</td>
<td>Eu II .88(8) Zr II .81(15) (Cr II .92(pr))</td>
</tr>
<tr>
<td>4180.40(1)</td>
<td>0.46(1)</td>
<td>0.44(0)</td>
<td>0.41(1)</td>
<td>0.71(2n)</td>
<td>Pr II .68(8)</td>
</tr>
<tr>
<td>4181.04(3)</td>
<td>1.03(1)</td>
<td>0.83(ln)</td>
<td>0.89(0n)</td>
<td>0.91(2n)</td>
<td>Yb II .83(40) (Ti I .87(100))</td>
</tr>
<tr>
<td>4181.26(0)</td>
<td>Ti II .17(pr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.48(1)</td>
<td>1.49(0)</td>
<td>Cr II .50(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4181.66(1)</td>
<td>1.69(1)</td>
<td>1.75(ln)</td>
<td>1.77(0)</td>
<td>Fe I .76(200) (A I .88(1000))</td>
<td></td>
</tr>
<tr>
<td>1.99(0)</td>
<td>1.98(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4182.17(1)</td>
<td>2.18(2n)</td>
<td>2.11(ln)</td>
<td>2.13(2n)</td>
<td>2.30(2)</td>
<td>Nd II .29(2)</td>
</tr>
<tr>
<td>4182.50(0)</td>
<td>2.62(0)</td>
<td>2.59(0)</td>
<td>2.74(0)</td>
<td>2.68(0)</td>
<td>Dy II .42(8) Fe I .39(80) (Nd II .51(4))</td>
</tr>
<tr>
<td>2.98(0)</td>
<td>2.84(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4183.29(1)</td>
<td>3.39(2)</td>
<td>3.36(1)</td>
<td>3.30(2n)</td>
<td>3.40(1n)</td>
<td>V II .44(250)</td>
</tr>
<tr>
<td>4183.86(1)</td>
<td>3.81(1)</td>
<td>3.89(0)</td>
<td>Sm II .76(150) (Ru II .78(4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4184.29(3)</td>
<td>4.28(3n)</td>
<td>4.21(1)</td>
<td>4.23(4)</td>
<td>4.24(6)</td>
<td>Gd II .25(2000) Lu II .26(120) (Pr II .24(8)) (Ti II .33(20))</td>
</tr>
<tr>
<td>4184.87(0)</td>
<td>4.83(1)</td>
<td>4.86(1)</td>
<td>4.81(1)</td>
<td>4.90(1)</td>
<td>Fe I .90(100) (Ru II .98(6)) (Nd II .98(15))</td>
</tr>
<tr>
<td>4185.26(0)</td>
<td>5.26(0)</td>
<td>5.23(0)</td>
<td>Ce II .33(57) Pr II .15(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4185.60(0)</td>
<td>5.52(0)</td>
<td>5.61(1)</td>
<td>5.58(1)</td>
<td>Cr II .50(pr) O II .45(150)</td>
<td></td>
</tr>
<tr>
<td>4186.07(0)</td>
<td>6.11(ln)</td>
<td>5.97(0)</td>
<td>6.13(0)</td>
<td>6.14(0)</td>
<td>Fe I .12(100) Cr II .08(pr) (Nd II .03(8) (K II .23(60))</td>
</tr>
<tr>
<td>4186.62(1n)</td>
<td>6.62(2n)</td>
<td>6.51(1)</td>
<td>6.52(2)</td>
<td>6.62(2)</td>
<td>Ce II .60(600) (Zr II .70(12))</td>
</tr>
<tr>
<td>4187.20(1)</td>
<td>7.11(1)</td>
<td>7.07(1)</td>
<td>7.19(2)</td>
<td>7.17(1)</td>
<td>Fe I .04(250)</td>
</tr>
<tr>
<td>4187.44(0)</td>
<td>7.41(1)</td>
<td>Ce II .32(397)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4187.73(2)</td>
<td>7.82(3)</td>
<td>7.73(2)</td>
<td>7.78(2n)</td>
<td>7.87(2n)</td>
<td>Fe I .80(200) Gd II .10(60) (Gd II .96(10))</td>
</tr>
<tr>
<td>4188.23(1)</td>
<td>8.30(1)</td>
<td>8.24(0)</td>
<td>8.50(0)</td>
<td>8.58(1)</td>
<td>Sm II .13(200) Gd II .10(60) (Tb II .53(8))</td>
</tr>
<tr>
<td>4188.79(3)</td>
<td>8.77(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4189.04(2)</td>
<td>8.97(2n)</td>
<td>8.89(1)</td>
<td>8.91(1n)</td>
<td>9.01(1)</td>
<td></td>
</tr>
<tr>
<td>4189.46(1)</td>
<td>9.51(1)</td>
<td>9.44(0)</td>
<td>9.40(1)</td>
<td>9.59(1)</td>
<td>Pr II .52(125) (S II .71(250))</td>
</tr>
<tr>
<td>4189.83(1)</td>
<td>9.86(0)</td>
<td>Eu II .75(5) O II .79(500)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4190.09(3)</td>
<td>0.04(2n)</td>
<td>0.04(1)</td>
<td>0.07(2)</td>
<td>0.11(1)</td>
<td></td>
</tr>
<tr>
<td>4190.64(2)</td>
<td>0.76(3)</td>
<td>0.73(3)</td>
<td>0.64(0)</td>
<td>Si II .74(3) Ce II .63(30) (A I .71(600))</td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4191.22(2)</td>
<td>1.30(2)</td>
<td>1.27(0)</td>
<td>0.89(2n)</td>
<td>1.02(2n)</td>
<td>Gd II .07(800) (Gd II .36(10)) (Cr I .27(70))</td>
</tr>
<tr>
<td>4191.53(0)</td>
<td>1.45(1)</td>
<td>1.54(1)</td>
<td>1.52(1n)</td>
<td>1.54(1n)</td>
<td>Fe I .44(200) (Pr II .62(20)) (Zr II .30(6))</td>
</tr>
<tr>
<td>4191.75(0)</td>
<td>1.87(0)</td>
<td></td>
<td></td>
<td>1.76(1)</td>
<td>(Cr I .75(50))</td>
</tr>
<tr>
<td>4192.04(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ni II .07(1)</td>
</tr>
<tr>
<td>4192.43(1n)</td>
<td>2.39(0)</td>
<td>2.28(0)</td>
<td></td>
<td>2.25(1)</td>
<td>La II .35(100)</td>
</tr>
<tr>
<td>4192.82(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eu II .62(127)</td>
</tr>
<tr>
<td>4193.19(1)</td>
<td>3.14(1n)</td>
<td>2.98(1)</td>
<td>3.07(2)</td>
<td>3.02(0n)</td>
<td>Gd II .15(60) (Ce II .09(50))</td>
</tr>
<tr>
<td>4193.76(1)</td>
<td>3.94(1n)</td>
<td>3.98(0)</td>
<td>3.84(1)</td>
<td>3.90(3)</td>
<td>Ce II .87(357) (Cr I .66(100)) ?</td>
</tr>
<tr>
<td>4194.13(2)</td>
<td>4.02(0n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4194.68(1)</td>
<td>4.82(0)</td>
<td>4.71(1)</td>
<td>4.89(0)</td>
<td>4.69(0)</td>
<td>La II .36(30)</td>
</tr>
<tr>
<td>4194.92(0)</td>
<td></td>
<td>4.92(0)</td>
<td>5.01(1)</td>
<td></td>
<td>Nd II .03(30)</td>
</tr>
<tr>
<td>4195.28(4)</td>
<td>5.42(5)</td>
<td>5.39(3)</td>
<td>5.46(2)</td>
<td>5.47(1)</td>
<td>Cr II .41(10) (Fe I .34(150))</td>
</tr>
<tr>
<td>4195.54(0)</td>
<td></td>
<td></td>
<td></td>
<td>5.58(1)</td>
<td>Fe I .62(25)</td>
</tr>
<tr>
<td>4196.00(1)</td>
<td>5.79(0)</td>
<td></td>
<td></td>
<td>5.94(0)</td>
<td>Gd II .85(20)</td>
</tr>
<tr>
<td>4196.19(3n)</td>
<td>6.19(3n)</td>
<td>6.13(2)</td>
<td>6.19(1n)</td>
<td>6.15(3)</td>
<td>Fe I .21(100) (Eu II .18(15)) Ce II .34(75)</td>
</tr>
<tr>
<td>4196.91(1n)</td>
<td>7.06(1n)</td>
<td>7.00(0)</td>
<td>6.87(1)</td>
<td>6.85(1)</td>
<td>Ce II .55(250)</td>
</tr>
<tr>
<td>4197.62(1)</td>
<td>7.76(1)</td>
<td>7.67(0)</td>
<td>7.57(2)</td>
<td>7.62(1n)</td>
<td>Gd II .68(800) (Ce II .67(47))</td>
</tr>
<tr>
<td>4198.09(3)</td>
<td>8.16(3n)</td>
<td>8.11(2n)</td>
<td></td>
<td></td>
<td>Si II .17(2) (Fe II .00(37)) (Nd II .17(2)) (Tl II .95(pr))</td>
</tr>
<tr>
<td>8.39(1)</td>
<td>8.27(2n)</td>
<td>8.30(1n)</td>
<td></td>
<td>Fe I .31(250)</td>
<td></td>
</tr>
<tr>
<td>4198.61(1)</td>
<td>8.51(1n)</td>
<td>8.60(1n)</td>
<td>8.54(1)</td>
<td></td>
<td>Cr I .52(100) (Ce II .43(47))</td>
</tr>
<tr>
<td>8.93(1)</td>
<td>8.97(0)</td>
<td>8.77(1)</td>
<td></td>
<td></td>
<td>Ce II .67(75) Ce II .72(60)</td>
</tr>
<tr>
<td>4199.02(1)</td>
<td>9.06(2)</td>
<td>8.96(1)</td>
<td>9.10(1)</td>
<td>9.15(1)</td>
<td>Fe I .10(300) (Nd II .10(10)) (Cr II .02(pr))</td>
</tr>
<tr>
<td>4199.43(2)</td>
<td>9.47(2n)</td>
<td>9.41(2n)</td>
<td>9.52(2)</td>
<td>9.57(2)</td>
<td></td>
</tr>
<tr>
<td>9.68(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4199.95(0)</td>
<td>9.88(1)</td>
<td></td>
<td></td>
<td></td>
<td>Tm II .92(100)</td>
</tr>
<tr>
<td>TABLE 3 -- Continued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4200.06(1)</td>
<td>0.02(0)</td>
<td>0.13(1)</td>
<td>Mn II .25(2) Nd II .03(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4200.51(4n)</td>
<td>0.64(4n)</td>
<td>0.72(3n)</td>
<td>0.54(3n)</td>
<td>0.61(3)</td>
<td>A I .68(1200) (TtI II .40(pr))</td>
</tr>
<tr>
<td>4200.79(3n)</td>
<td>0.86(4)</td>
<td>0.82(0)</td>
<td>Fe I .93(80)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4201.22(0)</td>
<td>1.13(1n)</td>
<td>1.23(2n)</td>
<td>Pr II .18(15) Tb II .00(30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4201.43(2)</td>
<td>1.43(1)</td>
<td>1.62(0)</td>
<td>Dy II .37(10) Pr II .53(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4201.92(3)</td>
<td>1.96(2)</td>
<td>1.91(1)</td>
<td>2.11(1n)</td>
<td>2.06(1)</td>
<td>Fe I .03(400)</td>
</tr>
<tr>
<td>4202.43(4)</td>
<td>2.48(3)</td>
<td>2.28(1)</td>
<td>2.53(0)</td>
<td>2.43(2)</td>
<td>Gd II .52(80) (V II .35(150)) (Al II .4(8))</td>
</tr>
<tr>
<td>4202.94(1)</td>
<td>2.81(2n)</td>
<td>2.75(1n)</td>
<td>2.90(4)</td>
<td>2.98(3)</td>
<td>Ce II .94(150) Sm II .05(125)</td>
</tr>
<tr>
<td>4203.48(1n)</td>
<td>3.59(1)</td>
<td>3.39(1)</td>
<td>3.47(1)</td>
<td>3.43(1)</td>
<td>(Cr I .59(100)) (Nd II .43(2))</td>
</tr>
<tr>
<td>4204.00(2)</td>
<td>4.06(1)</td>
<td>3.98(0)</td>
<td>3.96(0)</td>
<td>3.88(1)</td>
<td>Fe I .99(200) (La II .03(100))</td>
</tr>
<tr>
<td>4204.63(0)</td>
<td>4.52(0)</td>
<td>4.41(0)</td>
<td>4.56(0)</td>
<td>Cr II .66(pr)</td>
<td></td>
</tr>
<tr>
<td>4205.10(8n)</td>
<td>5.28(4n)</td>
<td>4.79(1n)</td>
<td>4.88(4)</td>
<td>4.95(9)</td>
<td>Eu II .05(6000) Gd II .86(300) (V II .08(250)) (Cr II .83(pr))</td>
</tr>
<tr>
<td>4205.33(1n)</td>
<td>5.38(3n)</td>
<td>6.07(0)</td>
<td>6.08(2)</td>
<td>Sm II .13(100) (TtI II .92(pr)) (Zr II .92(2))</td>
<td></td>
</tr>
<tr>
<td>4206.28(3)</td>
<td>6.35(2)</td>
<td>6.38(1n)</td>
<td>6.45(1)</td>
<td>6.42(1)</td>
<td>Mn II .43(2) Dy II .54(40)</td>
</tr>
<tr>
<td>4206.67(1)</td>
<td>6.75(1)</td>
<td>6.85(1)</td>
<td>Fe I .70(125) Pr II .74(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4207.02(0)</td>
<td></td>
<td>Fe I .63(80)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4207.27(3)</td>
<td>7.30(3)</td>
<td>7.31(1)</td>
<td>7.45(2n)</td>
<td>Cr II .35(4) (Mn II .23(pr))</td>
<td></td>
</tr>
<tr>
<td>4207.79(3n)</td>
<td>7.83(3)</td>
<td>7.74(0)</td>
<td>7.79(1)</td>
<td>7.63(4)</td>
<td>(Pr II .81(8)) (La II .61(10))</td>
</tr>
<tr>
<td>4208.10(1)</td>
<td>8.23(1)</td>
<td>8.40(0)</td>
<td>8.34(1)</td>
<td>8.37(2)</td>
<td>Gd II .37(8) (Eu II .17(5)) (Pr II .30(15)) (Cr I .36(100))</td>
</tr>
<tr>
<td>4208.56(1)</td>
<td>8.55(1)</td>
<td>8.52(0)</td>
<td>Fe I .62(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4208.99(3)</td>
<td>9.09(2)</td>
<td>9.15(1)</td>
<td>9.05(1)</td>
<td>9.02(1)</td>
<td>Cr II .02(3) (Zr II .99(30)) (Gd II .75(8))</td>
</tr>
<tr>
<td>4209.51(1)</td>
<td>9.53(1)</td>
<td>9.56(0)</td>
<td>Ce II .41(257)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4209.74(0)</td>
<td>9.79(1)</td>
<td>9.70(1)</td>
<td>9.85(0)</td>
<td>0.03(1)</td>
<td>Cr II .84(pr)</td>
</tr>
<tr>
<td>4210.02(1)</td>
<td>0.27(1)</td>
<td>0.24(1n)</td>
<td>0.40(2)</td>
<td>0.48(1)</td>
<td>Fe I .35(300) Sm II .35(150) (La II .22(50))</td>
</tr>
<tr>
<td>4210.64(0)</td>
<td>0.67(1)</td>
<td>0.79(0)</td>
<td></td>
<td></td>
<td>(Zr II .62(5))</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4210.93(1n)</td>
<td>1.08(1)</td>
<td>1.13(1)</td>
<td>1.19(1)</td>
<td>1.12(1n)</td>
<td>1.40(1)</td>
</tr>
<tr>
<td>4211.70(0)</td>
<td>1.84(1)</td>
<td>Zr II .88(12) Pr II .86(20)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4211.95(3n)</td>
<td>2.05(1)</td>
<td>1.83(1)</td>
<td>1.86(4)</td>
<td>1.90(6)</td>
<td>Gd II .00(800)</td>
</tr>
<tr>
<td>4212.60(1)</td>
<td>2.41(0)</td>
<td>2.46(0)</td>
<td>2.47(0)</td>
<td>2.52(2)</td>
<td></td>
</tr>
<tr>
<td>4212.74(1)</td>
<td>2.75(1)</td>
<td>2.77(0)</td>
<td>Nd II .75(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.07(0)</td>
<td>2.98(1)</td>
<td>3.07(1)</td>
<td>Ce II .04(15) (Nd II .06(4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4213.33(1)</td>
<td>3.42(1n)</td>
<td>3.45(1n)</td>
<td>3.47(2)</td>
<td>Eu II .48(4) (Nd II .21(5))</td>
<td></td>
</tr>
<tr>
<td>4213.63(0n)</td>
<td>3.68(1)</td>
<td>3.56(1)</td>
<td>3.59(1)</td>
<td>Fe I .65(100) (Tb II .50(30)) (Pr II .57(10))</td>
<td></td>
</tr>
<tr>
<td>4214.03(1)</td>
<td>4.12(1)</td>
<td>3.87(1)</td>
<td>4.05(1)</td>
<td>4.17(1)</td>
<td>Ce II .04(50) (Nd II .23(4))</td>
</tr>
<tr>
<td>4214.45(0)</td>
<td>4.55(1)</td>
<td>4.46(0)</td>
<td>Gd II .58(20) (Nd II .60(12)) (Tb II .42(15))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4215.01(2)</td>
<td>5.04(1)</td>
<td>4.85(1)</td>
<td>4.88(1n)</td>
<td>4.86(2n)</td>
<td>Gd II .02(600)</td>
</tr>
<tr>
<td>4215.40(1n)</td>
<td>5.39(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4215.63(6n)</td>
<td>5.64(5)</td>
<td>5.62(3)</td>
<td>5.55(3)</td>
<td>5.58(4)</td>
<td>Sr II .52(400) (Cr II .77(2)) (Zr II .76(1))</td>
</tr>
<tr>
<td>4216.07(0)</td>
<td>6.24(1)</td>
<td>5.85(1)</td>
<td>6.09(1)</td>
<td>Fe I .19(200)</td>
<td></td>
</tr>
<tr>
<td>4216.47(1)</td>
<td>6.57(1)</td>
<td>6.51(1)</td>
<td>6.40(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4216.92(0)</td>
<td>7.02(1n)</td>
<td>6.98(1)</td>
<td>6.95(0)</td>
<td>Cr II .87(1) Cr II .07(1)</td>
<td></td>
</tr>
<tr>
<td>4217.24(1n)</td>
<td>7.20(1)</td>
<td>7.18(1)</td>
<td>7.14(4)</td>
<td>7.27(4)</td>
<td>Gd II .20(500) (Nd II .28(5)) (G II .23(30))</td>
</tr>
<tr>
<td>4217.61(1n)</td>
<td>7.58(1)</td>
<td>7.60(0)</td>
<td>7.57(0)</td>
<td>Fe I .56(100) Ce II .59(30) La II .56(200) (Cr I .63(150))</td>
<td></td>
</tr>
<tr>
<td>4217.82(1)</td>
<td>7.98(2n)</td>
<td>7.80(1n)</td>
<td>7.89(2)</td>
<td>8.00(3)</td>
<td>Eu II .75(10)</td>
</tr>
<tr>
<td>4218.26(0)</td>
<td>8.28(1)</td>
<td>(Ti II .16(pr))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4218.62(0)</td>
<td>8.71(1)</td>
<td>8.46(1)</td>
<td>Eu II .45(6) Dy II .58(5) (Nd II .55(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4219.24(1)</td>
<td>8.91(0)</td>
<td>8.98(1)</td>
<td>Eu II .03(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.38(1n)</td>
<td>9.38(1)</td>
<td>9.41(0n)</td>
<td>9.49(1)</td>
<td>Fe I .36(250)</td>
<td></td>
</tr>
<tr>
<td>4219.61(1)</td>
<td>9.74(1)</td>
<td>9.57(1n)</td>
<td>9.51(1)</td>
<td>9.55(0)</td>
<td>Pr II .65(15) (Nd II .57(4)) (Ne II .76(100))</td>
</tr>
<tr>
<td>4220.14(0)</td>
<td>0.03(0)</td>
<td>Nd II .26(20) (Tb II .12(6))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4220.28(1)</td>
<td>0.34(0)</td>
<td>0.45(0n)</td>
<td>0.44(0n)</td>
<td>0.49(0)</td>
<td>Fe I .35(80) Sm II .66(200) (Ne II .92(15))</td>
</tr>
<tr>
<td>0.82(0)</td>
<td>0.91(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4221.18(0)</td>
<td>1.24(1)</td>
<td>1.29(0)</td>
<td>1.35(1)</td>
<td>Eu II .08(25) Nd II .33(80)</td>
<td></td>
</tr>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>4221.86(1)</td>
<td>1.98(1)</td>
<td>1.92(1)</td>
<td></td>
<td></td>
<td>Cr II .00(1)</td>
</tr>
<tr>
<td>4222.13(0)</td>
<td>2.01(1)</td>
<td>2.03(0)</td>
<td>2.09(0)</td>
<td>2.16(1)</td>
<td>Fe I .22(200) Cr II .00(1)</td>
</tr>
<tr>
<td>4222.45(1)</td>
<td>2.67(2)</td>
<td>2.36(0)</td>
<td>2.36(0)</td>
<td>2.57(1)</td>
<td>Ce II .60(300) (Zr II .41(3))</td>
</tr>
<tr>
<td>4222.81(1n)</td>
<td>2.94(2)</td>
<td>2.85(2)</td>
<td>2.93(3)</td>
<td>3.01(3n)</td>
<td>Gd II .02(60) Pr II .98(150) (Nd II .21(5)) (Cr I .73(100)) (K II .98(40))</td>
</tr>
<tr>
<td>4223.60(1)</td>
<td>3.71(1)</td>
<td>3.66(0)</td>
<td>3.56(0n)</td>
<td>3.63(1)</td>
<td>Eu II .88(15) (Cr II .09(pr))</td>
</tr>
<tr>
<td>4223.89(1)</td>
<td>4.04(1)</td>
<td>4.00(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4224.24(3)</td>
<td>4.39(1)</td>
<td>4.24(1)</td>
<td>4.17(4)</td>
<td>4.24(4)</td>
<td>Fe I .18(200) Cr II .09(pr) (Zr II .27(3))</td>
</tr>
<tr>
<td></td>
<td>4.66(0)</td>
<td>4.65(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4224.76(2)</td>
<td>4.84(4)</td>
<td>4.87(2)</td>
<td>4.92(3)</td>
<td>5.01(2)</td>
<td>Cr II .85(20) (Nd II .85(8))</td>
</tr>
<tr>
<td>4225.11(0)</td>
<td>5.17(1)</td>
<td></td>
<td></td>
<td></td>
<td>Gd II .15(100) (V II .23(120))</td>
</tr>
<tr>
<td>4225.31(2)</td>
<td>5.39(2)</td>
<td>5.26(2)</td>
<td>5.36(1)</td>
<td></td>
<td>Sm II .33(400) V II .23(120) (Pr II .33(150))</td>
</tr>
<tr>
<td>4225.68(0)</td>
<td>5.79(0)</td>
<td></td>
<td></td>
<td></td>
<td>Eu II .68(8) (K II .60(40))</td>
</tr>
<tr>
<td>4226.05(1)</td>
<td>6.14(1)</td>
<td>6.15(1)</td>
<td>6.08(1)</td>
<td>6.21(0)</td>
<td></td>
</tr>
<tr>
<td>4226.78(1)</td>
<td>6.80(1)</td>
<td></td>
<td></td>
<td>6.60(1)</td>
<td>Ca I .73(500) Al II .81(35) Eu II .87 (47) (Nd II .99(4)) (Cr I .76(125))</td>
</tr>
<tr>
<td></td>
<td>7.25(1n)</td>
<td>7.16(1n)</td>
<td></td>
<td></td>
<td>Gd II .14(200) (Zr II .34(pr))</td>
</tr>
<tr>
<td>4227.30(5)</td>
<td>7.39(4)</td>
<td>7.40(2n)</td>
<td>7.50(1n)</td>
<td>7.51(1n)</td>
<td>Fe I .43(300) Eu II .40(6) (Al II .50(30)) (Al II .41(8))</td>
</tr>
<tr>
<td>4227.74(1)</td>
<td>7.84(1)</td>
<td></td>
<td></td>
<td>7.79(1)</td>
<td>Ca II .75(100) Cr II .73(1) (Nd II .72(30))</td>
</tr>
<tr>
<td>4228.07(0)</td>
<td>8.06(0)</td>
<td></td>
<td></td>
<td></td>
<td>(Al II .98(20)) (Eu II .04(3)) (Nd II .02(10))</td>
</tr>
<tr>
<td>4228.37(1)</td>
<td>8.33(1)</td>
<td>8.44(1n)</td>
<td>8.30(2)</td>
<td>8.41(3)</td>
<td>Nd II .20(8) Nd II .57(2)</td>
</tr>
<tr>
<td>4228.74(1)</td>
<td>8.72(1)</td>
<td></td>
<td></td>
<td>8.90(0)</td>
<td>Nd II .84(2)</td>
</tr>
<tr>
<td>4229.36(0)</td>
<td>9.27(1)</td>
<td>9.22(1)</td>
<td></td>
<td></td>
<td>Eu II .33(12)</td>
</tr>
<tr>
<td>4229.67(1)</td>
<td>9.63(0)</td>
<td>9.42(2)</td>
<td>9.59(2n)</td>
<td></td>
<td>Sm II .70(300) Eu II .52(5) (Nd II .52(5))</td>
</tr>
<tr>
<td></td>
<td>9.81(1n)</td>
<td>9.99(0)</td>
<td>9.80(0)</td>
<td>9.95(0)</td>
<td>Gd II .80(200) Cr II .81(1)</td>
</tr>
<tr>
<td>4230.33(1)</td>
<td>0.15(1)</td>
<td>0.37(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4231.08(1)</td>
<td>0.84(0)</td>
<td>0.93(0)</td>
<td>0.81(0)</td>
<td>0.74(0)</td>
<td>Eu II .63(127) La II .95(150) Gd II .03(5) (G II .90(35))</td>
</tr>
<tr>
<td>4231.71(1)</td>
<td>1.80(1)</td>
<td></td>
<td>1.62(1)</td>
<td>1.60(0)</td>
<td>Ce II .74(30) (Zr II .64(8)) (Ne II .60(50))</td>
</tr>
<tr>
<td>4232.22(0)</td>
<td></td>
<td></td>
<td>2.22(0)</td>
<td></td>
<td>Nd II .38(150) Tb II .20(20) (Cr I .22(70))</td>
</tr>
<tr>
<td>4232.49(0)</td>
<td>2.53(1)</td>
<td></td>
<td></td>
<td></td>
<td>Gd II .47(40) Eu II .45(12)</td>
</tr>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>4233.11(x)</td>
<td>3.17(x)</td>
<td>3.14(x)</td>
<td>3.20(9)</td>
<td>3.21(9)</td>
<td>Fe II .17(11) Cr II .25(10) (Pr II .13(10))</td>
</tr>
<tr>
<td>4233.51(1)</td>
<td>3.65(1)</td>
<td>3.70(0)</td>
<td></td>
<td></td>
<td>Fe I .61(250)</td>
</tr>
<tr>
<td>4233.87(1n)</td>
<td>3.98(2)</td>
<td>3.95(1n)</td>
<td>3.83(1n)</td>
<td>3.86(3)</td>
<td></td>
</tr>
<tr>
<td>4234.06(1)</td>
<td>4.31(0)</td>
<td></td>
<td>4.25(0)</td>
<td></td>
<td>Eu II .09(8) Nd II .20(6) (Cl II .09(50))</td>
</tr>
<tr>
<td>4234.72(0)</td>
<td>4.53(0)</td>
<td>4.61(1)</td>
<td>4.65(0)</td>
<td></td>
<td>Sm II .57(200) Ce II .73(12) (Y II .55(40))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.87(0)</td>
<td>4.96(0)</td>
<td>4.86(0) Gd II .07(15)</td>
</tr>
<tr>
<td>4235.28(1n)</td>
<td>5.34(2n)</td>
<td>5.29(1)</td>
<td>5.38(2n)</td>
<td>5.37(1n)</td>
<td>Mn (II?) .29(80) (Nd II .23(6))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.71(1) Eu II .72(12)</td>
</tr>
<tr>
<td>4235.86(2)</td>
<td>5.95(2)</td>
<td>5.91(1)</td>
<td>5.86(2)</td>
<td>6.05(1)</td>
<td>Fe I .94(300) Gd II .88(60)</td>
</tr>
<tr>
<td>4236.38(1)</td>
<td>6.47(2)</td>
<td>6.44(1)</td>
<td>6.45(1)</td>
<td>6.48(1)</td>
<td>Eu II .22(8) Pr II .21(25) (Cr II .33(pr)) (Zr II .56(5))</td>
</tr>
<tr>
<td>4236.72(0)</td>
<td>6.66(0)</td>
<td>6.82(1)</td>
<td>6.65(1)</td>
<td></td>
<td>Sm II .74(250) (Pr II .64(10))</td>
</tr>
<tr>
<td>4236.98(0)</td>
<td>7.08(0)</td>
<td>6.97(1)</td>
<td>7.11(0)</td>
<td>6.94(0)</td>
<td></td>
</tr>
<tr>
<td>4237.45(0m)</td>
<td>7.66(1)</td>
<td>7.64(0)</td>
<td>7.31(0)</td>
<td>7.41(1)</td>
<td>Sm II .66(200) Eu II .51(40) (Eu II .54(2)) (Cr I .71(70))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.98(1)</td>
<td>7.95(1)</td>
<td>7.94(1)</td>
</tr>
<tr>
<td>4238.16(1)</td>
<td></td>
<td>8.21(1n)</td>
<td></td>
<td>8.33(0)</td>
<td>La II .38(400) (Eu II .44(2))</td>
</tr>
<tr>
<td>4238.78(3n)</td>
<td>8.78(2n)</td>
<td>8.72(3)</td>
<td>8.75(2)</td>
<td>8.77(1)</td>
<td>Gd II .78(500) Fe I .82(200) (Eu II .69(20)) (Cr II .69(pr))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.26(1) Cr II .31(0)</td>
</tr>
<tr>
<td>4239.69(2n)</td>
<td>9.73(2)</td>
<td>9.75(2)</td>
<td>9.54(1)</td>
<td>9.68(1)</td>
<td>Mn I .72(100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.92(1)</td>
<td>9.93(2)</td>
<td>0.02(0)</td>
</tr>
<tr>
<td>4240.40(1)</td>
<td>0.48(1)</td>
<td>0.51(1)</td>
<td>0.43(2)</td>
<td>0.52(1)</td>
<td>(Eu II .21(a)) (Eu II .38(5))</td>
</tr>
<tr>
<td>4240.64(0)</td>
<td></td>
<td></td>
<td>0.89(1)</td>
<td></td>
<td>Al II .75(15) Eu II .83(6) (Cr I .70(200))</td>
</tr>
<tr>
<td>4241.20(2)</td>
<td>1.12(1)</td>
<td>1.20(1)</td>
<td>1.12(2n)</td>
<td>1.18(3n)</td>
<td>Gd II .28(80) Pr II .02(60) (Nd II .21(a)) (La II .20(15))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.45(1) Gd II .28(80) (Cl II .38(60))</td>
</tr>
<tr>
<td>4241.66(0)</td>
<td>1.72(1)</td>
<td>1.67(0)</td>
<td>1.79(1)</td>
<td>1.87(1)</td>
<td>(Eu II .60(40))</td>
</tr>
<tr>
<td>4242.24(6)</td>
<td>2.29(9)</td>
<td>2.38(6)</td>
<td>2.40(5)</td>
<td>2.46(2)</td>
<td>Cr II .38(30) (W II .47(4)) (Mn II .30(22)) (Tb II .57(12))</td>
</tr>
<tr>
<td>4242.79(1)</td>
<td>2.82(1)</td>
<td>2.94(0)</td>
<td></td>
<td>2.84(1)</td>
<td>Ce II .72(15)</td>
</tr>
<tr>
<td>4243.08(0)</td>
<td>3.12(1)</td>
<td>3.18(0)</td>
<td>3.04(1)</td>
<td>3.08(0)</td>
<td></td>
</tr>
<tr>
<td>4243.43(0)</td>
<td>3.44(0)</td>
<td>3.53(1)</td>
<td></td>
<td></td>
<td>(Pr II .53(20))</td>
</tr>
<tr>
<td>4243.87(3)</td>
<td>3.90(1)</td>
<td></td>
<td>3.63(3)</td>
<td>3.64(3)</td>
<td>Gd II .84(150)</td>
</tr>
<tr>
<td>0.756</td>
<td>1.182</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>4244.37(1)</td>
<td>4.35(1)</td>
<td>4.14(1)</td>
<td>4.15(1)</td>
<td>4.18(1)</td>
<td>Mn II .25(1) Eu II .41(6)</td>
</tr>
<tr>
<td></td>
<td>4.48(1)</td>
<td></td>
<td></td>
<td></td>
<td>Eu II .41(6)</td>
</tr>
<tr>
<td></td>
<td>4.68(0)</td>
<td>4.66(2)</td>
<td></td>
<td></td>
<td>Sm II .70(200)</td>
</tr>
<tr>
<td>4244.88(1)</td>
<td>5.02(1)</td>
<td>5.06(0)</td>
<td>4.91(0)</td>
<td></td>
<td>Ni II .80(1) Cr II .08(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Dy II .79(1)) (Nd II .97(3))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.26(1)</td>
<td>Fe I .26(80) Cr II .08(1)</td>
</tr>
<tr>
<td>4245.36(1)</td>
<td>5.43(1)</td>
<td></td>
<td></td>
<td></td>
<td>Eu II .46(10)</td>
</tr>
<tr>
<td>4245.79(0)</td>
<td></td>
<td>5.71(1)</td>
<td>5.79(1)</td>
<td>5.66(0)</td>
<td>(Eu II .85(3))</td>
</tr>
<tr>
<td>4246.18(1)</td>
<td>5.99(1)</td>
<td></td>
<td></td>
<td>5.99(1)</td>
<td>Fe I .09(80) (Ce II .98(6))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(F II .16(300))</td>
</tr>
<tr>
<td></td>
<td>6.40(2)</td>
<td>6.36(2)</td>
<td>6.46(2)</td>
<td>6.51(2)</td>
<td>Gd II .57(150) Cr II .41(2)</td>
</tr>
<tr>
<td>4246.70(1)</td>
<td>6.76(1)</td>
<td></td>
<td></td>
<td></td>
<td>Ce II .71(320)</td>
</tr>
<tr>
<td>4246.97(0)</td>
<td></td>
<td></td>
<td>6.92(0)</td>
<td></td>
<td>Sc II 83(500) Nd II .88(107)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Cr II .88(1))</td>
</tr>
<tr>
<td>4247.11(0)</td>
<td>7.17(1)</td>
<td>7.19(1)</td>
<td></td>
<td>7.22(1)</td>
<td>Eu II .06(25)</td>
</tr>
<tr>
<td>4247.37(3)</td>
<td>7.44(2)</td>
<td>7.31(0m)</td>
<td>7.33(1)</td>
<td></td>
<td>Fe I .43(200) Dy II .37(20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Nd II .37(200))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.89(1)</td>
<td>Eu II .88(6) Mn II .95(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pr II .66(60)</td>
</tr>
<tr>
<td>4248.07(1)</td>
<td>8.12(1)</td>
<td>8.10(0)</td>
<td>8.10(0m)</td>
<td>8.22(0)</td>
<td>Fe I .23(150)</td>
</tr>
<tr>
<td>4248.55(1)</td>
<td>8.72(1)</td>
<td>8.52(1)</td>
<td>8.71(1)</td>
<td>8.80(1)</td>
<td>Ce II .68(200) (Dy II .44(2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tb II .59(4))</td>
</tr>
<tr>
<td>4248.94(1)</td>
<td></td>
<td></td>
<td>9.02(0)</td>
<td></td>
<td>Pr II .08(10)</td>
</tr>
<tr>
<td>4249.48(0)</td>
<td>9.47(0)</td>
<td>9.50(0)</td>
<td></td>
<td></td>
<td>Pr II .48(15)</td>
</tr>
<tr>
<td>4249.94(1)</td>
<td>0.01(1)</td>
<td></td>
<td></td>
<td>9.51(0)</td>
<td>La II .99(100)</td>
</tr>
<tr>
<td></td>
<td>0.24(1)</td>
<td>0.14(1)</td>
<td>0.27(1n)</td>
<td></td>
<td>Fe I 13(250)</td>
</tr>
<tr>
<td>4250.47(3n)</td>
<td>0.40(2)</td>
<td>0.54(1)</td>
<td>0.40(2n)</td>
<td>0.54(1)</td>
<td>Cr II .51(1) Pr II .40(20)</td>
</tr>
<tr>
<td></td>
<td>0.86(1)</td>
<td>0.84(1)</td>
<td>0.78(0)</td>
<td></td>
<td>(Mo II .60(125)) (Ne II .68(50))</td>
</tr>
<tr>
<td>4251.03(1)</td>
<td>1.17(1)</td>
<td>1.14(0)</td>
<td>1.17(0)</td>
<td>1.14(0)</td>
<td>Fe I .79(400)</td>
</tr>
<tr>
<td>4251.61(1m)</td>
<td>1.77(1)</td>
<td>1.70(1n)</td>
<td>1.71(4)</td>
<td>1.75(5)</td>
<td>Gd II .73(2000) Mn II .77(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Sm II .79(200)) (Pr II .49(20))</td>
</tr>
<tr>
<td>4251.95(2n)</td>
<td>2.16(0)</td>
<td>2.33(0)</td>
<td>2.30(1)</td>
<td>2.29(0)</td>
<td>(Ti II .05(pr))</td>
</tr>
<tr>
<td>4252.50(6)</td>
<td>2.63(4)</td>
<td>2.64(3)</td>
<td>2.68(5)</td>
<td>2.74(3)</td>
<td>Cr II .66(10) (Nd II .44(40))</td>
</tr>
<tr>
<td>4252.95(1)</td>
<td>3.04(1)</td>
<td></td>
<td></td>
<td></td>
<td>Mn II .02(2) (La II .92(4))</td>
</tr>
<tr>
<td>4253.46(2n)</td>
<td>3.54(1)</td>
<td>3.34(1)</td>
<td>3.33(2n)</td>
<td>3.38(3n)</td>
<td>Gd II .37(800) Ce II .36(50)</td>
</tr>
<tr>
<td></td>
<td>3.94(0)</td>
<td>4.11(1)</td>
<td>4.21(0)</td>
<td></td>
<td>Fe I .80(20) (O II .98(100))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Nd II .87(3))</td>
</tr>
<tr>
<td>Wave Length (A)</td>
<td>Identification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4254.35(3)</td>
<td>Cr I .35(5000) Pr II .42(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4254.85(0)</td>
<td>Er (II) .32(82)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4255.16(0)</td>
<td>5.26(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4255.60(2)</td>
<td>Gd II .57(20) Gd II .41(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.76(1)</td>
<td>Ce II .78(60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.79(2)</td>
<td>Cr II .16(5) (Tl I .04(80))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.11(3n)</td>
<td>Ce II .16(5) (Nd II .24(8))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.17(4)</td>
<td>Dy II .97(1) (Dy II .20(3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.24(3)</td>
<td>Sm II .39(400) Dy II .32(80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.40(1)</td>
<td>6.63(0) 6.62(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.84(1)</td>
<td>Nd II .82(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.20(0)</td>
<td>Ce II .12(20) (Eu II .08(4))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.13(0)</td>
<td>Ce II .12(20) (Eu II .08(4))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.54(1)</td>
<td>(S II .42(30))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.69(0)</td>
<td>Mn I .66(100) Eu II .85(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.17(5)</td>
<td>(Nd II .78(4)) (Dy II .72(1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.14(5)</td>
<td>Fe II .16(3) (Eu II .19(8))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.21(7)</td>
<td>Zr II .05(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.22(3n)</td>
<td>Eu II .50(8) Tl I .54(70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.84(0)</td>
<td>8.86(0) 8.96(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.27(2n)</td>
<td>Mn II .26(2) A I .36(1200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.30(3)</td>
<td>(Eu II .22(3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.46(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.87(0)</td>
<td>Ce II .75(15) (Nd II .61(4))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.86(0)</td>
<td>0.21(1) (Eu II .99(2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.43(2)</td>
<td>Fe I .48(400)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00(1)</td>
<td>Eu II .98(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.17(1)</td>
<td>Ce II .16(18) (Cr I .35(125))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.16(2n)</td>
<td>(Eu II .16(2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.26(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50(1)</td>
<td>Tl I .60(70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.55(1)</td>
<td>1.66(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.92(8)</td>
<td>Cr II .91(20) Gd II .09(2500)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.97(9)</td>
<td>(Nd II .82(20)) (Pr II .80(15))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.01(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.57(1)</td>
<td>Gd II .09(2500) (Nd II .24(4))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.57(2n)</td>
<td>(Pr II .31(10))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.77(1)</td>
<td>Sm II .68(300)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.06(1)</td>
<td>Tl I .13(125) Cr I .14(125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.14(0)</td>
<td>Ce II .43(407) (Nd II .44(10))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.22(1n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.29(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.86(3)</td>
<td>Fe II .90(1) (Eu II .80(57))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.81(2)</td>
<td>(Pr II .30(10)) (Gd II .01(5))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.89(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.97(2n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4264.36(1)</td>
<td>4.41(1)</td>
<td>4.51(1)</td>
<td></td>
<td></td>
<td>Ce II .37(107)</td>
</tr>
<tr>
<td>4264.94(0)</td>
<td>4.79(0)</td>
<td>4.60(0)</td>
<td>4.61(1)</td>
<td>4.67(1)</td>
<td>(Eu II .91(3)) (Zr II .91(4))</td>
</tr>
<tr>
<td></td>
<td>5.16(0)</td>
<td>5.24(0)</td>
<td>5.23(0)</td>
<td></td>
<td>Sm II .08(100) Cr II .04(0)</td>
</tr>
<tr>
<td></td>
<td>5.42(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4265.81(1n)</td>
<td>5.90(1)</td>
<td>5.83(0)</td>
<td>6.02(0)</td>
<td>5.93(0)</td>
<td>Mn I .92(100) (Eu II .81(4)) (Dy II .83(1))</td>
</tr>
<tr>
<td></td>
<td>6.16(0)</td>
<td>6.35(0)</td>
<td>6.35(1)</td>
<td>6.42(2)</td>
<td>A I .29(1200) (Cr II .23(pr)) (Eu II .58(47))</td>
</tr>
<tr>
<td>4266.64(1)</td>
<td>6.80(0)</td>
<td>7.00(0)</td>
<td>6.97(0)</td>
<td>6.92(1)</td>
<td>Fe I .97(70) Nd II .72(30) (C II .02(390)) (Zr II .72(1))</td>
</tr>
<tr>
<td>4267.21(1)</td>
<td>7.25(0)</td>
<td></td>
<td>7.23(0)</td>
<td>7.33(1)</td>
<td>C II .27(500)</td>
</tr>
<tr>
<td>4268.14(0n)</td>
<td>8.09(0)</td>
<td>8.05(0)</td>
<td>7.90(0a)</td>
<td>7.93(1)</td>
<td>Ce II .16(500) Fe I .83(125)</td>
</tr>
<tr>
<td></td>
<td>8.54(0)</td>
<td></td>
<td></td>
<td></td>
<td>Eu II .44(3)</td>
</tr>
<tr>
<td>4268.73(3)</td>
<td>8.84(2)</td>
<td>8.94(1)</td>
<td>8.87(1)</td>
<td></td>
<td>Cr II .93(1) Od II .73(150) (Pr II .100(10))</td>
</tr>
<tr>
<td>4269.16(4)</td>
<td>9.32(4)</td>
<td>9.30(4)</td>
<td>9.34(4)</td>
<td>9.38(3)</td>
<td>Cr II .28(10)</td>
</tr>
<tr>
<td>4269.34(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>La II .50(300)</td>
</tr>
<tr>
<td>4269.99(0n)</td>
<td>0.01(1n)</td>
<td>0.06(1)</td>
<td>0.08(0)</td>
<td>0.04(0)</td>
<td>Eu II .24(10) Ce II .19(60) (Ti II .14(30))</td>
</tr>
<tr>
<td>4270.64(4)</td>
<td>0.67(1)</td>
<td></td>
<td>0.47(1n)</td>
<td>0.52(3n)</td>
<td>Eu II .50(127) Eu II .24(10) Nd II .56(25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ce II .72(50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.74(1n) 0.85(2)</td>
</tr>
<tr>
<td>4271.02(3)</td>
<td>1.22(2)</td>
<td>1.21(1)</td>
<td>1.19(1)</td>
<td></td>
<td>Fe I .16(400)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.36(1) 1.42(1)</td>
</tr>
<tr>
<td>4271.67(3)</td>
<td>1.81(3)</td>
<td>1.71(2n)</td>
<td>1.85(4)</td>
<td>1.88(3)</td>
<td>Fe I .76(1000) (Pr II .76(15))</td>
</tr>
<tr>
<td>4272.13(1n)</td>
<td>2.08(1)</td>
<td>2.17(1)</td>
<td>2.24(3)</td>
<td>2.34(2)</td>
<td>Pr II .27(80) (Cr II .19(1200)) (Eu II .11(4))</td>
</tr>
<tr>
<td>4272.56(0)</td>
<td>2.51(0)</td>
<td>2.62(0)</td>
<td>2.61(0)</td>
<td></td>
<td>Ti I .43(40) (Eu II .76(3)) (Nd II .79(30))</td>
</tr>
<tr>
<td>4272.82(0)</td>
<td></td>
<td>2.91(1)</td>
<td>2.94(0)</td>
<td></td>
<td>Eu II .76(3) Nd II .79(30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.04(1) Eu II .06(4) (By II .14(2)) (Tb II .19(3))</td>
</tr>
<tr>
<td>4273.24(6)</td>
<td>3.32(6)</td>
<td>3.29(5)</td>
<td>3.36(6)</td>
<td>3.42(4)</td>
<td>Fe II .32(3)</td>
</tr>
<tr>
<td>4273.62(1)</td>
<td></td>
<td>3.91(0)</td>
<td>4.09(1)</td>
<td>3.84(1)</td>
<td>Zr II .52(4)</td>
</tr>
<tr>
<td>4274.06(1)</td>
<td></td>
<td>4.30(0)</td>
<td>4.40(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4274.59(3)</td>
<td>4.66(2n)</td>
<td>4.60(1)</td>
<td></td>
<td></td>
<td>Ti I .58(100)</td>
</tr>
<tr>
<td>4274.93(1)</td>
<td>4.98(1)</td>
<td>4.87(2n)</td>
<td>4.90(1n)</td>
<td>5.01(0)</td>
<td>Cr I .80(4000) Eu II .86(5) (Nd II .08(10)) (Gd II .03(4))</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4275.43(5)</td>
<td>5.56(4)</td>
<td>5.57(3)</td>
<td>5.62(4)</td>
<td>5.66(2)</td>
<td>Cr II .57(30) (La II .64(100))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Ce II .56(25))</td>
</tr>
<tr>
<td>4276.15(0)</td>
<td>5.97(1)</td>
<td>6.18(0)</td>
<td>6.28(1)</td>
<td>6.31(1)</td>
<td>Eu II .20(30) (Tb II .14(2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Ti I .43(50))</td>
</tr>
<tr>
<td>4276.61(1)</td>
<td>6.59(1n)</td>
<td>6.54(0)</td>
<td>6.86(0)</td>
<td>(Tb II .75(15))</td>
<td>Ti I .43(50)</td>
</tr>
<tr>
<td>4276.96(0)</td>
<td>7.17(0)</td>
<td>7.13(0)</td>
<td>(Nd II .28(6))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4277.44(1)</td>
<td>7.47(1)</td>
<td>7.42(1)</td>
<td>7.45(2)</td>
<td>7.45(1)</td>
<td>(Zr II .37(4)) (Nd II .28(6))</td>
</tr>
<tr>
<td>4278.07(2)</td>
<td>8.13(3n)</td>
<td>8.08(3)</td>
<td>8.20(4)</td>
<td>8.24(3n)</td>
<td>Fe II .13(1) Cr II .10(1)</td>
</tr>
<tr>
<td>4278.62(0)</td>
<td>8.68(0)</td>
<td>8.69(1)</td>
<td>8.73(1)</td>
<td>8.80(1)</td>
<td>Tb II .54(200) Ce II .87(20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(B II .54(30)) (Cr II .94(pr))</td>
</tr>
<tr>
<td>4279.34(0)</td>
<td>9.46(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4279.71(0)</td>
<td>9.64(0)</td>
<td>9.78(1)</td>
<td>9.66(0)</td>
<td>Sm II .68(200)</td>
<td></td>
</tr>
<tr>
<td>4279.97(1)</td>
<td>0.24(1)</td>
<td>0.03(2)</td>
<td>0.23(0)</td>
<td>Ce II .14(15) Pr II .10(30)</td>
<td></td>
</tr>
<tr>
<td>4280.46(1)</td>
<td>0.33(1n)</td>
<td>0.44(2)</td>
<td>0.50(2n)</td>
<td>Gd II .49(1500) Sm II .79(400)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Eu II .36(8)) (Cr II .33(pr))</td>
<td></td>
</tr>
<tr>
<td>4280.98(1)</td>
<td>1.05(1n)</td>
<td>1.00(0)</td>
<td>1.01(1)</td>
<td>Sm II .01(100) (Cr II .03(pr))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Mn II .10(100))</td>
<td></td>
</tr>
<tr>
<td>4281.62(1)</td>
<td>1.59(1)</td>
<td>1.60(0)</td>
<td>1.37(1)</td>
<td>1.37(1)</td>
<td>Ti I .38(80)</td>
</tr>
<tr>
<td>4281.87(0)</td>
<td>1.88(1)</td>
<td>1.80(0)</td>
<td>2.04(1n)</td>
<td>2.02(0)</td>
<td>Eu II .92(8)</td>
</tr>
<tr>
<td>4282.36(4)</td>
<td>2.48(2)</td>
<td>2.42(1)</td>
<td>2.44(3)</td>
<td>2.47(1n)</td>
<td>Fe II .41(600) Mn II .50(3) Pr II .44 (60) (Nd II .57(15)) (Nd II .44(50))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Zr II .21(6))</td>
</tr>
<tr>
<td>4282.95(1)</td>
<td>3.04(1)</td>
<td>3.00(0)</td>
<td>3.29(1)</td>
<td>3.18(0)</td>
<td>Cr II .02(1) (Gd II .79(50))</td>
</tr>
<tr>
<td>4283.56(0)</td>
<td>3.51(0)</td>
<td>3.75(0)</td>
<td>3.76(1)</td>
<td>3.74(0)</td>
<td>Mn II .81(1) (Eu II .87(4))</td>
</tr>
<tr>
<td>4284.09(2)</td>
<td>4.15(2)</td>
<td>4.25(4)</td>
<td>4.32(6)</td>
<td>4.40(3n)</td>
<td>Cr II .21(20) (Mn II .08(40))</td>
</tr>
<tr>
<td>4284.48(1)</td>
<td>4.47(1)</td>
<td></td>
<td></td>
<td></td>
<td>(Gd II .52(100) (Mn II .42(0))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Gd II .57(5))</td>
</tr>
<tr>
<td>4285.35(1)</td>
<td>5.40(1)</td>
<td>5.30(1n)</td>
<td>5.32(1n)</td>
<td>5.38(2n)</td>
<td>Fe II .44(125) Ce II .37(30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Eu II .34(4))</td>
</tr>
<tr>
<td>4285.62(1)</td>
<td>5.58(0)</td>
<td>5.74(0)</td>
<td>Sm II .50(200) (Tb II .74(5))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4286.16(3)</td>
<td>6.19(3n)</td>
<td>6.23(2)</td>
<td>6.32(3)</td>
<td>6.36(2)</td>
<td>Fe II .31(1) Ti I .01(100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cr II .36(1)</td>
</tr>
<tr>
<td>4286.63(1)</td>
<td>6.41(0)</td>
<td></td>
<td></td>
<td></td>
<td>Sm II .64(100) (Eu II .70(4))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Zr II .51(5))</td>
</tr>
<tr>
<td>4287.05(1)</td>
<td>6.98(1)</td>
<td>7.02(1n)</td>
<td>7.06(1)</td>
<td>7.20(1)</td>
<td>La II .97(300) (Tb II .89(8))</td>
</tr>
<tr>
<td>4287.81(2)</td>
<td>7.92(3)</td>
<td>7.75(1n)</td>
<td>7.79(1)</td>
<td>7.89(2)</td>
<td>Ti II .88(30)</td>
</tr>
<tr>
<td>4288.44(3)</td>
<td>8.43(2n)</td>
<td>8.43(2n)</td>
<td>8.34(2n)</td>
<td>8.38(1)</td>
<td>P II .52(50) (Eu II .60(2))</td>
</tr>
<tr>
<td>4289.05(1)</td>
<td>9.09(1)</td>
<td>9.24(0)</td>
<td>8.94(0)</td>
<td>9.18(0)</td>
<td>Ti I .07(125) (Zr II .18(2))</td>
</tr>
<tr>
<td>4289.35(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ce II .45(25)</td>
</tr>
<tr>
<td></td>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>4289.59(1)</td>
<td>9.62(1)</td>
<td>9.65(1)</td>
<td></td>
<td></td>
<td>Cr I .72(3000) Ce II .45(25)</td>
</tr>
<tr>
<td>4290.19(x)</td>
<td>0.20(4n)</td>
<td>0.07(2n)</td>
<td>9.99(6n)</td>
<td>0.02(5)</td>
<td>Ce II .94(300) Gd II .88(80) (Ti II .23(60))</td>
</tr>
<tr>
<td>4290.92(1n)</td>
<td>0.94(1n)</td>
<td>0.89(1)</td>
<td>0.90(1)</td>
<td>0.94(1)</td>
<td>Nd II .96(6)</td>
</tr>
<tr>
<td>4291.63(1n)</td>
<td>1.80(1)</td>
<td>1.61(0)</td>
<td>1.67(1n)</td>
<td>1.64(1)</td>
<td>Fe I .47(125)</td>
</tr>
<tr>
<td>4292.16(0)</td>
<td>2.23(1)</td>
<td>2.25(1)</td>
<td>2.28(1)</td>
<td>2.40(1)</td>
<td>Sm II .18(150) Mn II .25(2) (Eu II .95 (5)) (Eu II .44(6)) (Gd II .31(5))</td>
</tr>
<tr>
<td>4292.80(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gd II .75(25) Ce II .77(4) (Tb II .63(2))</td>
</tr>
<tr>
<td>4293.13(2)</td>
<td>3.04(1n)</td>
<td>2.96(1)</td>
<td>2.91(2)</td>
<td>2.99(2n)</td>
<td>Pr II .14(19) Zr II .14(7)</td>
</tr>
<tr>
<td>4293.52(0)</td>
<td>3.71(0)</td>
<td></td>
<td>3.50(0)</td>
<td></td>
<td>Pr II .58(20)</td>
</tr>
<tr>
<td>4294.07(4)</td>
<td>4.14(3)</td>
<td>4.05(2)</td>
<td>4.04(2)</td>
<td>4.09(3)</td>
<td>Ti II .12(80) Fe I .13(700) (Ti I .12(60))</td>
</tr>
<tr>
<td>4294.72(0)</td>
<td>4.79(1)</td>
<td>4.79(0)</td>
<td>4.81(1)</td>
<td>4.83(2)</td>
<td>Pr II .70(20) Dy II .94(60) Eu II .54(3) Eu II .70(3)</td>
</tr>
<tr>
<td>4295.11(3)</td>
<td>5.17(2)</td>
<td>5.41(0)</td>
<td>5.34(1)</td>
<td>5.43(2)</td>
<td>Dy II .94(60) Eu II .44(15) (Cr II .37(pr))</td>
</tr>
<tr>
<td>4295.62(1)</td>
<td>5.65(0)</td>
<td>5.87(1)</td>
<td></td>
<td></td>
<td>Ti I .76(100) Cr I .76(125)</td>
</tr>
<tr>
<td>4296.09(0)</td>
<td></td>
<td>6.07(2)</td>
<td>6.15(1)</td>
<td></td>
<td>Gd II .08(1000) La II .05(300) Ce II .07(6)</td>
</tr>
<tr>
<td>4296.48(4)</td>
<td>6.49(4n)</td>
<td>6.56(9)</td>
<td>6.62(8)</td>
<td>6.68(3)</td>
<td>Fe II .57(6) Gd II .30(400)</td>
</tr>
<tr>
<td>4296.78(1)</td>
<td>6.86(1)</td>
<td></td>
<td></td>
<td></td>
<td>Ce II .68(200) (Ce II .79(5)) (Gd II .17(400))</td>
</tr>
<tr>
<td>4297.30(1)</td>
<td>7.31(1)</td>
<td>7.19(1)</td>
<td>7.13(1)</td>
<td>7.25(1)</td>
<td>Gd II .17(400) Cr I .05(100) (Nd II .35(8))</td>
</tr>
<tr>
<td></td>
<td>7.58(1)</td>
<td>7.63(1)</td>
<td>7.62(0)</td>
<td>7.58(0)</td>
<td></td>
</tr>
<tr>
<td>4297.85(0)</td>
<td>7.80(1)</td>
<td>7.74(0)</td>
<td></td>
<td></td>
<td>Pr II .76(80) Cr I .74(125) (Nd II .80(30))</td>
</tr>
<tr>
<td></td>
<td>8.07(0)</td>
<td>8.20(0)</td>
<td>8.20(1)</td>
<td>8.29(1n)</td>
<td>Fe I .04(100)</td>
</tr>
<tr>
<td>4298.52(0)</td>
<td>8.41(1)</td>
<td></td>
<td></td>
<td></td>
<td>Gd II .43(30) Ti I .66(125)</td>
</tr>
<tr>
<td></td>
<td>9.04(1)</td>
<td></td>
<td>8.86(1n)</td>
<td></td>
<td>Pr II .92(15)</td>
</tr>
<tr>
<td>4299.19(1n)</td>
<td>9.29(1)</td>
<td>9.21(1)</td>
<td>9.26(2n)</td>
<td>9.21(2)</td>
<td>Fe I .24(300) Ce II .36(60) (F II .18(150))</td>
</tr>
<tr>
<td></td>
<td>9.78(1)</td>
<td></td>
<td>9.84(2)</td>
<td></td>
<td>Cr I .72(100) Nd II .70(10)</td>
</tr>
<tr>
<td>4300.03(4n)</td>
<td>0.07(3)</td>
<td>0.09(3)</td>
<td>0.97(5)</td>
<td>0.02(4)</td>
<td>Ti II .05(100) (A I .10(1200)) (Ce II .33(60) (Mn II .20(1))</td>
</tr>
<tr>
<td>4300.24(1n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ce II .33(60) (Mn II .20(1))</td>
</tr>
<tr>
<td>4300.61(0)</td>
<td>0.73(1n)</td>
<td>0.53(1)</td>
<td>0.44(0n)</td>
<td>0.53(1)</td>
<td>Ce II .33(60) La II .44(60) Cr I .51(100) Ti I .56(125) (Dy II .76(1)) (Dy II .41(1))</td>
</tr>
<tr>
<td>4301.38(0)</td>
<td>1.42(1)</td>
<td>1.30(1)</td>
<td>1.27(0n)</td>
<td>1.38(1)</td>
<td>V II .13(40) (Cr I .18(100)) (Eu II .58(6))</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4301.85(5)</td>
<td>1.97(3)</td>
<td>1.81(2)</td>
<td>1.86(3n)</td>
<td>1.87(3n)</td>
<td>Ti II .93(50) (Pr II .10(60)) (Zr II .82(5))</td>
</tr>
<tr>
<td>4302.58(0)</td>
<td>2.48(1)</td>
<td>2.56(0)</td>
<td>2.44(1)</td>
<td>2.44(1)</td>
<td>Cr II .58(1) (Eu II .57(4))</td>
</tr>
<tr>
<td>4303.13(6)</td>
<td>3.12(6)</td>
<td>3.14(7)</td>
<td>3.20(6n)</td>
<td>3.26(2)</td>
<td>Fe II .17(8)</td>
</tr>
<tr>
<td>4303.64(0)</td>
<td>3.68(1)</td>
<td>3.65(1)</td>
<td>3.52(omn)</td>
<td>3.61(0)</td>
<td>Gd II .47(25) Nd II .57(400)</td>
</tr>
<tr>
<td>4304.19(0)</td>
<td>4.12(1)</td>
<td>4.00(0)</td>
<td>4.11(0)</td>
<td>4.05(0)</td>
<td>Gd II .09(25) (La II .11(10))</td>
</tr>
<tr>
<td>4304.78(0)</td>
<td>4.95(1)</td>
<td>4.94(0n)</td>
<td>4.74(1n)</td>
<td>4.80(1)</td>
<td>Gd II .90(400)</td>
</tr>
<tr>
<td>4305.45(0)</td>
<td>5.52(0)</td>
<td>5.64(1n)</td>
<td>5.70(1)</td>
<td>Fe I .46(100) Pr II .76(100)</td>
<td></td>
</tr>
<tr>
<td>4306.01(1)</td>
<td>6.10(1)</td>
<td>6.17(1)</td>
<td>6.17(1)</td>
<td>Fr II .08(30) Ti I .92(300)</td>
<td></td>
</tr>
<tr>
<td>4306.40(1)</td>
<td>Eu II .38(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4306.90(4n)</td>
<td>6.91(4)</td>
<td>6.91(2)</td>
<td>6.80(3)</td>
<td>6.81(4)</td>
<td>Cr II .95(5)</td>
</tr>
<tr>
<td>4307.36(0)</td>
<td>7.63(1)</td>
<td>7.46(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4307.82(4)</td>
<td>7.90(4)</td>
<td>7.86(4)</td>
<td>7.86(4)</td>
<td></td>
<td>Fe I .91(1000) Ti II .91(100) (Gd II .87(40)) (Nd II .78(15))</td>
</tr>
<tr>
<td>4308.66(1)</td>
<td>8.82(2)</td>
<td>8.88(0)</td>
<td>8.86(2)</td>
<td>8.89(2)</td>
<td>Dy II .62(200) Cr II .82(2) (Tb II .68 (25)) (Eu II .83(3)) (Zr II .94(4))</td>
</tr>
<tr>
<td>4309.06(0)</td>
<td>9.10(0)</td>
<td></td>
<td></td>
<td></td>
<td>Sm II .01(200) (K II .08(40)) (Cl II .06(50))</td>
</tr>
<tr>
<td>4309.71(1)</td>
<td>9.68(2n)</td>
<td>9.61(1n)</td>
<td>9.65(1)</td>
<td>9.72(1)</td>
<td>Cr II .75(3) Ce II .74(50) (Y II .63(50))</td>
</tr>
<tr>
<td>4311.18(1)</td>
<td>1.13(1)</td>
<td>1.31(1)</td>
<td></td>
<td></td>
<td>Eu II .28(3) (Pr II .10(10))</td>
</tr>
<tr>
<td>4311.54(0)</td>
<td>1.68(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4312.04(1)</td>
<td>2.21(1)</td>
<td>1.92(0n)</td>
<td>1.94(3)</td>
<td>2.14(1)</td>
<td>Tb II .09(8) (Zr II .23(3))</td>
</tr>
<tr>
<td>4312.84(4)</td>
<td>2.92(5)</td>
<td>2.89(4n)</td>
<td>2.90(5)</td>
<td>2.92(4n)</td>
<td>Ti II .87(100) (Fe II .03(1))</td>
</tr>
<tr>
<td>4313.82(1)</td>
<td>3.74(1)</td>
<td>3.68(3)</td>
<td>3.65(3)</td>
<td>3.65(3)</td>
<td>Eu II .85(5) (Dy II .89(2))</td>
</tr>
<tr>
<td>4314.30(1n)</td>
<td>4.25(2)</td>
<td>4.27(3)</td>
<td>4.33(4)</td>
<td>4.38(3)</td>
<td>Fe II .29(4) (Nd II .37(8)) (Gd II .28(10)) (Nd II .51(5))</td>
</tr>
<tr>
<td>4314.89(3)</td>
<td>5.02(3)</td>
<td>4.89(2)</td>
<td>4.93(4)</td>
<td>4.97(4)</td>
<td>Ti II .98(20) Fe I .09(500) (Ti I .80(100))</td>
</tr>
</tbody>
</table>

443

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4315.27(1)</td>
<td>5.01(1)</td>
<td>5.43(1)</td>
<td>5.57(1)</td>
<td>5.50(1)</td>
<td>Fe I .09(500)</td>
</tr>
<tr>
<td>4316.01(1n)</td>
<td>6.15(0n)</td>
<td>6.02(0)</td>
<td>6.04(1)</td>
<td>6.11(1)</td>
<td>Gd II .05(600) Gd II .27(150) (La II .90(10))</td>
</tr>
<tr>
<td>4316.77(2)</td>
<td>6.92(2)</td>
<td>6.67(0)</td>
<td>6.68(1)</td>
<td>6.66(0)</td>
<td>Ti II .80(35) (Yb II .97(10))</td>
</tr>
<tr>
<td>4317.23(0)</td>
<td>6.97(0)</td>
<td>7.26(1n)</td>
<td>7.21(0)</td>
<td>Zr II .32(12) (O II .16(150))</td>
<td></td>
</tr>
<tr>
<td>4317.73(1)</td>
<td>7.83(1)</td>
<td>7.77(0n)</td>
<td>7.59(0)</td>
<td>7.64(1)</td>
<td>Eu II .87(8) (Pr II .84(10))</td>
</tr>
<tr>
<td>4318.05(1)</td>
<td>8.24(1)</td>
<td>8.10(1)</td>
<td>8.18(0)</td>
<td>8.30(1)</td>
<td>Fe II .22(0n)</td>
</tr>
<tr>
<td>4318.82(1)</td>
<td>8.81(0)</td>
<td>8.74(0)</td>
<td>8.72(1)</td>
<td>Cr II .77(pr)</td>
<td></td>
</tr>
<tr>
<td>4319.58(2)</td>
<td>9.56(3n)</td>
<td>9.54(2)</td>
<td>9.54(2n)</td>
<td>9.75(2)</td>
<td>Sm II .94(500) (Pr II .00(10))</td>
</tr>
<tr>
<td>4320.21(0)</td>
<td>0.11(1)</td>
<td>0.24(0)</td>
<td>0.35(1n)</td>
<td>(Eu II .16(2))</td>
<td></td>
</tr>
<tr>
<td>4320.81(2)</td>
<td>0.84(2n)</td>
<td>0.75(1)</td>
<td>0.74(2n)</td>
<td>0.92(1)</td>
<td>Ti II .96(40) Ce II .72(60) (Sc II .74(40)) (Cr I .59(125))</td>
</tr>
<tr>
<td>4321.19(2)</td>
<td>1.32(1)</td>
<td>1.23(1)</td>
<td>1.40(1)</td>
<td>Gd II .11(200) Fe II .34(1n)</td>
<td></td>
</tr>
<tr>
<td>4321.95(1)</td>
<td>2.06(1n)</td>
<td>1.97(0)</td>
<td>2.18(0)</td>
<td>Gd II .20(125) (Eu II .87(4)) (DY II .19(11))</td>
<td></td>
</tr>
<tr>
<td>4323.09(1)</td>
<td>3.13(1n)</td>
<td>2.91(1)</td>
<td>2.89(1)</td>
<td>(Sm II .28(200))</td>
<td></td>
</tr>
<tr>
<td>3.80(0)</td>
<td>3.78(0)</td>
<td>3.62(0)</td>
<td>Pr II .55(25) (Tb II .65(15)) (Zr II .62(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4324.00(1n)</td>
<td>4.34(0)</td>
<td>4.36(0)</td>
<td>Eu II .31(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4324.75(1)</td>
<td>4.91(1)</td>
<td>4.97(1)</td>
<td>4.91(1)</td>
<td>4.98(2)</td>
<td>Eu II .14(40)</td>
</tr>
<tr>
<td>4325.64(4)</td>
<td>5.57(4n)</td>
<td>5.58(4n)</td>
<td>5.55(5)</td>
<td>5.58(5)</td>
<td>Fe I .76(1000) Gd II .57(200) (Nd II .77(150)) (Tb II .82(60)) (Zr II .64(3))</td>
</tr>
<tr>
<td>6.16(0)</td>
<td>6.13(1)</td>
<td>Eu II .13(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4326.38(1)</td>
<td>Gd II .32(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4326.54(1)</td>
<td>6.60(2)</td>
<td>6.65(1)</td>
<td>6.62(1n)</td>
<td>6.61(1) (Mn II .71(3)) (Ce II .83(15))</td>
<td></td>
</tr>
<tr>
<td>4327.08(1)</td>
<td>7.19(0)</td>
<td>7.11(0)</td>
<td>Gd II .12(1500) Fe I .10(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4327.93(1n)</td>
<td>8.15(0)</td>
<td>7.84(1)</td>
<td>7.84(1n)</td>
<td>Nd II .93(30) (Tb II .08(1))</td>
<td></td>
</tr>
<tr>
<td>4328.96(1)</td>
<td>9.04(0)</td>
<td>8.72(0n)</td>
<td>8.83(2)</td>
<td>Dy II .90(20) Sm II .02(400) (Cr II .91(pr)) (Pr II .98(20))</td>
<td></td>
</tr>
<tr>
<td>4329.59(0)</td>
<td>9.43(0)</td>
<td>Pr II .42(25)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.76(1)</td>
<td>(DY II .89(1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4330.19(0)</td>
<td>0.30(1n)</td>
<td>0.27(0)</td>
<td>0.25(1)</td>
<td>0.12(0)</td>
<td>Ti II .24(40) Gd II .32(20)</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4330.50(3n)</td>
<td>0.73(1n)</td>
<td>0.51(2n)</td>
<td>0.46(2n)</td>
<td>Gd II .61(600) Ti II .71(30)</td>
<td></td>
</tr>
<tr>
<td>4331.47(0)</td>
<td>Fe II .53(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.70(0)</td>
<td>1.68(0)</td>
<td>1.62(1)</td>
<td>M I .64(200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4332.55(0)</td>
<td>Cr I .57(125) (Eu II .40(2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.80(0)</td>
<td>2.76(0)</td>
<td>(Eu II .85(3))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4333.42(0)</td>
<td>Zr II .28(15) (A I .56(1000))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4334.20(1)</td>
<td>Sm II .15(400) Pr II .91(100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.05(0)</td>
<td>3.98(1)</td>
<td>La II .76(500) (Eu II .16(6))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.63(0)</td>
<td>4.62(0)</td>
<td>Pr II .62(15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4334.88(0)</td>
<td>La II .96(100) Eu II .75(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4336.34(0)</td>
<td>6.24(0)</td>
<td>6.37(1)</td>
<td>Ce II .26(50) Eu II .44(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cl II .26(45))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4337.12(0)</td>
<td>Fe I .05(400) (Ho II .13(4))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.04(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4337.84(1)</td>
<td>Ti II .92(125) Ce II .78(125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.91(0)</td>
<td>7.84(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.97(1n)</td>
<td>(La II .78(10)) (Zr II .63(5))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4338.65(0)</td>
<td>Nd II .70(80) Pr II .69(25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.62(0)</td>
<td>(Fe II .70(pr))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4339.23(0)</td>
<td>Ce II .32(30) (Cr I .45(300),</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.35(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4340.43(1n)</td>
<td>0.44(1n)</td>
<td>0.45(1n)</td>
<td>0.45(1n)</td>
<td>0.46(1n)</td>
<td></td>
</tr>
<tr>
<td>H γ .48(200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4341.74(0)</td>
<td>1.73(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.77(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.24(0)</td>
<td>Gd II .18(1500) Fe II .36(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Nd II .07(20))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4342.66(0)</td>
<td>2.64(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb II .50(30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4343.18(1)</td>
<td>3.16(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.32(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4344.12(1n)</td>
<td>3.98(1)</td>
<td>4.03(1)</td>
<td>4.09(2)</td>
<td>4.07(0n)</td>
<td></td>
</tr>
<tr>
<td>Gd II .30(100) Ti II .29(50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn II .99(2) Pr II .33(40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Zb II .20(3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4344.63(0)</td>
<td>4.52(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.64(0)</td>
<td>Gd II .49(40) Cr I .51(400)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.37(0)</td>
<td>5.13(0)</td>
<td>5.15(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A λ .17(1000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4345.57(0)</td>
<td>5.66(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.65(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(O II .57(125)) (Mn II .60(pr)?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4346.38(1n)</td>
<td>6.42(1n)</td>
<td>6.37(0)</td>
<td>6.33(0)</td>
<td>6.38(1)</td>
<td></td>
</tr>
<tr>
<td>(Br II .33(1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4347.34(1n)</td>
<td>7.41(1)</td>
<td>7.40(1)</td>
<td>7.52(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gd II .31(400) (Pr II .49(30))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4347.79(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4348.53(1n)</td>
<td>8.34(0)</td>
<td>8.66(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.30(0)</td>
<td>Mn II .49(1) (Tb II .34(3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4349.08(1)</td>
<td>8.97(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
TABLE 3 -- Continued

<table>
<thead>
<tr>
<th></th>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4349.46(0)</td>
<td>9.56(0)</td>
<td>9.54(0)</td>
<td>(O II .44(300))</td>
<td>(Eu II .49(2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4349.80(1)</td>
<td>9.91(0)</td>
<td>9.64(0)</td>
<td>9.73(0)</td>
<td>9.75(0)</td>
<td>Ce II .79(100)</td>
<td></td>
</tr>
<tr>
<td>4350.35(1)</td>
<td>0.39(1)</td>
<td>0.63(1)</td>
<td>0.53(0)</td>
<td></td>
<td>Sm II .46(300) Pr II .40(20)</td>
<td></td>
</tr>
<tr>
<td>4350.75(2)</td>
<td>0.92(1)</td>
<td>0.97(1)</td>
<td>0.77(0)</td>
<td>0.69(0)</td>
<td>Ti II .83(30) (Cr I .05(100))</td>
<td></td>
</tr>
<tr>
<td>4351.23(0)</td>
<td></td>
<td>1.45(0)</td>
<td></td>
<td></td>
<td>(Eu II .26(4) Nd II .30(40)</td>
<td></td>
</tr>
<tr>
<td>4351.67(7)</td>
<td>1.73(7)</td>
<td>1.75(9)</td>
<td>1.82(9)</td>
<td>1.88(8)</td>
<td>Fe II .76(9) (Cr I .77(300))</td>
<td></td>
</tr>
<tr>
<td>4351.96(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pr II .85(50)) (Tb II .57(8))</td>
<td></td>
</tr>
<tr>
<td>4352.53(2)</td>
<td>2.60(2)</td>
<td>2.56(3)</td>
<td>2.63(3)</td>
<td>2.67(2n)</td>
<td>Fe I .74(300) Ce II .73(75)</td>
<td></td>
</tr>
<tr>
<td>4353.35(1)</td>
<td>3.36(1)</td>
<td>3.29(1n)</td>
<td>3.41(0)</td>
<td>3.43(1n)</td>
<td>Tb II .19(50) (Eu II .51(2))</td>
<td></td>
</tr>
<tr>
<td>4354.24(3)</td>
<td>4.34(2)</td>
<td>4.26(2)</td>
<td>4.26(1)</td>
<td>4.30(2)</td>
<td>Fe II .36(2) (Gd II .06(40))</td>
<td></td>
</tr>
<tr>
<td>4354.95(1)</td>
<td>5.02(0)</td>
<td>4.90(0)</td>
<td>4.97(1n)</td>
<td>5.17(3n)</td>
<td>(Pr II .91(15))</td>
<td></td>
</tr>
<tr>
<td>4355.36(6)</td>
<td>5.40(3)</td>
<td>5.36(1)</td>
<td>5.40(1n)</td>
<td></td>
<td>Eu II .09(300) (Nd II .35(2))</td>
<td></td>
</tr>
<tr>
<td>4355.71(0)</td>
<td>5.50(1)</td>
<td>5.53(1)</td>
<td>5.62(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4356.04(1)</td>
<td>6.08(0)</td>
<td>6.14(1)</td>
<td></td>
<td></td>
<td>(Nd II .02(10))</td>
<td></td>
</tr>
<tr>
<td>4356.61(3)</td>
<td>6.69(2)</td>
<td>6.79(1n)</td>
<td>6.78(0)</td>
<td></td>
<td>Gd II .74(10)</td>
<td></td>
</tr>
<tr>
<td>4357.45(5)</td>
<td>7.57(3)</td>
<td>7.53(3)</td>
<td>7.56(3)</td>
<td>7.67(2)</td>
<td>Fe II .57(4)</td>
<td></td>
</tr>
<tr>
<td>4358.17(1)</td>
<td>8.22(1)</td>
<td>8.24(1)</td>
<td>8.20(2)</td>
<td>8.28(1)</td>
<td>Nd II .17(200)</td>
<td></td>
</tr>
<tr>
<td>4358.54(1)</td>
<td>8.57(0)</td>
<td>8.79(1)</td>
<td>8.65(0)</td>
<td></td>
<td>Dy II .46(60) Fe I .50(70)</td>
<td></td>
</tr>
<tr>
<td>4358.94(0)</td>
<td></td>
<td>8.93(1)</td>
<td></td>
<td></td>
<td>(Nd II .70(15))</td>
<td></td>
</tr>
<tr>
<td>4359.14(0)</td>
<td>9.04(0)</td>
<td>9.13(0)</td>
<td>9.00(0)</td>
<td>9.08(1)</td>
<td>Pr II .11(15) Gd II .15(40)</td>
<td></td>
</tr>
<tr>
<td>4359.73(2)</td>
<td>9.71(1n)</td>
<td>9.63(0)</td>
<td>9.55(1)</td>
<td>9.64(0)</td>
<td>Gd II .64(30) Pr II .80(30)</td>
<td></td>
</tr>
<tr>
<td>4360.28(1)</td>
<td>0.21(1)</td>
<td>0.35(1n)</td>
<td>0.99(0)</td>
<td>0.95(1)</td>
<td>Ce II .16(25)</td>
<td></td>
</tr>
<tr>
<td>4361.15(4n)</td>
<td>1.26(3)</td>
<td>1.20(4n)</td>
<td>1.26(4)</td>
<td>1.29(3)</td>
<td>Fe II .25(2) Gd II .92(250)</td>
<td></td>
</tr>
<tr>
<td>4361.45(1)</td>
<td>1.99(1)</td>
<td>1.92(1)</td>
<td>1.94(2n)</td>
<td></td>
<td>Sm II .04(300) Ni II .10(1)</td>
<td></td>
</tr>
</tbody>
</table>

446
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4362.21(1)</td>
<td>2.38(0)</td>
<td>2.31(0)</td>
<td>2.37(1n)</td>
<td>(Er II .43(2)) (Gd II .30(4))</td>
<td></td>
</tr>
<tr>
<td>4362.82(2)</td>
<td>2.97(2)</td>
<td>2.87(1)</td>
<td>2.97(2)</td>
<td>2.95(1)</td>
<td>Cr II .93(3) (Pr II .98(10))</td>
</tr>
<tr>
<td>(La II .05(50))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4363.51(3n)</td>
<td>3.61(1)</td>
<td>3.62(0)</td>
<td>3.34(2)</td>
<td>3.39(4)</td>
<td>No II .64(200) (Pr II .22(10))</td>
</tr>
<tr>
<td>4364.21(1)</td>
<td>4.26(1)</td>
<td>4.00(1)</td>
<td>4.07(2)</td>
<td>(Nd II .14(10)) Dy II .28(40)</td>
<td></td>
</tr>
<tr>
<td>(Ho II .38(12))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4364.63(1)</td>
<td>4.80(1)</td>
<td>4.57(0)</td>
<td>4.65(1)</td>
<td>4.76(1)</td>
<td>Ce II .66(125) (La II .66(100))</td>
</tr>
<tr>
<td>(Eu II .18(2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4365.09(1)</td>
<td>5.54(0)</td>
<td>5.32(0)</td>
<td>5.40(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4366.15(2)</td>
<td>6.15(1)</td>
<td>5.97(0)</td>
<td>5.97(2n)</td>
<td>6.06(1n)</td>
<td>Fe II .16(tr) (Nd II .32(12))</td>
</tr>
<tr>
<td>(Nd II .39(8)) (Tb II .01(3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4367.01(1)</td>
<td>7.07(0)</td>
<td>6.76(1)</td>
<td>6.79(1)</td>
<td>6.81(4)</td>
<td>(O II .91(100))</td>
</tr>
<tr>
<td>7.37(0)</td>
<td>7.54(0n)</td>
<td>Gd II .31(15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4367.60(3)</td>
<td>7.75(2)</td>
<td>7.52(1)</td>
<td>7.60(2)</td>
<td>7.74(2n)</td>
<td>Ti II .66(25) Fe I .58(100)</td>
</tr>
<tr>
<td>(Ru II .54(3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4368.01(2)</td>
<td>8.14(2)</td>
<td>8.01(1)</td>
<td>Fe I .91(60) Sm II .09(150)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ru II .89(2)) (Gd II .03(4))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4368.30(0)</td>
<td>8.36(1)</td>
<td>8.24(2)</td>
<td>8.36(1)</td>
<td>Fe II .26(1) Pr II .33(150)</td>
<td></td>
</tr>
<tr>
<td>(O I .30(1000)) (Ce II .23(87))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ru II .42(8))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4368.72(0)</td>
<td>8.66(0)</td>
<td>8.80(0)</td>
<td>Nd II .63(60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4369.28(3)</td>
<td>9.34(3n)</td>
<td>9.39(4n)</td>
<td>9.48(5n)</td>
<td>9.53(3n)</td>
<td>Fe II .40(2) Eu II .47(40)</td>
</tr>
<tr>
<td>(Cl I .52(12))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4369.56(1)</td>
<td>Eu II .47(40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4369.78(1n)</td>
<td>9.79(1n)</td>
<td>9.87(0)</td>
<td>Fe I .77(200) Gd II .77(500)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ne II .77(70))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4370.40(0)</td>
<td>0.38(1)</td>
<td>0.44(1)</td>
<td>0.23(0)</td>
<td>Eu II .34(20)</td>
<td></td>
</tr>
<tr>
<td>4370.97(2n)</td>
<td>0.88(1)</td>
<td>0.95(1n)</td>
<td>0.96(1)</td>
<td>0.81(3)</td>
<td>Pr II .80(8) Zr II .96(8)</td>
</tr>
<tr>
<td>(Tb II .93(5)) (Nd II .07(10))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.06(2n)</td>
<td>Nd II .07(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.71(1)</td>
<td>Pr II .61(40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4371.89(3n)</td>
<td>1.99(1n)</td>
<td>1.93(1n)</td>
<td>1.90(0)</td>
<td>1.90(1)</td>
<td></td>
</tr>
<tr>
<td>4372.30(1n)</td>
<td>2.34(1)</td>
<td>2.22(0)</td>
<td>2.27(1)</td>
<td>Ce II .40(87) Eu II .20(8)</td>
<td></td>
</tr>
<tr>
<td>(Nd II .28(8)) (Nd II .14(3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4372.92(1)</td>
<td>3.05(1)</td>
<td>2.87(0)</td>
<td>2.92(0)</td>
<td>2.86(1)</td>
<td>(Nd II .73(4))</td>
</tr>
<tr>
<td>4373.47(1)</td>
<td>3.59(1)</td>
<td>3.58(1)</td>
<td>3.57(1)</td>
<td>3.52(1)</td>
<td>Fe I .57(50) Sm II .46(100)</td>
</tr>
<tr>
<td>(Ru II .45(3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4373.79(0)</td>
<td>3.87(0)</td>
<td>Ce II .82(50) Pr II .82(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>TABLE 3 -- Continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.756</td>
</tr>
<tr>
<td>4374.28(1)</td>
</tr>
<tr>
<td>4374.78(3)</td>
</tr>
<tr>
<td>4375.31(1)</td>
</tr>
<tr>
<td>4375.94(1)</td>
</tr>
<tr>
<td>4376.31(1)</td>
</tr>
<tr>
<td>4377.08(2n)</td>
</tr>
<tr>
<td>4377.70(0)</td>
</tr>
<tr>
<td>4378.20(1)</td>
</tr>
<tr>
<td>4379.01(1)</td>
</tr>
<tr>
<td>4379.79(1n)</td>
</tr>
<tr>
<td>4380.72(1)</td>
</tr>
<tr>
<td>4381.18(0)</td>
</tr>
<tr>
<td>4381.67(2)</td>
</tr>
<tr>
<td>4382.21(2)</td>
</tr>
<tr>
<td>4382.41(1)</td>
</tr>
<tr>
<td>4382.99(1)</td>
</tr>
<tr>
<td>4383.42(5)</td>
</tr>
<tr>
<td>4384.11(7)</td>
</tr>
<tr>
<td>4384.50(0)</td>
</tr>
<tr>
<td>4385.31(9)</td>
</tr>
<tr>
<td>4386.09(1)</td>
</tr>
<tr>
<td>4386.53(1n)</td>
</tr>
<tr>
<td>4386.80(6n)</td>
</tr>
<tr>
<td>4387.66(1)</td>
</tr>
<tr>
<td>4388.23(2)</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th></th>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4388.94(ln)</td>
<td>9.01(ln)</td>
<td>8.98(0)</td>
<td>9.04(1)</td>
<td>9.06(1)</td>
<td>(Zr II .50(2))</td>
<td></td>
</tr>
<tr>
<td>4389.71(ln)</td>
<td>9.40(0)</td>
<td>9.50(0m)</td>
<td>9.51(1)</td>
<td>9.53(1)</td>
<td>(Er II .69(1))</td>
<td></td>
</tr>
<tr>
<td>4390.47(3)</td>
<td>0.54(1)</td>
<td>0.44(0)</td>
<td>0.62(1)</td>
<td>0.63(1)</td>
<td>(Eu II .76(25))</td>
<td></td>
</tr>
<tr>
<td>4391.04(3)</td>
<td>1.15(1)</td>
<td>0.86(1)</td>
<td>0.90(2n)</td>
<td>(Gd II .95(300))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4391.64(4)</td>
<td>1.76(2)</td>
<td>1.70(1)</td>
<td>1.62(1n)</td>
<td>1.69(1n)</td>
<td>(Gd II .66(250))</td>
<td></td>
</tr>
<tr>
<td>4392.16(1)</td>
<td>2.15(0)</td>
<td>1.94(0)</td>
<td>(Ho II .94(150))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4392.56(1)</td>
<td>2.54(1)</td>
<td>2.58(0)</td>
<td>2.59(0)</td>
<td>2.42(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4393.10(2)</td>
<td>3.18(1)</td>
<td>3.05(0)</td>
<td>2.92(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4393.62(2)</td>
<td>3.72(1)</td>
<td>3.91(2)</td>
<td>3.96(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4394.02(3)</td>
<td>4.15(2)</td>
<td>4.09(1)</td>
<td>4.16(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4395.06(6)</td>
<td>5.10(3)</td>
<td>5.01(2n)</td>
<td>4.94(4n)</td>
<td>4.96(5n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4395.76(5)</td>
<td>5.84(3)</td>
<td>5.77(2n)</td>
<td>5.78(4n)</td>
<td>5.82(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4396.57(0)</td>
<td>6.45(1)</td>
<td>6.54(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4397.10(0)</td>
<td>6.89(1)</td>
<td>6.92(1)</td>
<td>6.81(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4397.59(0)</td>
<td>7.38(1)</td>
<td>7.41(1)</td>
<td>Gd II .51(300)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4397.88(0)</td>
<td>7.88(0n)</td>
<td>Y II .01(100)</td>
<td>Eu II .70(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4398.25(3)</td>
<td>8.29(1)</td>
<td>8.06(1n)</td>
<td>8.10(2n)</td>
<td>8.08(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4398.78(0)</td>
<td>8.87(1)</td>
<td>8.98(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4399.14(1)</td>
<td>9.31(1)</td>
<td>9.05(1)</td>
<td>9.08(1n)</td>
<td>9.19(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4399.71(4)</td>
<td>9.85(3)</td>
<td>9.82(2)</td>
<td>9.66(2)</td>
<td>9.72(2n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4400.13(1)</td>
<td>0.25(1)</td>
<td>0.31(0)</td>
<td>0.24(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Element</th>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd II</td>
<td>0.59(0)</td>
<td>0.59(0)</td>
<td>0.73(1)</td>
<td>0.85(2n)</td>
<td>0.83(100)</td>
<td></td>
</tr>
<tr>
<td>Fe I</td>
<td>1.43(5)</td>
<td>1.43(5)</td>
<td>2.07(0)</td>
<td>2.07(0)</td>
<td>2.07(0)</td>
<td>(Fe I .30(60))</td>
</tr>
<tr>
<td>Ta II</td>
<td>2.35(0)</td>
<td>2.35(0)</td>
<td>2.35(0)</td>
<td>2.35(0)</td>
<td>2.35(0)</td>
<td></td>
</tr>
<tr>
<td>Pr II</td>
<td>3.05(3)</td>
<td>3.05(3)</td>
<td>3.05(3)</td>
<td>3.05(3)</td>
<td>3.05(3)</td>
<td>(Pr II .87(82))</td>
</tr>
<tr>
<td>Sm II</td>
<td>3.50(2)</td>
<td>3.50(2)</td>
<td>3.50(2)</td>
<td>3.50(2)</td>
<td>3.50(2)</td>
<td>(Sm II .36(100))</td>
</tr>
<tr>
<td>Ce II</td>
<td>3.74(0)</td>
<td>3.74(0)</td>
<td>3.74(0)</td>
<td>3.74(0)</td>
<td>3.74(0)</td>
<td>(Ce II .28(19))</td>
</tr>
<tr>
<td>Eu II</td>
<td>4.22(0)</td>
<td>4.22(0)</td>
<td>4.22(0)</td>
<td>4.22(0)</td>
<td>4.22(0)</td>
<td>(Eu II .28(19))</td>
</tr>
<tr>
<td>Dy II</td>
<td>5.11(4n)</td>
<td>5.11(4n)</td>
<td>5.11(4n)</td>
<td>5.11(4n)</td>
<td>5.11(4n)</td>
<td>(Dy II .28(19))</td>
</tr>
<tr>
<td>Gd II</td>
<td>5.43(1)</td>
<td>5.43(1)</td>
<td>5.43(1)</td>
<td>5.43(1)</td>
<td>5.43(1)</td>
<td>(Gd II .28(19))</td>
</tr>
<tr>
<td>Eu II</td>
<td>5.96(1)</td>
<td>5.96(1)</td>
<td>5.96(1)</td>
<td>5.96(1)</td>
<td>5.96(1)</td>
<td>(Eu II .28(19))</td>
</tr>
<tr>
<td>Ce II</td>
<td>6.00(1)</td>
<td>6.00(1)</td>
<td>6.00(1)</td>
<td>6.00(1)</td>
<td>6.00(1)</td>
<td>(Ce II .28(19))</td>
</tr>
<tr>
<td>Nd II</td>
<td>7.40(1)</td>
<td>7.40(1)</td>
<td>7.40(1)</td>
<td>7.40(1)</td>
<td>7.40(1)</td>
<td>(Nd II .28(19))</td>
</tr>
<tr>
<td>Fe I</td>
<td>7.74(2)</td>
<td>7.74(2)</td>
<td>7.74(2)</td>
<td>7.74(2)</td>
<td>7.74(2)</td>
<td>(Fe I .72(100))</td>
</tr>
<tr>
<td>Dy II</td>
<td>7.91(1)</td>
<td>7.91(1)</td>
<td>7.91(1)</td>
<td>7.91(1)</td>
<td>7.91(1)</td>
<td>(Dy II .72(100))</td>
</tr>
<tr>
<td>Gd II</td>
<td>8.31(3)</td>
<td>8.31(3)</td>
<td>8.31(3)</td>
<td>8.31(3)</td>
<td>8.31(3)</td>
<td>(Gd II .72(100))</td>
</tr>
<tr>
<td>Fe I</td>
<td>8.86(1)</td>
<td>8.86(1)</td>
<td>8.86(1)</td>
<td>8.86(1)</td>
<td>8.86(1)</td>
<td>(Fe I .72(100))</td>
</tr>
<tr>
<td>Pr II</td>
<td>9.29(1)</td>
<td>9.29(1)</td>
<td>9.29(1)</td>
<td>9.29(1)</td>
<td>9.29(1)</td>
<td>(Pr II .72(100))</td>
</tr>
<tr>
<td>Ta II</td>
<td>9.78(4)</td>
<td>9.78(4)</td>
<td>9.78(4)</td>
<td>9.78(4)</td>
<td>9.78(4)</td>
<td>(Ta II .72(100))</td>
</tr>
<tr>
<td>Dy II</td>
<td>10.21(8)</td>
<td>10.21(8)</td>
<td>10.21(8)</td>
<td>10.21(8)</td>
<td>10.21(8)</td>
<td>(Dy II .72(100))</td>
</tr>
<tr>
<td>Gd II</td>
<td>10.52(10)</td>
<td>10.52(10)</td>
<td>10.52(10)</td>
<td>10.52(10)</td>
<td>10.52(10)</td>
<td>(Gd II .72(100))</td>
</tr>
<tr>
<td>Eu II</td>
<td>10.51(20)</td>
<td>10.51(20)</td>
<td>10.51(20)</td>
<td>10.51(20)</td>
<td>10.51(20)</td>
<td>(Eu II .72(100))</td>
</tr>
<tr>
<td>Ce II</td>
<td>0.28(1)</td>
<td>0.28(1)</td>
<td>0.28(1)</td>
<td>0.28(1)</td>
<td>0.28(1)</td>
<td>(Ce II .25(2))</td>
</tr>
<tr>
<td>Nd II</td>
<td>0.36(0)</td>
<td>0.36(0)</td>
<td>0.36(0)</td>
<td>0.36(0)</td>
<td>0.36(0)</td>
<td>(Nd II .25(2))</td>
</tr>
<tr>
<td>La II</td>
<td>0.81(2)</td>
<td>0.81(2)</td>
<td>0.81(2)</td>
<td>0.81(2)</td>
<td>0.81(2)</td>
<td>(La II .51(20))</td>
</tr>
<tr>
<td>Nd II</td>
<td>1.17(1)</td>
<td>1.17(1)</td>
<td>1.17(1)</td>
<td>1.17(1)</td>
<td>1.17(1)</td>
<td>(Nd II .51(20))</td>
</tr>
<tr>
<td>Nd II</td>
<td>1.60(0)</td>
<td>1.60(0)</td>
<td>1.60(0)</td>
<td>1.60(0)</td>
<td>1.60(0)</td>
<td>(Nd II .51(20))</td>
</tr>
<tr>
<td>Eu II</td>
<td>1.93(0)</td>
<td>1.93(0)</td>
<td>1.93(0)</td>
<td>1.93(0)</td>
<td>1.93(0)</td>
<td>(Eu II .51(20))</td>
</tr>
<tr>
<td>(Eu II .51(20))</td>
<td>2.11(0)</td>
<td>2.11(0)</td>
<td>2.11(0)</td>
<td>2.11(0)</td>
<td>2.11(0)</td>
<td>(Eu II .51(20))</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Wavelength (Å)</th>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4412.84(0m)</td>
<td>2.91(0)</td>
<td>2.85(0)</td>
<td>2.85(0)</td>
<td>(Eu II .98(2)?)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4413.52(3n)</td>
<td>3.60(3)</td>
<td>3.57(3n)</td>
<td>3.66(2)</td>
<td>3.74(1)</td>
<td>Fe II .60(0) Pr II .76(50)</td>
<td></td>
</tr>
<tr>
<td>4413.95(1)</td>
<td>4.04(0)</td>
<td>4.12(0)</td>
<td></td>
<td></td>
<td>(Nd II .78(57))</td>
<td></td>
</tr>
<tr>
<td>4414.56(3n)</td>
<td>4.55(1)</td>
<td>4.41(0)</td>
<td>4.36(2)</td>
<td>4.40(3)</td>
<td>Eu II .64(6) Pr II .60(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Nd II .43(8)) (Er II .54(5))</td>
<td></td>
</tr>
<tr>
<td>4414.95(1)</td>
<td>4.95(1)</td>
<td>4.91(0)</td>
<td>(0)</td>
<td>0.89(300)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4415.50(2)</td>
<td>5.20(1)</td>
<td>5.10(2)</td>
<td>5.14(1)</td>
<td>5.20(1)</td>
<td>Fe I .12(600)</td>
<td></td>
</tr>
<tr>
<td>4415.53(0)</td>
<td>5.63(0)</td>
<td>5.70(1)</td>
<td>5.79(1)</td>
<td>5.88(1)</td>
<td>Sc II .56(25)</td>
<td></td>
</tr>
<tr>
<td>4415.93(1)</td>
<td>6.10(1n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4416.27(1n)</td>
<td>6.12(0)</td>
<td>6.17(1)</td>
<td>6.19(0m)</td>
<td>6.14(1)</td>
<td>Tb II .28(20)</td>
<td></td>
</tr>
<tr>
<td>4416.73(4)</td>
<td>6.78(6)</td>
<td>6.77(8)</td>
<td>6.83(4)</td>
<td>6.90(4)</td>
<td>Fe II .82(7) (Nd II .88(15))</td>
<td></td>
</tr>
<tr>
<td>4417.67(4)</td>
<td>7.73(3n)</td>
<td>7.72(2)</td>
<td>7.62(2)</td>
<td>7.64(3n)</td>
<td>Ti II .72(80) Sm II .58(80)</td>
<td></td>
</tr>
<tr>
<td>4418.25(2)</td>
<td>8.36(2)</td>
<td>8.26(1)</td>
<td>8.24(1)</td>
<td>8.32(1n)</td>
<td>Ti II .34(20) (Nd II .05(1))</td>
<td></td>
</tr>
<tr>
<td>4418.85(2n)</td>
<td>8.94(2)</td>
<td>8.84(2n)</td>
<td>8.90(3)</td>
<td>8.91(4)</td>
<td>Ce II .78(200) Gd II .03(800)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pr II .06(25)) (La II .16(30))</td>
<td></td>
</tr>
<tr>
<td>4419.65(3n)</td>
<td>9.61(2n)</td>
<td>9.59(2)</td>
<td>9.61(3)</td>
<td>9.59(2)</td>
<td>Pr II .67(30) Eu II .66(8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Er II?) .61(54) (Fe III .60(10))</td>
<td></td>
</tr>
<tr>
<td>4420.23(0)</td>
<td>0.31(0)</td>
<td></td>
<td>0.10(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4420.76(1)</td>
<td>0.79(1)</td>
<td>0.84(1)</td>
<td>0.95(1)</td>
<td></td>
<td></td>
<td>A II .90(40)</td>
</tr>
<tr>
<td>4421.32(1)</td>
<td>1.42(0)</td>
<td>1.04(0)</td>
<td>1.09(1n)</td>
<td></td>
<td></td>
<td>Gd II .24(200) Sm II .14(200)</td>
</tr>
<tr>
<td>4421.85(2)</td>
<td>1.94(1)</td>
<td>1.70(1)</td>
<td>1.90(0)</td>
<td>1.85(0)</td>
<td>Ti II .96(35) (Ti I .76(60))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Dy II .69(1))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.12(1)</td>
<td>2.32(0)</td>
<td>2.21(0)</td>
<td>2.34(3n)</td>
</tr>
<tr>
<td>4422.56(3n)</td>
<td>2.56(1)</td>
<td>2.46(0n)</td>
<td>2.60(0)</td>
<td>2.54(0)</td>
<td>Fe I .57(300) Gd II .55(20)</td>
<td></td>
</tr>
<tr>
<td>4422.83(0)</td>
<td>2.89(1)</td>
<td>2.83(0)</td>
<td>2.80(0)</td>
<td></td>
<td></td>
<td>Ti I .83(80)</td>
</tr>
<tr>
<td>4423.29(0)</td>
<td>3.29(1)</td>
<td>3.23(0)</td>
<td>3.22(1)</td>
<td></td>
<td></td>
<td>(Ti II .27(pr))</td>
</tr>
<tr>
<td>4423.79(0m)</td>
<td>3.66(0)</td>
<td></td>
<td>3.64(1)</td>
<td></td>
<td></td>
<td>Ce II .68(25)</td>
</tr>
<tr>
<td>4424.39(1)</td>
<td>3.86(0)</td>
<td>3.98(0)</td>
<td>3.88(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4424.45(2)</td>
<td>4.43(1)</td>
<td>4.36(0)</td>
<td>4.15(2n)</td>
<td>4.24(3)</td>
<td></td>
<td>Sm II .34(600) Gd II .10(40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pr II .60(25))</td>
</tr>
<tr>
<td>4424.95(0)</td>
<td>4.99(1)</td>
<td>4.85(1)</td>
<td></td>
<td>4.74(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4425.53(2)</td>
<td>5.57(1)</td>
<td>5.78(0)</td>
<td>5.82(0)</td>
<td>5.78(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4426.03(0)</td>
<td>6.03(0)</td>
<td>6.23(0)</td>
<td></td>
<td>5.21(1)</td>
<td>5.26(1n)</td>
<td>Gd II .15(80) A II .01(300)</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu II .42(5) (Nd II .82(4))</td>
</tr>
<tr>
<td>Gd II .03(20) Ti I .10(125)</td>
</tr>
<tr>
<td>Fe I .31(500)</td>
</tr>
<tr>
<td>Gd II .61(60) La II .52(100)</td>
</tr>
<tr>
<td>Mg II .00(7) (Ce II .92(67))</td>
</tr>
<tr>
<td>(Ti II .92(pr))</td>
</tr>
<tr>
<td>(Ne II .54(100))</td>
</tr>
<tr>
<td>(Zr II .34(2))</td>
</tr>
<tr>
<td>(La II .90(400) Eu II .76(15))</td>
</tr>
<tr>
<td>(A II .18(100)) (Tb II .13(2))</td>
</tr>
<tr>
<td>(Fe I .62(200) (Ne II .90(50))</td>
</tr>
<tr>
<td>(Gd II .34(5))</td>
</tr>
<tr>
<td>Dy II .00(3)</td>
</tr>
<tr>
<td>Fe II .63(1n)</td>
</tr>
<tr>
<td>Pr II .34(25) (Nd II .29(4))</td>
</tr>
<tr>
<td>(Sr II .41(50))</td>
</tr>
<tr>
<td>(La II .95(20))</td>
</tr>
<tr>
<td>(Fe I .22(150) Eu II .88(8))</td>
</tr>
<tr>
<td>Gd II .64(60)</td>
</tr>
<tr>
<td>Sm II .88(300) Mg II .99(8)</td>
</tr>
<tr>
<td>Cr II .84(1) (Ti I .00(100))</td>
</tr>
<tr>
<td>Sm II .32(400) (Tb II .48(10))</td>
</tr>
<tr>
<td>Eu II .81(20)</td>
</tr>
<tr>
<td>Eu II .56(3000) (Dy II .78(1))</td>
</tr>
<tr>
<td>Gd II .22(200)</td>
</tr>
<tr>
<td>Mg II .48(5) (Eu II .59(1))</td>
</tr>
<tr>
<td>(Sr II .36(2)) (Dy II .65(1))</td>
</tr>
<tr>
<td>Gd II .45(8)</td>
</tr>
<tr>
<td>Ce II .61(47)</td>
</tr>
<tr>
<td>Eu II .96(4)</td>
</tr>
<tr>
<td>Gd II .26(150) Pr II .18(20)</td>
</tr>
<tr>
<td>Gd II .13(30)</td>
</tr>
<tr>
<td>Nd II .00(10) (Tb II .98(10))</td>
</tr>
<tr>
<td>(Ne II .30(30)) (Fe II .13(pr))</td>
</tr>
</tbody>
</table>

452
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4439.87(0)</td>
<td>0.12(0)</td>
<td>9.89(0)</td>
<td>9.82(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4440.53(1n)</td>
<td>0.60(1)</td>
<td>0.63(1n)</td>
<td>0.56(1)</td>
<td>Zr II .45(10)</td>
<td></td>
</tr>
<tr>
<td>4440.76(0)</td>
<td></td>
<td>0.78(0n)</td>
<td></td>
<td>Ce II .88(207)</td>
<td></td>
</tr>
<tr>
<td>4441.64(1)</td>
<td>1.49(0)</td>
<td>1.56(1)</td>
<td>1.48(0)</td>
<td>Eu II .47(15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.76(1)</td>
<td>1.71(1)</td>
<td>1.74(1n)</td>
<td>(Ti II .72(pr))</td>
<td></td>
</tr>
<tr>
<td>4442.20(1)</td>
<td>2.27(0)</td>
<td>2.24(1)</td>
<td>2.36(0)</td>
<td>Fe I .34(400)</td>
<td></td>
</tr>
<tr>
<td>4442.46(0)</td>
<td>2.57(1)</td>
<td>2.45(0)</td>
<td>2.46(1)</td>
<td>Eu II .42(3)</td>
<td></td>
</tr>
<tr>
<td>4443.08(1)</td>
<td>3.09(1)</td>
<td>3.05(1n)</td>
<td>3.09(2n)</td>
<td>3.13(3n)</td>
<td>Fe I .20(200) Zr II .99(25) Ce II .72(50)</td>
</tr>
<tr>
<td>4443.41(2)</td>
<td>3.49(1)</td>
<td>3.57(1)</td>
<td></td>
<td>(Nd II .40(2))</td>
<td></td>
</tr>
<tr>
<td>4443.73(3)</td>
<td>3.85(2)</td>
<td>3.82(2)</td>
<td>3.87(2)</td>
<td>3.83(2n)</td>
<td>Ti II .80(125) Ce II .74(187) La II .94(20))</td>
</tr>
<tr>
<td>4444.49(4)</td>
<td>4.48(2n)</td>
<td>4.46(2)</td>
<td>4.44(2n)</td>
<td>4.43(3)</td>
<td>Ce II .39(60) Fe II .56(1) Sm II .26 (150) Tl II .56(12) (Nd II .28(6))</td>
</tr>
<tr>
<td>4445.15(2n)</td>
<td>5.22(2)</td>
<td>5.18(1)</td>
<td>5.50(1)</td>
<td>5.20(1)</td>
<td></td>
</tr>
<tr>
<td>4445.71(0)</td>
<td></td>
<td>5.62(0)</td>
<td></td>
<td>5.87(1)</td>
<td>5.93(1) Pr II .87(10)</td>
</tr>
<tr>
<td>4446.08(4)</td>
<td>6.23(3n)</td>
<td>6.22(2n)</td>
<td>6.27(2n)</td>
<td>6.33(1)</td>
<td>Fe II .25(1n) Nd II .39(200)</td>
</tr>
<tr>
<td>4446.57(1)</td>
<td></td>
<td></td>
<td></td>
<td>Fe II .97(200)</td>
<td>F II .71(150) (F II .51(40))</td>
</tr>
<tr>
<td>4447.25(0)</td>
<td>7.28(0)</td>
<td>7.34(1n)</td>
<td>7.01(0)</td>
<td>6.98(1)</td>
<td>Pr II .98(20) F II .18(200)</td>
</tr>
<tr>
<td>4447.64(7)</td>
<td>7.63(2)</td>
<td>7.60(1n)</td>
<td>7.45(2)</td>
<td>7.47(4)</td>
<td>(F II .04(300))</td>
</tr>
<tr>
<td></td>
<td>7.71(1)</td>
<td>7.74(1)</td>
<td></td>
<td>7.69(0)</td>
<td>Fe I .72(200) Al II .8(15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.88(1)</td>
<td>8.03(3) (Nd II .99(4)) (F II .23(2))</td>
</tr>
<tr>
<td>4448.36(3)</td>
<td>8.50(2)</td>
<td>8.44(1)</td>
<td>8.42(1)</td>
<td>8.50(2n)</td>
<td>(F II .23(2))</td>
</tr>
<tr>
<td>4449.27(3)</td>
<td>9.09(1)</td>
<td>9.07(2)</td>
<td>Ce II .34(200) Tl I .15(150)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(F II .16(2))</td>
</tr>
<tr>
<td>4449.56(1)</td>
<td>9.45(2n)</td>
<td></td>
<td></td>
<td>9.42(1)</td>
<td></td>
</tr>
<tr>
<td>4449.78(1)</td>
<td>9.53(1)</td>
<td>9.51(2n)</td>
<td>9.63(2)</td>
<td>9.65(2)</td>
<td>Fe II .66(1n) Dy II .70(300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pr II .87(150) (Gd II .95(15))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4450.43(2)</td>
<td>0.45(2n)</td>
<td>0.31(2n)</td>
<td>0.35(2)</td>
<td>0.32(2)</td>
<td>Ti II .49(50) Pr II .21(40)</td>
</tr>
<tr>
<td>4450.72(0)</td>
<td></td>
<td>0.64(0)</td>
<td></td>
<td></td>
<td>Ce II .73(75)</td>
</tr>
<tr>
<td>4450.92(1)</td>
<td>0.90(0)</td>
<td>0.79(1)</td>
<td>0.82(2)</td>
<td>Ti I .90(300) Ce II .73(75)</td>
<td></td>
</tr>
<tr>
<td>4451.42(4)</td>
<td>1.55(3)</td>
<td>1.47(3n)</td>
<td>1.56(4n)</td>
<td>1.61(3n)</td>
<td>Fe II .54(4) Nd II .57(400)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Mn I .59(125)) (Eu II .63(2))</td>
</tr>
<tr>
<td>4451.82(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pr II .95(20))</td>
</tr>
<tr>
<td>4452.04(1)</td>
<td>2.06(1)</td>
<td>2.02(1)</td>
<td>2.03(0)</td>
<td>2.08(1)</td>
<td>(Nd II .98(50))</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Identification</th>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
</tr>
</thead>
<tbody>
<tr>
<td>4452.44(0)</td>
<td>2.56(1)</td>
<td>2.58(1)</td>
<td>2.52(1)</td>
<td>2.65(2)</td>
<td>(P II .44(150))</td>
</tr>
<tr>
<td>4452.87(2)</td>
<td>2.71(0)</td>
<td>2.70(3)</td>
<td>Sm II .73(250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4453.19(1)</td>
<td>3.13(2n)</td>
<td>3.15(1n)</td>
<td>3.21(1)</td>
<td>3.18(0)</td>
<td>Ti I .32(150) (V II .35(30))</td>
</tr>
<tr>
<td>4453.98(2)</td>
<td>4.00(1)</td>
<td>3.67(1n)</td>
<td>3.68(1)</td>
<td>3.74(2)</td>
<td>Gd II .93(60) Ti I .71(80)</td>
</tr>
<tr>
<td>4454.29(0)</td>
<td>4.44(1n)</td>
<td>4.45(0n)</td>
<td>4.33(0)</td>
<td>Fe I .38(200) (Pr II .38(30))</td>
<td></td>
</tr>
<tr>
<td>4454.68(1n)</td>
<td>4.52(1n)</td>
<td>4.63(1)</td>
<td>4.63(1)</td>
<td>Sm II .63(200)</td>
<td></td>
</tr>
<tr>
<td>4455.17(1n)</td>
<td>5.18(2)</td>
<td>5.20(3n)</td>
<td>5.27(3n)</td>
<td>5.29(2)</td>
<td>Fe II .26(3) Ti I .33(150)</td>
</tr>
<tr>
<td>4455.67(0)</td>
<td>5.80(1)</td>
<td>5.83(0)</td>
<td>5.92(0)</td>
<td>5.92(1)</td>
<td>Ca I .89(100) Fe II .85(pr)</td>
</tr>
<tr>
<td>4456.53(1n)</td>
<td>6.62(2n)</td>
<td>6.52(1)</td>
<td>6.47(2n)</td>
<td>6.52(1)</td>
<td>Ti II .65(10) Nd II .39(40)</td>
</tr>
<tr>
<td>4457.01(1n)</td>
<td>6.80(1)</td>
<td>6.83(1)</td>
<td>7.01(1n)</td>
<td>6.97(1)</td>
<td>Cr II .84(pr) (Ne II .95(70))</td>
</tr>
<tr>
<td>7.16(0)</td>
<td>7.22(1)</td>
<td>7.01(1)</td>
<td>Nd II .18(57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4457.40(0)</td>
<td>7.34(1)</td>
<td>Ti I .43(150) Zr II .42(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4458.31(1)</td>
<td>8.28(0)</td>
<td>7.95(1)</td>
<td>8.01(0)</td>
<td>8.00(1n)</td>
<td>Pr II .34(25) (Fe I .11(30))</td>
</tr>
<tr>
<td>4458.60(0)</td>
<td>8.76(1)</td>
<td>8.71(0)</td>
<td>8.60(0)</td>
<td>Sm II .52(400) (Cr I .54(50))</td>
<td></td>
</tr>
<tr>
<td>4459.14(1)</td>
<td>9.22(0)</td>
<td>9.09(1)</td>
<td>Fe I .12(400) Ni I .04(400)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4459.53(0)</td>
<td>9.73(1)</td>
<td>9.55(0)</td>
<td>9.67(1)</td>
<td>9.77(1)</td>
<td></td>
</tr>
<tr>
<td>4460.17(1n)</td>
<td>0.34(1)</td>
<td>0.02(1)</td>
<td>0.16(2)</td>
<td>0.27(2)</td>
<td>Ce II .21(400)</td>
</tr>
<tr>
<td>4460.78(1)</td>
<td>0.83(1)</td>
<td>1.02(1)</td>
<td>0.97(3n)</td>
<td>1.00(3)</td>
<td>Ce II .14(50) (Ru II .88(2))</td>
</tr>
<tr>
<td>4461.29(3)</td>
<td>1.31(3)</td>
<td>1.30(0)</td>
<td>Zr II .22(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4461.64(2)</td>
<td>1.68(3)</td>
<td>1.65(6n)</td>
<td>1.68(3)</td>
<td>1.85(2)</td>
<td>Fe I .65(300) (Ru II .55(2))</td>
</tr>
<tr>
<td>4462.16(1)</td>
<td>2.18(0)</td>
<td>2.18(0)</td>
<td>Eu II .14(5) Tb II .18(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.53(1)</td>
<td>2.60(1)</td>
<td>2.52(0)</td>
<td>Nd II .41(30) (Ni I .46(50))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4462.93(0)</td>
<td>2.91(0)</td>
<td>2.79(1n)</td>
<td>Nd II .98(250) (P II .94(70))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4463.29(1n)</td>
<td>3.15(1n)</td>
<td>3.23(1)</td>
<td>3.16(1)</td>
<td>Gd II .25(80)</td>
<td></td>
</tr>
<tr>
<td>3.49(1)</td>
<td>3.42(0)</td>
<td>3.52(0)</td>
<td>Ce II .41(60) Gd II .25(80) (SII .58(20C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.88(0)</td>
<td>3.67(0)</td>
<td>3.80(0n)</td>
<td>(Ru II .83(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4464.38(2)</td>
<td>4.48(2n)</td>
<td>4.53(2n)</td>
<td>4.37(2)</td>
<td>4.39(3)</td>
<td>Ti II .46(40) (S II .42(100))</td>
</tr>
<tr>
<td>4465.05(1)</td>
<td>5.12(1)</td>
<td>5.19(0)</td>
<td>5.07(1)</td>
<td>5.13(1)</td>
<td>Eu II .97(200) Cr II .00(1)</td>
</tr>
<tr>
<td>4465.62(1n)</td>
<td>5.73(2)</td>
<td>5.78(1)</td>
<td>5.85(1)</td>
<td>5.71(1)</td>
<td>(Nd II .08(10))</td>
</tr>
<tr>
<td>6.13(1)</td>
<td>5.95(0)</td>
<td>Pr II .98(25) (P II .10(30))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

454
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.462</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4466.50(3)</td>
<td>6.53(2)</td>
<td>6.47(1)</td>
<td>6.52(2n)</td>
<td>6.44(2n)</td>
<td>Fe I .55(500) Gd II .55(500)</td>
</tr>
<tr>
<td>4467.40(2n)</td>
<td>7.22(1)</td>
<td>7.29(1)</td>
<td>7.24(1)</td>
<td>7.28(2n)</td>
<td>Gd II .23(80) Sm II .34(500)</td>
</tr>
<tr>
<td>4467.69(1)</td>
<td>7.58(1)</td>
<td>7.62(1)</td>
<td>Ce II .54(59)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4467.82(1)</td>
<td>7.89(1)</td>
<td>7.80(0)</td>
<td>7.95(1)</td>
<td>8.00(1)</td>
<td>Dy II .16(60) Dy II .89(20)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Pr II .97(50)) (Nd II .85(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4468.43(4)</td>
<td>8.56(3)</td>
<td>8.44(2n)</td>
<td>8.51(2)</td>
<td>8.51(3n)</td>
<td>Ti II .50(150) (Pr II .71(150))</td>
</tr>
<tr>
<td>4469.09(1)</td>
<td>9.08(0)</td>
<td>9.10(1)</td>
<td>Ti II .16(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4469.32(0)</td>
<td>9.26(1)</td>
<td>9.34(1n)</td>
<td>9.23(1)</td>
<td>Fe I .28(200) (Nd II .26(8))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Ce I .27(12))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.66(0)</td>
<td>9.62(1)</td>
<td>Eu II .64(6) Tb II .68(8)</td>
</tr>
<tr>
<td>4470.01(1)</td>
<td>0.35(1)</td>
<td></td>
<td>Ce II .85(47) (Mn I .14(80))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.39(0)</td>
<td></td>
</tr>
<tr>
<td>4470.73(2)</td>
<td>0.99(1n)</td>
<td>0.62(1)</td>
<td>0.68(1)</td>
<td>0.90(1)</td>
<td>Ti II .86(25) (Nd II .96(6))</td>
</tr>
<tr>
<td>4471.18(2)</td>
<td>1.30(2)</td>
<td>1.12(2n)</td>
<td>1.20(2n)</td>
<td>1.28(1)</td>
<td>Gd II .29(200) Ce II .24(200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Ti I .24(100))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4471.97(1n)</td>
<td>1.93(0)</td>
<td></td>
<td></td>
<td></td>
<td>Eu II .64(4) Nd II .41(10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tb II .72(5)) (He I .48(100))</td>
</tr>
<tr>
<td>4472.78(3)</td>
<td>2.87(3n)</td>
<td>2.86(3n)</td>
<td>2.93(3n)</td>
<td>3.05(2)</td>
<td>Fe II .92(2) Sm II .02(150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tb II .84(3))</td>
</tr>
<tr>
<td>4473.26(1)</td>
<td>3.39(1)</td>
<td></td>
<td>3.34(1)</td>
<td>3.38(2)</td>
<td></td>
</tr>
<tr>
<td>4473.66(0)</td>
<td>3.88(1)</td>
<td>3.67(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4474.11(1)</td>
<td>4.23(1)</td>
<td>4.10(1)</td>
<td>4.30(1n)</td>
<td>4.26(1n)</td>
<td>Fe II .19(0) (Gd II .14(150))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(La II .03(10))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4474.82(1)</td>
<td>4.80(1)</td>
<td></td>
<td>4.98(1n)</td>
<td>4.85(0)</td>
<td>Ti I .85(80)</td>
</tr>
<tr>
<td>4475.18(0)</td>
<td>5.10(1)</td>
<td>5.22(1)</td>
<td>5.12(0)</td>
<td>5.21(0)</td>
<td>P II .26(150) (Cl II .28(12))</td>
</tr>
<tr>
<td>4475.48(1)</td>
<td>5.57(0)</td>
<td></td>
<td></td>
<td>5.53(0)</td>
<td></td>
</tr>
<tr>
<td>4475.90(1)</td>
<td>6.06(1)</td>
<td>5.89(1)</td>
<td>6.03(1n)</td>
<td>6.02(1)</td>
<td>Fe I .02(500)</td>
</tr>
<tr>
<td>4476.57(0)</td>
<td>6.58(0)</td>
<td></td>
<td></td>
<td>6.50(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.92(1n)</td>
<td>6.94(1)</td>
<td>(Eu II .89(1))</td>
</tr>
<tr>
<td>4477.18(1)</td>
<td>7.16(5)</td>
<td></td>
<td>7.40(1)</td>
<td>7.41(1)</td>
<td>Pr II .26(40) Nd II .45(6)</td>
</tr>
<tr>
<td>4477.74(0)</td>
<td>7.83(0)</td>
<td></td>
<td>7.79(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4478.08(0)</td>
<td>8.13(0)</td>
<td></td>
<td>8.04(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4478.66(1n)</td>
<td>8.66(1)</td>
<td>8.66(1)</td>
<td>8.56(2)</td>
<td>8.63(2n)</td>
<td>Gd II .80(250) Mn II .74(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sm II .66(125) (Gd II .48(6))</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Luminosity Class</th>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ce II .36(50) Ce II .43(30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ti I .70(70) Tb II .04(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe II .69(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mg II .33(100) Cr II .49(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pr II .42(10) Gd II .06(300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tb II .27(200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cl II .02(10) A II .86(80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sr II .04(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe I .17(150) Fe I .26(15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ti I .69(40)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gd II .33(300) Ce II .90(100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe I .22(125) Eu II .07(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eu II .15(100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe I .68(50) Eu II .52(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sr II .44(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gd II .40(80)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe II .18(4) Ti I .09(100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eu II .26(2) Gd II .17(10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe I .74(100) Ce II .60(50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mn I .08(100) Tb II .76(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe I .76(40) Tb II .63(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eu II .59(2) Nd II .77(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ce II .10(50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe II .41(5) Nd II .64(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe II .45(15) Nd II .47(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe II .58(3) Nd II .45(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
<td></td>
</tr>
<tr>
<td>4494.26(0)</td>
<td>4.16(0)</td>
<td>4.30(0)</td>
<td>4.29(2)</td>
<td>4.34(4)</td>
<td>(Pr II .19(20)) (Zr II .41(8))</td>
<td></td>
</tr>
<tr>
<td>4494.60(3)</td>
<td>4.59(1)</td>
<td>4.86(0)</td>
<td>4.97(1)</td>
<td>5.37(0)</td>
<td>Fe I .57(400)</td>
<td></td>
</tr>
<tr>
<td>4495.18(1)</td>
<td>5.12(0)</td>
<td>5.17(0)</td>
<td>4.86(0)</td>
<td>4.97(1)</td>
<td>Gd II .85(25) Eu II .05(15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tb II .03(2))</td>
<td></td>
</tr>
<tr>
<td>4495.48(1)</td>
<td>5.50(1)</td>
<td>5.44(1n)</td>
<td>5.37(0)</td>
<td>5.74(0)</td>
<td>(Ti II .43(pr)) (Ce II .39(4))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Zr II .44(9))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Fe II .52(pr))</td>
<td></td>
</tr>
<tr>
<td>4495.90(0)</td>
<td>5.77(0)</td>
<td>6.00(0)</td>
<td>6.41(0)</td>
<td>7.02(1)</td>
<td>Pr II .43(25) (Tl I .15(60))</td>
<td></td>
</tr>
<tr>
<td>4496.38(0)</td>
<td>6.19(0)</td>
<td>6.25(0)</td>
<td>6.41(0)</td>
<td>6.99(0)</td>
<td>Zr II .96(15) Mn II .99(2)</td>
<td></td>
</tr>
<tr>
<td>4496.95(1)</td>
<td>7.06(0)</td>
<td>7.02(1)</td>
<td>6.99(0)</td>
<td>7.54(0)</td>
<td>Cr I .86(200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Eu II .45(4)) (Nd II .92(8))</td>
<td></td>
</tr>
<tr>
<td>4497.68(1)</td>
<td>7.94(0)</td>
<td>7.71(0)</td>
<td>7.81(0)</td>
<td>8.21(1)</td>
<td>Ce II .85(25) (Nd II .92(8))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gd II .28(300)</td>
<td></td>
</tr>
<tr>
<td>4498.50(1n)</td>
<td>8.55(0)</td>
<td>8.68(1)</td>
<td>8.80(0)</td>
<td>8.80(0)</td>
<td>La II .76(10) (Ne II .00(20))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tb II .96(1))</td>
<td></td>
</tr>
<tr>
<td>4499.18(0)</td>
<td>9.29(0)</td>
<td>9.19(1)</td>
<td>9.27(2)</td>
<td>9.17(1)</td>
<td>Fe II .71(0) (Sm II .48(125))</td>
<td></td>
</tr>
<tr>
<td>4499.60(2)</td>
<td>9.70(1)</td>
<td>9.67(1)</td>
<td>9.70(2)</td>
<td>9.78(3)</td>
<td>Fe II .71(0) (Sm II .48(125))</td>
<td></td>
</tr>
<tr>
<td>4500.27(1)</td>
<td>0.02(0)</td>
<td>0.26(0n)</td>
<td>0.26(0n)</td>
<td>0.48(4)</td>
<td>Gd II .64(20)</td>
<td></td>
</tr>
<tr>
<td>4500.55(0)</td>
<td>0.53(1)</td>
<td>0.41(1)</td>
<td>0.38(3)</td>
<td>0.48(4)</td>
<td>Gd II .64(20)</td>
<td></td>
</tr>
<tr>
<td>4501.19(6)</td>
<td>1.35(4)</td>
<td>1.12(3)</td>
<td>1.17(4)</td>
<td>1.19(6)</td>
<td>Ti II .27(100)</td>
<td></td>
</tr>
<tr>
<td>4501.36(0)</td>
<td>1.96(1)</td>
<td>1.92(1)</td>
<td>1.85(1n)</td>
<td>1.77(1)</td>
<td>Nd II .81(50)</td>
<td></td>
</tr>
<tr>
<td>4502.35(1)</td>
<td>2.31(1)</td>
<td>2.31(1)</td>
<td>2.31(0)</td>
<td>2.23(1n)</td>
<td>Mn I .22(125) (La II .16(10))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Eu II .10(2))</td>
<td></td>
</tr>
<tr>
<td>4502.99(3)</td>
<td>3.07(2n)</td>
<td>2.83(1)</td>
<td>2.80(2)</td>
<td>2.83(3)</td>
<td>Dy II .25(25)</td>
<td></td>
</tr>
<tr>
<td>4503.76(0)</td>
<td>3.57(0)</td>
<td>3.52(1)</td>
<td>3.57(1)</td>
<td>4.09(0)</td>
<td>(Tb II .58(2)) (Mn I .87(60))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.05(0)</td>
<td></td>
</tr>
<tr>
<td>4504.34(0)</td>
<td>4.24(0n)</td>
<td>4.40(0)</td>
<td>4.52(0)</td>
<td>4.52(0)</td>
<td>Eu II .52(4) (?Cr II .52(pr))</td>
<td></td>
</tr>
<tr>
<td>4504.80(0)</td>
<td>4.92(0)</td>
<td>4.94(1n)</td>
<td>4.91(1n)</td>
<td>4.99(0)</td>
<td>Eu II .98(3)</td>
<td></td>
</tr>
<tr>
<td>4505.63(0)</td>
<td>5.97(1n)</td>
<td>5.99(1)</td>
<td>5.79(0)</td>
<td>6.28(0)</td>
<td>(Nd II .75(87)) (Eu II .00(50))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Eu II .75(2))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gd II .33(200)</td>
<td></td>
</tr>
<tr>
<td>4507.02(3)</td>
<td>7.13(2)</td>
<td>7.03(2n)</td>
<td>7.08(2n)</td>
<td>6.83(1)</td>
<td>Gd II .93(60) Fe II .20(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.26(1)</td>
<td>Fe II .20(0) (Cr II .19(pr))</td>
</tr>
<tr>
<td>4507.52(1)</td>
<td>7.61(0)</td>
<td>7.42(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3 -- Continued

<table>
<thead>
<tr>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4508.20(7)</td>
<td>8.26(7)</td>
<td>8.24(8)</td>
<td>8.26(6)</td>
<td>8.31(5n)</td>
<td>Fe II .28(8)</td>
</tr>
<tr>
<td>4509.16(1n)</td>
<td>9.24(1)</td>
<td>9.00(1n)</td>
<td>9.12(1n)</td>
<td>9.05(1)</td>
<td>Gd II .08(50) (Tb II .03(15))</td>
</tr>
<tr>
<td></td>
<td>9.41(1n)</td>
<td></td>
<td></td>
<td></td>
<td>9.27(1)</td>
</tr>
<tr>
<td>4510.05(3)</td>
<td>0.17(1)</td>
<td>9.92(1n)</td>
<td>0.00(3n)</td>
<td>9.99(3n)</td>
<td>Pr II .16(100) Mn II .21(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.26(1) Mn II .21(3)</td>
</tr>
<tr>
<td>4510.75(0)</td>
<td>0.70(0)</td>
<td>0.76(1)</td>
<td>0.87(0)</td>
<td>A I .73(1000)</td>
<td></td>
</tr>
<tr>
<td>4511.62(2)</td>
<td>1.70(1)</td>
<td></td>
<td></td>
<td>(Ru II .53(3))</td>
<td></td>
</tr>
<tr>
<td>4511.92(1)</td>
<td>1.96(1)</td>
<td>1.86(2n)</td>
<td>1.95(2n)</td>
<td>1.85(0)</td>
<td>Sm II .83(200) (Cr II .82(pr))</td>
</tr>
<tr>
<td>4512.18(1)</td>
<td>2.24(0)</td>
<td>2.17(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4512.51(0)</td>
<td>2.59(0n)</td>
<td>2.71(0)</td>
<td>Ti I .74(100) (Ru II .62(2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4512.87(0)</td>
<td>3.03(0n)</td>
<td>3.05(1)</td>
<td>3.01(0)</td>
<td>Tb II .97(8)</td>
<td></td>
</tr>
<tr>
<td>4513.34(1)</td>
<td>3.28(1)</td>
<td></td>
<td></td>
<td>Nd II .33(20)</td>
<td></td>
</tr>
<tr>
<td>4514.14(9)</td>
<td>4.25(3)</td>
<td>4.01(3)</td>
<td>4.06(8)</td>
<td>4.09(7) (Tb II .31(8))</td>
<td></td>
</tr>
<tr>
<td>4514.62(1)</td>
<td>4.66(1)</td>
<td>4.47(3)</td>
<td>4.55(1)</td>
<td>4.56(1)</td>
<td>Gd II .50(200) (Gd II .67(5))</td>
</tr>
<tr>
<td>4515.24(7)</td>
<td>5.38(7)</td>
<td>5.35(7n)</td>
<td>5.35(7n)</td>
<td>5.41(6)</td>
<td>Fe II .34(7)</td>
</tr>
<tr>
<td>4515.64(3)</td>
<td>5.85(2)</td>
<td>5.71(1n)</td>
<td>5.80(1)</td>
<td>5.92(1) (Tb II .87(6))</td>
<td></td>
</tr>
<tr>
<td>4516.28(1)</td>
<td>6.35(1)</td>
<td>6.51(1n)</td>
<td>6.48(1n)</td>
<td>6.50(0)</td>
<td>Nd II .35(30) (Cr II .56(pr))</td>
</tr>
<tr>
<td>4516.62(1)</td>
<td></td>
<td></td>
<td></td>
<td>Nd II .64(4) (Cr II .56(pr))</td>
<td></td>
</tr>
<tr>
<td>4517.10(2)</td>
<td>7.23(1)</td>
<td>7.13(1n)</td>
<td>7.06(0)</td>
<td>7.26(1)</td>
<td>Gd II .10(30) Ru II .36(6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Ru II .94(4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4517.67(0)</td>
<td>7.61(0)</td>
<td></td>
<td>Pr II .60(40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4518.25(1)</td>
<td>8.36(1)</td>
<td>8.23(0n)</td>
<td>8.22(1)</td>
<td>8.36(2) (Ti I .03(100))</td>
<td></td>
</tr>
<tr>
<td>4518.60(1)</td>
<td>8.50(0)</td>
<td></td>
<td>8.75(1)</td>
<td>Dy II .54(15) Ru II .70(8)</td>
<td></td>
</tr>
<tr>
<td>4519.11(0)</td>
<td>9.03(0)</td>
<td></td>
<td>8.95(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4519.58(1)</td>
<td></td>
<td>9.49(0n)</td>
<td>9.49(1)</td>
<td>Sm II .63(200) (Eu II .54(4))</td>
<td></td>
</tr>
<tr>
<td>4520.12(5)</td>
<td>0.17(5)</td>
<td>0.16(7)</td>
<td>0.25(5)</td>
<td>0.21(3)</td>
<td>Fe II .24(7) (Gd II .07(150)) (Tb II .09(4))</td>
</tr>
<tr>
<td>4520.76(1)</td>
<td>0.91(1)</td>
<td>0.83(1)</td>
<td></td>
<td>0.94(1n)</td>
<td>Pr II .78(8)</td>
</tr>
<tr>
<td>4521.40(0)</td>
<td>1.19(0)</td>
<td>1.31(1)</td>
<td>Gd II .30(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4522.02(1)</td>
<td>1.76(0)</td>
<td>1.82(0n)</td>
<td>2.06(1)</td>
<td>1.95(2)</td>
<td>Gd II .94(150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.46(3)</td>
<td>Eu II .57(2000) (La II .37(400))</td>
<td></td>
</tr>
<tr>
<td>4522.56(7n)</td>
<td>2.64(7)</td>
<td>2.61(8)</td>
<td>2.66(7)</td>
<td>2.65(9n)</td>
<td>Fe II .63(9) Eu II .57(2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.76(4)</td>
<td>Fe II .63(19) (Gd II .82(250)) (Nd II .84(4)) (Ti I .80(100))</td>
</tr>
<tr>
<td>4522.95(1)</td>
<td>3.12(1)</td>
<td></td>
<td>3.26(1)</td>
<td>Ce II .08(125) Sm II .04(150) (P II .92(50)) (Mn I .39(50))</td>
<td></td>
</tr>
<tr>
<td>0.756</td>
<td>1.482</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>4523.61(0)</td>
<td>3.52(0)</td>
<td>3.48(1)</td>
<td>3.68(0)</td>
<td>3.70(0)</td>
<td>Nd II .57(4)</td>
</tr>
<tr>
<td>4524.28(on)</td>
<td>4.38(0)</td>
<td>4.48(1)</td>
<td>4.43(0)</td>
<td>Gd II .39(15)</td>
<td></td>
</tr>
<tr>
<td>4525.02(1n)</td>
<td>5.08(1n)</td>
<td>5.27(1)</td>
<td>5.21(0)</td>
<td>Fe I .15(100) La II .31(100)</td>
<td></td>
</tr>
<tr>
<td>4525.78(0)</td>
<td>5.79(0)</td>
<td>Gd II .61(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4526.22(2)</td>
<td>6.38(2n)</td>
<td>6.40(1n)</td>
<td>6.34(1n)</td>
<td>6.36(0)</td>
<td>Cl I .21(25)</td>
</tr>
<tr>
<td>4526.96(0)</td>
<td>7.06(0)</td>
<td>7.06(1)</td>
<td>6.64(1)</td>
<td>Fe II .58(1) (Sm II .56(80))</td>
<td></td>
</tr>
<tr>
<td>4527.41(1)</td>
<td>7.50(1)</td>
<td>7.36(1)</td>
<td>7.34(1)</td>
<td>7.47(3)</td>
<td>Ce II .32(200) Pr II .34(100)</td>
</tr>
<tr>
<td>4527.85(0)</td>
<td>7.92(0)</td>
<td>7.91(0)</td>
<td>Dy II .78(30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4528.42(2)</td>
<td>8.52(1)</td>
<td>8.38(1n)</td>
<td>8.45(2)</td>
<td>8.35(2n)</td>
<td>V II .51(300) Ce II .47(150)</td>
</tr>
<tr>
<td>4528.92(1)</td>
<td>8.68(1)</td>
<td>8.68(1n)</td>
<td>8.52(1)</td>
<td>Fe I .62(600)</td>
<td></td>
</tr>
<tr>
<td>4529.40(3)</td>
<td>9.59(2)</td>
<td>9.53(1n)</td>
<td>9.52(2)</td>
<td>9.55(2n)</td>
<td>Ti II .46(40) (Fe II .56(pr))</td>
</tr>
<tr>
<td>4529.80(1)</td>
<td>Pr II .93(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4530.49(1)</td>
<td>0.54(1)</td>
<td>0.43(0)</td>
<td>0.31(0)</td>
<td>0.32(1)</td>
<td>Gd II .65(4) (Nd II .34(4))</td>
</tr>
<tr>
<td>4531.00(0)</td>
<td>0.87(1)</td>
<td>0.89(1)</td>
<td>Cr I .74(150) (Co I .96(100))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4531.08(0)</td>
<td>1.15(1)</td>
<td>Fe I .15(125) (Pr II .90(20))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4531.72(1)</td>
<td>1.89(1)</td>
<td>1.80(1)</td>
<td>1.86(1)</td>
<td>1.67(1)</td>
<td>Tb II .83(6)</td>
</tr>
<tr>
<td>4532.04(0)</td>
<td>2.29(0)</td>
<td>2.09(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4532.60(1)</td>
<td>2.50(0)</td>
<td>2.41(0)</td>
<td>2.55(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4533.25(3)</td>
<td>3.28(1)</td>
<td>3.18(1)</td>
<td>3.02(2n)</td>
<td>2.97(3n)</td>
<td>Ti I .24(150) (Eu II .08(2))</td>
</tr>
<tr>
<td>4534.00(9)</td>
<td>4.08(8)</td>
<td>4.04(8)</td>
<td>4.02(5)</td>
<td>3.91(8n)</td>
<td>Fe II .17(2) Ti II .97(150) (Pr II .15 (60)) (P II .82(15)) (Ag II .28(4))</td>
</tr>
<tr>
<td>4534.90(1)</td>
<td>5.02(1)</td>
<td>4.89(1)</td>
<td>4.89(1)</td>
<td>4.86(2)</td>
<td></td>
</tr>
<tr>
<td>4535.68(2)</td>
<td>5.90(1)</td>
<td>5.58(1n)</td>
<td>5.70(1)</td>
<td>5.75(1n)</td>
<td>Ti I .58(80) Cr I .72(125)</td>
</tr>
<tr>
<td>4536.23(1)</td>
<td>6.40(0)</td>
<td>6.31(1)</td>
<td>6.31(1)</td>
<td>(Gd II .56(5))</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3 -- Continued

<table>
<thead>
<tr>
<th></th>
<th>0.756</th>
<th>1.482</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4536.76(1)</td>
<td>6.82(0)</td>
<td>6.84(0)</td>
<td>6.77(1)</td>
<td>(Cl II .78(20)) (Tb II .93(8))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4537.11(1)</td>
<td></td>
<td></td>
<td>7.50(0)</td>
<td>7.49(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4537.91(1)</td>
<td>7.83(1)</td>
<td>7.81(0)</td>
<td>7.91(1)</td>
<td>Sm II .95(200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4538.23(0)</td>
<td></td>
<td></td>
<td>8.46(0)</td>
<td>8.36(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4538.61(1)</td>
<td>8.65(1)</td>
<td></td>
<td></td>
<td>Dy II .76(20) (Eu II .55(2)) (Tb II .74(2))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4538.96(1)</td>
<td></td>
<td>8.82(1)</td>
<td>8.96(1)</td>
<td>8.93(2)</td>
<td>La II .87(8)</td>
<td></td>
</tr>
<tr>
<td>4539.54(2)</td>
<td>9.60(2)</td>
<td></td>
<td></td>
<td>Cr II .62(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4539.76(0)</td>
<td>*9.70(3)</td>
<td>9.63(4)</td>
<td>9.70(4)</td>
<td>9.78(4)</td>
<td>Ce II .76(200) Cr II .62(2) (Eu II .69(3))</td>
<td></td>
</tr>
<tr>
<td>4540.20(1)</td>
<td></td>
<td>9.91(1)</td>
<td>0.12(1)</td>
<td>Gd II .02(200) (Tb II .23(4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4540.42(0)</td>
<td></td>
<td>0.58(1)</td>
<td>0.60(2)</td>
<td>(Tb II .58(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4540.85(3)</td>
<td></td>
<td>0.81(1)</td>
<td>0.67(1)</td>
<td></td>
<td>La II .71(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.11(0)</td>
<td>1.21(1)</td>
<td>Nd II .27(50)</td>
<td></td>
</tr>
<tr>
<td>4541.41(4)</td>
<td>1.50(4)</td>
<td>1.47(5)</td>
<td>1.53(6)</td>
<td>1.59(9)</td>
<td>Fe II .52(4)</td>
<td></td>
</tr>
<tr>
<td>4541.75(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dy II .70(30)</td>
<td></td>
</tr>
<tr>
<td>4542.19(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.17(1)</td>
<td></td>
</tr>
<tr>
<td>4542.62(0)</td>
<td>2.66(0)</td>
<td>2.61(0)</td>
<td>2.51(0n)</td>
<td>2.65(1)</td>
<td>Nd II .60(60) Pr II .54(15) (Cr II .77(pr)) (Tb II .4(4))</td>
<td></td>
</tr>
<tr>
<td>4543.02(0)</td>
<td></td>
<td>3.08(0)</td>
<td>3.04(0)</td>
<td></td>
<td>3.77(1)</td>
<td></td>
</tr>
<tr>
<td>4544.02(1n)</td>
<td></td>
<td>3.90(1)</td>
<td>4.20(1)</td>
<td></td>
<td>Ti II .01(20) Sm II .95(250) (Nd II .26(2))</td>
<td></td>
</tr>
<tr>
<td>4544.46(1)</td>
<td></td>
<td>4.39(1n)</td>
<td></td>
<td></td>
<td>Cr I .62(100) Ti I .69(150) (Mn .46(60))</td>
<td></td>
</tr>
<tr>
<td>4545.04(2)</td>
<td>4.95(1)</td>
<td>5.04(1)</td>
<td>5.06(2n)</td>
<td></td>
<td>Ti II .14(15) Ce II .96(5) (A II .08(200))</td>
<td></td>
</tr>
<tr>
<td>4545.36(0)</td>
<td>5.35(1)</td>
<td></td>
<td></td>
<td></td>
<td>Eu II .45(3) Nd II .33(2) (Dy II .33(1)) (Cr II .49(pr))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.73(1)</td>
<td></td>
</tr>
<tr>
<td>4545.92(1)</td>
<td></td>
<td>5.90(0)</td>
<td></td>
<td></td>
<td>Cr I .96(200)</td>
<td></td>
</tr>
<tr>
<td>4546.64(2)</td>
<td>6.78(1)</td>
<td>6.60(1)</td>
<td>6.59(2)</td>
<td>6.60(5)</td>
<td>Cr II .62(1)</td>
<td></td>
</tr>
<tr>
<td>4547.18(0)</td>
<td>7.16(1)</td>
<td></td>
<td>7.04(0)</td>
<td>Eu II .22(3) (Mn II .15(7))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.45(0)</td>
<td>7.44(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4547.77(1)</td>
<td>7.99(0)</td>
<td>7.99(0)</td>
<td></td>
<td></td>
<td>Fe I .85(200)</td>
<td></td>
</tr>
</tbody>
</table>

* Phase 1.482 discontinued at wave length 4539.7
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.642</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4548.49(1n)</td>
<td>8.37(1n)</td>
<td>8.37(1n)</td>
<td>8.57(1)</td>
<td>Pr II .54(15) (Mn I .58(80))</td>
<td></td>
</tr>
<tr>
<td>4549.06(2)</td>
<td></td>
<td></td>
<td></td>
<td>Nd II .02(3)</td>
<td></td>
</tr>
<tr>
<td>4549.44(9)</td>
<td>9.44(9)</td>
<td>9.39(9)</td>
<td>9.49(x)</td>
<td>Fe II .47(10) (Fe II .21(4))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Ru II .52(6)) (S II .55(80))</td>
<td></td>
</tr>
<tr>
<td>4549.65(4)</td>
<td></td>
<td></td>
<td></td>
<td>Ti II .63(200) (Co I .66(600))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Tb II .70(8))</td>
<td></td>
</tr>
<tr>
<td>4550.18(1)</td>
<td>0.07(0)</td>
<td>0.08(0)</td>
<td>0.16(1)</td>
<td>(Gd II .05(3))</td>
<td></td>
</tr>
<tr>
<td>4550.59(1)</td>
<td>0.73(0)</td>
<td>0.67(1)</td>
<td>0.76(2)</td>
<td>Gd II .95(150) Dy II .89(15) Pr II .77</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pr II .88(15) (Gd II .41(3))</td>
<td></td>
</tr>
<tr>
<td>4551.05(1)</td>
<td>1.14(0)</td>
<td>1.22(1)</td>
<td>1.28(1)</td>
<td>Ce II .30(20) Gd II .95(150)</td>
<td></td>
</tr>
<tr>
<td>4551.52(2)</td>
<td>1.33(1n)</td>
<td>1.35(4)</td>
<td>1.35(4)</td>
<td>Gd II .46(30) Ce II .30(20)</td>
<td></td>
</tr>
<tr>
<td>4552.02(1)</td>
<td>1.96(1)</td>
<td>1.98(1)</td>
<td></td>
<td>Eu II .14(5)</td>
<td></td>
</tr>
<tr>
<td>4552.35(2)</td>
<td>2.40(1n)</td>
<td></td>
<td></td>
<td>S II .38(200) Eu II .28(6) (Nd II .28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Gd II .44(2)) (Tb II .29(pr))</td>
<td></td>
</tr>
<tr>
<td>4552.72(1)</td>
<td>2.52(1)</td>
<td>2.52(2)</td>
<td>2.65(0)</td>
<td>Sm II .66(150) (Sf III .61(9))</td>
<td></td>
</tr>
<tr>
<td>4553.75(1)</td>
<td>3.63(1)</td>
<td>3.56(1)</td>
<td>3.59(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4553.96(1)</td>
<td></td>
<td>3.90(0)</td>
<td></td>
<td>Zr II .96(12) Ba II .04(200)</td>
<td></td>
</tr>
<tr>
<td>4554.49(1)</td>
<td>4.41(0)</td>
<td>4.41(1)</td>
<td>4.30(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4554.86(3)</td>
<td>5.02(4)</td>
<td>4.98(5)</td>
<td>5.05(6)</td>
<td>Cr II .03(20) Gd II .99(50)</td>
<td></td>
</tr>
<tr>
<td>4555.52(0)</td>
<td></td>
<td>5.50(1)</td>
<td></td>
<td>Ti II .49(125) (Ru II .39(4))</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Ru II .59(8))</td>
<td></td>
</tr>
<tr>
<td>4555.81(4)</td>
<td>5.93(4)</td>
<td>5.82(6)</td>
<td>5.92(7)</td>
<td>Fe II .90(8)</td>
<td></td>
</tr>
<tr>
<td>4556.30(1)</td>
<td></td>
<td></td>
<td></td>
<td>Fe I .12(150) (Nd II .14(12))</td>
<td></td>
</tr>
<tr>
<td>4556.60(1)</td>
<td>6.54(1)</td>
<td>6.47(1)</td>
<td>6.47(2)</td>
<td>Dy II .46(1)</td>
<td></td>
</tr>
<tr>
<td>4556.89(1)</td>
<td></td>
<td>6.93(0)</td>
<td></td>
<td>Nd II .74(12) (Tb II .92(8))</td>
<td></td>
</tr>
<tr>
<td>4557.13(0)</td>
<td>7.24(1n)</td>
<td>7.36(1)</td>
<td></td>
<td>(Tb II .29(2))</td>
<td></td>
</tr>
<tr>
<td>4557.56(1)</td>
<td></td>
<td>7.72(1n)</td>
<td>7.40(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4558.13(2)</td>
<td></td>
<td>8.16(1)</td>
<td></td>
<td>Gd II .08(250) (P II .03(100))</td>
<td></td>
</tr>
<tr>
<td>4558.57(7)</td>
<td>8.71(8)</td>
<td>8.67(9)</td>
<td>8.70(9)</td>
<td>Cs II .66(100) (Cr II .83(pr))</td>
<td></td>
</tr>
<tr>
<td>4559.46(1n)</td>
<td>9.41(1)</td>
<td>9.41(1)</td>
<td>9.43(1)</td>
<td>La II .28(100)</td>
<td></td>
</tr>
<tr>
<td>4560.19(1)</td>
<td>0.14(1)</td>
<td>0.21(0)</td>
<td>0.28(1)</td>
<td>Ce II .28(125)</td>
<td></td>
</tr>
<tr>
<td>4561.08(1)</td>
<td>0.92(0)</td>
<td>0.96(1)</td>
<td>1.01(2)</td>
<td>Ce II .96(60) (Nd II .18(8))</td>
<td></td>
</tr>
<tr>
<td>4561.67(1)</td>
<td></td>
<td>1.53(1)</td>
<td>1.46(1)</td>
<td>(Pr II .46(6))</td>
<td></td>
</tr>
<tr>
<td>4562.32(2)</td>
<td>2.22(1)</td>
<td>2.29(1)</td>
<td>2.12(1)</td>
<td>Tb II .25(8) (Ru II .18(1))</td>
<td></td>
</tr>
<tr>
<td>4562.51(0)</td>
<td>2.50(1)</td>
<td></td>
<td></td>
<td>Ce II .36(400) (La II .5(5))</td>
<td></td>
</tr>
<tr>
<td>4563.11(1)</td>
<td>3.08(1)</td>
<td>3.10(1)</td>
<td>3.15(1)</td>
<td>Pr II .13(30) Nd II .22(40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Gd II .03(4))</td>
<td></td>
</tr>
</tbody>
</table>

461
<table>
<thead>
<tr>
<th>0.756</th>
<th>1.642</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4563.69(2)</td>
<td>3.94(1)</td>
<td>3.62(1n)</td>
<td>3.71(2)</td>
<td>3.79(3)</td>
<td>Ti II .77(200) (Tb II .68(20))</td>
</tr>
<tr>
<td>4564.35(1)</td>
<td>4.30(1)</td>
<td>4.37(1)</td>
<td>4.5(1)</td>
<td>Cr II .27(1)</td>
<td></td>
</tr>
<tr>
<td>4564.60(0)</td>
<td>4.53(0)</td>
<td>4.48(1)</td>
<td>4.55(0)</td>
<td>V II .59(200)</td>
<td></td>
</tr>
<tr>
<td>4565.06(0)</td>
<td>5.14(0)</td>
<td>5.24(0)</td>
<td>5.22(0m)</td>
<td>(P II .21(100)) (Eu II .93(2))</td>
<td></td>
</tr>
<tr>
<td>4565.63(3)</td>
<td>5.75(3)</td>
<td>5.70(5)</td>
<td>5.82(4)</td>
<td>5.91(3)</td>
<td>Cr II .78(10) Ce II .84(50) (Eu II .57(5))</td>
</tr>
<tr>
<td>4566.56(1)</td>
<td>6.59(1)</td>
<td>6.56(1)</td>
<td>6.54(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4567.24(0)</td>
<td>7.16(0)</td>
<td>7.10(0)</td>
<td>7.15(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4567.68(1)</td>
<td>7.91(1)</td>
<td>7.79(0)</td>
<td>7.84(1)</td>
<td>7.85(0m) Nd II .61(12) (Tb II .72(6)) (Bi III .83(7))</td>
<td></td>
</tr>
<tr>
<td>4568.53(0)</td>
<td>8.46(0)</td>
<td>8.37(0)</td>
<td>Ti II .31(8) Pr II .54(307)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4568.96(1)</td>
<td>9.09(1)</td>
<td>8.73(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4569.32(2)</td>
<td>9.25(0m)</td>
<td>9.20(1)</td>
<td>9.24(1)</td>
<td>(Tb II .29(2))</td>
<td></td>
</tr>
<tr>
<td>4570.26(0)</td>
<td>0.20(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4570.58(0)</td>
<td>0.42(0)</td>
<td>0.52(0)</td>
<td>0.55(1n)</td>
<td>Pr II .56(20)</td>
<td></td>
</tr>
<tr>
<td>4571.19(1)</td>
<td>1.04(1)</td>
<td>1.0(1)</td>
<td>0.98(40)</td>
<td>Yb I .15(20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>La II .97(10) (Sr II .24(pr))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.46(0)</td>
<td>1.34(1)</td>
<td>(Tb II .42(1)) (Gd II .54(2))</td>
</tr>
<tr>
<td>4571.99(8n)</td>
<td>2.13(1)</td>
<td>1.86(2n)</td>
<td>1.99(3n)</td>
<td>1.87(5)</td>
<td>Ti II .98(300)</td>
</tr>
<tr>
<td>4572.40(0)</td>
<td>2.12(1)</td>
<td>2.36(2)</td>
<td>2.38(2)</td>
<td>Ce II .28(250) (Cl II .13(100))</td>
<td></td>
</tr>
<tr>
<td>4572.96(5)</td>
<td>3.07(1)</td>
<td>2.81(1)</td>
<td>2.85(3)</td>
<td>2.85(5)</td>
<td>(Cr II .83(pr)) (Tb II .18(8))</td>
</tr>
<tr>
<td>4573.61(1)</td>
<td>3.55(0)</td>
<td>3.60(1)</td>
<td>3.66(2n)</td>
<td>Eu II .66(4) (Cr II .63(pr))</td>
<td></td>
</tr>
<tr>
<td>4573.93(1)</td>
<td>3.87(2n)</td>
<td>Dy II .87(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4574.29(0)</td>
<td>4.49(0)</td>
<td>4.36(1)</td>
<td>4.42(2)</td>
<td>Zr II .49(6)</td>
<td></td>
</tr>
<tr>
<td>4574.65(2)</td>
<td>4.67(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Fe I .72(12))</td>
<td></td>
</tr>
<tr>
<td>4575.03(0)</td>
<td>4.89(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>La II .88(200) (Eu II .00(2))</td>
<td></td>
</tr>
<tr>
<td>4575.62(3n)</td>
<td>5.35(0)</td>
<td>5.43(1)</td>
<td>5.46(4)</td>
<td>(Tb II .42(2))</td>
<td></td>
</tr>
<tr>
<td>4576.28(3)</td>
<td>6.38(3)</td>
<td>6.32(6)</td>
<td>6.35(4)</td>
<td>6.42(4)</td>
<td>Fe II .33(4) Eu II .35(12) (Pr II .32(20))</td>
</tr>
<tr>
<td>4576.58(1)</td>
<td></td>
<td></td>
<td></td>
<td>Dy II .60(2)</td>
<td></td>
</tr>
<tr>
<td>4576.98(0)</td>
<td>7.03(1)</td>
<td>6.98(0)</td>
<td></td>
<td>Eu II .93(10)</td>
<td></td>
</tr>
<tr>
<td>4577.24(2)</td>
<td>7.10(1)</td>
<td>7.12(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.39(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.43(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.55(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sm II .69(250)</td>
<td></td>
</tr>
<tr>
<td>4577.91(1)</td>
<td>8.18(0)</td>
<td>7.95(1n)</td>
<td>7.98(1)</td>
<td>8.08(1)</td>
<td>(Pr II .14(25))</td>
</tr>
</tbody>
</table>

462

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th></th>
<th>0.756</th>
<th>1.642</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4578.76(0)</td>
<td>8.96(0)</td>
<td>8.70(1)</td>
<td>Tb II .62(30) (Nd II .88(30))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4579.42(3)</td>
<td>9.45(1)</td>
<td>9.50(2n)</td>
<td>9.50(2n)</td>
<td>9.66(2)</td>
<td>Fe II .52(1) Mn I .67(50)</td>
<td></td>
</tr>
<tr>
<td>4579.99(3)</td>
<td>0.27(0)</td>
<td>0.07(1)</td>
<td>0.07(2n)</td>
<td>0.15(3)</td>
<td>Fe II .05(1) Cr I .06(300)</td>
<td></td>
</tr>
<tr>
<td>4580.4(1)</td>
<td>1.43(1)</td>
<td>1.46(1)</td>
<td>1.57(1)</td>
<td>Fe I .52(60) Co I .60(1000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4581.18(1)</td>
<td>0.82(1n)</td>
<td>0.86(0)</td>
<td>0.90(1n)</td>
<td>Gd II .09(200) Cr I .06(300)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4581.72(1)</td>
<td>2.34(0)</td>
<td>2.33(1)</td>
<td>2.44(1n)</td>
<td>Gd II .53(400) Gd II .38(300)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4582.72(5)</td>
<td>2.85(4)</td>
<td>2.79(4n)</td>
<td>2.73(3n)</td>
<td>2.92(2n)</td>
<td>Fe II .84(3)</td>
<td></td>
</tr>
<tr>
<td>4583.38(0)</td>
<td>3.35(0)</td>
<td>Ti II .44(10) Gd II .33(20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4583.78(8)</td>
<td>3.90(5)</td>
<td>3.81(9)</td>
<td>3.86(9)</td>
<td>3.94(9)</td>
<td>Fe II .85(11)</td>
<td></td>
</tr>
<tr>
<td>4584.03(2)</td>
<td>5.04(0n)</td>
<td>5.18(0)</td>
<td>5.22(0)</td>
<td>6.03(1n)</td>
<td>Ca I .87(125) Eu II .68(8)</td>
<td></td>
</tr>
<tr>
<td>4584.36(1)</td>
<td>4.76(0)</td>
<td>4.68(1n)</td>
<td>Tb II .62(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4585.23(1)</td>
<td>5.90(0)</td>
<td>5.95(0)</td>
<td>6.03(1n)</td>
<td>(Al II .82(40))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4586.64(0)</td>
<td>6.58(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4587.13(2)</td>
<td>7.41(1)</td>
<td>7.25(1n)</td>
<td>7.30(1)</td>
<td>7.39(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4588.06(7)</td>
<td>8.26(4)</td>
<td>8.21(6)</td>
<td>8.24(6)</td>
<td>8.27(4)</td>
<td>Cr II .22(75) Dy II .93(40)</td>
<td></td>
</tr>
<tr>
<td>4589.88(1)</td>
<td>9.18(0)</td>
<td>9.09(0)</td>
<td>9.20(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4590.2(0)</td>
<td>9.90(2)</td>
<td>9.85(3)</td>
<td>9.91(4)</td>
<td>9.99(4)</td>
<td>Cr II .94(3) Ti II .95(100)</td>
<td></td>
</tr>
<tr>
<td>4590.80(2n)</td>
<td>0.93(0n)</td>
<td>0.86(2n)</td>
<td>0.94(1n)</td>
<td>0.95(2)</td>
<td>(O II .94(300))</td>
<td></td>
</tr>
<tr>
<td>4590.82(0n)</td>
<td>1.16(0)</td>
<td>Cr I .39(200) Cr II .39(tr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4591.20(2n)</td>
<td>1.74(1)</td>
<td>1.74(1)</td>
<td>Sm II .82(100) (Dy II .78(1))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4591.63(0)</td>
<td>1.74(1)</td>
<td>1.74(1)</td>
<td>Sm II .82(100) (Dy II .78(1))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4591.72(6)</td>
<td>2.02(6)</td>
<td>2.07(4)</td>
<td>2.17(4)</td>
<td>Cr II .06(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4591.92(6)</td>
<td>2.65(1)</td>
<td>2.75(0)</td>
<td>2.63(0)</td>
<td>Fe I .66(200)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4592.70(1)</td>
<td>2.84(1n)</td>
<td>3.06(0)</td>
<td>3.08(1n)</td>
<td>(Cs I .18(1000R))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength (A)</td>
<td>0.756</td>
<td>1.642</td>
<td>3.042</td>
<td>4.490</td>
<td>5.003</td>
<td>Identification</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>4593.69(2n)</td>
<td>3.64(1)</td>
<td>3.67(1n)</td>
<td>3.80(2n)</td>
<td>3.86(1n)</td>
<td>Ce II .93(200)</td>
<td>Sm II .54(150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pr II .93(10))</td>
<td></td>
</tr>
<tr>
<td>4595.12(1)</td>
<td>4.81(1)</td>
<td>5.06(0)</td>
<td>5.02(1n)</td>
<td>4.43(0)</td>
<td>Nd II .45(6)</td>
<td></td>
</tr>
<tr>
<td>4595.54(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fe II .68(pr)</td>
<td></td>
</tr>
<tr>
<td>4595.93(2)</td>
<td>6.06(1)</td>
<td>5.91(3n)</td>
<td>6.05(2)</td>
<td>6.08(2)</td>
<td>(O II .13(150))</td>
<td></td>
</tr>
<tr>
<td>4597.00(1)</td>
<td>7.12(0)</td>
<td>6.80(1)</td>
<td>6.84(1)</td>
<td>6.98(1)</td>
<td>(A I .10(1000))</td>
<td></td>
</tr>
<tr>
<td>4597.52(0)</td>
<td>7.69(0)</td>
<td>7.73(1)</td>
<td></td>
<td></td>
<td>Gd II .98(400)</td>
<td></td>
</tr>
<tr>
<td>4598.10(1)</td>
<td></td>
<td></td>
<td></td>
<td>7.88(1)</td>
<td>(N II .01(20))</td>
<td></td>
</tr>
<tr>
<td>4598.43(1n)</td>
<td>8.56(1)</td>
<td>8.44(2)</td>
<td>8.46(1)</td>
<td>8.53(2)</td>
<td>Fe II .53(1n)</td>
<td></td>
</tr>
<tr>
<td>4599.30(1)</td>
<td>9.31(0)</td>
<td></td>
<td></td>
<td>9.21(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4599.89(1)</td>
<td></td>
<td></td>
<td></td>
<td>9.87(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4600.26(1)</td>
<td></td>
<td></td>
<td>0.39(0)</td>
<td></td>
<td>V II .19(150)</td>
<td></td>
</tr>
<tr>
<td>4600.76(0)</td>
<td>0.79(0)</td>
<td>0.76(1)</td>
<td></td>
<td></td>
<td>W I .37(200)</td>
<td></td>
</tr>
<tr>
<td>4601.27(1)</td>
<td>1.22(1)</td>
<td>1.33(0)</td>
<td>1.43(1)</td>
<td></td>
<td>Fe II .34(pr)</td>
<td></td>
</tr>
<tr>
<td>4601.80(0)</td>
<td></td>
<td></td>
<td></td>
<td>1.98(0)</td>
<td>P II .10(300)</td>
<td></td>
</tr>
<tr>
<td>4602.25(1)</td>
<td>2.28(0)</td>
<td></td>
<td></td>
<td>2.32(1)</td>
<td>Nd II .24(2)</td>
<td></td>
</tr>
<tr>
<td>4602.96(1)</td>
<td>2.86(0)</td>
<td>3.02(1)</td>
<td>3.08(2)</td>
<td></td>
<td>Fe I .94(300)</td>
<td></td>
</tr>
<tr>
<td>4603.38(1)</td>
<td>3.64(0)</td>
<td>3.90(0)</td>
<td>3.74(1)</td>
<td></td>
<td>Tb II .08(3)</td>
<td></td>
</tr>
<tr>
<td>4604.37(2)</td>
<td>4.44(0)</td>
<td>4.20(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4605.27(1)</td>
<td>5.29(1n)</td>
<td>5.37(0)</td>
<td>5.44(1n)</td>
<td></td>
<td>Mn I .36(150)</td>
<td></td>
</tr>
<tr>
<td>4606.49(1)</td>
<td>6.34(1n)</td>
<td>6.39(1)</td>
<td>6.45(1)</td>
<td></td>
<td>Ce II .40(50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sm II .51(100)</td>
<td></td>
</tr>
<tr>
<td>4607.66(1)</td>
<td>7.74(0)</td>
<td>7.70(1n)</td>
<td>7.68(1n)</td>
<td></td>
<td>Fe I .65(50)</td>
<td></td>
</tr>
<tr>
<td>4608.78(1)</td>
<td>8.83(0n)</td>
<td>8.93(0)</td>
<td></td>
<td></td>
<td>Mn I .62(50)</td>
<td></td>
</tr>
<tr>
<td>4608.27(1)</td>
<td>9.39(0)</td>
<td></td>
<td></td>
<td></td>
<td>(Nd II .15(17))</td>
<td></td>
</tr>
<tr>
<td>4610.47(3)</td>
<td>0.34(0n)</td>
<td>0.25(2)</td>
<td></td>
<td></td>
<td>(Tl II .27(pr))</td>
<td></td>
</tr>
<tr>
<td>4610.94(0)</td>
<td>1.03(0)</td>
<td></td>
<td></td>
<td></td>
<td>(O II .39(60))</td>
<td></td>
</tr>
<tr>
<td>4611.29(2)</td>
<td>1.17(1)</td>
<td></td>
<td></td>
<td></td>
<td>Fe I .29(200)</td>
<td></td>
</tr>
</tbody>
</table>

*Phase 1.642 discontinued at wave length 4601.3
<table>
<thead>
<tr>
<th>Identification</th>
<th>0.756</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.49(1)</td>
<td>1.52(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.96(0)</td>
<td>1.97(1)</td>
<td>2.12(2)</td>
<td>Pr II .07(20)</td>
<td></td>
</tr>
<tr>
<td>2.31(0)</td>
<td></td>
<td></td>
<td>(Eu II .43(2)) (Nd II .47(4))</td>
<td></td>
</tr>
<tr>
<td>3.11(0)</td>
<td>3.24(0)</td>
<td></td>
<td>(Fe I .22(30)) (Cr I .37(150)) (La II .38(200))</td>
<td></td>
</tr>
<tr>
<td>3.55(0)</td>
<td></td>
<td></td>
<td></td>
<td>3.62(0)</td>
</tr>
<tr>
<td>4.53(1)</td>
<td>4.56(1)</td>
<td>4.65(1m)</td>
<td>Eu II .63(6)</td>
<td></td>
</tr>
<tr>
<td>5.33(0)</td>
<td>5.29(1)</td>
<td>5.34(2)</td>
<td>Sm II .44(150) (Gd II .44(3))</td>
<td></td>
</tr>
<tr>
<td>5.73(0)</td>
<td></td>
<td>5.83(0)</td>
<td>Sm II .69(300)</td>
<td></td>
</tr>
<tr>
<td>6.30(1)</td>
<td>6.33(1)</td>
<td></td>
<td>(Cr I .14(300))</td>
<td></td>
</tr>
<tr>
<td>6.62(9)</td>
<td>6.65(4)</td>
<td>6.74(3)</td>
<td>Cr II .66(18)</td>
<td></td>
</tr>
<tr>
<td>7.19(1)</td>
<td>7.19(0)</td>
<td></td>
<td>Dy II .27(30) Ti I .27(200)</td>
<td></td>
</tr>
<tr>
<td>7.88(1m)</td>
<td>7.95(0)</td>
<td>8.04(2m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.63(1)</td>
<td></td>
<td>8.59(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.82(4)</td>
<td>8.84(4)</td>
<td>8.88(6)</td>
<td>Cr II .83(35)</td>
<td></td>
</tr>
<tr>
<td>9.35(0)</td>
<td>9.22(0)</td>
<td>9.30(1)</td>
<td>Fe I .30(100)</td>
<td></td>
</tr>
<tr>
<td>9.67(1n)</td>
<td>9.67(0)</td>
<td>9.74(1)</td>
<td>Gd II .63(8) La II .87(300)</td>
<td></td>
</tr>
<tr>
<td>0.13(0)</td>
<td></td>
<td></td>
<td>Dy II .04(60)</td>
<td></td>
</tr>
<tr>
<td>0.44(5)</td>
<td>0.52(4)</td>
<td>0.57(4)</td>
<td>Fe II .51(3) (Gd II .45(15))</td>
<td></td>
</tr>
<tr>
<td>1.04(0)</td>
<td>1.07(2)</td>
<td></td>
<td>(Cr II .41(pr))</td>
<td></td>
</tr>
<tr>
<td>1.56(5n)</td>
<td>1.62(5n)</td>
<td>1.73(2n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.21(1)</td>
<td>2.35(0)</td>
<td></td>
<td>(Dy II .38(1))</td>
<td></td>
</tr>
<tr>
<td>3.50(0)</td>
<td></td>
<td>3.53(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.91(0)</td>
<td>4.99(2m)</td>
<td>5.00(1m)</td>
<td>Fe I .06(100) Ce II .90(60)</td>
<td></td>
</tr>
<tr>
<td>5.27(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.88(1)</td>
<td>5.92(2)</td>
<td>6.02(2)</td>
<td>Fe II .91(1)</td>
<td></td>
</tr>
<tr>
<td>6.72(0m)</td>
<td>6.86(1)</td>
<td>6.78(1)</td>
<td>Fe II .78(pr) Tb II .91(15)</td>
<td></td>
</tr>
<tr>
<td>7.41(0)</td>
<td></td>
<td>7.24(0)</td>
<td>(Eu I .22(8000))</td>
<td></td>
</tr>
<tr>
<td>7.97(1)</td>
<td>8.07(2)</td>
<td>8.11(2m)</td>
<td>Ce II .16(500) (Dy II .08(1))</td>
<td></td>
</tr>
<tr>
<td>8.70(1)</td>
<td>8.84(2)</td>
<td>8.88(2)</td>
<td>Pr I .75(100) Fe II .82(0m) (P II .70(50))</td>
<td></td>
</tr>
<tr>
<td>9.31(5)</td>
<td>9.35(4)</td>
<td>9.42(3)</td>
<td>Fe II .33(7) (Ti II(?) .34(15))</td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>0.756</th>
<th>3.042</th>
<th>4.490</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4629.82(0)</td>
<td>9.82(0)</td>
<td>9.90(0)</td>
<td>Md II .90(40)</td>
<td></td>
</tr>
<tr>
<td>4630.12(0)</td>
<td>0.24(1n)</td>
<td>0.32(1)</td>
<td>0.32(2)</td>
<td>(Fe I .13(10))</td>
</tr>
<tr>
<td>4630.50(2n)</td>
<td>0.68(1)</td>
<td>0.70(1)</td>
<td>N II .55(300)</td>
<td></td>
</tr>
<tr>
<td>4631.07(2)</td>
<td>1.23(0)</td>
<td>1.25(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4631.75(2)</td>
<td>1.82(1n)</td>
<td>1.86(2n)</td>
<td>1.97(1n)</td>
<td>Fe II .90(0n)</td>
</tr>
<tr>
<td>2.63(1)</td>
<td>2.65(1)</td>
<td>2.76(1)</td>
<td>Md II .69(4)</td>
<td></td>
</tr>
<tr>
<td>4633.07(1)</td>
<td>3.17(0)</td>
<td>3.09(0)</td>
<td>Eu II .07(8)</td>
<td>Fe I .92(70)</td>
</tr>
<tr>
<td>4633.58(0)</td>
<td></td>
<td>3.78(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4633.94(7)</td>
<td>4.06(5)</td>
<td>4.12(5)</td>
<td>4.15(3)</td>
<td>Cr II .09(25)</td>
</tr>
<tr>
<td>4635.25(5)</td>
<td>5.28(5)</td>
<td>5.27(3)</td>
<td>5.39(3)</td>
<td>Fe II .33(5)</td>
</tr>
<tr>
<td>4636.19(1)</td>
<td></td>
<td>6.08(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.50(1n)</td>
<td>6.46(1)</td>
<td>6.47(0)</td>
<td>La II .42(80)</td>
<td>(Md II .57(2))</td>
</tr>
<tr>
<td>4637.14(0)</td>
<td>6.94(0)</td>
<td>7.28(0)</td>
<td>6.93(0)</td>
<td>(Cr I .18(20))</td>
</tr>
<tr>
<td>7.48(0)</td>
<td>7.44(1)</td>
<td>Fe I .52(100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4637.93(2n)</td>
<td>7.99(3)</td>
<td>8.05(2)</td>
<td>8.15(2)</td>
<td>Fe I .02(80)</td>
</tr>
<tr>
<td>4638.92(1n)</td>
<td>8.99(0n)</td>
<td>8.82(1)</td>
<td>8.79(1)</td>
<td>Gd II .00(200)</td>
</tr>
<tr>
<td>4639.39(0)</td>
<td>9.32(0)</td>
<td></td>
<td></td>
<td>Ti I .37(80)</td>
</tr>
<tr>
<td>4639.90(0)</td>
<td>0.15(0)</td>
<td>9.91(0)</td>
<td>0.05(1)</td>
<td>Ti I .95(60)</td>
</tr>
<tr>
<td>4640.27(1)</td>
<td></td>
<td>0.43(0)</td>
<td>Al II .36(20)</td>
<td>Al II .38(18)</td>
</tr>
<tr>
<td>4640.86(2)</td>
<td>0.81(2)</td>
<td>0.84(3)</td>
<td>0.90(5)</td>
<td>Fe II .84(0)</td>
</tr>
<tr>
<td>4641.03(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4641.62(0)</td>
<td></td>
<td>1.64(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4641.90(0)</td>
<td>1.86(0)</td>
<td></td>
<td></td>
<td>(O II .83(150))</td>
</tr>
<tr>
<td>4642.38(0)</td>
<td>2.09(1)</td>
<td>2.13(1n)</td>
<td>2.16(0n)</td>
<td>Sm II .24(500)</td>
</tr>
<tr>
<td>4642.86(1n)</td>
<td>2.94(1)</td>
<td>2.91(1)</td>
<td>2.92(1n)</td>
<td>(Mn I .81(50))</td>
</tr>
<tr>
<td>4644.25(0)</td>
<td>4.14(1n)</td>
<td>4.29(0n)</td>
<td>4.33(1)</td>
<td></td>
</tr>
<tr>
<td>4645.14(0)</td>
<td></td>
<td>5.10(0)</td>
<td>Ti I .19(100)</td>
<td>Tb II .26(30)</td>
</tr>
<tr>
<td>4645.88(0)</td>
<td>6.18(0)</td>
<td>6.15(1)</td>
<td>6.05(0)</td>
<td>Cr I .17(100)</td>
</tr>
<tr>
<td>4645.87(11)</td>
<td>7.34(1)</td>
<td>7.33(0)</td>
<td>Fe I .44(125)</td>
<td>La II .50(100)</td>
</tr>
<tr>
<td>8.17(1)</td>
<td>8.27(1)</td>
<td>Sm II .16(100)</td>
<td>(Fe II .23(pr))</td>
<td>(Si II .17(35))</td>
</tr>
<tr>
<td>4648.54(1)</td>
<td>8.76(0)</td>
<td></td>
<td></td>
<td>Ni I .66(400)</td>
</tr>
<tr>
<td>4648.88(1)</td>
<td>8.94(0)</td>
<td>8.99(0)</td>
<td>Fe II .93(0)</td>
<td>(Cr I .87(50))</td>
</tr>
</tbody>
</table>

Phase 4.490 discontinued at wavelength 4647.3
<table>
<thead>
<tr>
<th>Identification</th>
<th>0.756</th>
<th>3.042</th>
<th>4.520</th>
<th>5.003</th>
</tr>
</thead>
<tbody>
<tr>
<td>4649.49(1)</td>
<td>9.49(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4650.17(0)</td>
<td>0.11(0)</td>
<td>Ti I .02(60)</td>
<td>Nd II .23(3)</td>
<td>Gd II .98(6)</td>
</tr>
<tr>
<td>4650.62(0)</td>
<td>0.67(0)</td>
<td>Al II .54(8)</td>
<td>Al II .65(6)</td>
<td></td>
</tr>
<tr>
<td>4651.10(1)</td>
<td></td>
<td>Cr I .28(100)</td>
<td>Eu II .13(2)</td>
<td>Tb II .07(1)</td>
</tr>
<tr>
<td>4651.60(2)</td>
<td>1.63(1)</td>
<td>1.61(1)</td>
<td>Pr II .52(75)</td>
<td>Dy II .54(2)</td>
</tr>
<tr>
<td>4652.07(2)</td>
<td></td>
<td>Cr I .16(200)</td>
<td>Fe II .28(tr)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.43(1)</td>
<td>Eu II .44(6)</td>
<td>Fe II .28(tr)</td>
<td></td>
</tr>
<tr>
<td>4652.73(0m)</td>
<td>2.86(0)</td>
<td></td>
<td></td>
<td>2.95(0)</td>
</tr>
<tr>
<td>4654.20(3)</td>
<td>4.05(1n)</td>
<td>4.12(1n)</td>
<td>4.12(1)</td>
<td>Cs II .29(30)</td>
</tr>
<tr>
<td></td>
<td>5.06(1)</td>
<td></td>
<td>5.19(1)</td>
<td>(Ga II .99(100))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(La II .50(400))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4655.44(1)</td>
<td>5.71(1)</td>
<td>5.85(0)</td>
<td>Ti II .71(3)</td>
<td></td>
</tr>
<tr>
<td>4656.33(1)</td>
<td></td>
<td>6.20(0)</td>
<td>(Fe I .47(150))</td>
<td></td>
</tr>
<tr>
<td>4656.87(4)</td>
<td>6.89(5)</td>
<td>7.03(4)</td>
<td>7.08(4)</td>
<td>Fe II .97(1)</td>
</tr>
<tr>
<td>4658.12(1)</td>
<td></td>
<td>8.16(1n)</td>
<td>P II .11(100)</td>
<td></td>
</tr>
<tr>
<td>4658.91(1)</td>
<td>8.73(0)</td>
<td>8.84(1)</td>
<td>8.84(1)</td>
<td>(Eu II .63(15))</td>
</tr>
<tr>
<td>4659.69(1n)</td>
<td></td>
<td></td>
<td>9.69(0)</td>
<td></td>
</tr>
<tr>
<td>4660.66(1)</td>
<td>0.56(1)</td>
<td>0.57(1)</td>
<td>0.59(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.54(0)</td>
<td></td>
<td>1.60(1)</td>
<td>(O II .65(125))</td>
</tr>
<tr>
<td>4662.72(0)</td>
<td>2.97(1)</td>
<td>2.75(1)</td>
<td>La II .51(200)</td>
<td>(Ti II .76(pr))</td>
</tr>
<tr>
<td>4663.07(1)</td>
<td></td>
<td></td>
<td>Al II .05(11)</td>
<td></td>
</tr>
<tr>
<td>4663.66(2)</td>
<td>3.63(1)</td>
<td>3.73(1)</td>
<td>3.68(1)</td>
<td>Fe II .70(0)</td>
</tr>
<tr>
<td>4664.24(1)</td>
<td></td>
<td></td>
<td>Fe II .23(tr)</td>
<td>Gd II .27(30)</td>
</tr>
<tr>
<td></td>
<td>4.46(0)</td>
<td></td>
<td></td>
<td>Nd II .45(4)</td>
</tr>
<tr>
<td>4664.73(1)</td>
<td></td>
<td></td>
<td></td>
<td>Dy II .68(80)</td>
</tr>
<tr>
<td>4665.52(2)</td>
<td>5.03(0)</td>
<td></td>
<td>5.25(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.52(1)</td>
<td></td>
<td></td>
<td>Gd II .45(40)</td>
</tr>
<tr>
<td>4666.60(4)</td>
<td>6.72(4)</td>
<td>6.75(3)</td>
<td>6.79(3)</td>
<td>Fe II .75(2)</td>
</tr>
<tr>
<td>4667.36(1)</td>
<td></td>
<td></td>
<td>7.58(1)</td>
<td>Fe I .46(150)</td>
</tr>
<tr>
<td>4667.89(2)</td>
<td>8.16(1)</td>
<td></td>
<td>7.62(1)</td>
<td>Ti I .59(150)</td>
</tr>
<tr>
<td></td>
<td>8.29(1)</td>
<td></td>
<td></td>
<td>Fe I .14(125)</td>
</tr>
<tr>
<td>4668.47(2)</td>
<td>8.34(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4668.89(1)</td>
<td>8.95(1)</td>
<td></td>
<td>La II .91(250)</td>
<td></td>
</tr>
</tbody>
</table>

467
<table>
<thead>
<tr>
<th>Wave Length</th>
<th>0.756</th>
<th>3.042</th>
<th>4.520</th>
<th>5.003</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.19(1)</td>
<td>9.16(0)</td>
<td>(Fe I .18(15)) (Cr I .34(50)) (Nd II .13(3))</td>
<td>Sm II .40(500) Ce II .50(20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.73(1)</td>
<td></td>
<td></td>
<td></td>
<td>Sm II .65(500)</td>
</tr>
<tr>
<td></td>
<td>4670.13(4)</td>
<td>0.22(2)</td>
<td></td>
<td></td>
<td>Fe II .17(0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.35(2)</td>
<td>Sc II .40(300)</td>
</tr>
<tr>
<td></td>
<td>4671.32(1n)</td>
<td>1.34(1)</td>
<td></td>
<td>1.44(1)</td>
<td>(Cr II .36(pr))</td>
</tr>
<tr>
<td></td>
<td>4672.14(0)</td>
<td></td>
<td></td>
<td>2.23(1)</td>
<td>Pr II .08(40)</td>
</tr>
<tr>
<td></td>
<td>4672.73(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.08(1)</td>
<td></td>
<td></td>
<td></td>
<td>Fe I .17(20)</td>
</tr>
<tr>
<td></td>
<td>4673.27(2n)</td>
<td>*3.27(5m) #3.34(3)</td>
<td>3.46(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4674.65(2n)</td>
<td></td>
<td>4.50(2)</td>
<td></td>
<td>Sm II .60(600) Gd II .54(8) (Cu II .76(30))</td>
</tr>
<tr>
<td></td>
<td>4675.32(0n)</td>
<td></td>
<td>5.40(1)</td>
<td></td>
<td>Gd II .27(5)</td>
</tr>
<tr>
<td></td>
<td>4675.80(1)</td>
<td>5.90(0)</td>
<td></td>
<td></td>
<td>Gd II .78(8)</td>
</tr>
<tr>
<td></td>
<td>4676.47(2)</td>
<td></td>
<td>6.34(2)</td>
<td></td>
<td>(0 II .25(125))</td>
</tr>
<tr>
<td></td>
<td>4676.75(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4677.15(2)</td>
<td></td>
<td>7.00(1)</td>
<td></td>
<td>Sm II .91(500) Gd II .99(8)</td>
</tr>
<tr>
<td></td>
<td>4678.01(1)</td>
<td></td>
<td>8.01(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4678.73(0)</td>
<td></td>
<td>8.91(0)</td>
<td></td>
<td>Fe I .85(150) (P II .94(100)) (Ce II .94(pr))</td>
</tr>
<tr>
<td></td>
<td>4679.23(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4680.31(2n)</td>
<td>0.54(0)</td>
<td></td>
<td>0.42(1)</td>
<td>Ce II .13(25) Ce II .46(27)</td>
</tr>
<tr>
<td></td>
<td>4680.74(1)</td>
<td></td>
<td></td>
<td></td>
<td>Nd II .73(30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.63(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4681.96(1n)</td>
<td></td>
<td>1.87(1)</td>
<td></td>
<td>Gd II .85(6) Ti I .92(200) (Cu II .99(50)) (La II .12(5))</td>
</tr>
<tr>
<td></td>
<td>4683.14(0)</td>
<td></td>
<td>3.33(0)</td>
<td></td>
<td>Si II .02(2)</td>
</tr>
<tr>
<td></td>
<td>4683.74(1)</td>
<td>3.91(1)</td>
<td></td>
<td>4.02(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4684.27(1)</td>
<td></td>
<td></td>
<td>4.37(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4684.80(2)</td>
<td>4.69(1)</td>
<td></td>
<td>4.76(2)</td>
<td>Cr II .77(1) Ce II .61(30) (Pr II .94(20))</td>
</tr>
<tr>
<td></td>
<td>4685.90(2)</td>
<td></td>
<td>5.74(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4686.42(1)</td>
<td></td>
<td>6.43(0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Phase 3.042 discontinued at wave length 4673.3
† Phase 4.520 discontinued at wave length 4673.3
‡ Phase 0.756 discontinued at wave length 4677.2
<table>
<thead>
<tr>
<th>Identification</th>
<th>0.691</th>
<th>3.721</th>
<th>5.003</th>
</tr>
</thead>
<tbody>
<tr>
<td>4686.89(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4687.40(1)</td>
<td>7.44(1)</td>
<td>7.52(0)</td>
<td></td>
</tr>
<tr>
<td>4688.95(1)</td>
<td>8.74(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4689.78(1)</td>
<td>9.61(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4690.97(1)</td>
<td>1.19(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4691.43(2)</td>
<td>1.26(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4692.52(0)</td>
<td>2.49(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4693.26(2)</td>
<td>3.31(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4693.81(0)</td>
<td>3.98(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4694.44(0m)</td>
<td>4.32(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4695.36(1)</td>
<td>5.44(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4696.31(1n)</td>
<td>6.26(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4697.28(3)</td>
<td>6.97(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4697.97(0)</td>
<td>7.72(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4698.77(1)</td>
<td>8.66(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4699.53(2)</td>
<td>9.47(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4701.37(1)</td>
<td>2.71(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4703.21(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4703.94(3)</td>
<td>3.77(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4704.50(1)</td>
<td>4.37(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4705.20(1)</td>
<td>5.20(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4706.02(2)</td>
<td>6.42(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4707.97(1)</td>
<td>7.51(0m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4708.98(2)</td>
<td>8.77(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4709.07(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4709.93(1)</td>
<td>9.70(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4710.61(1)</td>
<td>0.47(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4711.28(3)</td>
<td>1.26(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4711.82(0)</td>
<td>2.09(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.691</td>
<td>5.003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4712.32(0)</td>
<td>2.47(0)</td>
</tr>
<tr>
<td>4712.98(1)</td>
<td>2.84(1)</td>
</tr>
<tr>
<td>4713.68(2n)</td>
<td>3.64(3n)</td>
</tr>
<tr>
<td>4715.04(3)</td>
<td>4.99(3n)</td>
</tr>
<tr>
<td>4716.18(1)</td>
<td>(S II .23(600))</td>
</tr>
<tr>
<td>4717.15(0)</td>
<td>(P II .00(15))</td>
</tr>
<tr>
<td>4717.87(1)</td>
<td>8.07(0)</td>
</tr>
<tr>
<td>4718.30(0)</td>
<td>8.59(1n)</td>
</tr>
<tr>
<td>4718.81(2)</td>
<td>8.79(1)</td>
</tr>
<tr>
<td>4719.59(1)</td>
<td>9.51(2)</td>
</tr>
<tr>
<td>4720.08(1)</td>
<td>0.94(1)</td>
</tr>
<tr>
<td>4721.56(0n)</td>
<td>(Cl II .43(25))</td>
</tr>
<tr>
<td>4723.03(3)</td>
<td>2.85(3)</td>
</tr>
<tr>
<td>4723.88(0)</td>
<td>3.57(1)</td>
</tr>
<tr>
<td>4.33(0)</td>
<td>Gd II .73(40)</td>
</tr>
<tr>
<td>4.33(0)</td>
<td>Cr I .42(125)</td>
</tr>
<tr>
<td>4724.65(1)</td>
<td>ND II .36(20)</td>
</tr>
<tr>
<td>4725.01(0)</td>
<td>La II .42(40)</td>
</tr>
<tr>
<td>4725.44(1)</td>
<td>5.64(2)</td>
</tr>
<tr>
<td>4726.17(0)</td>
<td>Yb II .08(60)</td>
</tr>
<tr>
<td>4727.14(1)</td>
<td>7.00(1)</td>
</tr>
<tr>
<td>4728.56(1)</td>
<td>Gd II .47(300)</td>
</tr>
<tr>
<td>4729.15(0)</td>
<td>Fe I .56(20)</td>
</tr>
<tr>
<td>4729.68(0)</td>
<td>Cr I .72(30)</td>
</tr>
<tr>
<td>4730.34(1)</td>
<td>Mn II .36(int?)</td>
</tr>
<tr>
<td>4730.79(0)</td>
<td></td>
</tr>
<tr>
<td>4731.38(3)</td>
<td>1.58(4)</td>
</tr>
<tr>
<td>4731.82(0)</td>
<td>Dy II .85(150)</td>
</tr>
<tr>
<td>4732.68(0)</td>
<td>2.52(1)</td>
</tr>
<tr>
<td></td>
<td>(Ti I .43(25))</td>
</tr>
</tbody>
</table>

* Phase 5.003 discontinued at wave length 4724.3
<table>
<thead>
<tr>
<th>0.691</th>
<th>5.050</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4734.67(1n)</td>
<td>4.86(1)</td>
<td>Fe II .09(37) (Sc I .09(100)) (Pr II .18(25))</td>
</tr>
<tr>
<td>4735.71(3)</td>
<td>5.46(3)</td>
<td>(Nd (?) .76(8150))</td>
</tr>
<tr>
<td>4736.87(1)</td>
<td>6.75(0)</td>
<td>Fe I .78(125)</td>
</tr>
<tr>
<td>4737.38(1)</td>
<td>7.23(1)</td>
<td>Ce II .28(60) Cr I .35(200)</td>
</tr>
<tr>
<td>4768.18(0)</td>
<td>8.20(8)</td>
<td>Mn II .29(1) (Nd (?) .13(850))</td>
</tr>
<tr>
<td>4768.97(1)</td>
<td>9.02(1)</td>
<td>(Mn (?) .11(150))</td>
</tr>
<tr>
<td>4739.85(0)</td>
<td></td>
<td>(La II .80(15))</td>
</tr>
<tr>
<td>4740.60(0)</td>
<td>0.35(1)</td>
<td>La II .27(120)</td>
</tr>
</tbody>
</table>

NOTES TO TABLE 3

λ 3865.6 and λ 3865.9 form two distinct lines on MtW 1995, while MtW 2544 shows only one broadened line. The assignment of the components to Cr II + Fe I and to Cr II + Nd II is not certain. λ 3903.8 main contributor unknown. The line is of class B.

λλ 3905.7 and 3906.0 are clearly divided on MtW 1995 but are blended on MtW 2544.

λ 3919.4 is a fairly strong unidentified line of class A.

λ 3920.6 is a strong, unidentified line of class B.

λ 3930.3 of Fe I and λ 3930.5 of Eu II are clearly double on MtW 1995 but are blended on MtW 2544.

λ 4012.3 and λ 4012.4 are single on MtW 1995, but double on MtW 2544. It is difficult to disentangle the blends contributing to these lines.

λ 4034.2 is a strong line not satisfactorily identified.

λ 4050.5 is of class B and is probably not all due to Dy II.

Lines Ti II 4053.84 and Cr II 4054.18 are not resolved on all plates. For phase 3.042 the two entries are two separate measures of the same blended line.

λ 4060.6 is of class B and cannot be due to Eu II and Nd II alone.

λ 4161.8 is of class B and is mostly unidentified.

λλ 4177.6 and 4177.9 are not satisfactorily identified. The latter line is of class A or is completely blended with λ 4177.6 on some plates.

λλ 4200.5 and 4200.8 are not satisfactorily identified.

λ 4288.4 is not satisfactorily identified.

λ 4289.9 is one of the most remarkable lines of class A. It is probably due to Ce II.

λ 4356.4 is a strong unidentified line.

λ 4371.9 is a strong unidentified line.

The line Fe I 4383.6 is the violet component of a double line. The red component, whose shift is not the same on all plates, has not been satisfactorily identified.

λ 4384.2 is not satisfactorily identified. Class B, very strong.

λ 4393.0, strong unidentified line.

λ 4393.7, strong unidentified line.

λ 4410.0, strong unidentified line.

λ 4410.8, strong unidentified line.

λ 4419.6, not satisfactorily identified, class B.

λ 4447.3, strong unidentified line, class A.

λ 4448.4, not satisfactorily identified.

λ 4502.9, not satisfactorily identified.

λ 4511.9, not satisfactorily identified.

λ 4514.1, very strong unidentified line of class B.

λ 4515.6, strong unidentified line.

λ 4540.8, strong unidentified line.

λ 4618.0, strong unidentified line.

λ 4621.1, strong unidentified line.

λ 4621.6, strong unidentified line.

λ 4660.6, strong unidentified line.

λ 4673.3, strong unidentified line.

λ 4722.9, strong unidentified line.
<table>
<thead>
<tr>
<th>Laboratory λ</th>
<th>0.500</th>
<th>0.691</th>
<th>0.822</th>
<th>0.981</th>
<th>1.323</th>
<th>1.460</th>
<th>1.510</th>
<th>1.642</th>
<th>2.363</th>
<th>2.588</th>
</tr>
</thead>
<tbody>
<tr>
<td>3771.97(5)</td>
<td>$-2.3(2n)$</td>
<td></td>
<td></td>
<td></td>
<td>$-15.4(8n)$</td>
<td></td>
<td></td>
<td></td>
<td>$-19.6(2n)$</td>
<td></td>
</tr>
<tr>
<td>3721.94(6)</td>
<td>$-13.5(9n)$</td>
<td></td>
<td></td>
<td></td>
<td>$-18.6(9n)$</td>
<td></td>
<td></td>
<td></td>
<td>$-1.6(5n)$</td>
<td></td>
</tr>
<tr>
<td>3734.37(8)</td>
<td>$-2.6(xn)$</td>
<td></td>
<td></td>
<td></td>
<td>$+7.8(xn)$</td>
<td></td>
<td></td>
<td></td>
<td>$-9.2(xn)$</td>
<td></td>
</tr>
<tr>
<td>3750.15(10)</td>
<td>$-6.1(xn)$</td>
<td></td>
<td></td>
<td></td>
<td>$-1.8(xn)$</td>
<td></td>
<td></td>
<td></td>
<td>$-1.5(xn)$</td>
<td></td>
</tr>
<tr>
<td>3770.63(15)</td>
<td>$-8.0(xn)$</td>
<td></td>
<td></td>
<td></td>
<td>$-21.8(xn)$</td>
<td></td>
<td></td>
<td></td>
<td>$-2.8(xn)$</td>
<td></td>
</tr>
<tr>
<td>3797.90(20)</td>
<td>$-3.2(xn)$</td>
<td></td>
<td></td>
<td></td>
<td>$-7.9(xn)$</td>
<td></td>
<td></td>
<td></td>
<td>$+5.8(xn)$</td>
<td></td>
</tr>
<tr>
<td>3835.39(40)</td>
<td>$+6.6(xn)$</td>
<td></td>
<td></td>
<td></td>
<td>$+1.2(xn)$</td>
<td></td>
<td></td>
<td></td>
<td>$-8.0(xn)$</td>
<td></td>
</tr>
<tr>
<td>3889.05(60)</td>
<td>$-4.6(xn)$</td>
<td>$+8.0(xn)$</td>
<td>$+0.1(xn)$</td>
<td></td>
<td></td>
<td></td>
<td>$-1.8(xn)$</td>
<td>$-4.4(xn)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3970.08</td>
<td>$-0.2(xn)$</td>
<td>$+3.9(xn)$</td>
<td>$+5.0(xn)$</td>
<td></td>
<td>$-3.6(xn)$</td>
<td>$+3.4(xn)$</td>
<td></td>
<td></td>
<td>$+10.3(xn)$</td>
<td>$+0.7(xn)$</td>
</tr>
<tr>
<td>4101.75</td>
<td>$+1.8(xn)$</td>
<td>$+2.6(xn)$</td>
<td>$-0.3(xn)$</td>
<td></td>
<td>$-11.3(xn)$</td>
<td>$-1.6(xn)$</td>
<td></td>
<td></td>
<td>$-6.7(xn)$</td>
<td>$-0.6(xn)$</td>
</tr>
<tr>
<td>4340.48(200)</td>
<td>$-1.7(xn)$</td>
<td>$-4.6(xn)$</td>
<td></td>
<td></td>
<td>$-5.2(xn)$</td>
<td>$-1.2(xn)$</td>
<td></td>
<td></td>
<td>$-0.5(xn)$</td>
<td>$-2.1(xn)$</td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td>$+0.8$</td>
<td>-2.63</td>
<td>$+2.02$</td>
<td></td>
<td>-6.95</td>
<td>$+0.2$</td>
<td></td>
<td>$+0.32$</td>
<td>-3.74</td>
<td>$+3.07$</td>
</tr>
<tr>
<td>Mg II</td>
<td>4481.33(100)</td>
<td>$-9.6(x)$</td>
<td>$-9.5(x)$</td>
<td>$+9.2(9)$</td>
<td>$-9.1(x)$</td>
<td>$-7.6(x)$</td>
<td>$-9.6(x)$</td>
<td>$-5.4(9)$</td>
<td>$-7.1(x)$</td>
<td>$-7.2(x)$</td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td>-9.6</td>
<td>-9.5</td>
<td>-9.2</td>
<td>-9.1</td>
<td>-7.6</td>
<td>-9.6</td>
<td>-5.4</td>
<td>-7.1</td>
<td>-7.2</td>
<td>-7.0</td>
</tr>
<tr>
<td>Al I</td>
<td>3962.53(3000)</td>
<td>$-0.7(1n)$</td>
<td>$+8.6(1n)$</td>
<td>$+7.6(1n)$</td>
<td></td>
<td>$+5.5(1n)$</td>
<td>$+10.6(1n)$</td>
<td></td>
<td></td>
<td>$-4.6(1n)$</td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td>-0.7</td>
<td>$+8.6$</td>
<td>$+7.6$</td>
<td></td>
<td>$+5.5$</td>
<td>$+10.6$</td>
<td></td>
<td>-4.6</td>
<td>$+8.0$</td>
<td></td>
</tr>
<tr>
<td>Si II</td>
<td>3853.67(3)</td>
<td>$-5.2(9)$</td>
<td>$-1.4(5)$</td>
<td></td>
<td>$-4.4(9)$</td>
<td></td>
<td></td>
<td></td>
<td>$-1.2(5)$</td>
<td>$-4.8(9)$</td>
</tr>
<tr>
<td>3856.03(8)</td>
<td>$-4.4(x)$</td>
<td>$-1.7(x)$</td>
<td></td>
<td>$-2.5(x)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$+2.1(8)$</td>
<td>$-2.6(2)$</td>
</tr>
<tr>
<td>3862.60(6)</td>
<td>$-2.8(x)$</td>
<td>$-0.8(x)$</td>
<td></td>
<td>$-3.0(x)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$+2.7(9)$</td>
<td>$-3.3(x)$</td>
</tr>
<tr>
<td>4128.05(8)</td>
<td>$+1.2(9)$</td>
<td>$-0.1(x)$</td>
<td>$-1.4(9)$</td>
<td>$+2.7(9)$</td>
<td>$-1.7(2)$</td>
<td>$+2.0(9)$</td>
<td>$-0.7(9)$</td>
<td>$+2.4(9)$</td>
<td>$-0.9(9)$</td>
<td>$-1.2(1)$</td>
</tr>
<tr>
<td>4130.88(10)</td>
<td>$+3.8(9)$</td>
<td>$+2.4(x)$</td>
<td>$+1.5(x)$</td>
<td>$+2.5(9)$</td>
<td>$+2.0(9)$</td>
<td>$+2.1(9)$</td>
<td>$+2.8(9)$</td>
<td>$-0.2(9)$</td>
<td>$+1.6(4)$</td>
<td></td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td>$+2.5$</td>
<td>-2.02</td>
<td>-0.76</td>
<td>$+2.1$</td>
<td>-2.82</td>
<td>$+2.0$</td>
<td>$+0.2$</td>
<td>$+1.76$</td>
<td>-2.36</td>
<td>$+0.2$</td>
</tr>
<tr>
<td>Cu I</td>
<td>4226.73(500)</td>
<td>$+3.8(1)$</td>
<td>$+0.3(1)$</td>
<td>$+7.7(1)$</td>
<td>$+11.6(0)$</td>
<td>$+5.4(1)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td>$+3.8$</td>
<td>$+0.3$</td>
<td>$+7.7$</td>
<td>$+11.6$</td>
<td>$+5.4$</td>
<td></td>
<td></td>
<td>-11.6</td>
<td>-5.4</td>
<td>-11.6</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-17.0(1n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-18.0(3n)</td>
<td>-25.1(1n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10.8(4n)</td>
<td>+ 0.2(3n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 8.1(6n)</td>
<td>-10.8(3n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-14.4(9n)</td>
<td>- 6.4(6n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 1.0(xm)</td>
<td>+ 8.7(8n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2.1(xm)</td>
<td>+ 3.0(9n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3.9(xm)</td>
<td>- 4.6(xm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 1.9(xm)</td>
<td>- 1.6(xm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 4.6(xm)</td>
<td>- 6.0(xm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.9(xm)</td>
<td>- 2.0(xm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 2.35</td>
<td>- 4.0</td>
<td>- 6.88</td>
<td>- 3.98</td>
<td>- 2.05</td>
<td>- 2.83</td>
<td>- 0.99</td>
<td>- 4.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>(2)</td>
<td>(11)</td>
<td>(10)</td>
<td>(2)</td>
<td>(10)</td>
<td>(1)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>- 9.0(9)</td>
<td>-10.6(9)</td>
<td>- 9.6(x)</td>
<td>- 5.0(x)</td>
<td>- 8.1(x)</td>
<td>-10.5(9)</td>
<td>- 9.4(9)</td>
<td>-10.6(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 9.0(1)</td>
<td>-10.6(1)</td>
<td>- 9.6(1)</td>
<td>- 5.0(1)</td>
<td>- 8.1(1)</td>
<td>-10.5(1)</td>
<td>- 9.4(1)</td>
<td>-10.6(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 8.4(1)</td>
<td>- 9.9(1)</td>
<td>- 5.4(1)</td>
<td>- 0.1(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>- 8.4</td>
<td>- 9.9</td>
<td>- 5.4</td>
<td>- 0.1</td>
<td>(1)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4.0(5)</td>
<td>- 1.9(3)</td>
<td></td>
<td></td>
<td>- 6.5(4n)</td>
<td>- 7.8(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3.9(9)</td>
<td>- 4.5(6)</td>
<td></td>
<td></td>
<td>- 3.6(7)</td>
<td>- 2.1(9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2.9(8)</td>
<td>- 5.7(7)</td>
<td></td>
<td></td>
<td>- 3.4(5)</td>
<td>- 2.4(9)</td>
<td>(Nd II .487(15))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 1.1(9)</td>
<td>- 2.3(9)</td>
<td>- 2.2(9)</td>
<td>+ 1.4(5)</td>
<td>- 0.1(9)</td>
<td>+ 1.3(9)</td>
<td>- 0.2(2a)</td>
<td>+ 6.0(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.4(9)</td>
<td>- 1.7(9)</td>
<td>- 0.9(9)</td>
<td>- 1.7(6)</td>
<td>- 3.8(9)</td>
<td>- 3.8(9)</td>
<td>- 2.8(9)</td>
<td>+ 1.5(9)</td>
<td>(Ce II .706(100))</td>
<td>(Nd II .722(3))</td>
</tr>
<tr>
<td>+ 0.75(2)</td>
<td>- 2.0(2)</td>
<td>- 3.3(5)</td>
<td>- 2.48(5)</td>
<td>- 1.95(2)</td>
<td>- 3.2(5)</td>
<td>- 5.1(5)</td>
<td>+ 3.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>(2)</td>
<td>(5)</td>
<td>(5)</td>
<td>(2)</td>
<td>(5)</td>
<td>(5)</td>
<td>(2)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-11.9(1)</td>
<td>- 6.0(0)</td>
<td>+ 0.6(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
<td>-11.9</td>
<td>- 6.0</td>
<td>+ 0.6</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.490</td>
<td>3.530</td>
<td>3.721</td>
<td>4.460</td>
<td>4.520</td>
<td>4.956</td>
<td>5.050</td>
<td>5.430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.2(9)</td>
<td>- 0.3(8)</td>
<td>- 2.9(5)</td>
<td>- 1.8(4)</td>
<td>- 2.1(4n)</td>
<td>- 3.9(7n)</td>
<td>- 5.3(9)</td>
<td>(Fe I .605(200)) (Ce II .721(60))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 4.5(2)</td>
<td>- 13.5(3)</td>
<td></td>
<td></td>
<td>- 9.6(8)</td>
<td>- 7.5(8)</td>
<td>(Py II .395(1000))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.2</td>
<td>- 0.3</td>
<td>+ 0.8</td>
<td>- 7.65</td>
<td>- 2.1</td>
<td>- 6.75</td>
<td>- 6.4</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td></td>
<td></td>
<td>(2)</td>
<td>(2)</td>
<td>(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 5.22a</td>
<td>- 7.0(3)</td>
<td></td>
<td></td>
<td>- 4.5(3)</td>
<td>- 2.0(6)</td>
<td>(Fe I .519(60))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 5.5(0)</td>
<td>+ 1.9(1m)</td>
<td>- 7.3(2)</td>
<td>- 9.7(5)</td>
<td>- 3.4(3)</td>
<td>- 1.2(5)</td>
<td>+ 0.6(5)</td>
<td>(Ce II .518(20)) (Cr I .620(100))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 10.8(1m)</td>
<td>- 8.0(4)</td>
<td>- 15.7(4n)</td>
<td>- 27.5(7n)</td>
<td>- 14.5(5)</td>
<td>- 14.9(5)</td>
<td>- 9.6(9)</td>
<td>(Ce II .938(100)) (Gd II .884(80))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 6.6(1)</td>
<td>+ 5.2(1)</td>
<td>+ 9.6(2)</td>
<td>- 6.6(3)</td>
<td>- 4.0(7)</td>
<td>- 3.7(3)</td>
<td>- 0.2(4)</td>
<td>+ 6.7(5n)</td>
<td>(Al I .100(2000))</td>
<td></td>
</tr>
<tr>
<td>- 3.1(1m)</td>
<td>- 4.9(1)</td>
<td>- 13.2(1)</td>
<td>- 5.9(3)</td>
<td>- 7.0(3n)</td>
<td>- 7.2(2)</td>
<td>- 1.4(3n)</td>
<td>- 5.6(6)</td>
<td>(Pr II .100(60)) (Zr II .81(5))</td>
<td></td>
</tr>
<tr>
<td>+ 6.5(1)</td>
<td>+ 2.3(2)</td>
<td>+ 2.2(2m)</td>
<td></td>
<td>+ 1.8(5)</td>
<td>+ 3.5(4n)</td>
<td></td>
<td>+ 4.5(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>- 15.6(1)</td>
<td>- 5.1(2)</td>
<td>- 2.4(3)</td>
<td>- 1.0(2n)</td>
<td>+ 3.0(5)</td>
<td>+ 1.6(2n)</td>
<td>Fe I .582(100) (Ru II .54(3))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 12.2(1m)</td>
<td>- 3.1(3)</td>
<td>- 10.6(6)</td>
<td>- 8.9(4)</td>
<td>- 4.0(4)</td>
<td>- 1.4(5)</td>
<td>(Ce II .835(15))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 2.5(2)</td>
<td>+ 0.3(1m)</td>
<td>+ 4.4(1m)</td>
<td>- 9.1(7)</td>
<td>- 3.4(5n)</td>
<td>- 6.5(4)</td>
<td>- 2.3(3)</td>
<td>Fe I .286(80) (Py II .98(40)) (Pr II .005(15)) (Zr II .92(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 3.4(1)</td>
<td>+ 10.6(1)</td>
<td>- 9.0(1)</td>
<td>- 5.9(3)</td>
<td>- 6.9(1)</td>
<td>+ 0.3(2m)</td>
<td>- 0.3(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.3(0)</td>
<td>- 15.0(0)</td>
<td>- 6.7(1)</td>
<td>+ 4.1(1)</td>
<td>+ 5.6(1)</td>
<td>+ 6.5(1)</td>
<td>- 9.1(2)</td>
<td>Nd II .952(150) (La II .22(25)) (Gd II .27(17)) .159(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 6.1(1)</td>
<td>+ 10.4(1)</td>
<td>- 4.2(1)</td>
<td>- 6.4(2)</td>
<td>+ 0.1(2m)</td>
<td>+ 3.0(2)</td>
<td>+ 2.1(2)</td>
<td>Ce II .763(187) (La II .94(20))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.7(0)</td>
<td>- 9.1(1)</td>
<td>- 14.3(1)</td>
<td>- 8.4(1)</td>
<td>- 10.5(3)</td>
<td>- 12.7(2)</td>
<td>- 10.0(2)</td>
<td>- 2.6(2)</td>
<td>Pr II .244(40)</td>
<td></td>
</tr>
<tr>
<td>+ 7.2(1)</td>
<td>+ 4.5(2)</td>
<td>- 1.7(3m)</td>
<td>+ 4.0(1)</td>
<td>- 2.4(3)</td>
<td>+ 3.2(3m)</td>
<td>- 1.1(3)</td>
<td>+ 1.3(3)</td>
<td>(Pr II .712(150))</td>
<td></td>
</tr>
<tr>
<td>+ 7.5(0)</td>
<td>- 12.0(0)</td>
<td>+ 8.2(0)</td>
<td>+ 2.0(1)</td>
<td>- 4.5(2)</td>
<td>+ 1.1(4)</td>
<td>+ 1.1(5)</td>
<td>+ 5.1(2)</td>
<td>Eu II .25(15)</td>
<td></td>
</tr>
<tr>
<td>- 2.1(1)</td>
<td>- 10.0(3)</td>
<td>- 12.8(2)</td>
<td>- 6.9(3)</td>
<td>- 6.7(5)</td>
<td>- 6.8(6)</td>
<td>- 4.7(6)</td>
<td>- 1.9(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 3.0(1)</td>
<td>+ 9.1(1)</td>
<td>+ 8.7(1n)</td>
<td>+ 6.2(1)</td>
<td>+ 1.6(3)</td>
<td>+ 2.9(2m)</td>
<td>+ 8.8(2)</td>
<td>+ 12.0(1)</td>
<td>(Fe II .56(pr)) (Sn II .376(80))</td>
<td></td>
</tr>
<tr>
<td>+ 6.1(3)</td>
<td>+ 7.1(4)</td>
<td>+ 7.3(5)</td>
<td>- 8.7(1)</td>
<td>+ 3.2(5)</td>
<td>- 8.6(8m)</td>
<td>- 0.8(3n)</td>
<td>+ 3.6(7)</td>
<td>Fe II .106(2) (Pr II .134(60)) (P II .85(15)) (Ag II .26(4))</td>
<td></td>
</tr>
<tr>
<td>+ 4.8(1)</td>
<td>+ 7.6(1)</td>
<td>- 14.7(0)</td>
<td>- 3.7(2)</td>
<td>- 3.4(5)</td>
<td>+ 1.8(3)</td>
<td>+ 1.0(3)</td>
<td>- 1.2(3)</td>
<td>(Zr II .68(20))</td>
<td></td>
</tr>
<tr>
<td>+ 0.6(1)</td>
<td>- 15.3(2)</td>
<td>+ 3.2(1m)</td>
<td>- 1.9(5)</td>
<td>- 12.6(4)</td>
<td>- 1.1(5)</td>
<td>+ 3.3(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 2.54</td>
<td>0.05</td>
<td>- 3.68</td>
<td>4.61</td>
<td>4.81</td>
<td>3.61 1</td>
<td>0.19</td>
<td>0.24</td>
<td>(12) (19) (19) (19) (20) (20) (19)</td>
<td></td>
</tr>
<tr>
<td>475</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
TABLE 4 -- Continued

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>0.500</th>
<th>0.691</th>
<th>0.822</th>
<th>0.981</th>
<th>1.323</th>
<th>1.660</th>
<th>1.810</th>
<th>1.645</th>
<th>2.263</th>
<th>2.580</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr II</td>
<td></td>
</tr>
<tr>
<td>3712.95(50)</td>
<td>10.6(2)</td>
<td>-6.2(a)</td>
<td>+2.3(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3753.40(15)</td>
<td>9.1(0)</td>
<td>+7.7(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3727.36(40)</td>
<td>10.0(2)</td>
<td>3.3(3)</td>
<td>+10.4(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3738.38(25)</td>
<td>13.2(2)</td>
<td>7.5(7)</td>
<td>-2.0(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3754.58(20)</td>
<td>12.7(2)</td>
<td>3.9(2)</td>
<td>+4.9(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3801.23(10)</td>
<td>11.8(0)</td>
<td>4.4(0)</td>
<td>+3.7(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3865.59(75)</td>
<td>6.1(5)</td>
<td>7.2(5)</td>
<td>3.6(5)</td>
<td>+1.5(3)</td>
<td>+7.4(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3905.65(25)</td>
<td>-11.8(9)</td>
<td>-10.8(7)</td>
<td>-6.5(9)</td>
<td>-4.9(9)</td>
<td>-0.8(6)</td>
<td>-1.9(6)</td>
<td>-1.8(3n)</td>
<td>-6.4(3n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4003.13(25)</td>
<td>-12.6(3)</td>
<td>-11.1(3)</td>
<td>-4.2(3)</td>
<td>+0.5(3)</td>
<td>+5.1(3)</td>
<td>-2.0(1)</td>
<td>-10.9(1n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4012.47(30)</td>
<td>-9.6(9)</td>
<td>-8.1(a)</td>
<td>-7.1(8)</td>
<td>-3.7(9)</td>
<td>-0.8(9)</td>
<td>+2.8(9)</td>
<td>+5.0(3)</td>
<td>+4.6(5)</td>
<td>+13.4(4)</td>
<td>-1.2(5)</td>
</tr>
<tr>
<td>4038.03(25)</td>
<td>-8.6(5)</td>
<td>-8.9(5)</td>
<td>-7.9(9)</td>
<td>-4.8(2)</td>
<td>-5.6(5)</td>
<td>-1.6(3)</td>
<td>-1.5(2)</td>
<td>-0.4(4)</td>
<td>-5.0(3)</td>
<td>+7.5(3)</td>
</tr>
<tr>
<td>4049.16(18)</td>
<td>-10.2(3)</td>
<td>-13.7(2)</td>
<td>-9.3(4n)</td>
<td>+0.7(3)</td>
<td>+0.2(1)</td>
<td>+13.4(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4051.97(12)</td>
<td>-11.3(2)</td>
<td>-8.9(3)</td>
<td>-10.8(3)</td>
<td>-10.2(2)</td>
<td>-9.0(5)</td>
<td>+0.7(3)</td>
<td>+4.7(1)</td>
<td>-3.2(3)</td>
<td>+1.2(2)</td>
<td></td>
</tr>
<tr>
<td>4054.18(18)</td>
<td>-12.1(3)</td>
<td>-14.2(3)</td>
<td>-9.7(2)</td>
<td>-10.2(7)</td>
<td>-9.2(6)</td>
<td>-6.1(2)</td>
<td>-8.0(5)</td>
<td>-11.8(2n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4070.70(10)</td>
<td>-16.7(5)</td>
<td>-14.7(3n)</td>
<td>-17.8(4)</td>
<td>-10.9(3)</td>
<td>-8.2(4)</td>
<td>-6.5(6)</td>
<td>-4.2(1)</td>
<td>-4.9(3)</td>
<td>-2.9(3)</td>
<td>-7.7(2)</td>
</tr>
<tr>
<td>4082.30(10)</td>
<td>-11.8(1)</td>
<td>-11.4(1)</td>
<td>-9.1(1)</td>
<td>-6.5(4)</td>
<td>-2.5(3)</td>
<td>+0.4(0)</td>
<td>-2.2(3)</td>
<td>+3.9(2)</td>
<td>+8.7(0)</td>
<td></td>
</tr>
<tr>
<td>4098.44(8)</td>
<td>-13.4(1)</td>
<td>-9.4(1)</td>
<td>-9.7(0)</td>
<td>-5.7(2)</td>
<td>+5.3(0)</td>
<td></td>
<td>+4.3(2)</td>
<td>+3.7(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4111.01(18)</td>
<td>-12.0(3)</td>
<td>-8.5(2)</td>
<td>-10.2(1)</td>
<td>-4.2(5)</td>
<td>-2.2(3n)</td>
<td>-9.3(1n)</td>
<td>+2.6(3)</td>
<td>-0.6(2)</td>
<td>-2.9(1)</td>
<td></td>
</tr>
<tr>
<td>4133.24(5)</td>
<td>-8.5(3)</td>
<td>-7.6(3)</td>
<td>-6.8(2)</td>
<td>-0.2(2)</td>
<td>-5.5(4)</td>
<td>-4.2(3)</td>
<td>-3.4(1)</td>
<td>-1.1(1)</td>
<td>+1.9(1)</td>
<td>+8.3(1)</td>
</tr>
<tr>
<td>4145.80(25)</td>
<td>-12.3(1)</td>
<td>-10.3(3)</td>
<td>-8.6(4)</td>
<td>-10.2(2)</td>
<td>-4.3(4)</td>
<td>-3.0(5)</td>
<td>-0.4(1)</td>
<td>+2.2(3)</td>
<td>+2.2(3)</td>
<td>-12.3(0)</td>
</tr>
<tr>
<td>4179.46(12)</td>
<td>-7.4(3)</td>
<td>-8.4(5)</td>
<td>-8.0(4)</td>
<td>-4.0(3)</td>
<td>-5.1(8)</td>
<td>-1.7(4)</td>
<td>-1.4(1)</td>
<td>+1.6(3)</td>
<td>+2.8(3)</td>
<td>+3.7(1)</td>
</tr>
<tr>
<td>4224.15(20)</td>
<td>-7.8(2)</td>
<td>-4.8(2)</td>
<td>-0.6(2)</td>
<td>-3.2(5)</td>
<td>+2.8(2)</td>
<td>0.1</td>
<td>+1.4(3)</td>
<td>+8.7(2)</td>
<td>+6.2(0)</td>
<td></td>
</tr>
<tr>
<td>4222.28(30)</td>
<td>-9.5(4)</td>
<td>-11.4(5)</td>
<td>-9.1(7)</td>
<td>-6.1(8)</td>
<td>-5.6(9)</td>
<td>-1.1(7)</td>
<td>-0.6(9)</td>
<td>-7.1(7)</td>
<td>+5.0(5)</td>
<td>+1.6(4)</td>
</tr>
<tr>
<td>4252.66(10)</td>
<td>-9.3(1)</td>
<td>-13.7(4)</td>
<td>-9.9(7)</td>
<td>-7.0(3)</td>
<td>-6.0(5)</td>
<td>-2.9(7)</td>
<td>-2.9(3)</td>
<td>+1.9(3)</td>
<td>+4.3(1)</td>
<td>-1.6(3)</td>
</tr>
<tr>
<td>4256.16(5)</td>
<td>-14.0(2)</td>
<td>-11.3(2)</td>
<td>-5.0(2)</td>
<td>+7.0(2n)</td>
<td>-4.1(3n)</td>
<td>+2.9(3)</td>
<td>-11.1(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4261.91(20)</td>
<td>+2.1(4n)</td>
<td>-6.8(4)</td>
<td>-4.8(5)</td>
<td>-1.2(5)</td>
<td>-3.2(9)</td>
<td>+3.2(9)</td>
<td>+4.1(5)</td>
<td>+5.6(6)</td>
<td>+4.5(8)</td>
<td>+5.8(5)</td>
</tr>
<tr>
<td>4269.28(10)</td>
<td>-8.3(1)</td>
<td>-8.9(4)</td>
<td>-8.2(3)</td>
<td>-0.4(2)</td>
<td>-2.1(4)</td>
<td>+0.8(3)</td>
<td>+2.0(2)</td>
<td>+7.4(1)</td>
<td>+4.6(1)</td>
<td>-0.5(3)</td>
</tr>
<tr>
<td>4275.57(20)</td>
<td>-8.7(5)</td>
<td>-9.6(4)</td>
<td>-10.5(5)</td>
<td>-5.0(3)</td>
<td>-6.1(5)</td>
<td>-1.0(4)</td>
<td>+0.4(3)</td>
<td>+4.1(3)</td>
<td>+3.5(3)</td>
<td>-1.0(1)</td>
</tr>
<tr>
<td>4284.21(20)</td>
<td>-10.0(2)</td>
<td>-7.4(2)</td>
<td>-4.6(2)</td>
<td>-5.8(3)</td>
<td>-1.8(3)</td>
<td>-4.2(2)</td>
<td>-3.2(2)</td>
<td>+6.4(3)</td>
<td>-3.4(2n)</td>
<td></td>
</tr>
<tr>
<td>4555.03(20)</td>
<td>-2.5(0)</td>
<td>-8.3(4)</td>
<td>-13.7(2)</td>
<td>-7.2(4)</td>
<td>-7.0(1)</td>
<td>-0.3(4)</td>
<td>+1.0(5)</td>
<td>+4.9(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4558.66(100)</td>
<td>-7.1(3n)</td>
<td>-6.1(9)</td>
<td>-5.3(5)</td>
<td>-1.4(9)</td>
<td>+0.9(3)</td>
<td>+3.2(8)</td>
<td>+2.7(9)</td>
<td>+0.9(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4565.78(10)</td>
<td>+5.4(1)</td>
<td>-9.4(4)</td>
<td>-10.3(5)</td>
<td>-1.0(4)</td>
<td>-2.0(1)</td>
<td>-1.9(3)</td>
<td>-1.7(5)</td>
<td>-3.4(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4588.22(75)</td>
<td>+6.5(1)</td>
<td>-10.0(9)</td>
<td>-10.9(3)</td>
<td>-0.3(5)</td>
<td>+0.2(2)</td>
<td>+2.6(4)</td>
<td>+2.2(6)</td>
<td>+0.7(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4592.06(20)</td>
<td>+9.3(1)</td>
<td>-8.0(8)</td>
<td>-9.5(4)</td>
<td>-1.8(4)</td>
<td>+0.5(1)</td>
<td>+3.9(3)</td>
<td>+0.2(5)</td>
<td>+1.8(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4616.66(18)</td>
<td>-7.6(0)</td>
<td>-12.3(3)</td>
<td>-6.4(5)</td>
<td>-3.0(9)</td>
<td>-6.3(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4618.63(15)</td>
<td>+11.3(3)</td>
<td>+17.8(0)</td>
<td>+0.8(5)</td>
<td>+4.3(3)</td>
<td>+0.3(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4631.09(25)</td>
<td>-9.7(8)</td>
<td>-8.9(5)</td>
<td>-1.0(6)</td>
<td>+1.9(4)</td>
<td>-0.8(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean Number of Sources = 6.97 (19) - 9.47 (36) - 8.66 (31) - 5.76 (17) - 5.48 (29) - 1.76 (29) - 1.58 (23) - 0.83 (26) - 2.26 (37) - 0.49 (28)
<table>
<thead>
<tr>
<th>Mn I</th>
</tr>
</thead>
<tbody>
<tr>
<td>4034.49(250)</td>
</tr>
<tr>
<td>4041.26(100)</td>
</tr>
<tr>
<td>Mean Number of measures</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mn II</td>
</tr>
<tr>
<td>4206.43(2)</td>
</tr>
<tr>
<td>4253.02(2)</td>
</tr>
<tr>
<td>4259.26(2)</td>
</tr>
<tr>
<td>4419.78(2)</td>
</tr>
<tr>
<td>4510.21(3)</td>
</tr>
<tr>
<td>Mean Number of measures</td>
</tr>
<tr>
<td>Fe I</td>
</tr>
<tr>
<td>3769.79(500)</td>
</tr>
<tr>
<td>3787.88(500)</td>
</tr>
<tr>
<td>3812.96(400)</td>
</tr>
<tr>
<td>3815.84(700)</td>
</tr>
<tr>
<td>3820.43(800)</td>
</tr>
<tr>
<td>3841.05(500)</td>
</tr>
<tr>
<td>3856.37(500)</td>
</tr>
<tr>
<td>3859.93(1000)</td>
</tr>
<tr>
<td>3902.93(500)</td>
</tr>
<tr>
<td>3930.30(600)</td>
</tr>
<tr>
<td>4005.29(230)</td>
</tr>
<tr>
<td>4045.82(400)</td>
</tr>
<tr>
<td>4063.60(600)</td>
</tr>
<tr>
<td>4071.74(300)</td>
</tr>
<tr>
<td>4132.06(300)</td>
</tr>
<tr>
<td>4135.42(200)</td>
</tr>
<tr>
<td>4143.87(400)</td>
</tr>
<tr>
<td>4147.67(200)</td>
</tr>
<tr>
<td>4187.04(250)</td>
</tr>
<tr>
<td>4199.10(300)</td>
</tr>
<tr>
<td>4202.03(400)</td>
</tr>
<tr>
<td>4210.35(300)</td>
</tr>
<tr>
<td>4219.36(250)</td>
</tr>
<tr>
<td>4227.43(300)</td>
</tr>
<tr>
<td>4235.94(300)</td>
</tr>
<tr>
<td>4260.48(400)</td>
</tr>
</tbody>
</table>

478
© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+13.4(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 13.4(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 2.3(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 9.9(1)</td>
<td>-10.2(2m)</td>
<td>- 3.8(3)</td>
<td></td>
<td>+ 3.5(3)</td>
<td>+ 4.0(9)</td>
<td>+ 1.8(3m)</td>
<td>+12.2(3)</td>
<td>+10.8(7)</td>
<td>A I .361(1200) (Bu II .22(3))</td>
</tr>
<tr>
<td>-13.0(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 1.85(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 6.97(3)</td>
<td>- 5.3(2)</td>
<td>+ 2.5(2)</td>
<td>+ 2.85(2)</td>
<td>+ 0.23(4)</td>
<td>+ 8.05(2)</td>
<td>- 2.80(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 17.7(0)</td>
<td>+ 6.0(0)</td>
<td>+ 11.3(3)</td>
<td>+11.8(3)</td>
<td>+ 4.2(4)</td>
<td>+ 9.2(1)</td>
<td>+14.7(2m)</td>
<td>+ 2.8(5)</td>
<td>+ 8.05(2)</td>
<td></td>
</tr>
<tr>
<td>- 5.6(0)</td>
<td>+ 1.9(0)</td>
<td>+ 8.1(1)</td>
<td>- 14.0(1)</td>
<td>+ 0.3(3)</td>
<td>+ 2.2(2)</td>
<td>+ 4.2(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 11.3(2)</td>
<td>- 4.1(1)</td>
<td>- 12.3(1)</td>
<td>- 9.9(1)</td>
<td>- 6.1(1)</td>
<td>- 11.1(3)</td>
<td>- 0.3(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.2(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 3.5(3)</td>
<td>- 3.2(3)</td>
<td>+ 7.5(2)</td>
<td>+ 5.0(2n)</td>
<td>+ 0.3(1)</td>
<td>+ 3.2(1)</td>
<td>- 11.0(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 1.6(2)</td>
<td>+ 3.4(1n)</td>
<td>+ 5.1(1)</td>
<td>+ 8.9(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 4.5(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2.2(2)</td>
<td>- 0.6(2)</td>
<td>+ 7.4(2)</td>
<td>+ 8.9(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.1(1)</td>
<td>+ 3.5(1)</td>
<td>+ 2.5(2)</td>
<td>+ 8.2(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 0.9(3)</td>
<td>+ 2.6(3)</td>
<td>+ 3.2(3)</td>
<td>+ 6.5(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2.5(1)</td>
<td>- 4.8(1)</td>
<td>+ 0.8(1n)</td>
<td>+ 3.0(1)</td>
<td>+ 3.6(1)</td>
<td>+ 9.7(1)</td>
<td>+10.1(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2.4(3)</td>
<td>- 4.4(3)</td>
<td>- 3.1(3)</td>
<td>+ 1.8(2)</td>
<td>+ 2.5(3)</td>
<td>+ 5.8(4)</td>
<td>+ 3.6(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3.2(2)</td>
<td>- 0.1(2)</td>
<td>- 6.0(2)</td>
<td>+ 3.4(2)</td>
<td>+ 5.5(4)</td>
<td>+ 6.4(2)</td>
<td>+ 8.5(2)</td>
<td>-12.0(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (2)</td>
<td>- 3.1(2)</td>
<td>- 0.6(2n)</td>
<td>+ 6.7(2)</td>
<td>+ 1.2(4)</td>
<td>+ 2.3(4)</td>
<td>+10.1(3)</td>
<td>+ 7.3(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3.8(0)</td>
<td></td>
<td>-21.6(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 1.7(1)</td>
<td>+ 1.7(1)</td>
<td>+ 8.5(1)</td>
<td>+ 9.8(2)</td>
<td>+10.3(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 1.8(0)</td>
<td>+ 0.1(1)</td>
<td>+ 3.3(1)</td>
<td>+ 3.0(2)</td>
<td>+ 8.2(1)</td>
<td>+ 6.8(1)</td>
<td>-11.6(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 6.4(0)</td>
<td>- 2.8(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.1(1)</td>
<td>+ 11.4(1)</td>
<td>+ 9.4(3)</td>
<td>+ 9.1(2)</td>
<td>+ 9.0(1)</td>
<td>+10.6(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.6(0)</td>
<td>- 9.7(1)</td>
<td>+ 0.3(1)</td>
<td>+ 0.1(1)</td>
<td>+ 6.9(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2.7(1)</td>
<td>- 7.4(1)</td>
<td>+ 3.8(1)</td>
<td>+ 7.5(1a)</td>
<td>+ 6.3(2)</td>
<td>- 1.9(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3.1(0)</td>
<td>- 5.4(1)</td>
<td>+ 6.2(1)</td>
<td>+ 1.7(2)</td>
<td>+ 7.8(1)</td>
<td>+ 9.9(1)</td>
<td>+ 8.4(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 1.8(0)</td>
<td>+ 3.6(1)</td>
<td>+ 0.8(1)</td>
<td>+ 3.6(0m)</td>
<td>+ 8.8(1)</td>
<td></td>
<td>- 7.6(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 4.2(1)</td>
<td>- 5.0(2)</td>
<td>- 0.1(3a)</td>
<td>+ 4.8(1n)</td>
<td>+ 8.4(1)</td>
<td>+ 3.2(0n)</td>
<td>- 9.3(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 4.8(1)</td>
<td>- 7.6(1)</td>
<td>- 6.0(2)</td>
<td>+ 5.1(1)</td>
<td>- 4.4(3)</td>
<td>- 2.9(2)</td>
<td>+ 6.6(1)</td>
<td>- 0.1(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

479
Table A -- Continued

Fe I - Continued

<table>
<thead>
<tr>
<th>Element</th>
<th>Laboratory A</th>
<th>0.500</th>
<th>0.691</th>
<th>0.822</th>
<th>0.981</th>
<th>1.323</th>
<th>1.460</th>
<th>1.510</th>
<th>1.642</th>
<th>2.365</th>
<th>2.580</th>
</tr>
</thead>
<tbody>
<tr>
<td>4273.76 (1000)</td>
<td>-4.4 (2)</td>
<td>-6.0 (2)</td>
<td>-6.8 (3)</td>
<td>+0.5 (3)</td>
<td>-0.8 (3)</td>
<td>+4.2 (2)</td>
<td>+6.1 (3)</td>
<td>+7.6 (3)</td>
<td>-1.0 (1n)</td>
<td>+5.4 (1)</td>
<td></td>
</tr>
<tr>
<td>4282.41 (600)</td>
<td>-2.2 (3)</td>
<td>-4.8 (4)</td>
<td>-2.2 (3)</td>
<td>+2.4 (3)</td>
<td>+1.7 (3)</td>
<td>+7.3 (2)</td>
<td>+3.5 (3)</td>
<td>+8.5 (1)</td>
<td>+5.5 (1)</td>
<td>+1.0 (1)</td>
<td></td>
</tr>
<tr>
<td>4299.24 (500)</td>
<td>-8.7 (1)</td>
<td>-3.5 (1n)</td>
<td>-3.7 (6)</td>
<td>+12.8 (1)</td>
<td>-1.4 (2)</td>
<td>+8.3 (0)</td>
<td>+4.2 (1)</td>
<td>+7.3 (1)</td>
<td>+1.0 (0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4383.55 (1000)</td>
<td>-8.3 (5)</td>
<td>-8.5 (4)</td>
<td>-5.3 (2)</td>
<td>-4.6 (4)</td>
<td>-1.7 (3)</td>
<td>-7.3 (2)</td>
<td>-4.6 (3)</td>
<td>-1.8 (3)</td>
<td>-1.2 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4403.74 (1000)</td>
<td>-3.3 (4)</td>
<td>-7.2 (9)</td>
<td>-6.1 (9)</td>
<td>-1.6 (5)</td>
<td>-2.4 (9)</td>
<td>-0.6 (5)</td>
<td>-1.3 (3)</td>
<td>+2.1 (4)</td>
<td>-7.6 (4)</td>
<td>-0.1 (3)</td>
<td></td>
</tr>
<tr>
<td>4415.12 (600)</td>
<td>-5.2 (1)</td>
<td>-1.5 (2)</td>
<td>+12.4 (6)</td>
<td>-0.3 (2)</td>
<td>-13.4 (0)</td>
<td>+9.8 (0)</td>
<td>-1.8 (2)</td>
<td>-10.5 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4427.33 (500)</td>
<td>-4.2 (0)</td>
<td>+3.2 (0)</td>
<td>-13.2 (0)</td>
<td>+3.0 (1)</td>
<td>-2.6 (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4445.34 (400)</td>
<td>-9.7 (1)</td>
<td>+6.7 (1)</td>
<td>-4.7 (0)</td>
<td>-7.3 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4476.02 (500)</td>
<td>+3.8 (0)</td>
<td>-10.0 (1)</td>
<td>-6.4 (1)</td>
<td>+5.0 (0)</td>
<td>+0.6 (1)</td>
<td>+4.1 (0)</td>
<td>-7.4 (1)</td>
<td>-12.1 (0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4528.62 (600)</td>
<td>-12.5 (1)</td>
<td>+0.9 (1)</td>
<td>-6.0 (1)</td>
<td>+3.4 (1)</td>
<td>+4.2 (1)</td>
<td>+0.8 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4602.94 (300)</td>
<td>+1.2 (1)</td>
<td>+12.3 (0)</td>
<td>-0.1 (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td>-4.89 (21)</td>
<td>-6.73 (33)</td>
<td>-5.61 (29)</td>
<td>-1.99 (22)</td>
<td>-2.83 (34)</td>
<td>-0.90 (25)</td>
<td>+0.32 (19)</td>
<td>+0.72 (32)</td>
<td>-1.82 (33)</td>
<td>-2.14 (21)</td>
<td></td>
</tr>
</tbody>
</table>

Fe II

<table>
<thead>
<tr>
<th>Element</th>
<th>3824.91 (4)</th>
<th>-6.7 (4)</th>
<th>-4.2 (2)</th>
<th>+0.4 (3)</th>
<th>+8.9 (1)</th>
<th>-1.6 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3827.08 (4)</td>
<td>-6.3 (5)</td>
<td>-7.9 (1)</td>
<td>-3.7 (3)</td>
<td>+0.8 (1)</td>
<td>-2.5 (3n)</td>
<td></td>
</tr>
<tr>
<td>3845.18 (4)</td>
<td>-6.8 (3)</td>
<td>-5.1 (1)</td>
<td>-0.6 (3)</td>
<td>+6.7 (0)</td>
<td>-8.3 (2)</td>
<td></td>
</tr>
<tr>
<td>3906.04 (5)</td>
<td>-5.6 (8)</td>
<td>-8.0 (5)</td>
<td>-2.8 (3)</td>
<td>+4.5 (3)</td>
<td>+1.2 (3n)</td>
<td>+1.3 (3n)</td>
</tr>
<tr>
<td>3938.97 (4)</td>
<td>-10.0 (6)</td>
<td>-8.3 (6)</td>
<td>-6.6 (5)</td>
<td>+0.9 (6)</td>
<td>+0.2 (5)</td>
<td>+0.1 (4)</td>
</tr>
<tr>
<td>3960.90 (3)</td>
<td>-5.6 (3)</td>
<td>-1.9 (3)</td>
<td>-3.7 (2)</td>
<td>+0.6 (3)</td>
<td>+2.3 (1)</td>
<td>-0.2 (1)</td>
</tr>
<tr>
<td>3974.16 (3)</td>
<td>-9.4 (1)</td>
<td>-8.3 (2)</td>
<td>-8.6 (1)</td>
<td>-9.0 (1n)</td>
<td>-9.7 (0m)</td>
<td>-4.5 (2n)</td>
</tr>
<tr>
<td>4024.55 (5)</td>
<td>-6.9 (5)</td>
<td>-5.4 (5)</td>
<td>-5.2 (5)</td>
<td>-0.2 (2)</td>
<td>-0.4 (5)</td>
<td>+2.2 (4)</td>
</tr>
<tr>
<td>4048.83 (3)</td>
<td>-9.6 (4)</td>
<td>+4.5 (4)</td>
<td>-8.7 (2)</td>
<td>-0.4 (3)</td>
<td>-13.6 (3n)</td>
<td>+0.7 (4)</td>
</tr>
<tr>
<td>4222.64 (4)</td>
<td>-6.1 (2)</td>
<td>-3.6 (5)</td>
<td>-11.4 (4)</td>
<td>+0.6 (5)</td>
<td>-2.4 (9)</td>
<td>+3.1 (6)</td>
</tr>
<tr>
<td>4228.74 (3)</td>
<td>-8.2 (4)</td>
<td>-7.9 (2)</td>
<td>-10.1 (1)</td>
<td>+0.2 (1)</td>
<td>-1.4 (3)</td>
<td>+3.3 (2)</td>
</tr>
<tr>
<td>4273.45 (8)</td>
<td>-2.1 (9)</td>
<td>-5.2 (7)</td>
<td>-1.3 (9)</td>
<td>-0.8 (9)</td>
<td>+0.6 (7)</td>
<td>+2.3 (5)</td>
</tr>
<tr>
<td>4278.86 (8)</td>
<td>-8.5 (3)</td>
<td>-7.5 (3)</td>
<td>-5.2 (4)</td>
<td>-5.0 (3)</td>
<td>-5.2 (8)</td>
<td>+0.1 (5)</td>
</tr>
<tr>
<td>4233.17 (11)</td>
<td>-3.3 (6)</td>
<td>-5.8 (x)</td>
<td>-2.9 (3)</td>
<td>-0.2 (9)</td>
<td>-1.1 (x)</td>
<td>+0.6 (9)</td>
</tr>
<tr>
<td>4258.16 (3)</td>
<td>-7.9 (4)</td>
<td>-2.4 (7)</td>
<td>-4.2 (8)</td>
<td>-2.5 (3)</td>
<td>-1.9 (7)</td>
<td>+3.2 (7)</td>
</tr>
<tr>
<td>4273.32 (3)</td>
<td>-1.2 (3)</td>
<td>-7.4 (6)</td>
<td>-3.4 (5)</td>
<td>-1.0 (6)</td>
<td>-4.4 (8)</td>
<td>+1.5 (0)</td>
</tr>
<tr>
<td>4296.57 (6)</td>
<td>-0.6 (5n)</td>
<td>-6.7 (4)</td>
<td>-4.5 (3)</td>
<td>-3.6 (3)</td>
<td>-4.3 (5n)</td>
<td>-0.1 (6)</td>
</tr>
<tr>
<td>4303.17 (8)</td>
<td>-1.2 (4)</td>
<td>-2.7 (6)</td>
<td>-2.0 (4)</td>
<td>-3.6 (7)</td>
<td>-0.3 (5)</td>
<td>+0.3 (3)</td>
</tr>
<tr>
<td>4334.29 (4)</td>
<td>-12.0 (1n)</td>
<td>+3.1 (1)</td>
<td>-1.0 (1n)</td>
<td>-9.2 (1)</td>
<td>-5.5 (1)</td>
<td>+0.4 (2)</td>
</tr>
<tr>
<td>4351.76 (9)</td>
<td>-3.2 (3)</td>
<td>-8.2 (7)</td>
<td>-5.0 (6)</td>
<td>-2.1 (3)</td>
<td>-3.9 (8)</td>
<td>-1.0 (5)</td>
</tr>
<tr>
<td>4357.57 (4)</td>
<td>-9.6 (1)</td>
<td>-9.4 (5)</td>
<td>-7.3 (5)</td>
<td>-0.8 (3)</td>
<td>-4.9 (3)</td>
<td>-4.3 (1)</td>
</tr>
<tr>
<td>4385.38 (7)</td>
<td>-2.7 (3)</td>
<td>-5.0 (9)</td>
<td>-5.1 (8)</td>
<td>-1.4 (4)</td>
<td>-3.5 (9)</td>
<td>+1.3 (6)</td>
</tr>
</tbody>
</table>
- 0.4(1) - 2.6(2) + 0.8(2) + 8.1(3) + 3.6(5) + 7.0(3) + 9.1(3) (Pr II .764(15))
- 0.5(1) - 2.3(2) - 2.9(1) + 1.5(2) + 3.8(3) + 3.6(1m) + 5.2(1) - 10.1(3m) (Nd II .505(30) Pr II .760(60) (Nd II .590(15)) (Nd II .443(50) Sr II .221(15))
- 5.4(0) + 11.2(1) + 3.0(2) - 0.8(1m) - 2.2(2) + 7.1(2) (Ce II .362(60) (Fe II .177(150))
+ 1.6(1) - 1.4(2) - 2.8(2) + 2.7(2) + 2.9(3) + 12.0(27) + 18.1(2m)
- 1.2(2) - 7.6(2) - 9.0(2) - 7.4(7) - 12.0(4m) - 7.8(3) - 7.4(6)
+ 8.7(0) - 8.3(1)
+ 0.6(1) + 5.8(0)
- 7.4(0) + 0.8(0)
- 10.7(1) + 0.9(1) - 0.1(1m) + 2.0(1) - 2.5(1) + 0.1(1)
- 9.1(0) + 4.2(1m)
- 10.2(0) + 5.7(1) + 4.6(0) +12.6(1) + 5.7(2)
- 1.86(18) - 2.69 (16) - 2.91 (32) + 2.49 (28) + 1.86 (25) + 5.01 (30) + 4.93 (32) - 2.12 (16)
- 2.4(2) + 1.8(3)
- 0.5(2) + 2.7(2)
+ 1.0(1) + 7.4(1)
+ 5.6(2) + 10.9(3)
- 0.5(3)
+ 0.8(2) + 3.6(4)
+ 8.4(4) + 11.0(5)
- 1.4(3) + 1.3(2) + 2.2(2m) + 0.8(2) + 5.0(1)
- 4.2(1m) - 2.3(2) + 0.7(2) + 0.2(2) + 7.4(1) + 8.6(1)
- 1.2(1) - 2.9(1m) + 3.4(1)
+ 3.7(0) + 10.6(1)
- 1.0(3) - 1.2(3) - 6.0(3) - 0.9(3m) - 2.2(4) + 1.7(3) + 5.8(3)
+ 8.6(3) +11.5(4) - 9.3(0) - 0.6(3) + 2.4(1) - 16.8(1) - 9.9(2) -13.3(2m)
+ 0.3(3) - 0.4(9)
+ 1.5(3) + 0.7(3) + 0.2(6) + 6.9(4) + 8.8(4) + 3.1(1)
+ 3.1(1) - 5.6(1) - 5.2(1) + 2.9(3) + 1.6(2) + 2.0(2) + 4.4(1) +14.2(1)
+ 0.0(5) + 0.6(8) + 3.7(4) + 1.4(3) + 1.1(9) + 3.4(9) + 4.5(7) + 3.2(4)
+ 0.5(4) - 2.6(5) - 0.7(3) + 1.6(2) - 1.7(7) + 4.2(4) + 7.2(4) -12.1(1)
- 0.4(9) - 2.2(9) - 3.3(9) + 2.8(9) + 1.4(9) + 3.8(9) + 2.8(9) + 2.3(8)
+ 0.9(3) - 0.3(5) - 0.4(4) + 4.5(4) + 3.7(9) + 3.6(3m) + 5.6(3m) - 1.6(6)
- 1.2(2) - 3.0(4) - 2.6(4) + 2.2(2) + 4.0(7) + 4.8(4) + 9.4(3) - 1.5(6)
- 0.6(4) + 2.5(4) - 0.9(8) + 4.8(5) + 2.7(9)
+ 2.8(5) + 3.3(9) - 1.9(4) + 3.5(3) + 1.2(9n) + 5.8(3) + 6.5(1)
+ 0.3(1) + 1.4(3) - 3.1(2) + 2.6(4) + 6.2(3) + 7.5(1)
- 3.5(4) + 0.2(6) - 0.6(8) + 4.8(8) + 2.6(8) + 7.1(7) + 8.9(8) + 7.1(5)
+ 2.1(2) - 6.1(2) - 3.1(2) - 0.1(3) - 1.3(4) + 4.7(2) + 8.1(2) - 5.8(1)
+ 2.3(5) - 4.0(4) - 3.4(9) + 2.0(4) - 0.5(8) + 1.3(5) + 6.1(4) + 0.8(3)
+ 9.6(150) (by II .29(2))
+ La II .20(40)

© American Astronomical Society • PROVIDED BY THE NASA ASTROPHYSICS DATA SYSTEM
<table>
<thead>
<tr>
<th></th>
<th>0.500</th>
<th>0.691</th>
<th>0.822</th>
<th>0.981</th>
<th>1.323</th>
<th>1.460</th>
<th>1.530</th>
<th>1.642</th>
<th>2.363</th>
<th>2.580</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe II - Continued</td>
<td></td>
</tr>
<tr>
<td>16.82(7)</td>
<td>-6.0(1)</td>
<td>-6.2(4)</td>
<td>-6.0(4)</td>
<td>-2.7(3)</td>
<td>-4.6(5)</td>
<td>-0.5(4)</td>
<td>-6.3(2)</td>
<td>-1.2(6)</td>
<td>-3.1(2)</td>
<td>+1.8(5)</td>
</tr>
<tr>
<td>151.54(4)</td>
<td>-2.4(0)</td>
<td>-8.8(3)</td>
<td>-7.5(4)</td>
<td>+3.8(1)</td>
<td>-1.0(3)</td>
<td>-0.3(3)</td>
<td>-6.5(1m)</td>
<td>+2.2(2)</td>
<td>-4.4(3)</td>
<td>-2.0(3)</td>
</tr>
<tr>
<td>455.26(3)</td>
<td></td>
<td>-7.8(1m)</td>
<td>-3.8(1)</td>
<td>-8.2(1m)</td>
<td>-3.1(2)</td>
<td>+0.3(2)</td>
<td>-1.5(1)</td>
<td>-7.4(1)</td>
<td>-2.8(3)</td>
<td>-4.0(2)</td>
</tr>
<tr>
<td>491.41(5)</td>
<td>-5.9(1)</td>
<td>-8.0(5)</td>
<td>-6.8(3)</td>
<td>-1.7(3)</td>
<td>-2.3(5)</td>
<td>+1.7(5)</td>
<td>-0.9(1)</td>
<td>-4.5(3)</td>
<td>-3.7(6)</td>
<td>-3.8(5)</td>
</tr>
<tr>
<td>508.28(8)</td>
<td>-4.8(3)</td>
<td>-7.2(9)</td>
<td>-4.7(4)</td>
<td>-0.2(3)</td>
<td>-2.2(8)</td>
<td>+1.4(6)</td>
<td>+2.9(2)</td>
<td>-1.7(5)</td>
<td>-2.7(9)</td>
<td>-3.7(5)</td>
</tr>
<tr>
<td>515.34(7)</td>
<td>+10.1(5)</td>
<td>-7.0(6)</td>
<td>-7.6(7)</td>
<td>+8.5(5)</td>
<td>-0.3(2)</td>
<td>+8.7(9)</td>
<td>+6.4(3)</td>
<td>+5.2(3)</td>
<td>0.0(8)</td>
<td>+2.3(5)</td>
</tr>
<tr>
<td>4520.24(7)</td>
<td>-9.8(3)</td>
<td>-8.1(7)</td>
<td>-6.8(3)</td>
<td>+2.1(3)</td>
<td>-5.6(6)</td>
<td>-1.1(5)</td>
<td>-9.9(2)</td>
<td>-2.7(3)</td>
<td>-4.5(7)</td>
<td>-1.3(3)</td>
</tr>
<tr>
<td>4522.03(9)</td>
<td>+1.6(4)</td>
<td>-5.4(8)</td>
<td>-4.1(6m)</td>
<td>-0.5(3)</td>
<td>-3.9(7)</td>
<td>+0.1(4)</td>
<td>-7.1(1)</td>
<td>+2.2(6)</td>
<td>-1.3(8)</td>
<td>+1.2(4)</td>
</tr>
<tr>
<td>4541.92(4)</td>
<td>+1.4(1m)</td>
<td>-8.2(5)</td>
<td>-7.3(3)</td>
<td></td>
<td>-4.2(4)</td>
<td>-4.3(3)</td>
<td>+1.4(4)</td>
<td>-3.2(5)</td>
<td>+4.6(3)</td>
<td></td>
</tr>
<tr>
<td>4549.47(10)</td>
<td>+4.9(9)</td>
<td>-2.6(9)</td>
<td>-1.9(3m)</td>
<td></td>
<td>0.0(2)</td>
<td>-2.4(5)</td>
<td>-2.2(9)</td>
<td>-4.2(3)</td>
<td>-3.0(9)</td>
<td></td>
</tr>
<tr>
<td>4555.90(8)</td>
<td>-1.0(2)</td>
<td>-4.7(5)</td>
<td>-6.2(3)</td>
<td></td>
<td>-0.7(5)</td>
<td>+2.3(1)</td>
<td>+2.3(4)</td>
<td>-4.0(6)</td>
<td>+0.6(4)</td>
<td></td>
</tr>
<tr>
<td>4576.33(4)</td>
<td>+13.5(1)</td>
<td>-4.4(5)</td>
<td>-2.5(1)</td>
<td></td>
<td>-3.1(2)</td>
<td>+3.0(3)</td>
<td>-0.3(5)</td>
<td>-5.0(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4582.84(3)</td>
<td>+4.9(2)</td>
<td>-5.0(6)</td>
<td>-10.5(3)</td>
<td></td>
<td>-3.4(3)</td>
<td>-4.5(1)</td>
<td>+0.7(4)</td>
<td>-2.1(4)</td>
<td>-5.4(2)</td>
<td></td>
</tr>
<tr>
<td>4583.85(11)</td>
<td>+5.7(5m)</td>
<td>-5.2(9)</td>
<td>-4.1(5)</td>
<td></td>
<td>-1.0(5)</td>
<td>-3.7(1)</td>
<td>+3.6(5)</td>
<td>-2.7(9)</td>
<td>+2.1(4)</td>
<td></td>
</tr>
<tr>
<td>4620.51(3)</td>
<td>-6.9(8)</td>
<td>0.0(5)</td>
<td></td>
<td></td>
<td>+0.9(4)</td>
<td></td>
<td>-4.6(7)</td>
<td>-5.3(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4629.39(7)</td>
<td>-5.1(7)</td>
<td>-5.4(3)</td>
<td></td>
<td></td>
<td>-0.7(5)</td>
<td></td>
<td>-1.5(6)</td>
<td>-6.9(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4635.33(5)</td>
<td>-5.1(7)</td>
<td>-5.4(3)</td>
<td></td>
<td></td>
<td>-1.5(4)</td>
<td></td>
<td>-1.4(6)</td>
<td>-5.0(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+3.17</td>
<td>-5.9</td>
<td>-7.96</td>
<td>-1.79</td>
<td>-3.02</td>
</tr>
<tr>
<td>NI I</td>
<td></td>
</tr>
<tr>
<td>4401.55(1000)</td>
<td>+8.7(2)</td>
<td>+3.3(5)</td>
<td>+4.6(3)</td>
<td>+4.2(1)</td>
<td>+12.6(1)</td>
<td>+6.1(1)</td>
<td>+12.2(1)</td>
<td>+10.2(0)</td>
<td>+8.0(1n)</td>
<td>+5.2(0)</td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+8.7</td>
<td>+3.3</td>
<td>+4.6</td>
<td>+4.2</td>
<td>+12.6</td>
</tr>
<tr>
<td>Sr II</td>
<td></td>
</tr>
<tr>
<td>4215.52(400)</td>
<td>+7.1(5m)</td>
<td>+7.2(4m)</td>
<td>+8.3(0)</td>
<td>+8.5(5)</td>
<td>+5.2(7)</td>
<td>+8.4(4)</td>
<td>+11.6(3)</td>
<td>+11.8(3)</td>
<td>+3.8(3)</td>
<td>+2.0(4)</td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+7.1</td>
<td>+7.2</td>
<td>+8.3</td>
<td>+8.5</td>
<td>+5.2</td>
</tr>
<tr>
<td>Ce II</td>
<td></td>
</tr>
<tr>
<td>3942.75(150)</td>
<td>-7.2(1)</td>
<td>-8.4(2)</td>
<td>-2.3(1)</td>
<td></td>
<td>+0.2(1)</td>
<td>+5.4(0)</td>
<td></td>
<td>+8.9(0)</td>
<td>-6.7(0)</td>
<td>-6.5(0)</td>
</tr>
<tr>
<td>3952.57(125)</td>
<td>-6.4(3)</td>
<td>-4.0(4)</td>
<td>-1.3(2)</td>
<td></td>
<td>+6.0(2)</td>
<td>+7.6(3)</td>
<td></td>
<td>+13.2(0)</td>
<td>-4.4(1)</td>
<td>-5.2(1)</td>
</tr>
<tr>
<td>3980.90(100)</td>
<td>-5.0(2)</td>
<td>-2.6(3)</td>
<td>-1.4(2)</td>
<td></td>
<td>+1.3(2)</td>
<td></td>
<td>-6.6(1m)</td>
<td>-10.9(0)</td>
<td>-1.9(1)</td>
<td></td>
</tr>
<tr>
<td>4133.80(500)</td>
<td>-6.4(2)</td>
<td>-19.5(1n)</td>
<td>+0.2(0)</td>
<td>+3.1(2)</td>
<td>+0.9(1)</td>
<td></td>
<td>-15.5(1)</td>
<td>-12.8(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4186.60(600)</td>
<td>+10.0(2)</td>
<td>+1.4(1)</td>
<td>+0.9(3n)</td>
<td>+8.1(1)</td>
<td>+8.3(2)</td>
<td>+10.2(1)</td>
<td></td>
<td>-4.6(1n)</td>
<td>-6.4(1)</td>
<td>-10.2(0)</td>
</tr>
<tr>
<td>4289.94(300)</td>
<td>+15.5(9)</td>
<td>+15.7(2)</td>
<td>+19.6(9)</td>
<td>+20.6(5)</td>
<td>+18.4(4m)</td>
<td>+23.5(4)</td>
<td>+26.5(1)</td>
<td></td>
<td>+6.4(3n)</td>
<td>+5.2(2)</td>
</tr>
<tr>
<td>4391.66(250)</td>
<td>-1.3(1m)</td>
<td>-2.3(4)</td>
<td>-1.2(3)</td>
<td>+0.9(1)</td>
<td>+2.5(3)</td>
<td>+8.8(3)</td>
<td>+8.4(1)</td>
<td>+10.6(1)</td>
<td>+4.0(1)</td>
<td></td>
</tr>
<tr>
<td>4449.34(200)</td>
<td>-2.4(1n)</td>
<td>-7.0(3)</td>
<td>-1.6(2)</td>
<td></td>
<td>+15.0(1)</td>
<td></td>
<td></td>
<td>+11.7(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+2.4</td>
<td>+1.7</td>
<td>+0.8</td>
<td>+7.45</td>
<td>+5.68</td>
</tr>
</tbody>
</table>

TABLE 4 -- Continued

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th></th>
<th>3.490</th>
<th>3.530</th>
<th>3.721</th>
<th>4.460</th>
<th>4.520</th>
<th>4.956</th>
<th>5.050</th>
<th>5.430</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2(4)</td>
<td>-0.9(5)</td>
<td>-3.3(8)</td>
<td>+0.1(3)</td>
<td>+1.3(5)</td>
<td>+4.8(5)</td>
<td>+6.0(3)</td>
<td>+7.0(3)</td>
<td>(Fe II .884(15))</td>
</tr>
<tr>
<td>+1.7(2)</td>
<td>-6.4(2)</td>
<td>-5.6(3n)</td>
<td>+0.1(2n)</td>
<td>+1.8(4)</td>
<td>+3.3(3n)</td>
<td>+5.8(3)</td>
<td>(Fe II .566(400) Mn I .586(325))</td>
<td></td>
</tr>
<tr>
<td>-0.9(1)</td>
<td>-6.2(1n)</td>
<td>-5.3(2n)</td>
<td>+1.6(2)</td>
<td>+0.2(3n)</td>
<td>+0.7(2)</td>
<td>+3.8(2)</td>
<td>+6.5(2)</td>
<td>(Ti II .326(250) Cr II .49(4))</td>
</tr>
<tr>
<td>-0.5(3)</td>
<td>-0.3(3)</td>
<td>-2.5(3)</td>
<td>-1.9(2)</td>
<td>+2.1(4n)</td>
<td>+1.2(3)</td>
<td>+6.3(3)</td>
<td>-3.7(1)</td>
<td>(Mg II .644(3))</td>
</tr>
<tr>
<td>-1.1(4)</td>
<td>-5.4(5)</td>
<td>-3.0(6)</td>
<td>-1.0(3)</td>
<td>-2.6(8)</td>
<td>+0.6(5n)</td>
<td>+3.3(5)</td>
<td>-2.4(3)</td>
<td></td>
</tr>
<tr>
<td>+4.6(5)</td>
<td>+4.9(4)</td>
<td>+0.9(5n)</td>
<td>-0.5(3n)</td>
<td>+1.1(9)</td>
<td>+4.0(5)</td>
<td>+4.4(7)</td>
<td>+5.4(6)</td>
<td></td>
</tr>
<tr>
<td>0.0(4)</td>
<td>-0.6(6)</td>
<td>-5.6(7)</td>
<td>+0.4(3)</td>
<td>+1.7(6)</td>
<td>-0.8(3)</td>
<td>-3.1(3)</td>
<td>-8.3(1)</td>
<td>(Od II .070(190) Tb II .09(4))</td>
</tr>
<tr>
<td>-2.8(5)</td>
<td>-2.4(8)</td>
<td>-2.1(7)</td>
<td>+2.4(4)</td>
<td>+1.7(9)</td>
<td>+1.3(9n)</td>
<td>+8.4(4)</td>
<td>+7.0(5)</td>
<td>Eu II .57(2000)</td>
</tr>
<tr>
<td>+0.7(5)</td>
<td>-4.0(4)</td>
<td>-4.0(4)</td>
<td>-0.4(4)</td>
<td>+0.8(7)</td>
<td>+3.8(9)</td>
<td>+4.6(8)</td>
<td>+6.0(3)</td>
<td></td>
</tr>
<tr>
<td>-0.5(9)</td>
<td>-3.7(9)</td>
<td>-6.0(8)</td>
<td>+2.5(9)</td>
<td>+0.5(8)</td>
<td>+0.5(8)</td>
<td>+2.1(8)</td>
<td>+7.6(9)</td>
<td>(Fe II .224(4) Eu II .52(4))</td>
</tr>
<tr>
<td>+4.1(5)</td>
<td>-1.2(4)</td>
<td>-5.5(4)</td>
<td>+2.4(3)</td>
<td>+0.3(9)</td>
<td>+5.9(3)</td>
<td>+1.6(2)</td>
<td>+6.6(2n)</td>
<td>(Cr II .547(80))</td>
</tr>
<tr>
<td>+1.5(3)</td>
<td>-0.6(2)</td>
<td>-1.5(6)</td>
<td>+2.8(3)</td>
<td>-0.5(4)</td>
<td>+5.3(5)</td>
<td>+5.9(3)</td>
<td>+3.5(2)</td>
<td>Eu II .35(12) (Pr II .320(20))</td>
</tr>
<tr>
<td>-8.2(2)</td>
<td>-4.0(3)</td>
<td>-3.6(3n)</td>
<td>+0.3(2)</td>
<td>-13.6(4n)</td>
<td>+1.8(2)</td>
<td>+9.0(2n)</td>
<td>-5.7(3)</td>
<td></td>
</tr>
<tr>
<td>+2.0(6)</td>
<td>+0.5(7)</td>
<td>-2.2(8)</td>
<td>+0.1(7)</td>
<td>+1.5(9)</td>
<td>+3.8(9)</td>
<td>+7.5(9)</td>
<td>+12.0(3)</td>
<td></td>
</tr>
<tr>
<td>+4.2(1)</td>
<td>-3.9(1)</td>
<td>-4.3(3)</td>
<td>+0.5(3)</td>
<td>+0.0(4)</td>
<td>+2.7(4)</td>
<td>+5.1(4)</td>
<td>(Od II .45(15))</td>
<td></td>
</tr>
<tr>
<td>+0.9(3)</td>
<td>-5.0(5)</td>
<td>-1.4(3)</td>
<td>+3.6(4)</td>
<td>-1.2(4)</td>
<td>+4.0(3)</td>
<td>+7.4(3)</td>
<td>(Ti III .237(15))</td>
<td></td>
</tr>
<tr>
<td>+2.1(4)</td>
<td>-2.3(3)</td>
<td>-4.2(4)</td>
<td>-3.6(3)</td>
<td>+3.6(3)</td>
<td>+2.5(3)</td>
<td>+5.1(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+0.54</td>
<td>-1.49</td>
<td>-2.89</td>
<td>+1.57</td>
<td>+0.28</td>
<td>+3.24</td>
<td>+5.87</td>
<td>+2.14</td>
<td></td>
</tr>
<tr>
<td>(34)</td>
<td>(34)</td>
<td>(39)</td>
<td>(38)</td>
<td>(34)</td>
<td>(38)</td>
<td>(38)</td>
<td>(38)</td>
<td>(38)</td>
</tr>
</tbody>
</table>

-12.8(1) -8.2(2) -7.9(4) -11.5(5) -2.0(5) +8.8(5) (Fe II .300(60) Tb II .54(10))
(0)
(0)
-12.8
(1)
-8.2
(1)
-7.9
(1)
-11.5
(1)
-2.0
(1)
+8.8
(1)

+4.8(2) +5.0(3) +9.9(2) +1.8(2) +1.5(3) +5.3(3) +3.1(4) +2.3(3) (Cr II .77(2) Zr II .76(1))
+4.8
(1)
+5.0
(1)
+9.9
(1)
+1.8
(1)
+1.5
(1)
+5.3
(1)
+3.1
(1)
+2.3
(1)

+10.6(0) +4.5(1n) -15.3(1) -7.4(4) -6.4(3) +1.3(1) -5.0(2n) (Mg II .633(6))
-4.5(1n) -15.3(1)
-7.4(4) -6.4(3) +1.3(1) -5.0(2n) (Fe II .606(80) Mg II .870(25))
-14.2(0) -9.3(1n) -1.0(0) (Pr II .618(15))
-5.5(0) -12.0(1) -18.3(1) -14.2(1) -7.4(3) -9.5(2) -7.9(0) (Zr II .70(12))
+5.4(0) +2.6(0n) -4.6(1) -3.6(3) -2.4(1) +4.9(2) -1.8(1n) (Zr II .70(12))
+9.4(1n) +12.2(1) +4.5(4n) +2.7(7n) +5.7(5) +5.3(5) +10.6(9) Ti II .227(60) Cd II .884(80)
-2.8(1) +1.2(1) -4.0(0n) -1.1(2n) +1.0(1) +3.1(1n) -1.4(1) (Cd II .445(15) Eu II .37(10))
+7.6(2) -14.6(1) -18.0(1) -21.1(1) -15.4(2) -10.7(2) Ti II .14(150) Dy II .16(2)
+0.05
(2)
-0.41
(8)
-5.05
(4)
-7.08
(7)
-4.55
(8)
-2.43
(7)
-2.5
(6)
-0.82
(4)

483
<table>
<thead>
<tr>
<th></th>
<th>0.500</th>
<th>0.691</th>
<th>0.822</th>
<th>0.981</th>
<th>1.323</th>
<th>1.440</th>
<th>1.510</th>
<th>1.642</th>
<th>2.363</th>
<th>2.580</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr II</td>
<td></td>
</tr>
<tr>
<td>4033.88(75)</td>
<td>-7.7(3)</td>
<td>-6.5(2)</td>
<td>-6.3(2)</td>
<td>+0.4(0)</td>
<td>-4.4(1n)</td>
<td>-3.9(1n)</td>
<td>-3.4(1)</td>
<td>-21.8(0)</td>
<td>-12.4(0)</td>
<td></td>
</tr>
<tr>
<td>4048.84(200)</td>
<td>-7.9(1)</td>
<td>-6.8(2)</td>
<td>+0.5(1)</td>
<td>-0.5(2)</td>
<td>+0.9(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-11.4(1)</td>
</tr>
<tr>
<td>4510.16(100)</td>
<td>-6.5(3)</td>
<td>-7.6(3)</td>
<td>+1.7(0)</td>
<td>-0.5(1)</td>
<td>+5.5(1)</td>
<td></td>
<td></td>
<td>+2.3(1)</td>
<td>+10.6(1n)</td>
<td>-2.5(0)</td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td>-7.7</td>
<td>-6.8</td>
<td>-6.9</td>
<td>+0.87</td>
<td>-2.8</td>
<td>+0.83</td>
<td>-3.4</td>
<td>+2.3</td>
<td>-7.53</td>
<td>-7.65</td>
</tr>
<tr>
<td>Nd II</td>
<td></td>
</tr>
<tr>
<td>3901.85(50)</td>
<td>-1.3(0)</td>
<td>-8.8(2)</td>
<td>-12.5(2)</td>
<td></td>
<td>-8.8(2)</td>
<td></td>
<td></td>
<td>-7.0(0m)</td>
<td>-24.6(1m)</td>
<td></td>
</tr>
<tr>
<td>4390.66(20)</td>
<td>-12.6(0)</td>
<td>-11.4(4)</td>
<td>-14.8(2)</td>
<td>-9.4(1)</td>
<td>-13.0(1)</td>
<td>-9.4(1)</td>
<td></td>
<td>-4.0(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td>-5.65</td>
<td>-10.1</td>
<td>-13.65</td>
<td>-9.4</td>
<td>-10.9</td>
<td>-9.4</td>
<td></td>
<td>-5.5</td>
<td>-24.6</td>
<td></td>
</tr>
<tr>
<td>Sn II</td>
<td></td>
</tr>
<tr>
<td>4362.04(300)</td>
<td>+7.4(1)</td>
<td>+10.6(2n)</td>
<td>-22.3(1)</td>
<td>+15.9(0)</td>
<td>+2.2(1)</td>
<td>-0.9(0)</td>
<td></td>
<td>+4.7(0)</td>
<td>-9.3(1)</td>
<td></td>
</tr>
<tr>
<td>4424.34(600)</td>
<td>+0.8(1)</td>
<td>+3.7(2)</td>
<td>+12.9(1)</td>
<td>-12.4(0m)</td>
<td>+6.2(1)</td>
<td>+6.8(0)</td>
<td>+2.9(0)</td>
<td>+1.7(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4436.32(400)</td>
<td>-6.4(3)</td>
<td>+1.3(4n)</td>
<td>+2.1(4)</td>
<td>-6.9(1n)</td>
<td>+1.5(2)</td>
<td>-7.6(1n)</td>
<td>-6.6(1n)</td>
<td>+8.9(0)</td>
<td>-12.0(1)</td>
<td></td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td>+0.6</td>
<td>+5.2</td>
<td>+2.77</td>
<td>-1.13</td>
<td>+3.3</td>
<td>-0.57</td>
<td>+1.85</td>
<td>+6.8</td>
<td>-6.53</td>
<td></td>
</tr>
<tr>
<td>Eu II</td>
<td></td>
</tr>
<tr>
<td>3724.94(4000)</td>
<td>+1.3(2)</td>
<td></td>
<td></td>
<td></td>
<td>+6.8(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3765.93(150)</td>
<td></td>
<td>+21.2(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3819.67(6000)</td>
<td>+4.5(7)</td>
<td>+4.9(5)</td>
<td></td>
<td>+4.9(3)</td>
<td></td>
<td></td>
<td></td>
<td>+10.9(1)</td>
<td>-9.7(1)</td>
<td></td>
</tr>
<tr>
<td>3907.10(3000)</td>
<td>+5.3(9)</td>
<td>+7.4(9)</td>
<td>+10.5(4)</td>
<td>+12.4(3)</td>
<td>+15.0(2)</td>
<td></td>
<td>-4.2(1m)</td>
<td>+2.8(1m)</td>
<td>+1.8(0m)</td>
<td></td>
</tr>
<tr>
<td>3917.29(60)</td>
<td>+5.1(1n)</td>
<td>+6.1(1m)</td>
<td>+15.6(1)</td>
<td>+1.9(1)</td>
<td>+12.8(1)</td>
<td>+14.3(0)</td>
<td>+11.7(1m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3971.96(4000)</td>
<td>+6.9(3)</td>
<td>+7.6(5)</td>
<td>+14.3(1)</td>
<td>+10.6(2)</td>
<td>+10.6(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4021.69(100)</td>
<td>+4.8(1)</td>
<td>+10.5(0)</td>
<td>+15.9(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+21.9(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4029.70(5000)</td>
<td>+10.1(9)</td>
<td>+8.9(9)</td>
<td>+9.96(6)</td>
<td>+16.0(6)</td>
<td>+14.5(4)</td>
<td>+15.8(3)</td>
<td>+20.6(3)</td>
<td>+20.3(1)</td>
<td>-5.5(0)</td>
<td>+4.0(0)</td>
</tr>
<tr>
<td>4141.02(25)</td>
<td>+6.4(1)</td>
<td>+2.3(1)</td>
<td>+7.2(1)</td>
<td>+10.4(1)</td>
<td>+5.4(3)</td>
<td>+14.3(0)</td>
<td></td>
<td>+1.4(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4205.05(600)</td>
<td>+3.4(8)</td>
<td>+2.7(9m)</td>
<td>+4.0(5)</td>
<td>+10.6(5n)</td>
<td>+10.0(5m)</td>
<td>+24.4(2n)</td>
<td>+23.5(3m)</td>
<td>-14.4(1)</td>
<td>-7.7(1)</td>
<td></td>
</tr>
<tr>
<td>Mean Number of measures</td>
<td>+6.18</td>
<td>+7.16</td>
<td>+9.88</td>
<td>+12.58</td>
<td>+9.83</td>
<td>+13.7</td>
<td>+22.5</td>
<td>+12.96</td>
<td>-2.28</td>
<td>-0.63</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-20.7(0)</td>
<td>-20.0(1)</td>
<td>-23.3(1)</td>
<td>-24.9(0)</td>
<td>-22.5(2)</td>
<td>-18.8(3)</td>
<td>Dy II .666(10) (P II .68(15))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.4(1)</td>
<td>-6.9(2)</td>
<td>-3.0(1)</td>
<td>+4.8(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11.2(0)</td>
<td>-21.2(1)</td>
<td>-14.2(1n)</td>
<td>-7.7(4)</td>
<td>-17.8(3)</td>
<td>-5.2(2n)</td>
<td>-7.6(4)</td>
<td>Mn II .210(3)</td>
<td></td>
</tr>
<tr>
<td>-15.9(2)</td>
<td>-20.6(2)</td>
<td>-13.0(3)</td>
<td>-13.17(3)</td>
<td>-14.43(3)</td>
<td>-6.4(3)</td>
<td>-7.6(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o)</td>
<td>(2)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-29.9(1n)</td>
<td>-25.3(2)</td>
<td>-20.5(4)</td>
<td>(Eu II .63(3) (TD II .60(6))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-15.6(1)</td>
<td>-14.9(0)</td>
<td>-27.2(1)</td>
<td>-27.2(0n)</td>
<td>-22.5(2)</td>
<td>-21.0(3)</td>
<td>-11.8(2)</td>
<td>Mg II .585(10) (Eu II .36(3))</td>
<td></td>
</tr>
<tr>
<td>-15.6(1)</td>
<td>-28.6(2)</td>
<td>-27.2(1)</td>
<td>-23.9(2)</td>
<td>-20.75(2)</td>
<td>-11.8(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+2.5(1)</td>
<td>+4.4(1)</td>
<td>-12.4(1)</td>
<td>-7.8(2n)</td>
<td>-6.7(2)</td>
<td>+6.2(3)</td>
<td>Ni II .10(1) (Ce II .66(18))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9.8(1n)</td>
<td>-15.6(2n)</td>
<td>-10.3(3)</td>
<td>-3.9(3)</td>
<td>+1.6(3)</td>
<td>Gd II .102(40) (Pr II .595(25))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-16.2(2)</td>
<td>-12.5(3)</td>
<td>-11.8(6)</td>
<td>-8.9(6)</td>
<td>-11.9(5)</td>
<td>+6.2(6)</td>
<td>(Tb II .48(10))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-6.85(2)</td>
<td>-9.9(3)</td>
<td>-13.27(3)</td>
<td>-9.0(3)</td>
<td>-7.5(3)</td>
<td>+0.53(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o)</td>
<td>(2)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-19.1(1)</td>
<td>-15.1(1)</td>
<td>-11.4(2)</td>
<td>-5.7(2)</td>
<td>(Mn II .81(1)) (Ni II .877(30))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+3.3(0)</td>
<td>+13.0(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+6.8(1n)</td>
<td>-9.3(3)</td>
<td>-8.1(7)</td>
<td>-4.6(9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3.1(0m)</td>
<td>-12.2(2n)</td>
<td>-7.8(5)</td>
<td>-4.9(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1.4(0)</td>
<td>+4.4(1)</td>
<td>+1.9(1)</td>
<td>+2.8(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+9.2(0)</td>
<td>-12.3(0)</td>
<td>-5.1(0)</td>
<td>-10.6(5)</td>
<td>-5.1(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11.4(2)</td>
<td>-8.8(1)</td>
<td>-2.6(1)</td>
<td>-4.1(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5.8(1n)</td>
<td>+0.6(2)</td>
<td>-3.5(4)</td>
<td>+0.7(7)</td>
<td>+0.7(8)</td>
<td>+3.5(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+8.2(1n)</td>
<td>-1.7(0)</td>
<td>-5.9(1)</td>
<td>+5.1(0)</td>
<td>Gd II .017(25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-22.5(1n)</td>
<td>-12.0(1)</td>
<td>-11.9(6)</td>
<td>-10.0(7)</td>
<td>-3.9(9)</td>
<td>-2.8(9)</td>
<td>Gd II .857(300) (Y II .080(250))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9.6(2n)</td>
<td>-10.0(6)</td>
<td>-9.4(9)</td>
<td>-7.6(9)</td>
<td>-1.2(9)</td>
<td>(Cr II .68(g))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1.4(0)</td>
<td>+1.3(0)</td>
<td>-7.7(0)</td>
<td>+8.2(1n)</td>
<td>-1.7(0)</td>
<td>-5.9(1)</td>
<td>+5.1(0)</td>
<td>Gd II .017(25)</td>
<td></td>
</tr>
<tr>
<td>+3.98(4)</td>
<td>+1.3(1)</td>
<td>-8.17(7)</td>
<td>+7.22(10)</td>
<td>-5.2(5)</td>
<td>-5.9(10)</td>
<td>+2.30(11)</td>
<td>+1.15(4)</td>
<td>(Cr II .68(g))</td>
</tr>
</tbody>
</table>

485

© American Astronomical Society • Provided by the NASA Astrophysics Data System
<table>
<thead>
<tr>
<th>Element</th>
<th>0.500</th>
<th>0.691</th>
<th>0.822</th>
<th>0.981</th>
<th>1.323</th>
<th>1.460</th>
<th>1.510</th>
<th>1.642</th>
<th>2.363</th>
<th>2.580</th>
</tr>
</thead>
<tbody>
<tr>
<td>Od II</td>
<td>+ 0.2(3)</td>
<td>- 1.9(2)</td>
<td>- 1.1(2)</td>
<td>+ 6.5(1)</td>
<td>+ 8.2(1)</td>
<td>+ 7.8(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 8.9(7)</td>
<td>+10.2(5)</td>
<td>+ 9.0(3)</td>
<td>+13.6(2)</td>
<td></td>
<td>+14.4(0)</td>
<td>+13.3(0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 1.8(2)</td>
<td>+ 3.5(3)</td>
<td>+ 2.7(1)</td>
<td>+ 7.2(2)</td>
<td>+ 7.3(1)</td>
<td>+15.2(1)</td>
<td>+15.8(0)</td>
<td>+ 8.9(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+14.5(5)</td>
<td>+12.7(5)</td>
<td>+13.6(2)</td>
<td>+18.6(3)</td>
<td>- 6.5(0)</td>
<td>+15.2(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 0.3(3)</td>
<td>- 1.7(3n)</td>
<td>0.0(2)</td>
<td>+ 0.6(1)</td>
<td>+ 2.3(0)</td>
<td>-13.6(0)</td>
<td>+ 6.9(1)</td>
<td>-12.9(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 3.2(0)</td>
<td>-19.5(2)</td>
<td>-15.9(1)</td>
<td>-10.2(0)</td>
<td>- 9.6(2)</td>
<td>- 6.4(1)</td>
<td></td>
<td>+ 1.3(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 2.2(4)</td>
<td>+ 9.5(3)</td>
<td>+ 2.0(2)</td>
<td>+12.1(1)</td>
<td>+10.0(1)</td>
<td>- 4.2(1)</td>
<td>- 6.6(0)</td>
<td>- 4.9(1)</td>
<td>-10.5(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 7.8(1)</td>
<td>+10.9(2)</td>
<td>+ 4.5(2)</td>
<td>+ 7.2(1)</td>
<td>+ 1.9(1)</td>
<td>+10.2(1)</td>
<td>+12.4(0)</td>
<td></td>
<td>- 1.6(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 6.1(3)</td>
<td>+ 6.4(4)</td>
<td>+ 8.5(3)</td>
<td>+ 6.3(5)</td>
<td>+10.0(3)</td>
<td>+11.3(1m)</td>
<td></td>
<td>+ 0.8(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 3.4(3)</td>
<td>+ 1.1(3)</td>
<td>+ 5.5(2)</td>
<td>+12.2(1)</td>
<td>+ 3.5(2)</td>
<td>+ 5.7(1)</td>
<td></td>
<td>+ 8.3(1)</td>
<td>+ 9.1(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 9.2(3)</td>
<td>+10.0(3)</td>
<td>+ 7.0(1)</td>
<td>+10.6(1n)</td>
<td>+ 5.2(1)</td>
<td>+12.6(1)</td>
<td>-11.5(1)</td>
<td>- 8.2(1)</td>
<td>- 6.0(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 9.9(1)</td>
<td>- 3.6(2)</td>
<td>- 3.1(1)</td>
<td>+ 1.5(0)</td>
<td>+ 3.1(3)</td>
<td>+10.3(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+10.6(1)</td>
<td>+ 3.3(3)</td>
<td>+ 1.5(1)</td>
<td>+9.1(0)</td>
<td>+ 7.6(1)</td>
<td>+ 7.9(0)</td>
<td></td>
<td>- 8.4(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 3.2(8)</td>
<td>+ 1.4(2)</td>
<td>+ 7.1(4)</td>
<td>- 8.5(0)</td>
<td>- 3.8(1)</td>
<td>-11.0(1)</td>
<td>+ 2.8(2n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 2.3(5)</td>
<td>+ 2.6(4)</td>
<td>+ 2.9(2)</td>
<td>+ 5.3(1)</td>
<td>+ 1.9(3)</td>
<td>+ 7.2(3)</td>
<td>+ 7.0(1)</td>
<td>+ 2.5(2n)</td>
<td>- 3.1(1)</td>
<td>+ 2.0(2)</td>
</tr>
<tr>
<td></td>
<td>+10.0(2)</td>
<td>+ 5.7(2)</td>
<td>+15.9(2)</td>
<td>+ 9.5(1)</td>
<td>+10.5(2)</td>
<td>+23.0(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 6.5(2)</td>
<td>- 5.8(3)</td>
<td>- 7.1(4)</td>
<td>- 3.2(3)</td>
<td>- 3.4(3)</td>
<td>+ 3.4(2)</td>
<td>+ 2.5(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4.2(3)</td>
<td>- 4.4(2n)</td>
<td>- 2.7(3)</td>
<td>+ 2.1(2n)</td>
<td>+ 3.1(1)</td>
<td>+ 0.1(1n)</td>
<td>- 0.9(0)</td>
<td>- 7.3(1)</td>
<td>+ 2.3(1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+15.9(0)</td>
<td>+ 5.3(0)</td>
<td>+ 7.1(1)</td>
<td></td>
<td>+ 5.1(0)</td>
<td>+15.8(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 3.5(1)</td>
<td>+ 0.8(4)</td>
<td>+ 1.1(4)</td>
<td>+10.7(1)</td>
<td>+ 3.3(3)</td>
<td>+11.7(1)</td>
<td>+11.2(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 7.4(2)</td>
<td>- 7.1(2)</td>
<td>+ 0.5(2)</td>
<td>- 9.4(3)</td>
<td>- 3.5(1)</td>
<td>-10.1(1m)</td>
<td>- 8.5(1m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+12.5(3)</td>
<td>+ 9.0(4)</td>
<td>+ 9.2(2)</td>
<td>+11.8(1)</td>
<td>+12.2(3)</td>
<td>+13.6(1)</td>
<td>+11.4(0m)</td>
<td>- 5.0(1)</td>
<td>+ 5.6(0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ 5.1(0)</td>
<td>+ 3.5(3)</td>
<td>+ 3.0(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean Number of measures

<table>
<thead>
<tr>
<th></th>
<th>+ 4.61</th>
<th>+ 2.24</th>
<th>+ 2.28</th>
<th>+ 6.23</th>
<th>+ 5.22</th>
<th>+4.57</th>
<th>+ 0.86</th>
<th>+ 5.96</th>
<th>0.62</th>
<th>- 1.79</th>
</tr>
</thead>
<tbody>
<tr>
<td>(22)</td>
<td>(23)</td>
<td>(21)</td>
<td>(14)</td>
<td>(22)</td>
<td>(20)</td>
<td>(7)</td>
<td>(13)</td>
<td>(13)</td>
<td>(10)</td>
<td></td>
</tr>
</tbody>
</table>

By II

	- 5.1(5)	- 2.7(5n)	- 2.5(3)	+ 1.4(4)		+ 6.7(1)	+ 1.2(1)	+10.9(1)		
----------	--------	--------	--------	--------	--------	--------	--------	--------	--------	
	+ 0.7(3)	+ 2.1(4)	+ 5.1(3)	+ 6.8(3)	+14.4(1)					
	+2.3(5)	+ 0.5(6)	+ 2.9(3)	+ 5.8(3)	+10.8(2)	+ 8.9(1)	- 0.9(0)	+ 1.3(1m)		
4000.45(800)	+ 2.3(3)	- 0.3(2)	+ 4.7(1)	+ 6.8(2)	+ 6.1(1)	+15.4(0)				
4077.75(30)	+ 5.6(2)	+ 7.7(3)	+ 6.8(2)	+ 7.9(1)	+ 8.8(1)	+11.9(1)	- 7.5(0)	-11.5(1)		
4050.58(100)	- 4.3(3)	- 2.9(3)	- 2.6(3)	- 0.9(1)	+ 1.5(2)	+ 3.2(2)	- 0.5(1)			
4141.10(150)	- 1.3(5)	+ 3.2(3)	+ 3.3(3)	+ 9.3(2)	+10.4(2)	+15.4(2)	+16.0(1)	+ 2.9(1)	- 3.0(1)	
4099.38(200)	- 1.4(1)	+ 5.2(5)	+ 2.3(3)	+ 1.4(1)	+ 4.9(3)	+11.0(2)	+10.6(1)	+ 9.3(1)	+ 8.4(2)	+ 2.6(1)

Mean Number of measures

<table>
<thead>
<tr>
<th></th>
<th>- 0.32</th>
<th>+ 1.6</th>
<th>+ 2.5</th>
<th>+ 4.88</th>
<th>+ 5.8</th>
<th>+10.4</th>
<th>+13.3</th>
<th>+ 5.38</th>
<th>2.9</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(8)</td>
<td>(7)</td>
<td>(2)</td>
<td>(8)</td>
<td>(4)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

No II

	-16.2	-14.1	-16.0	- 0.7	+ 5.6	-16.7	-17.7			
----------	--------	--------	--------	--------	--------	--------	--------	--------	--------	
(1)	(1)	(1)	(1)	(0)	(0)	(0)	(0)	(0)		

486
<table>
<thead>
<tr>
<th>3.490</th>
<th>3.530</th>
<th>3.721</th>
<th>4.460</th>
<th>4.520</th>
<th>4.956</th>
<th>5.050</th>
<th>5.430</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8(1n)</td>
<td>+10.9(2)</td>
<td>+23.3(1)</td>
<td>Pr II .470(25) (Dy II .39(2)) (Tb II .35(10))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 6.9(0)</td>
<td>-12.0(3)</td>
<td>-5.9(3)</td>
<td>-5.4(4n)</td>
<td>+0.2(7)</td>
<td>Gd II .329(80) Ce II .109(125) Sr II .483(200) Dy II .394(30) Tb II .353 (6g) (Eu II .37(5)) (Dy II .300(3))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 8.5(0)</td>
<td>-6.4(1n)</td>
<td>-14.8(1)</td>
<td>7.4(2)</td>
<td>-10.7(1)</td>
<td>-8.0(2)</td>
<td>-4.3(3)</td>
<td>Zr II .80(20) Wd II .823(50)</td>
</tr>
<tr>
<td>+ 8.2(0)</td>
<td>-5.6(1)</td>
<td>+1.4(2)</td>
<td>+3.9(2)</td>
<td>+5.2(4)</td>
<td>Dy II .18(pr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-13.9(1)</td>
<td>-10.4(1n)</td>
<td>-15.9(2)</td>
<td>9.3(2n)</td>
<td>-6.9(3n)</td>
<td>Dy II .802(40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 8.5(0)</td>
<td>-6.4(1n)</td>
<td>-14.8(1)</td>
<td>7.4(2)</td>
<td>-10.7(1)</td>
<td>-8.0(2)</td>
<td>-4.3(3)</td>
<td>Gd II .329(80) Ce II .109(125) Sr II .483(200) Dy II .394(30) Tb II .353 (6g) (Eu II .37(5)) (Dy II .300(3))</td>
</tr>
<tr>
<td>+ 8.2(0)</td>
<td>-5.6(1)</td>
<td>+1.4(2)</td>
<td>+3.9(2)</td>
<td>+5.2(4)</td>
<td>Dy II .18(pr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-13.9(1)</td>
<td>-10.4(1n)</td>
<td>-15.9(2)</td>
<td>9.3(2n)</td>
<td>-6.9(3n)</td>
<td>Dy II .802(40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11.4(1n)</td>
<td>-14.0(1n)</td>
<td>-2.1(3n)</td>
<td>7.2(7)</td>
<td>+10.2(2)</td>
<td>+0.2(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-11.2(2)</td>
<td>-9.9(4)</td>
<td>-4.4(3)</td>
<td>-1.6(4)</td>
<td>+1.0(2)</td>
<td>Eu II .149(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-4.1(0)</td>
<td>-11.5(1)</td>
<td>+2.4(0m)</td>
<td>-8.5(0)</td>
<td>-10.7(1)</td>
<td>-10.2(1)</td>
<td>+0.3(1n)</td>
<td>+2.4(1)</td>
</tr>
<tr>
<td>+ 7.2(1)</td>
<td>+11.4(1)</td>
<td>+2.7(1)</td>
<td>-3.5(3)</td>
<td>-9.8(3)</td>
<td>+2.7(3)</td>
<td>+0.1(4)</td>
<td>+4.7(1)</td>
</tr>
<tr>
<td>+ 0.2(0)</td>
<td>+12.1(1)</td>
<td>-7.6(6)</td>
<td>-4.2(4)</td>
<td>-3.5(5)</td>
<td>Dy II .51(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 7.2(1)</td>
<td>+11.4(1)</td>
<td>+2.7(1)</td>
<td>-3.5(3)</td>
<td>-9.8(3)</td>
<td>+2.7(3)</td>
<td>+0.1(4)</td>
<td>+4.7(1)</td>
</tr>
<tr>
<td>-10.8(0)</td>
<td>-7.8(0)</td>
<td>-8.6(1)</td>
<td>-8.5(2)</td>
<td>-2.0(3)</td>
<td>5.7(1)</td>
<td>-1.7(1)</td>
<td></td>
</tr>
<tr>
<td>+ 5.2(3)</td>
<td>-0.1(3)</td>
<td>-3.3(0)</td>
<td>-8.6(2)</td>
<td>-3.0(1)</td>
<td>-6.7(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 0.5(1)</td>
<td>+2.1(2)</td>
<td>-1.2(3)</td>
<td>-2.6(4)</td>
<td>0.0(4)</td>
<td>-1.3(7)</td>
<td>-4.7(5)</td>
<td></td>
</tr>
<tr>
<td>+14.5(0)</td>
<td>-12.5(1)</td>
<td>-13.1(3m)</td>
<td>-4.6(2)</td>
<td>-2.6(3m)</td>
<td>+3.6(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+17.2(0)</td>
<td>+6.8(0)</td>
<td>+3.8(1)</td>
<td>-17.1(3)</td>
<td>-13.2(3)</td>
<td>+3.0(3)</td>
<td>+4.8(1)</td>
<td></td>
</tr>
<tr>
<td>-16.7(1)</td>
<td>-9.3(2)</td>
<td>-10.8(5)</td>
<td>-8.0(6)</td>
<td>-5.9(5)</td>
<td>-6.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+21.4(1)</td>
<td>+11.6(0)</td>
<td>+2.2(1)</td>
<td>+6.2(0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-4.6(2n)</td>
<td>-12.7(2)</td>
<td>-4.6(1n)</td>
<td>-7.3(2m)</td>
<td>-0.3(1)</td>
<td>-1.1(1n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 8.6(0n)</td>
<td>-9.1(1)</td>
<td>-8.7(1)</td>
<td>6.3(3)</td>
<td>-4.5(4)</td>
<td>-2.9(5)</td>
<td>-1.6(6)</td>
<td>+9.3(1)</td>
</tr>
<tr>
<td>+ 0.7(4)</td>
<td>-1.0(10)</td>
<td>-4.7(12)</td>
<td>-5.7(12)</td>
<td>8.7(17)</td>
<td>-2.0(7)</td>
<td>-1.0(21)</td>
<td>-1.7(14)</td>
</tr>
<tr>
<td>+ 1.9(1)</td>
<td>-9.3(1)</td>
<td>-9.7(3)</td>
<td>-9.2(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 8.5(0)</td>
<td>-13.4(2)</td>
<td>-14.3(1m)</td>
<td>-8.6(3)</td>
<td>-6.5(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2.6(0)</td>
<td>+8.1(1)</td>
<td>-11.8(0)</td>
<td>-11.6(2)</td>
<td>-13.4(3)</td>
<td>-9.6(3)</td>
<td>-8.2(5)</td>
<td></td>
</tr>
<tr>
<td>+ 14.3(2)</td>
<td>-10.3(0)</td>
<td>-8.2(3)</td>
<td>-6.0(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+10.5(0)</td>
<td>-9.2(2)</td>
<td>-9.4(3)</td>
<td>-4.0(4)</td>
<td>-3.6(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+12.8(0)</td>
<td>+6.4(0)</td>
<td>-13.0(1)</td>
<td>-10.1(3)</td>
<td>-10.2(3)</td>
<td>-8.9(5)</td>
<td>-0.6(5)</td>
<td></td>
</tr>
<tr>
<td>+ 2.9(1)</td>
<td>+11.6(1)</td>
<td>+13.0(2)</td>
<td>+22.4(2m)</td>
<td>-7.3(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-4.7(5)</td>
<td>-2.0(2)</td>
<td>+6.8(8)</td>
<td>-10.5(6)</td>
<td>9.0(7)</td>
<td>-6.9(7)</td>
<td>-4.4(5)</td>
<td></td>
</tr>
<tr>
<td>-7.0(0)</td>
<td>-3.9(0)</td>
<td>-4.6(0)</td>
<td>-2.2(1)</td>
<td>-0.3(1)</td>
<td>+9.0(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 7.0(0)</td>
<td>-3.9(0)</td>
<td>-4.6(0)</td>
<td>-2.2(1)</td>
<td>-0.3(1)</td>
<td>+9.0(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 7.0(0)</td>
<td>-3.9(0)</td>
<td>-4.6(0)</td>
<td>-2.2(1)</td>
<td>-0.3(1)</td>
<td>+9.0(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
TABLE 5

Observations of \(\alpha^2 \) Canum Venaticorum

<table>
<thead>
<tr>
<th>Plate No.</th>
<th>Date</th>
<th>U.T.</th>
<th>Phase in Days</th>
<th>Dispersion at (\lambda , 3933)</th>
<th>Used in Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtW 1667</td>
<td>1938 May 13</td>
<td>6(^{27})m</td>
<td>0.822</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MtW 1669</td>
<td>1938 May 14</td>
<td>4.40</td>
<td>1.642</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MtW 1992</td>
<td>1939 Apr. 27</td>
<td>4.04</td>
<td>5.050</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MtW 1995</td>
<td>1939 Apr. 28</td>
<td>4.26</td>
<td>0.691</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MtW 2229</td>
<td>1940 Jan. 19</td>
<td>11.29</td>
<td>4.460</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CQ 377</td>
<td>1940 May 12</td>
<td>7.22</td>
<td>2.93</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>CQ 378</td>
<td>1940 May 12</td>
<td>7.32</td>
<td>2.93</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>CQ 385</td>
<td>1940 May 13</td>
<td>7.22</td>
<td>3.94</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>CQ 386</td>
<td>1940 May 13</td>
<td>7.44</td>
<td>3.94</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>CQ 387</td>
<td>1940 May 14</td>
<td>7.45</td>
<td>4.93</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>CQ 388</td>
<td>1940 May 15</td>
<td>7.22</td>
<td>0.47</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>CQ 389</td>
<td>1940 May 15</td>
<td>7.40</td>
<td>0.47</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>CQ 392</td>
<td>1940 May 16</td>
<td>7.17</td>
<td>1.46</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>CQ 393</td>
<td>1940 May 16</td>
<td>7.45</td>
<td>1.46</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>CQ 479</td>
<td>1940 Aug. 19</td>
<td>2.09</td>
<td>3.77</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>Cd 50</td>
<td>1941 Jan. 21</td>
<td>10.37</td>
<td>0.500</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cd 56</td>
<td>1941 Jan. 22</td>
<td>9.38</td>
<td>1.460</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cd 57</td>
<td>1941 Jan. 22</td>
<td>10.46</td>
<td>1.510</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cd 63</td>
<td>1941 Jan. 23</td>
<td>12.26</td>
<td>2.580</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cd 76</td>
<td>1941 Jan. 24</td>
<td>10.16</td>
<td>3.490</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cd 77</td>
<td>1941 Jan. 24</td>
<td>11.23</td>
<td>3.530</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cd 81</td>
<td>1941 Jan. 25</td>
<td>11.01</td>
<td>4.520</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cd 86</td>
<td>1941 Jan. 26</td>
<td>8.53</td>
<td>5.430</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cd 90</td>
<td>1941 Jan. 27</td>
<td>9.15</td>
<td>0.981</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>MtW 2540</td>
<td>1941 Apr. 22</td>
<td>4.00</td>
<td>3.721</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MtW 2543</td>
<td>1941 May 6</td>
<td>4.23</td>
<td>1.323</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MtW 2544</td>
<td>1941 May 7</td>
<td>5.18</td>
<td>2.363</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MtW 2580</td>
<td>1941 June 6</td>
<td>3.52</td>
<td>4.956</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

TABLE 6

Cd 81—Comparison between Direct and Reverse Measurements

<table>
<thead>
<tr>
<th>Intensity No. of Lines</th>
<th>Average Value of (\lambda_{\text{direct}} - \lambda_{\text{reverse}})</th>
<th>Average Value of (\lambda_{\text{direct}} - \lambda_{\text{reverse}})</th>
<th>Intensity No. of Lines</th>
<th>Average Value of (\lambda_{\text{direct}} - \lambda_{\text{reverse}})</th>
<th>Average Value of (\lambda_{\text{direct}} - \lambda_{\text{reverse}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 -0.002 A</td>
<td>100 0.034 A</td>
<td>0</td>
<td>100 -0.002 A</td>
<td>100 0.034 A</td>
</tr>
<tr>
<td>1</td>
<td>100 -0.007</td>
<td>100 0.029</td>
<td>1</td>
<td>100 -0.007</td>
<td>100 0.029</td>
</tr>
<tr>
<td>2</td>
<td>84 -0.007</td>
<td>84 0.031</td>
<td>2</td>
<td>84 -0.007</td>
<td>84 0.031</td>
</tr>
<tr>
<td>3</td>
<td>100 -0.0062</td>
<td>100 0.0272</td>
<td>3</td>
<td>100 -0.0062</td>
<td>100 0.0272</td>
</tr>
<tr>
<td>4-5-6</td>
<td>74 +0.0015 A</td>
<td>74 +0.0015 A</td>
<td>4-5-6</td>
<td>74 +0.0015 A</td>
<td>74 +0.0015 A</td>
</tr>
<tr>
<td>7-8-9-10</td>
<td>74 +0.0015 A</td>
<td>74 +0.0015 A</td>
<td>7-8-9-10</td>
<td>74 +0.0015 A</td>
<td>74 +0.0015 A</td>
</tr>
<tr>
<td>>10</td>
<td>8 +0.011</td>
<td>8 +0.011</td>
<td>>10</td>
<td>8 +0.011</td>
<td>8 +0.011</td>
</tr>
</tbody>
</table>

MtW 1992—Comparison between Direct and Reverse Measurements

<table>
<thead>
<tr>
<th>Intensity No. of Lines</th>
<th>Average Value of (\lambda_{\text{direct}} - \lambda_{\text{reverse}})</th>
<th>Average Value of (\lambda_{\text{direct}} - \lambda_{\text{reverse}})</th>
<th>Intensity No. of Lines</th>
<th>Average Value of (\lambda_{\text{direct}} - \lambda_{\text{reverse}})</th>
<th>Average Value of (\lambda_{\text{direct}} - \lambda_{\text{reverse}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 +0.0037 A</td>
<td>100 0.0381 A</td>
<td>0</td>
<td>100 +0.0037 A</td>
<td>100 0.0381 A</td>
</tr>
<tr>
<td>1</td>
<td>100 +0.0055</td>
<td>100 0.0357</td>
<td>1</td>
<td>100 +0.0055</td>
<td>100 0.0357</td>
</tr>
<tr>
<td>2</td>
<td>100 -0.0073</td>
<td>100 0.0317</td>
<td>2</td>
<td>100 -0.0073</td>
<td>100 0.0317</td>
</tr>
<tr>
<td>3</td>
<td>60 -0.0122 A</td>
<td>60 -0.0122 A</td>
<td>3</td>
<td>60 -0.0122 A</td>
<td>60 -0.0122 A</td>
</tr>
<tr>
<td>4-5-6</td>
<td>36 -0.0164</td>
<td>36 -0.0164</td>
<td>4-5-6</td>
<td>36 -0.0164</td>
<td>36 -0.0164</td>
</tr>
<tr>
<td>7-8-9-10</td>
<td>10 -0.0054</td>
<td>10 -0.0054</td>
<td>7-8-9-10</td>
<td>10 -0.0054</td>
<td>10 -0.0054</td>
</tr>
<tr>
<td>>10</td>
<td>8 +0.011</td>
<td>8 +0.011</td>
<td>>10</td>
<td>8 +0.011</td>
<td>8 +0.011</td>
</tr>
</tbody>
</table>

© American Astronomical Society • Provided by the NASA Astrophysics Data System
velocity-curves is not the same: it is 30 km/sec for Eu II, 25 km/sec for Dy II and Pr II, 20 km/sec for Ce II and Ni I, 15 km/sec for Sm II, 10 km/sec for Gd II, and less than 5 km/sec for Sr II. The reality of this effect is attested by the small range shown by Gd II, of which there are many strong unblended lines.

b) Lines which show a remarkable double wave, with principal maximum at phase 5°0, secondary maximum at phase 24°0, principal minimum at phase 0°7, and secondary minimum at phase 34°5. This type of variation is best shown by Cr II, where the total range is 15 km/sec. It is conspicuously present for Cr I, where the range is even larger, though the scatter is also larger. The same type is shown by Fe II and Fe I, though the range is only 10 km/sec, and by Mn II, where the range is also about 10 km/sec. The variation of Ti II seems to be intermediate between types a and b. Considering the large number of excellent lines of Ti II used in forming this curve, the observed maximum velocity at phase 1.5 days probably reflects a superposition of the principal maximum of type a and the secondary maximum of type b.

c) Lines which show no variation. Conspicuous in this group is Mg II with a very small range, in spite of the fact that the curve is based upon one line only, λ 4481. Other representatives are Si II, H, and Ca II.

TABLE 7

<table>
<thead>
<tr>
<th>From λ</th>
<th>To λ</th>
<th>Plate</th>
<th>Phase</th>
<th>Combined Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>3407.315</td>
<td>3554.850</td>
<td>MtW 2544</td>
<td>2.363</td>
<td>3.042</td>
</tr>
<tr>
<td>3554.850</td>
<td>4673.278</td>
<td>MtW 2544</td>
<td>2.363</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MtW 2540</td>
<td>3.721</td>
<td></td>
</tr>
<tr>
<td>4673.278</td>
<td>4687.437</td>
<td>MtW 2540</td>
<td>3.721</td>
<td></td>
</tr>
<tr>
<td>3440.714</td>
<td>3758.242</td>
<td>MtW 2543</td>
<td>1.323</td>
<td></td>
</tr>
<tr>
<td>3758.242</td>
<td>4539.596</td>
<td>MtW 2543</td>
<td>1.323</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MtW 1669</td>
<td>1.642</td>
<td></td>
</tr>
<tr>
<td>4539.596</td>
<td>4601.279</td>
<td>MtW 1669</td>
<td>1.642</td>
<td></td>
</tr>
<tr>
<td>3606.724</td>
<td>3677.920</td>
<td>MtW 2580</td>
<td>4.956</td>
<td>1.482</td>
</tr>
<tr>
<td>3677.920</td>
<td>4724.272</td>
<td>MtW 2580</td>
<td>4.956</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MtW 1992</td>
<td>5.050</td>
<td></td>
</tr>
<tr>
<td>4724.272</td>
<td>4740.820</td>
<td>MtW 1992</td>
<td>5.050</td>
<td></td>
</tr>
<tr>
<td>3648.386</td>
<td>3920.619</td>
<td>MtW 2229</td>
<td>4.460</td>
<td>4.490</td>
</tr>
<tr>
<td>3920.619</td>
<td>4647.340</td>
<td>MtW 2229</td>
<td>4.460</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cd 81</td>
<td>4.520</td>
<td></td>
</tr>
<tr>
<td>4647.340</td>
<td>4673.344</td>
<td>Cd 81</td>
<td>4.520</td>
<td>0.756</td>
</tr>
<tr>
<td>3677.677</td>
<td>3760.841</td>
<td>MtW 1995</td>
<td>0.691</td>
<td></td>
</tr>
<tr>
<td>3760.841</td>
<td>4677.144</td>
<td>MtW 1995</td>
<td>0.691</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MtW 1667</td>
<td>0.822</td>
<td></td>
</tr>
<tr>
<td>4677.144</td>
<td>4740.785</td>
<td>MtW 1995</td>
<td>0.691</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 8

<table>
<thead>
<tr>
<th>Diff. in Exc. Pot.*</th>
<th>(\frac{I_1}{I_2}) arc</th>
<th>(\frac{I_1}{I_2}) aSCvA</th>
<th>Diff. in Exc. Pot.*</th>
<th>(\frac{I_1}{I_2}) arc</th>
<th>(\frac{I_1}{I_2}) aSCvA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 volt</td>
<td>0.31</td>
<td></td>
<td>4 volt</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td></td>
<td>5</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.031</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Two lines of same spectral region.
Attention may be drawn to the fact that some of the curves are systematically displaced from one another. H and $Si\ \Pi$ cluster around 0 km/sec; $Mg\ \Pi$ gives, in the mean, about $-9\ km/sec$, while $Sr\ \Pi$ gives $+7\ km/sec$. These differences are much too large to be caused by errors of measurement. They may be attributable to blends; but in the case of $Mg\ \Pi$ no blend is known that would be strong enough to produce the observed displacement, while in the case of $Sr\ \Pi$ a weak line of $Cr\ \Pi$ may possibly influence the measured wave length to a slight extent. It is entirely possible, though by no means certain, that we are dealing here with an effect of relative motion similar to that observed by Adams in several other stars.

TABLE 9

Observed Intensities of Ce III Lines

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3353.26</td>
<td>150</td>
<td>3</td>
<td>4</td>
<td>$Cr\ \Pi$</td>
<td>$Fe^3F^0 - fp^6F^0$</td>
</tr>
<tr>
<td>3395.73</td>
<td>50</td>
<td>1-2</td>
<td>1-2</td>
<td>$Cr\ \Pi$, $Fe\ \Pi$</td>
<td>$Fe^3F^0 - fp^6F^0$</td>
</tr>
<tr>
<td>3427.332</td>
<td>125</td>
<td>2</td>
<td>1</td>
<td>$Cr\ \Pi$, $Fe\ \Pi$, Fe^3F^0</td>
<td>$Fe^6F^3 - fp^6F^0$</td>
</tr>
<tr>
<td>3443.609</td>
<td>150</td>
<td>2</td>
<td>2</td>
<td>Weak $Nd\ \Pi$, $Zr\ \Pi$</td>
<td>$Fe^3F^0 - fp^6F^0$</td>
</tr>
<tr>
<td>3454.368</td>
<td>150</td>
<td>2</td>
<td>2</td>
<td>Very weak $Nd\ \Pi + Dy\ \Pi$</td>
<td>$Fe^3F^0 - fp^6F^0$</td>
</tr>
<tr>
<td>3459.374</td>
<td>200</td>
<td>3</td>
<td>2</td>
<td>$Cr\ \Pi$</td>
<td>$Fe^3F^0 - fp^6F^0$</td>
</tr>
<tr>
<td>3470.894</td>
<td>300</td>
<td>1+</td>
<td>1-2</td>
<td>$Cr\ \Pi$</td>
<td>$Fe^3F^0 - fp^6F^0$</td>
</tr>
<tr>
<td>3497.755</td>
<td>60</td>
<td>2</td>
<td>3</td>
<td>Very weak $Nd\ \Pi + Dy\ \Pi$</td>
<td>$Fe^3F^0 - fp^6F^0$</td>
</tr>
<tr>
<td>3504.596</td>
<td>100</td>
<td>3</td>
<td>3</td>
<td>$Fe\ \Pi$, $Fe\ \Pi$, $Zr\ \Pi$, $Dy\ \Pi$</td>
<td>$Fe^3F^0 - dp^2G^4$</td>
</tr>
<tr>
<td>3543 999</td>
<td>80</td>
<td>1</td>
<td>1</td>
<td>Weak $Eu\ \Pi$, $Dy\ \Pi$</td>
<td>$Fe^3F^0 - dp^2G^4$</td>
</tr>
</tbody>
</table>

It will be noticed that in a general way our groups a, b, and c coincide with the groups A, B, and C first established by Belopolsky, which represent lines varying in intensity, like $Eu\ \Pi$; lines varying in the opposite sense, like $Cr\ \Pi$; and lines which remain constant in intensity, like $Mg\ \Pi$. There are appreciable differences in the results of different observers who have attempted to classify the lines into groups A, B, and C. For example, Belopolsky considers H, $Mg\ \Pi$, $Ca\ \Pi$, and $Fe\ \Pi$ to belong to class C. Tai attributes $Fe\ \Pi$ to group B and $Fe\ \Pi$ to group A, while for H, $Mg\ \Pi$, and $Si\ \Pi$ the group may be either B or C. But it is undoubtedly significant that all rare earths belong simultaneously to groups A and a, while $Cr\ \Pi$, the most conspicuous representative of group B, is also the most characteristic representative of group b.

Although it was not the primary purpose of this investigation to provide extensive data concerning the variations in the intensities, we have estimated on an arbitrary scale the intensities of a number of lines of different elements, in order to verify Tai's conclusion that the rare earths all belong to group A. These estimates are independent of those made during the measurements. Their advantage consists in the fact that they were made by comparing the enlargements of three McDonald coude spectrograms, Cd 77, Cd 81, and Cd 86. The corresponding phases are 3^{4530}, 4^{4520}, and 5^{4530}. The estimates in Table 10 are given in this order. The last phase is, of course, very close to
Fig. 1.—Radial velocities of α² Canum Venaticorum
Fig. 3.—Radial velocities of α² Canum Venaticorum
Fig. 4.—Radial velocities of α² Canum Venaticorum
Fig. 5.—Radial velocities of α^2 Canum Venaticorum
Table 10

Estimates of Line Intensities

<table>
<thead>
<tr>
<th>Line</th>
<th>Phases</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.530</td>
<td>4.520</td>
</tr>
<tr>
<td>Ni II (14)</td>
<td>16.3 v.</td>
<td>(C)</td>
</tr>
<tr>
<td>4128.0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Ti II (22)</td>
<td>13.6 v.</td>
<td>(A)</td>
</tr>
<tr>
<td>4163.6</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4171.9</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4300.0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4301.9</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4312.9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4314.9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4386.9</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4395.0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4395.9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4468.4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4488.3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4501.3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cr I (24)</td>
<td>6.7 v.</td>
<td>(C-A)</td>
</tr>
<tr>
<td>4254.4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cr II (24)</td>
<td>16.6 v.</td>
<td>(B)</td>
</tr>
<tr>
<td>4052.0</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4070.9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4076.9</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4195.4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4242.4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4269.3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mn II (25)</td>
<td>15.7 v.</td>
<td>(A)</td>
</tr>
<tr>
<td>4136.9</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4259.3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Fe I (26)</td>
<td>7.8 v.</td>
<td>(A)</td>
</tr>
<tr>
<td>4260.5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4271.8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4307.9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4404.8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4434.3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4468.4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
the predicted maximum of intensity of Eu II. The elements are arranged in order of atomic weight. The ionization potential and the intensity group are given at the head of each element. It is certain that all rare earths included in Table 10 belong to group A, and it is probable that the range in intensity is largest for Eu II, and somewhat smaller for Gd II. But this conclusion may be related to the fact that at maximum the lines of Eu II are the strongest among the rare-earth lines.

TABLE 11

<table>
<thead>
<tr>
<th>Phase in Days</th>
<th>Diffuseness of Lines</th>
<th>Phase in Days</th>
<th>Diffuseness of Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.050</td>
<td>4</td>
<td>2.363</td>
<td>10</td>
</tr>
<tr>
<td>0.691</td>
<td>3</td>
<td>3.721</td>
<td>8</td>
</tr>
<tr>
<td>0.822</td>
<td>1</td>
<td>4.460</td>
<td>2</td>
</tr>
<tr>
<td>1.323</td>
<td>3</td>
<td>4.956</td>
<td>5</td>
</tr>
<tr>
<td>1.642</td>
<td>2</td>
<td>5.050</td>
<td>4</td>
</tr>
</tbody>
</table>

It has already been pointed out\(^1\) that the contours of the lines of groups C and B are somewhat broader when the Eu II lines are weak. Estimates of diffuseness were made on the Mount Wilson coudé plates for the region near Ca II K. If 10 designates the broadest lines and 1 the narrowest (on any arbitrary scale), we obtain the relation with phase shown in Table 11. The lines were broadest at phases 2.3 and 3.7 days. They were narrow at phase 0.8 and again at phase 4.5 days. Possibly the double wave shown in these estimates is related to the double wave in the radial velocities of group b and to the peculiar changes in line contours observed in ε Ursae Majoris.\(^6\)

We are indebted to Mrs. Martha B. Carlson and Mrs. Gladys Rezek for much help in the computations, to Miss Alice Johnson for the reproductions of the spectrum, and to Miss J. Ringstad and Mrs. T. Belland for the typing of the tables reproduced by planography.