Divergence of Function and Regulation of Class B Floral Organ Identity Genes

Alon Samach, Susanne E. Kohalmi, Patrick Motte, Raju Datla and George W. Haughn

Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada

Biology Department, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0W9, Canada

Max-Planck-Institut für Züchtungsforschung, Carl-von-Linne Weg 10, D-50829 Cologne, Germany

Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Road, Saskatoon, Saskatchewan, S7N 0W9, Canada

Regulatory mechanisms controlling basic aspects of floral morphogenesis seem to be highly conserved among plant species. The class B organ identity genes, which are required to establish the identity of organs in the second (petals) and third (stamens) floral whorls, are a good example of such conservation. This work compares the function of two similar class B genes in the same genetic background. The DEFICIENS (DEF) gene from Antirrhinum, including its promoter, was transformed into Arabidopsis and compared in function and expression with the Arabidopsis class B genes APETALA3 (AP3) and PISTILLATA (PI). The DEF gene was expressed in the second, third, and fourth whorls, as was PI. Functionally, DEF could replace AP3 in making petals and stamens. The DEF gene's AP3-like function and PI-like expression caused transformation of fourth-whorl carpels to stamens. Like AP3, all aspects of DEF function in Arabidopsis required a functional PI protein. Surprisingly, DEF could not replace the AP3 protein in properly maintaining AP3 transcripts (autoregulation). Our data allow us to revise the current model for class B autoregulation and propose a hypothesis for the evolution of class B gene expression in dicotyledonous plants.

INTRODUCTION

Antirrhinum and Arabidopsis are distantly related dicotyledonous species (occupying different subclasses of Dicotyledoneae) with similar but distinct floral morphologies. The analysis of floral homeotic mutants in both species has permitted the identification and characterization of many regulatory genes that direct floral morphogenesis. Surprisingly, on the basis of recessive mutant phenotypes, amino acid sequence identity, and patterns of transcript distribution, the set of floral regulatory genes identified in Arabidopsis is almost identical to the set identified in Antirrhinum. Thus, the regulatory mechanisms controlling basic aspects of floral morphogenesis seem to be highly conserved (reviewed in Davies and Schwarz-Sommer, 1994; Ma, 1994; Weigel and Meyerowitz, 1994; Haughn et al., 1995).

Among the best-studied floral regulatory genes are the class B organ identity genes, which are required in part to establish the identity of organs in the second (petal) and third (stamen) floral whorls. Two class B genes are known for both Antirrhinum (DEFICIENS [DEF] and GLOBOSA [GLO]) and Arabidopsis (APETALA3 [AP3] and PISTILLATA [PI]). Loss-of-function mutations in any one of the four genes result in similar homeotic transformations: petals to sepals and stamens to carpels (Bowman et al., 1989, 1991; Hill and Lord, 1989; Schwarz-Sommer et al., 1990, 1992; Sommer et al., 1990; Tröbner et al., 1992). All four genes have been cloned, and their nucleotide sequences were determined (Sommer et al., 1990; Jack et al., 1992, 1994; Trobner et al., 1992; Goto and Meyerowitz, 1994; Zachgo et al., 1995; Krizek and Meyerowitz, 1996a). Each of the genes contains a MADS box DNA binding domain (Schwarz-Sommer et al., 1990) and a K-box (potential dimerization domain; Ma et al., 1991). On the basis of the deduced amino acid sequence, AP3 is closely related to DEF (61.2% sequence identity) and PI is related to GLO (58.4% sequence identity). In contrast, the promoters of the AP3 and DEF genes are significantly divergent.

The expression of the Arabidopsis and Antirrhinum class B transcripts and protein products has been studied extensively (Schwarz-Sommer et al., 1990, 1992; Jack et al., 1992, 1994; Tröbner et al., 1992; Goto and Meyerowitz, 1994; Zachgo et al., 1995; Krizek and Meyerowitz, 1996a). For all four class B genes, transcripts are initially detected in young flower primordia at the time of sepal initiation (stage 3; stages as defined by Smyth et al., 1990; Zachgo et al., 1995), but there are differences in their spatial distribution. One of the two class B genes from each organism is transcribed in the
second-, third-, and fourth-whorl primordial cells (DEF and PI), whereas transcripts of the second class B gene are limited mainly to the second- and third-whorl primordial cells (GLO and AP3). The Arabidopsis and Antirrhinum class B genes expressed in fourth-whorl primordial cells (DEF and PI) are not considered to be orthologous genes on the basis of amino acid sequence similarity. At later stages, class B gene transcripts are maintained at a high level only in the second- and third-whorl primordial cells of developing floral shoots, with transcripts persisting in developing petals and stamens until the completion of flower development. However, low levels of transcript of some of the class B genes have been detected in first-whorl (DEF and AP3) and fourth-whorl (DEF) organs of flowers in later stages of development. Class B proteins become detectable in the second- and third-whorl primordial cells at stage 4, when sepal primordia have become separated from the floral apex and start to overgrow it (Jack et al., 1994; Zachgo et al., 1995). Class B proteins have not been found in the first- or fourth-whorl organ primordia.

The complexity of the expression pattern of class B genes suggests that they are highly regulated. Indeed, several genes are known to be required for this process (Schultz et al., 1991; Bowman et al., 1992; Weigel and Meyerowitz, 1993; Simon et al., 1994; Ingram et al., 1995; Levin and Meyerowitz, 1995; Sakai et al., 1995; Wilkinson and Haughn, 1995). Functional class B proteins are themselves required to maintain class B gene expression in developing second- and third-whorl organs (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Goto and Meyerowitz, 1994; Jack et al., 1994).

Genetic, molecular, and biochemical studies with class B genes from both species have helped us to understand some aspects of how the class B organ identity genes function. Early in floral development (at the time of sepal initiation), DEF and GLO genes in Antirrhinum and AP3 and PI genes in Arabidopsis are transcribed in overlapping domains (Sommer et al., 1990; Jack et al., 1992; Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Goto and Meyerowitz, 1994; Krizek and Meyerowitz, 1996a). In the region of overlap (second- and third-whorl primordial cells), the two different class B polypeptides specifically interact to form a heterodimeric protein complex (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Goto and Meyerowitz, 1994; Davies et al., 1996a; Riechmann et al., 1996; S.E. Kohalmi and W.L. Crosby, unpublished results). Formation of the heterodimer protein stabilizes the class B polypeptides (Jack et al., 1994; Zachgo et al., 1995; Krizek and Meyerowitz, 1996a), allows entry into the nucleus (in Arabidopsis; McGonigle et al., 1996), and permits binding to MADS domain target sequences (CarG motifs; Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Riechmann et al., 1996). Targets of the heterodimeric class B protein might include the promoters of the class B genes themselves (autoregulation) because maintenance of class B transcripts depends on the availability of a functional class B protein (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Goto and Meyerowitz, 1994; Jack et al., 1994; Zachgo et al., 1995; Krizek and Meyerowitz, 1996a). The requirement of both proteins in a cell for both stability and autoregulation could explain why expression in the first or fourth whorls of just one of the pair is transient.

Despite the similarities between Arabidopsis and Antirrhinum class B floral regulatory genes, a closer look at the putative class B orthologous genes AP3 and DEF shows that they differ in many ways. First, mutations in DEF eliminate fourth-whorl organs; yet, in Arabidopsis class B mutants, fourth-whorl organs still develop (Jack et al., 1992; Schwarz-Sommer et al., 1992). Second, temperature shift assays with temperature-sensitive mutants show a difference in the time they are required for normal stamen development (Bowman et al., 1989; Zachgo et al., 1995). Third, initial transcript expression is different: AP3 is expressed in the base of the sepals, whereas DEF is initially expressed in the fourth whorl and is slightly expressed in sepals later in development (Jack et al., 1992, 1994; Schwarz-Sommer et al., 1992). Finally, although DEF expression depends on a functional GLO protein, transcriptional regulation of AP3 in second-whorl organs seems to be independent of PI function (Schwarz-Sommer et al., 1992; Goto and Meyerowitz, 1994).

There is still little direct evidence concerning the functional equivalence of putative orthologous floral regulatory genes in general and for DEF and AP3 in particular. We have introduced the DEF gene into Arabidopsis and compared its function with that of AP3. Our data show that DEF can complement the strong ap3-3 mutation. Because complementation depends on the appropriate spatial and temporal expression of the DEF gene, the interaction of the DEF protein with PI, and the activation of the appropriate target genes, our data strongly support the hypothesis that DEF is orthologous to AP3. This work also allows us to identify clear differences between the two genes, providing new insights on class B function, maintenance, and evolution.

RESULTS

Transgenic Arabidopsis Plants Carrying the DEF Gene Show a Homeotic Floral Phenotype

Our primary objective was to examine the effect of introducing the genomic Antirrhinum DEF gene (including its own promoter) into Arabidopsis. For this purpose, we cloned a 7-kb EcoRI genomic fragment from Antirrhinum containing the DEF gene (Schwarz-Sommer et al., 1992) into a binary transformation vector (see Methods) with selective markers for both kanamycin resistance and glucuronidase (GUS) activity. This construct was transformed into wild-type Arabidopsis (T1) by using Agrobacterium-mediated transformation. Three independent kanamycin-resistant T2 transformants were examined. Kanamycin resistance and GUS activity segregated among the T3 progeny at a frequency suggesting that each line carried three (TDF1) or one (TDF2 and TDF3) loci
with a T-DNA. DNA gel blot analyses indicated that the transformants contained an intact DEF gene (data not shown) with a copy number of one (TDF3), two (TDF2), or approximately six (TDF1). Two of the three lines containing DEF, TDF1 and TDF2, had a floral phenotype distinct from the wild type that segregated with the kanamycin resistance marker. The phenotype, designated Tdef, was a homeotic transformation of the fourth-whorl carpels into stamens. Whereas the first emerging flowers were phenotypically similar to wild-type flowers, each successive flower displayed a stronger homeotic transformation than did the previous one. Figure 1 shows wild-type flowers and flowers with a typical Tdef phenotype from plant line TDF1. The earlier flowers were either indistinguishable from the wild type or had distinctly curved pistils (Figure 1B). Later flowers had gynoecia consisting of both stamen and carpel tissue fused together that resulted in split and distorted gynoecia (stamen–carpel organs; Figures 1C, 2J, and 2K). There was considerable variation in the ratio of stamen to carpel tissue in such flowers. Finally, for some of the latest emerging flowers in the inflorescence, the gynoecium was replaced by a variable number of stamens and stamen–carpel organs (Figure 1D), with the maximum number of extra stamens being four. Although all three floral phenotypes were seen in TDF1 and TDF2 plants, both the number of mutant flowers and the degree to which each flower was affected (expressivity) was higher in TDF1 than in TDF2.

To determine whether the severity of the phenotype was due to loci number, the TDF1 plant was outcrossed to the wild type to obtain lines segregating for only one locus. All single-loci lines showed a Tdef phenotype, proving that one locus of the DEF gene is enough to cause fourth-whorl transformations. One of these TDF1 derivative lines (TDF1-1), carrying two loci, was used in subsequent crosses. Significantly, the Tdef floral phenotype is similar to that of Arabidopsis floral morphogenesis mutant 10 (Flo10, also known as Superman) mutants or transgenic plants in which the AP3 gene is under the control of the cauliflower mosaic virus 35S promoter (Schultz et al., 1991; Bowman et al., 1992; Jack et al., 1994). In both of these latter mutants, the stamen tissue in the fourth whorl has been correlated with and attributed to expression of AP3 and PI in cells of the fourth whorl. One major difference between the Tdef and Flo10 phenotypes is that as one moves along the inflorescence in an acropetal direction, the Tdef floral phenotype becomes more severe whereas the Flo10 phenotype becomes less severe (Bowman et al., 1992). Unlike Flo10 mutants (Gaiser et al., 1995), the Tdef floral phenotype did not include any changes in ovule development or structure.

Expression of Class B Organ Identity Genes in Transgenic Arabidopsis Tdef Plants

Transcripts of the class B organ identity genes of both Arabidopsis and Antirrhinum are present at high levels in cells of the second- and third-whorl primordia and developing petals and stamens of wild-type plants (Jack et al., 1992, 1994; Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Goto and Meyerowitz, 1994). In addition, DEF and PI transcripts are present in fourth-whorl primordial cells in young floral primordia until just before the emergence of petal and stamen primordia. In Flo10 mutants or transgenic Arabidopsis plants in which the AP3 gene is under the control of the cauliflower mosaic virus 35S promoter, the class B genes are also expressed in cells of the developing fourth whorl (Bowman et al., 1992; Goto and Meyerowitz, 1994; Jack et al., 1994).

Figure 1. Scanning Electron Microscopy of Flowers from Transgenic Arabidopsis Plants Expressing the DEF Gene.

Some perianth organs were removed to show more clearly the reproductive organs.

(A) Wild-type flower with first-whorl sepals (S), second-whorl petals (P), third-whorl stamens (T), and a fourth-whorl gynoecium (G). Magnification is ×34.

(B) A flower from the TDF1 line showing a weak Tdef phenotype. Notice the distinctly curved gynoecium (G). Magnification is ×18.

(C) A flower from the TDF1 line with fourth-whorl stamen–carpel organs (TC). Notice the stigmatic papillae on the fourth-whorl stamen–carpel organs. Magnification is ×26.

(D) A flower from the TDF1 line in which the gynoecium is replaced by stamens and stamen–carpel organs (TC). Magnification is ×62.
Figure 2. Distribution of Class B mRNAs in Inflorescences and Flowers of Transgenic TDF Plants.

Sections in (J) and (K) were hybridized with 35S-labeled antisense DEF RNA. The dark-field exposure, used to detect the silver grains, is superimposed on a UV fluorescence image to visualize the underlying tissue stained with calcofluor white. All other sections were hybridized with digoxigenin-labeled antisense RNA probes and photographed under differential interference contrast optics, with the transcript signal visible as dark brown or blue. All sections, except for the one shown in (V) (TDF2), are from TDF1 plants. All sections are longitudinal.
In situ hybridization was used to determine the pattern of DEF, AP3, and PI transcripts in TDF1 and TDF2 plants (Figure 2). The DEF transcript was not detected in wild-type Arabidopsis flowers (control), indicating that under the hybridization conditions used, the DEF probe was specific for the DEF transcript (data not shown). In early stages of development of Tdef flowers (stages 2 to 4), no DEF transcript was detected above background levels (Figures 2A to 2D). The DEF transcript was first clearly detected in early stage 5 flowers in the center of flower primordia (Figure 2E). Later in flower development, after the initiation of petal and stamen primordia, the DEF probe detected transcripts in the developing second and third whorls of Tdef flowers of all stages (Figures 2F to 2O). The signal within these primordia seemed less uniform than that normally found for AP3 and PI in wild-type flowers (Figures 2L to 2O). In mature flowers, such fourth-whorl expression was observed only in flowers with curved (small sectors) or staminoid (large sectors) fourth-whorl organs. In the latter type, the larger sectors containing DEF transcript always encompassed those parts of the gynoecium that were obviously staminoid (Figures 2J and 2K).

The PI (Figures 2P to 2S) pattern of expression in second- and third-whorl organs of Tdef flowers was similar to that of the wild type. In wild-type flowers, expression in fourth-whorl primordial cells is transient, whereas in Tdef plants, PI transcript was maintained in sectors of the developing fourth-whorl organs (Figures 2F to 2S). The AP3 (Figures 2T to 2W) pattern of expression in second- and third-whorl organs of Tdef flowers was also similar to that of wild-type plants. Unlike PI and DEF, in most Tdef flowers, AP3 transcripts were not detected in any fourth-whorl organs, even when they were clearly abnormal (Figure 2U). In a few Tdef flowers (~10% of flowers with abnormal fourth-whorl organs), AP3 transcripts were detected in sectors of fourth-whorl staminoid organs (Figures 2V and 2W), with the level of signal being usually lower than that found in the same tissues of second- and third-whorl organs.

The Tdef Phenotype Is Dependent on PI and Is Masked by flo10

The results discussed above suggest that DEF is expressed and can influence organ identity in Arabidopsis. To determine which genes are required for the Tdef phenotype, the TDF1-1 plant was crossed to PI and Flo10 mutant backgrounds. pi-1 is a recessive nonsense allele that results in a relatively strong phenotype (Bowman et al., 1989; Goto and Meyerowitz, 1994). PI-1 flowers have sepaloid second-whorl organs and third-whorl organs that are freestanding filamentous structures or carpelloid organs fused to the fourth-whorl carpels. F2 progeny homozygous for the pi-1 allele and carrying the DEF transgene were identified genetically, and their floral phenotype was characterized. These PI-1/Tdef plants had only PI-1 flowers, suggesting that DEF cannot complement a pi mutation and that the Tdef fourth-whorl phenotype requires PI function. Indeed, TDF1-1 plants heterozygous for the pi-1 allele had primarily wild-type flowers, with only the latest flowers showing a weak Tdef fourth-whorl phenotype, suggesting that this phenotype is sensitive to the level of PI protein in the plant.

A mutation in the FLO10 gene results in a replacement of the fourth gynoecial whorl by up to 10 stamens, with the average number of extra stamens decreasing in later flowers to 3.1 (Schultz et al., 1991; Bowman et al., 1992). Introducing DEF into a flo10-1 background had no significant effect on the number of fourth-whorl staminoid organs of early and later flowers, compared with Flo10 plants (data not shown). Flo10 is therefore epistatic to the Tdef phenotype, distinguishing this case from experiments in which expressing Arabidopsis class B genes under a constitutive promoter

![Figure 2](image-url)
caused an enhancement of the Flo10 phenotype (Krizek and Meyerowitz, 1996a).

The **DEF** Gene Complements **ap3** Mutations

To determine whether **DEF** can functionally replace its putative Arabidopsis homolog **AP3**, crosses were made between TDF1-1 and both Ap3-1 and Ap3-3 plants. **ap3-1** is a temperature-sensitive, recessive allele resulting from a missense mutation in the K-box. The Ap3-1 phenotype is relatively weak, with sepaloid organs in the second whorl and typically freestanding carpelloid stamens in the third whorl when the plant is grown at 22°C (Bowman et al., 1989). **ap3-3** is a recessive allele resulting from a nonsense mutation in the first exon that results in a relatively strong phenotype similar to **pi-1** (Figure 3A; Jack et al., 1992). F2 progeny homozygous for the **ap3** mutant alleles and carrying the **DEF** transgene (Ap3/Tdef) were identified genetically, and the floral phenotype was characterized. All Ap3/Tdef plants produced flowers that were intermediate in phenotype between Ap3 and Tdef flowers (Figures 3B and 3C). These modified Tdef flowers had petals or sepal-petal organs in the second whorl, normal stamens or carpel-stamens in the third whorl, and stamens or stamen-carpels in the fourth whorl. The floral phenotype varied, depending on the position of the flower on the inflorescence, so that as one moves along the inflorescence in an acropetal direction, the degree of fourth-whorl staminody and second- and third-whorl complementation increases. Later flowers had some completely normal petals and stamens in the second and third whorl (Figure 3D). These results show that the **DEF** gene can replace the **AP3** gene in making normal petals and stamens. We also wanted to determine whether **DEF** could replace **AP3** in the maintenance of **AP3** transcript levels. For this purpose, we looked at the distribution of **AP3** transcript in Ap3-3, Pi-1, and Ap3-3/Tdef plants. As previously described (Goto and Meyerowitz, 1994; Jack et al., 1994), the pattern of **AP3** transcript distribution in both mutants (Ap3-3, Figures 4A and 4B; Pi-1, Figures 4C and 4D) is similar to that in the wild type until stage 5. At later stages, continued high expression of the **AP3** transcript in a subset of cells at the base of the first and second organs can clearly be seen. Thus, unlike in previous reports (Goto and Meyerowitz, 1994; Jack et al., 1994), we could not see a clear difference in **AP3** expression between the two class B mutants. Our data suggest that some cells do not require functional class B proteins to continually express the **AP3** transcript. The expression pattern of **ap3-3** in most Ap3-3/Tdef flowers (Figures 4E to 4L) was similar to that seen in Ap3-3 flowers. At late stages of flower development, the transcript was clearly seen in a subset of cells in developing petals but not in the developing stamens (Figures 4G to 4L). Morphologically normal stamens devoid of **ap3-3** transcript (Figure 4J) developed. Rarely were third-whorl stamens showing limited sectors of **ap3-3** expression found (Figure 4J). These results suggest that **DEF** and **PI** activity is not sufficient to maintain normal **AP3** transcription in the absence of functional **AP3** gene product.
Figure 4. Distribution of AP3 and PI mRNA in Mutant Backgrounds.

Sections were hybridized with digoxigenin-labeled antisense AP3 ([A] to [J]) or PI ([K] and [L]) RNA probes and photographed under differential interference contrast optics. The transcript signal is dark brown. All sections except for the section shown in (B) (transverse) are longitudinal. (A) and (B) Ap3-3 inflorescences. Expression of AP3 is similar to that of the wild type in a stage 3 flower. Mature flowers maintain the AP3 transcript in a subset of cells (arrowheads).

(C) and (D) Pi-1 inflorescences. Expression of AP3 is similar to that of the wild type in a stage 4 flower. Mature flowers maintain the AP3 transcript in a subset of cells (arrowheads), as occurred in AP3-3 inflorescences.

(E) to (J) Ap3-3/Tdef inflorescences probed with the AP3 antisense RNA probe. Expression of AP3 is similar to that of the wild type in stage 3 and stage 4 flowers. Mature flowers maintain the AP3 transcript in a subset of cells (arrowheads), as occurred in AP3-3 inflorescences. In (I), notice a stage 8 flower with a developing stamen devoid of AP3 expression. A stage 4 flower with signal is shown beside it for comparison. In (J), notice that in this stage 9 flower, AP3 transcripts are also seen in a subset of cells of the third-whorl stamens (arrowhead). Unlike this flower, most Ap3-3/Tdef flowers showed a pattern similar to (I).

(K) and (L) Ap3-3/Tdef inflorescences probed with the PI antisense RNA probe. In (K), a stage 3 flower shows normal expression of PI in the central dome of the flower primordia. A mature flower with normal PI expression in petals and stamens is shown in (L).

PI transcript was not detected in developing organs of an Ap3-3 mutant (Goto and Meyerowitz, 1994). The DEF gene could successfully replace AP3 in restoring normal PI expression in the second- and third-whorl organs (Figures 4K and 4L).

DISCUSSION

Comparison of the DEF and AP3 Genes in a Common Genetic Background

The transfer of floral regulators from one plant species to a distantly related one has provided important information on gene function. In previous studies, a cDNA clone under the control of either a constitutive viral promoter (Mandel et al., 1992; Weigel and Nilsson, 1995; Davies et al., 1996b) or a promoter from the recipient species (Irish and Yamamoto, 1995) was used as a transgene. In contrast, we have compared the function of two analogous class B organ identity genes from diverse angiosperm species by introducing them into the same genetic background. A genomic clone of the Antirrhinum class B organ identity gene DEF complete with its endogenous promoter was introduced into Arabidopsis, and its expression and function were compared with that of the Arabidopsis AP3 gene in wild-type and mutant backgrounds. Like AP3, transcription of the DEF gene in Arabidopsis is floral specific and maintained at high levels in petal and stamen primordia. The DEF protein can restore normal
petal development in whorl two and stamen development in
whorl three of strong Ap3 mutant flowers. Like AP3, DEF
function depends on a functional product made by the sec-
ond Arabidopsis class B organ identity gene PI. Thus, for
the most part, the DEF gene functions like the AP3 gene. How-
ever, there were also differences between AP3 and DEF
function and expression in Arabidopsis. Unlike AP3, DEF is
also expressed in fourth-whorl primordia, where it promotes
PI expression and development of stamen tissue. DEF is
also incapable of substituting for AP3 in maintaining AP3
transcript. In the following discussion, we propose that both
of these differences result from the fact that the DEF gene
has regulatory elements more similar to the PI gene than to
the AP3 gene.

**Comparison of DEF Expression and Function in
Arabidopsis Versus Antirrhinum**

Both DEF in Antirrhinum and PI in Arabidopsis are
expressed initially in the second-, third-, and fourth-whorl
floral primordia of stage 3 and stage 4 wild-type flowers. Expression of these genes in the fourth whorl is transient because
their class B partners, required for transcript maintenance
and protein stability, are absent from this tissue. Our data
are consistent with the idea that the DEF gene in Arabidop-
sis is regulated, as it is in Antirrhinum, with an expression
pattern more similar to PI than to AP3. In Tdef Arabidopsis
plants, initial expression of both DEF and PI in the fourth
whorl enables persistent expression of both genes in this
tissue and homeotic transformation of carpels to stamens.
DEF expression in Arabidopsis differs from its expression in
Antirrhinum in two ways. Unlike Antirrhinum, we can only
detect clear expression of the DEF gene in Tdef plants when
second- and third-whorl primordia begin to form (stage 5
flowers). Although expression in early stages was not de-
tectable above background levels by in situ hybridization,
we suspect that sufficient functional product was made by
stage 4. That is because others have shown that AP3 is re-
quired in these early stages (Bowman et al., 1989), and we
know that DEF can successfully replace AP3. A simple ex-
planation for the difference in levels of expression is that the
efficiency of the DEF promoter in Arabidopsis is lower. We
cannot rule out that not all regulatory elements required for
DEF expression are included in the genomic fragment used.

In Tdef and Ap3/Tdef inflorescences, as one moves along
the inflorescence in an acropetal direction, the degree of
fourth-whorl staminode and second- and third-whorl com-
plementation increases. This observation suggests that in
Arabidopsis, DEF function increases throughout inflores-
cence development and that such an increase can over-
come any deficiencies in the intrinsic ability of DEF protein
to function. Similar correlations between floral phenotype
and position in the inflorescence have been noted for a
wide variety of floral homeotic mutants (reviewed in Haughn
et al., 1995; see also Krizek and Meyerowitz, 1996a) and are
consistent with the idea that there is a gradual increase in
the activation of genes in the floral program throughout in-
florescence development.

Maintenance of Class B Expression

Previous studies have indicated that in the absence of func-
tional class B activity, class B transcripts fail to be properly
maintained in developing second- and third-whorl organs
(Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Goto and
Meyerowitz, 1994; Jack et al., 1994; Zachgo et al., 1995).
However, our results (Figure 4) and those of others (Goto and
Meyerowitz, 1994) clearly show that in Arabidopsis, expres-
sion of class B transcripts persists in some cells of the devel-
oping second and third whorls of class B mutants. Typically,
in class B mutants, cells expressing AP3 are found in the sec-
ond whorl, whereas cells expressing PI are located in the third
whorl, as if such cells have been pushed aside by those pro-
iferating to form the second- and third-whorl organs. Such
data demonstrate that in some cells, class B activity is not re-
quired for class B gene expression in the later stages of Ara-
bidopsis floral development. It is possible that the same
phenomenon is true for Antirrhinum, but in that case, the cells
that keep on expressing class B genes in the mutant back-
ground are either dispersed or harder to notice because they
occupy a relatively smaller part of much bigger organs.

A simple explanation for persistent class B gene expres-
sion in some cells of class B mutants is as follows. The tran-
scription factors that initiate class B gene expression in cells
of stage 3 flowers are capable of maintaining class B gene
expression as long as such cells do not divide. Division of
these cells dilutes the initial factor to a point at which class
B expression is not maintained without the activation by a
functional class B heterodimer. There is increasing evidence
that class B function promotes cell division (Tröbner et al.,
1992; Krizek and Meyerowitz, 1996a). In wild-type flowers,
cells initially expressing both AP3 and PI would both prolif-
erate and continue to maintain class B gene expression, ulti-
mately giving rise to a domain occupying the second and
third whorls. In Ap3 or PI mutants, many of the cells initially
expressing class B transcripts may not divide. Such cells
would continue to express class B genes even in the ab-
sence of class B heterodimer but be pushed aside by cells
expressing only class A or class C organ identity genes that
are actively proliferating.

**Ap3 and DEF Transcripts Are Maintained by
Different Factors**

We have shown that in fourth-whorl stamens of Tdef plants
and second-, third-, and fourth-whorl organs of Ap3/Tdef
plants, the AP3 transcript is not maintained. Only on rare oc-
casions can patches of AP3 expression be detected in these
organs. How can the DEF protein replace the AP3 protein in
activating petal and stamen development and yet not be capable of substituting for AP3 in the maintenance of AP3 transcription? A simple explanation for these data would be that AP3 can bind to a site within its own promoter that DEF cannot recognize. We do not favor this hypothesis for two reasons. First, different MADS box proteins seem to bind similar CarG box sequences in vitro (Riechmann et al., 1996). Second, switching the DNA binding domain of AP3 with that of other MADS box proteins did not affect its function (Krzek and Meyerowitz, 1996b). The current model must be refined to take into account our results and the following recent observations. (1) Maintenance of class B transcript levels requires additional floral factors (Schwarz-Sommer et al., 1992; Krzek and Meyerowitz, 1996a). (2) Class B functional specificity is attributed to regions required for protein-protein interactions (Krzek and Meyerowitz, 1996b). (3) Sequence comparisons suggest that it is unlikely that DEF would be able to replace PI more successfully than would AP3 in interactions with other proteins. (4) A sequence comparison of the DEF and AP3 promoters shows no similarities besides the CarG box (Irish and Yamamoto, 1995).

A revised model for maintenance of class B gene expression that is consistent with all of the information presented above is presented in Figure 5. We suggest that class B proteins indeed bind to their own promoters as heterodimers, yet maintenance of transcript levels requires an additional interaction of one of the class B proteins with a third DNA binding transcription factor (DNA binding protein). Different factors would be required for AP3 and PI maintenance. AP3 maintenance would require a factor that binds only to the AP3 promoter at a site near the CarG box and interacts specifically with the AP3 protein (Figure 5A). A different factor, required for PI maintenance, would bind to a site in the PI promoter and interact with the PI protein. In Tdef transgenic plants (Figure 5B), the DEF protein cannot interact efficiently with the Arabidopsis AP3-specific factor. The DEF transcript is expressed and maintained in Arabidopsis in a pattern similar to PI. We predict that the PI-specific factor recognizes and binds to a site in the DEF promoter and interacts with PI protein to allow maintenance of DEF. Interestingly, a mutation (DEF-chlorantha) in the DEF promoter close to the CarG box causes severely reduced DEF transcription. In support of our hypothesis, it was proposed that this mutation defines a target sequence of the additional factor required for maintenance of DEF transcription (Schwarz-Sommer et al., 1992). Our model predicts that in addition to the class B heterodimer recognition element, the DEF and PI promoters should have a second cis-acting element in common. Such a prediction can be tested easily once the PI promoter sequence has been published.

The inability of DEF to properly control expression from the AP3 promoter provides an explanation for results from Irish and Yamamoto (1995). These investigators showed that unlike the DEF genomic clone, an AP3-DEF CDNA fusion gene under the control of the AP3 promoter was unable to produce any wild-type petals or stamens in an ap3-3 background. In this case, the lack of full complementation could be explained by the DEF protein’s inefficiency in activating its own transcription via the AP3 promoter.

A direct association between the AP3 protein and AP3 promoter and the DEF protein and DEF promoter has been suggested by in vitro binding experiments (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Riechmann et al., 1996). However, it has been difficult to rule out the possibility that in vivo class B autoregulation is not direct but is controlled by a separate factor downstream of the class B genes. We have shown here that developing stamen tissue can be devoid of the AP3 transcript, providing in vivo evidence that autoregulation is not an indirect consequence of stamen development.

Evolution of the Class B Expression Pattern

In young flowers (stages 3 and 4) of both Arabidopsis and Antirrhinum, one of the class B genes is expressed in the second-, third-, and fourth-whorl progenitor cells, whereas the other gene is expressed primarily in the second- and third-whorl progenitor cells. Expression of class B genes in fourth-whorl organs has also been found in tobacco (Davies et al.,
flower with only one whorl of stamens followed immediately after late stage 4 has not been reported.

To date, there is no known function for class B gene expression in the center of the young floral primordium. Indeed, somatic reversions of DEF in the third whorl of Antirrhinum also restored fourth-whorl organs (Tröbner et al., 1992), suggesting that DEF transcript is not required in the fourth whorl. How could such an expression pattern have evolved? The expression domain of class B organ identity genes in ancestral angiosperm plants may have been broad and loosely regulated, with transcript levels declining gradually toward the center of the floral meristem, leading to the production of carpels. Such an expression pattern would result in flowers with many reproductive organs that vary in phenotype from functional stamen to functional carpels in the innermost whorls, with whorls of nonfunctional stamen–carpel organs in between, as has been observed in some members of the Magnoliaceae. A mutation in one of the class B genes, causing its expression domain to be restricted to the second and third whorls, would result in a flower with only one whorl of stamens followed immediately by carpel formation, as has been observed in the simple complete flowers of Arabidopsis and Antirrhinum.

Oddly, the class B organ identity genes in Arabidopsis and Antirrhinum expressed primarily in the second and third whorls (AP3 and GLO) are not orthologous. This difference could be explained by the possibility that the restricted expression pattern of a class B gene evolved more than once among the angiosperms after the progenitors of these two species were separated. Alternatively, the evolution of heterogeneous expression patterns could have occurred in a common progenitor, and later on, a recombination event (illegitimate) occurred between the 5′ ends of the two class B genes, switching regulatory regions between them. Such a recombination event would result in a partially sterile plant with a Tdef-like phenotype (stamen–carpels in the fourth whorl); however, those of its progeny that were homozygous for either the parental or recombinant chromosomes would be perfectly normal. Therefore, this recombinant would not only represent a divergence in transcript patterns but could also be the beginning for the production of carpels because a cross between the parental plant and the recombinant would lead again to partial sterility. Our results suggest that the DEF and PI genes share common upstream regulatory elements, causing us to favor this second hypothesis.

METHODS

Growth Conditions

Arabidopsis thaliana plants were grown in 5-inch-diameter pots containing prepared soil mix (Terra-Lite Redi Earth; W.R. Grace & Co. Canada Ltd., Ajax, Ontario, Canada) and then transferred to growth chambers at 22°C and continuous light (90 to 120 μE m⁻² sec⁻¹).

Plant Transformation and Strain Construction

A 7-kb EcoRI genomic fragment from Antirrhinum contains the DEF gene with ~4 kb upstream and 0.25 kb downstream of the transcribed sequences (Schwarz-Sommer et al., 1992). This fragment was cloned into the EcoRI site of the binary transformation vector RDI1 (R. Datta, unpublished data). This vector contains a T-DNA that also encodes kanamycin resistance and glucuronidase (GUS) activity. The T-DNA was transformed into wild-type Arabidopsis (T2) by using Agrobacterium tumefaciens–mediated transformation methods. TDF1 was a result of in-the-plant transformation (Katavic et al., 1994) in ecotype Columbia, and TDF2 and TDF3 were a result of root transformation (Valvekens et al., 1988) in the Landsberg erecta and RLD ecotypes, respectively.

TDF1 was outcrossed to Columbia, and one of the F1 plants was designated TDF1-1. TDF1-1, segregating for two loci, was used in crosses to the following homozygous mutant strains by manual cross-pollination: Ap3-1 and PI-1 (Bowman et al., 1989; gifts of M. Koornneef, Wageningen Agricultural University, Wageningen, The Netherlands), Ap3-3 (Jack et al., 1992; gift of E. Meyerowitz, California Institute of Technology, Pasadena, CA), and Fio-10-1 (Schultz et al., 1991). The resulting kanamycin-resistant F1 plants were allowed to self-fertilize, and the F2 plants were analyzed for morphological and genotypic differences. Genotypes were confirmed by test crosses and polymerase chain reaction amplification (to detect DEF). Both loci of TDF1-1 produced independent plants with a strong Tdef phenotype.

Scanning Electron Microscopy

Samples were fixed, dried, coated, and dissected as described previously (Wilkinson and Haughn, 1995).

RNA In Situ Hybridization

Gene-specific antisense probes were prepared from pD793 for AP3 (digested with BglII; Jack et al., 1992), pCPlNX for PI (digested with NsiI; Goto and Meyerowitz, 1994), and a plasmid containing the 3′ end of DEF cDNA (Sommer et al., 1990). Preparation, hybridization, and detection of 35S-labeled antisense RNA were done as given in Huijser et al. (1992). Preparation of digoxigenin-labeled probes was according to the Boehringer Mannheim nucleic acid labeling kit. Tissue was fixed in FAA (3.7% paraformaldehyde, 5% acetic acid, and 50% ethanol), according to Huijser et al. (1992), and embedded in paraffin (Paraplast Plus; Sigma). Sections (8 μm) were prepared using a microtome. Sections were transferred to slides pretreated with Vectabond (Dimension Labs, Mississauga, Canada), dried at 40°C overnight, and affixed to the slides by raising the temperature of the hot plate to 56°C for 4 hr.

The in situ hybridization protocol used was a modified procedure based on that of Coen et al. (1990) and G. Drews (personal communication). Paraffin was removed by immersing slides in 100% xylene, 50% xylene–50% ethanol, and 100% ethanol for 5 min each. Sections were hydrated by immersion in 95, 85, 70, 50, and 25% ethanol and H2O for 5 min each, treated with 2 × SSPE (300 mM NaCl, 20 mM NaH2PO4, 2 mM EDTA; pH 7) at 70°C for 20 min, and incubated for 20 min at 37°C with 1 μg/mL proteinase K in 100 mM Tris-HCl, pH 8.0 to 9.0.
8, and 50 mM EDTA. Slides were then dehydrated in 25, 50, 75, 95, and 100% ethanol for 5 min each and air dried at 52°C for 10 min. Hybridization was done overnight at 52°C with a digoxigenin-labeled RNA probe (2 to 20 ng) in 100 μL of hybridization buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 300 mM NaCl, 50% formamide, 7% dextran sulfate, 1 × Denhardt’s solution [1 × Denhardt’s solution is 0.02% Ficoll type 400, 0.02% polyvinylpyrrolidone, 0.02% BSA], 500 μg/mL tRNA, and 250 μg/mL poly(A) tRNA). Slides were washed in 2 × SSC (1 × SSC is 0.15 M NaCl, 0.015 M sodium citrate) for 5 min and twice in 0.2 × SSC at 52°C for 30 min.

Immunological detection of the hybridized probe was performed according to Coen et al. (1990), with a few modifications. Slides were covered for 20 min with 1 mL of 1% blocking reagent (Boehringer Mannheim) in 100 mM maleic acid, pH 7, and 150 mM NaCl. Slides were then covered for 30 min in 1 mL of buffer A (1% BSA [Sigma], 0.3% Triton X-100 [Sigma], 100 mM Tris-HCl, pH 7.5, and 150 mM NaCl). The slides were incubated for 4 hr with 1 mL of dilute (1:1200) antibody conjugate (Boehringer Mannheim) in buffer A, followed by two washes in buffer A (each for 20 min).

For the color reaction, slides were immersed twice for 5 min in substrate buffer (100 mM Tris-HCl, pH 9.5, 100 mM NaCl, and 50 mM MgCl2) and incubated overnight with 0.5 mL of 0.34 mg/mL nitro blue tetrazolium salt and 0.175 mg/mL 5-bromo-4-chloro-3-indolyl phosphatep-toluidine salt in substrate buffer in the dark. The color reaction was stopped with 10 mM Tris-HCl, pH 8, and 5 mM EDTA, and slides were viewed before (brown color) or after (blue color) ethanol dehydration, 100% xylene immersion, and coverslip mounting with Entellen (Merck). Sections were photographed under differential interference contrast optics by using a light microscope (Leitz DRB; Leica, Wetzlar, Germany) with Ektachrome 160 ASA film (Eastman Kodak).

ACKNOWLEDGMENTS

This work was supported by a Natural Sciences and Engineering Research Council (NSERC) of Canada Research Grant to G.W.H. and an NSERC postdoctoral fellowship to S.E.K. We thank Drs. Zsuzsanna Schwarz-Sommer and Hans Sommer for valuable discussion, gifts of the DEF genomic clone, and technical assistance in situ hybridization; Marilyn Martin for technical assistance; Dr. Eliot Meyerowitz for the Ap3-3 mutant line and plasmid pD793; and Dr. Detlef Weigel for plasmid pCiPKX. We are also grateful to Mark Pidkowich, Tamara Western, and Drs. Zsuzsanna Schwarz-Sommer, Marcos Egea-Cortines, and Mark Wilkinson for critical reading of the manuscript.

Received November 27, 1996; accepted February 19, 1997.

REFERENCES

