

Development of a new genetic evaluation model for carcass quality based on crossbred performances of Piétrain boars in the Walloon Region of Belgium

M. Dufrasne¹ – H. Hammami¹ – V. Jaspart² – J. Wavreille³
& N. Gengler^{1,4}

¹ Animal Science Unit, Gembloux Agro-Bio Tech, University of Liege (GxABT-ULg) – Gembloux, Belgium

² Walloon Pig Breeders Association (AWEP) – Ciney, Belgium

³ Walloon Agricultural Research Centre (CRA-W) – Gembloux, Belgium

⁴ National Fund for Scientific Research (FRS-FNRS) – Brussels, Belgium

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Context

- Until recently in the Walloon Region of Belgium:
 - Piétrain boars were tested and evaluated based on performances of their purebred progeny
 - Selection of boars based only on breeding values for pure breeds

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Context

- Production pigs are mostly crossbred
- Genetic correlation between purebred and crossbred performances is considered to be < 1
- Genetic merit of boars used in crossbreeding systems should be estimated from crossbred performances

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Context

- Since 2007 in the Walloon Region of Belgium:
 - Development of a new genetic evaluation program of Piétrain boars
 - Crossbred progeny are tested in a test station for fattening and carcass traits (e.g., growth, feed intake, backfat thickness, meat percentage)
 - Dams of progeny are from a hyperprolific Landrace sow line

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Objective

- To develop the genetic evaluation system of Piétrain boars based on crossbred performances
 - In particular, development of a genetic evaluation model for carcass quality traits: backfat thickness and meat percentage
- To allow selection of boars that produce carcass with a high meat percentage

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Material

- Data
 - From the on-farm performance recording system
 - Pigs on-farm
 - But also pigs fattened in test station
- Recording on live animals by ultrasound
- Traits analysed in this study:
 - Backfat thickness (BF)
 - Meat percentage (%meat)

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Material

- Datafile:

- 60 546 records from 56 822 different pigs for each trait (6 % of repeated records)
- Measured between 150 and 300 days of age
- Measured on pigs of at least 40 % Piétrain or Landrace to have animals with similar breed composition with animals from the test station

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Methods

- Genetic evaluation model

$$y = Xb + Q(Za + Zp) + e$$

Observations:

- Backfat thickness
- Meat percentage

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Methods

- Genetic evaluation model

$$y = Xb + Q(Za + Zp) + e$$

Fixed effects:

- Sex
- Contemporary groups
- Heterosis modeled as fixed regression on heterozygosity

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Methods

- Genetic evaluation model

$$y = Xb + Q(Za + Zp) + e$$

Random effects:

- Vector of additive genetic random regression coefficients

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Methods

- Genetic evaluation model

$$y = Xb + Q(Za + Zp) + e$$

Random effects:

- Vector of additive genetic random regression coefficients
- Vector of permanent environment random regression coefficients

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Methods

- Genetic evaluation model

$$y = Xb + Q(Za + Zp) + e$$

Random effects:

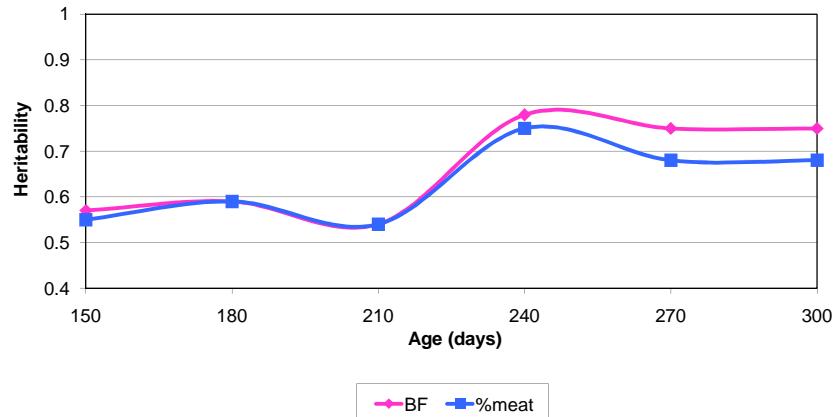
- Vector of additive genetic random regression coefficients
- Vector of permanent environment random regression coefficients
- Vector of random residual

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Methods

- Random regression animal model with linear splines
- Variance components estimation:
 1. REML on 6 samples of the total dataset for each trait
 2. Gibbs sampling algorithm on the total dataset for each trait
 3. Gibbs sampling algorithm on the total dataset with multitrait model

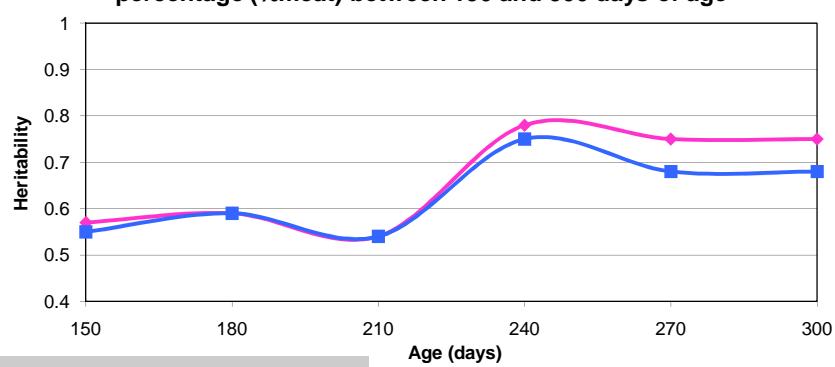
9th WCGALP - Leipzig, Germany (August 1-6, 2010)


Methods

- Fit of the model tested with residuals
 - Residuals were computed as the difference between the observed and the estimated values
 - Residuals should be as small as possible so that the model explains the greatest proportion of variance

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

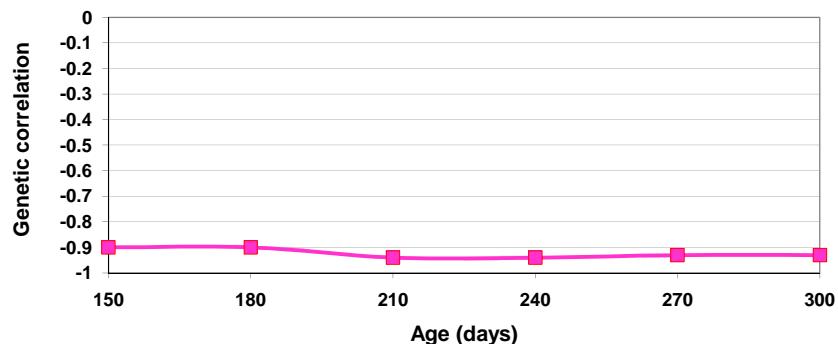
Results: Genetic Parameters


Estimated heritability of backfat thickness (BF) and meat percentage (%meat) between 150 and 300 days of age

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Results: Genetic Parameters

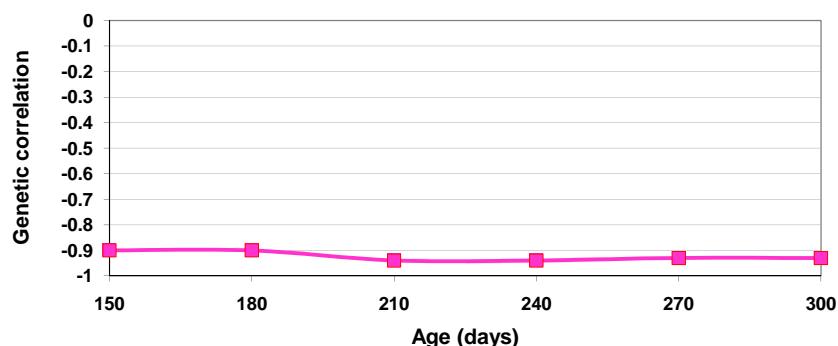
Estimated heritability of backfat thickness (BF) and meat percentage (%meat) between 150 and 300 days of age



BF and %meat have high heritability that increases with age:
• 0.56 to 0.75 for BF
• 0.55 to 0.69 for %meat

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Results: Genetic Parameters


Evolution of genetic correlation between backfat thickness (BF) and meat percentage (%meat) from 150 to 300 days

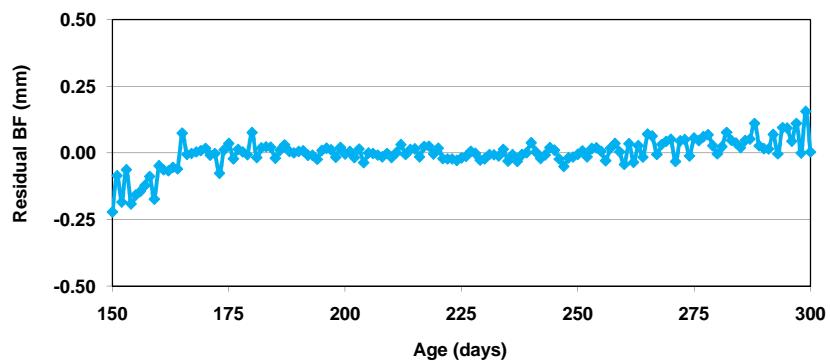
9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Results: Genetic Parameters

Evolution of genetic correlation between backfat thickness (BF) and meat percentage (%meat) from 150 to 300 days

BF and %meat are highly correlated with genetic correlation lower than -0.90

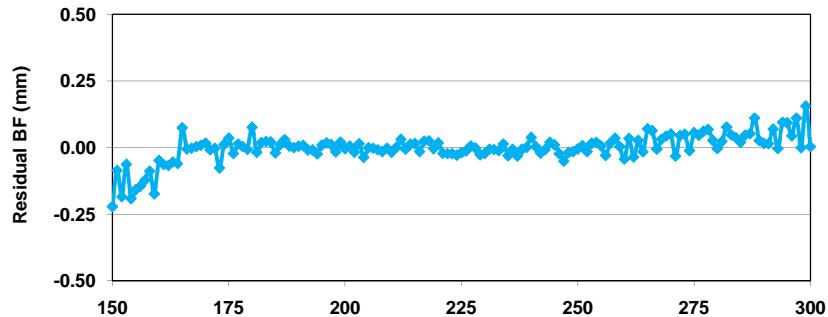
9th WCGALP - Leipzig, Germany (August 1-6, 2010)


Results: Genetic Parameters

- Observed variations in the evolution of genetic parameters
- Probably due to random regression model with linear splines to model variance components

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

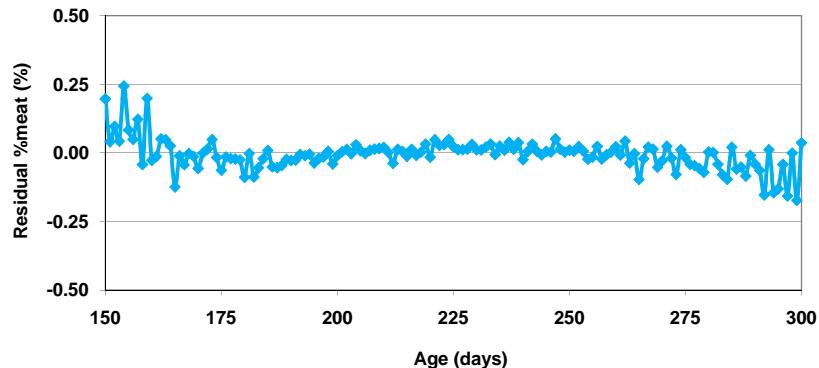
Results: Model Fit


Evolution of the mean of the residual for backfat thickness between 150 and 300 days

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

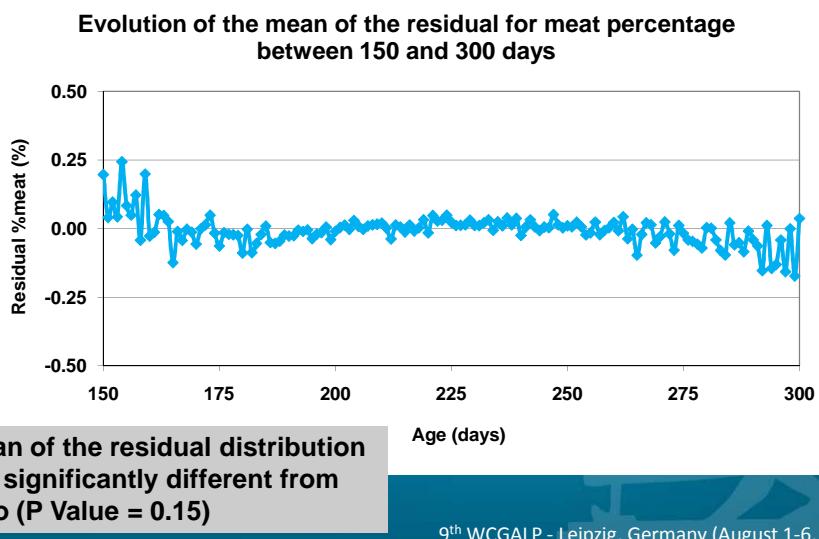
Results: Model Fit

Evolution of the mean of the residual for backfat thickness between 150 and 300 days



Mean of the residual distribution not significantly different from zero (P Value = 0.80)

9th WCGALP - Leipzig, Germany (August 1-6, 2010)


Results: Model Fit

Evolution of the mean of the residual for meat percentage between 150 and 300 days

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Results: Model Fit

Results: Model Fit

- Observed lost of fit of the model at very low and very high ages:
 - Less data available at these ages
 - Extrapolation of splines outside their optimal range

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Results: Heterosis Effect

- Solutions for heterosis effect:
 - 13 % lower backfat thickness
 - 1.6 % higher meat percentagefor crossbred animals than the mean of the population

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Conclusions

- Backfat thickness and meat percentage have high heritability and are highly correlated
 - Genetic improvement of carcass quality is possible based on these traits
 - Selection could be based only on one of these traits
- According to the study of residuals model developed seems to fit well the data
- Crossbred animals have better performances compared to the whole population

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

Thank You For Your Attention!

- Collaboration:

- Walloon Pig Breeders Association (AWEP)
- Walloon Agricultural Research Centre (CRA-W)

- Study supported by:

- Walloon Region of Belgium
- National Fund for Scientific Research (FRS-FNRS)

- Author's contact: marie.dufrasne@ulg.ac.be

9th WCGALP - Leipzig, Germany (August 1-6, 2010)

