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Abstract Recent studies have shown that the variable sampling interval (VSI) scheme
helps practitioners detect process shifts more quickly than the classical scheme (FRS). In
this paper, the economically and statistically optimal design of the \VSI T2 control chart for
monitoring the process mean vector is investigated. The cost model proposed by Lorenzen
and Vance (1986) based on Markov chain approach is modified as the objective function
which is intended to be minimized through a genetic algorithm (GA) approach. Then the
effects of the costs and operating parameters on the optimal design (OD) of the chart
parameters and resulting operating loss through a fractional factorial design is
systematically studied and finally, based on the ANOVA results, a Meta model to facilitate
implementation in industry is proposed to determine the OD of the VSI T? control chart
parameters from the process and cost parameters.

Keywords  Hotelling’s T2 control chart, Variable Sampling Interval scheme, Economic

Statistical Design, Markov chain and Genetic Algorithm.

1. Introduction

A common multivariate control chart is the Hotelling’s T control chart (Hotelling 1947).
The traditional sampling strategy in the Hotelling’s T control chart is the fixed ratio

sampling (FRS) scheme in which samples of fixed size n, are obtained at constant intervals

ho to monitor a process. A major deficiency of the FRS T? control scheme is that its

efficiency to detect small and moderate shifts or drifts in the process mean is poor.
Consequently several modifications have been suggested in the quality control literature to
improve the performance of the FRS policy.

One procedure to improve the statistical performance of the FRS control schemes is
Variable Sampling Interval (VSI) scheme that varies the sampling interval between

successive samples as a function of prior sample results. In this procedure, the area between
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the control limits and the origin has been divided into two zones by a warning line w for the
use of two different sampling intervals (h,>h,). If the current sample value falls in a

particular zone, then the next sample is to be drawn from the process after according to
corresponding sampling interval. The use of the VSI control schemes requires the user to

select five design parameters: the long and short sampling intervals h; and h,, the fixed

sample size n, the warning limit w and the control limit k. Traditionally, the design of VSI
schemes involves the selection of convenient sample size and the control limit is then
determined upon a maximum probability of a Type | error (false alarm) and/or a Type Il

error (failure to sound an alarm). The parameters w, h; and h, are determined such that the

statistical performance or the speed with which process mean shifts are detected is
minimized. Faraz et al (2010) made a good literature review on the statistical design of the
VSl schemes.

Recently the economic statistical design (ESD) of control charts is of a great
importance. Based on the ESD procedure, the charts is designed in such a way that the
overall costs associated with maintaining current control of a process is minimized while
keeping good statistical properties. This procedure is first developed by Saniga (1989) and
was so well received that Montgomery (1996) strongly endorsed it for practice which is
called the optimal design (OD) in the literature. A more detailed literature review and
discussion on the economic design of control charts can be found in Montgomery (1980)
containing fifty one references on the topic. However, a study evaluating the optimal design
of the VSI T? control chart has not been found in the literature which is the contribution of
this paper. This paper is organized as follows: In section 2 the VVSI T? control scheme and
Markov chain approach are briefly reviewed. In section 3, the cost model proposed by
Lorenzen and Vance (1986) based on the Markov chain approach is modified as the
objective function. Section 4 is devoted to GA procedure for solving the cost model and the
solution procedure is illustrated in section 5. The meta model to construct the VSI T?
scheme is proposed in section 6 to determine the optimal values of the control chart
parameters directly from the process and cost parameters which also shall facilitate
implementation in industry. Besides, the proposed model can be acting as a guide line for
practitioners to specify the important process and cost parameters and finally, concluding

remarks make up the last section.

2. VSI T? control scheme and Markov chain approach

In order to control a process with p correlated characteristics using the T2 scheme, it is first

assumed that the joint probability distribution of the quality characteristics is a p-variate



normal distribution with in-control mean vector pg = (1, gp) and variance-covariance

matrix >_ . Then the subgroups (each of size n) statistics Ti2 =nN(X; —uo)'Z_l(ii —ng) are

plotted in sequential order to form the T2 control chart. The chart signals as soon as Ti2 >K.
In statistical design methodology, If the process parameters (p, and > ) are known, k is
given by the upper « percentage point of chi-square variable with p degrees of freedom.
However p, and > are generally unknown and have to be estimated through m initial

samples when the process is in control. In this case, the parameter k is obtained upon the

1—« percentage point F distribution with p and v degrees of freedom as follows:

k=c(m,n, p)F,(p,v) 1)
where
p(m+1)(n-1) 1o1
m(n-1)-p+1
c(mn,p)= (2)
p(m+1)(m-1) n=1
m(m-—p)

-1)-p+1 1
:{m(n )-p+1 n> @

m(m— p) n=1
In this paper, it is assumed that the process starts in a state of statistical control with
mean vector p, and covariance matrix ». and then after a while assignable causes occur

resulting in a shift in the process mean (p,). The magnitude of the shift is measured by

d=(y —;10)'):‘.‘1(;11 —ny) . Further it is assumed that the time before the assignable cause
occurs has an exponential distribution with parameter A . Thus, the mean time that the

process remains in state of statistical control is A ™ (Faraz and parsian, 2006).
Now, upon the VSI scheme, at each sampling stage, one of the following transient
states is met according to the status of the process (in or out of control) and the size of the

sample (small or large).

State 1: 0< T2 <w and the process is in control;
State 2: W< T? <k and the process is in control;
State 3: T2 >k and the process is in control (false alarm);

State 4: 0 < T? < w and the process is out of control;



State 5: W< T? <k and the process is out of control;

The control chart produces a signal when T2 >k . If the current state is 3, the signal is

a false alarm; the absorbing state (state 6) is reached when the true alarm occurs. The
transition probability matrix is given by

I P11 P12 P13 P14 Pis Pis |
4 q; q, 1-q, 1-q, 1-q,
Py X Pyp X a, P13 X a Prs X 1-q, Pys ¥ 1-q, Prs X 1-q,
o_ Py1 X Py, X a, P13 ¥ o Py X 1-q, Pys X 1-q, Py X 1-q,
0 O 0 p14 p15 p16
1- O, 1- 0, 1- '
0 0 0 p14 p15 p16
1- ql 1- ql 1- Q1
|0 0 0 0 0 1 |

where p;; denotes the transition probability that I is the prior state and j is the current
state. In what follows, F(x, p,v,77) will denote the cumulative probability distribution
function of a non-central F distribution with p and v degrees of freedom and non-centrality

parameter 77 = nd”, where, ¢, =exp(—2h.);i=12 and p,; 'sare

Py = F(m, p,Vv,n=0)xq,

P = F(m, p,v,7=0)x0 - py

Pis =G~ P~ Py

P = F(m, p,v,7=nd*)x(1-q,)

Pis = F(m, p.v,77=nd*)x(1-q,) - p,

P =1-0 = Pis — Pus
The speed with which a control chart detects process mean shifts measures its
statistical efficiency and is calculated as follows:
AATS = ATC — = (4)
A
where the AATS and ATC are the adjusted average time to signal and the average time from
the start of the production until the first signal after the process shift, respectively. Figure 1

illustrates the ATC and AATS measures. According to the elementary Markov chain



properties, the average time of the cycle (ATC) or the average time from the start of the

production until the first signal after the process shift is calculated as follows:
ATC =b'(1-Q)*h (5)

where b is a vector of initial probabilities, I is the identity matrix of order 5, Q is the 5x5
matrix obtained from P on deleting the elements corresponding to the absorbing state and

h"=(h;, hy, h,, hy, hy) is the vector of sampling time intervals. In this paper the vector

b" issetto (0, 1, 0, 0, 0), for providing an extra protection and preventing problems that

are encountered during start-up.

3. The cost model

Faraz et al (2009) modified the Lorenzen and Vance (1986) economic model based on some
common assumptions and Markov chain approach. In this paper, the same approach is
applied to study the OD of the \/SI T2 control chart.

Figure 1 illustrates a quality cycle observed by Duncan, which is divided into four
time intervals of in-control period, out-of-control period, time to take a sample and interpret
the results and time to find and repair an assignable cause. The average time of a quality

cycle is calculated as follows:

E(T)=%+(1—71)TOANF+AATS+nE +T,+T, ©)

=ATC+(1—y,)T,ANF +nE+T, +T,

where y; =1 if the process is not shut down during false alarms and O otherwise, T,

stands for the expected time spent searching for a false alarm, E stands for the expected time
to plot and chart the sample which triggers an out-of-control signal. The expected time to
find the assignable cause and repair the process are given as T, and T, respectively. ANF is

the expected number of false alarms in each quality cycle and is calculated as follows:
ANF =b'(1-Q)™(0, 0, 1, 0, O) (7)

The costs of a quality cycle is categorized into four main components: the cost of
producing nonconformities while the process is in control (C,), the cost of producing
nonconformities while the process is out of control (C,), the cost of evaluating alarms - both

false alarms (a3) and repairing the process (a,), and the cost of sampling (a; and a, as the

fixed and variable cost components of sampling and testing, respectively). Then the

expected cost per quality cycle, E(C), is defined as:



E(C)= % +C,[AATS + nE + 1T, + 7,T,]+a;ANF + &, + (a, +a,n) ANS (8)
where y, is an indicator function for if production continues during the repair of the

process, the ANS stand for the expected number of inspected samples taken from the start

of the process until the chart signals and is calculated as follows:
ANS =b'(1-Q)1(1, 1, 1, 1 2 (9)

It is noted that when the process goes out of control, the sampling procedure stops even
if the process continues. Now, based on the renewal reward process assumption (see Ross,

1995), the expected cost per hour is just defined as follows:

E(a)=E©) (10)

E(T)

4. The optimization problem and genetic algorithm approach
In the ED of control charts, it is assumed that the nine process parameters (p,
A, d, To, Ty, To, 7, 72, E)and the six cost parameters(C,, C;, a;, a,, ag, a3)

are previously estimated. Then, the procedure continues to find the five chart parameters

(k, w, n, h;, hy)which minimize (10). Among these five chart parameters, the sample

size n is always a discrete variable and the other four variables are continuous where
0<w<k. To keep the chart practical, the minimum and maximum value of sampling
intervals are considered as the possible minimum time between successive samples and
maximum hours available in a work shift, respectively. i.e. 0.1<h, <h <8. The sampling
intervals less than 0.1 hour may be problematic in the field. Therefore, the general

optimization problem is defined as follows:

min E(A)

st:

asa,

k>0 (12)
0<w<Kk,

0.1<h,<h <8

neZ"’

For offering the best protection against false alarms, the Type | error constraint

a<a, is added to form the optimal design. The optimization problem (11) has both



continuous and discrete decision variables and a discontinuous and non-convex solution
space. In this paper, the problem is solved via genetic algorithm (GA) approach which is the
most widely used tool in this area, for example see Faraz et al (2009). Using GA requires to

determine the values of the most significant GA parameters, i.e. the crossover rate (rg),
number of elites (N ), the initial population size (N,,) and the mutation rate (ry ).

Faraz et al (2009) found that the low crossover rate and large mutation fraction values result
in great explorations and refrain from trapping in many local minimums. Hence, they

proposed the optimal values of Npgp =100, Ngi =5, rc =0.05 and ry = 0.9. These

values are used here to study the OD of the VSI T2 control scheme. The procedure is as
follows:

Step 1: generate a population of size N, chromosomes to form initial generation. Each

chromosome is an arbitrary solution to optimization problem (12) and usually is
represented by a numerical string.

Step 2: find the expected cost per hour corresponding to each chromosome

Step 3: scale chromosomes based on their expected cost per hour to obtain fitness values
and assign each chromosome the selection probability corresponding to its fitness
value. A lower expected cost per hour causes a higher fitness value and
consequently the corresponding chromosome will have a higher chance for survive
to next generation.

Step 4: select Ng;; chromosomes with the best fitness values in the current generation to

survive to the next generation.
Step 5: select (randomly but biased by the fitness values) two chromosomes from the mating

pool of N, chromosomes. An individual can be selected more than once as a

parent, in which case it contributes its genes to more than one child.
Step 6: recombine these two chromosomes (parents) using the crossover and mutation
operators to produce two new chromosomes (children). Repeat steps 5 and 6 until

N op — Ngit children are born to form the new generation.

pop

Step 7: repeat the steps from 2 to 6 until the termination conditions are met, i.e. when the
number of generations is large enough or no more optimization in E(A) value is
observed.

This procedure is illustrated through an industrial application in the following section.



5. Anillustrative example

In this section the proposed approach to the OD of the VSI T2 control chart is illustrated
through the industrial example taken from Faraz et al (2009) which considers the GM
Company casting operation. The model estimated parameters is given in Table 1. The
optimization problem (12) with Type | error constraint « <0.005 is considered and the
optimal designs are given in Table 2 for different values of mean shift d =
0.5(0.25)1.5(0.5)3 with a cost comparison to the corresponding optimal FRS scheme. The
results indicate that the VSI scheme is consistently cheaper than the FRS scheme while
proposing a good statistical performance (AATS and a). The parameter h, is always set to
minimum value 0.1 and hence the practitioner should take samples when the chart measure
falls in the corresponding zone. If the mean shift d increases, the values of sample size n and
large sampling interval h; decrease with an increase in the values of parameter w. i.e., the
sampling rate decreases as the value of parameter d increases. It is intuitive that less effort is
needed for detecting larger mount of shifts in the process mean. In the example, consider the
case where the objective is to provide a good protection over the shift d =1. The optimal
design of the VSI T2 control chart is set to k =13.09, w =2.93, n = 9, h; =1.57 (nearly 95
minutes) and h, = 0.1 (6 minutes) having a low Type | error « =0.002 and a good power
AATS = 1.21 (73 minutes). Note that the optimally designed VSI scheme has fewer Type |
error rate than the statistical designs (¢,=0.005). When T? <2.93 the next sample of size 9 is
taken after 95 minutes. Otherwise the next sample is taken after 6 minutes. This design
imposes 264.68 $ per hour to the company which results in 7% savings per hour when it is
compared to the optimally designed FRS scheme. Considering the process works 20 days a
month, establishing the OD of the VSI T2 chart results in more than 110,000 $ annual
savings with respect to the OD of the FRS scheme, just for the casting process and without
any extra investing. The more savings can be achieved upon expanding the application of
the optimally designed VSI scheme to other processes.

In the next section, a Meta model for designing the OD of the VSI T? control chart
will be derived which can facilitate the application of the chart in industry. Besides, it may
be helpful to thoroughly understand the effects of the cost and process parameters' changes

on the optimal design of the VSI T? scheme.

6. A Sensitivity analysis for optimally designed the VSI T? scheme

In the OD of the VSI T2 control charts, it is assumed that economic information is readily
available. However, in practice it is usually difficult to estimate all fifteen process and cost

parameters and also the process of estimating needed parameters is often costly. Keats et al.



(1997) mentioned that difficulties in estimating the economic model parameters are a
substantial barrier for practitioners in ED of the control charts implementation, but
performing sensitivity analysis can alleviate this problem. In this way, practitioners can
spend most of their efforts estimating the critical parameters. For example, if it can be
shown that the cost of repairing a process plays a small role in determining the optimal
design, then fewer resources can be used to estimate repair cost.

Therefore, the fractional factorial design, resolution V, is used here to fully examine
the effects of all fifteen parameters on the OD of the VSI T® control charts. Using a
resolution V design ensures that no main effects and no two-factor interactions are aliased
with each other, but the two factor interactions are confounded with higher level
interactions. Hence, it is assumed that all three-way and higher interactions are zero. See
Montgomery (2001) for a detailed discussion of factorial designs, fractional factorial
designs, and design resolution. Table 3 provides the high and low level settings for the
fifteen factors considered. High and low values for each cost and process parameters were
determined based on previous studies investigated.

A computer program called Design-Expert is used to perform the analysis. By
comparing the sum of squares among the fifteen factors for each response, the significant
factors can be determined. Tables 4 — 7 show the ANOVA tables as well as the regression
models to estimate the control chart parameters. The significant factors are marked in bold
face. However, the insignificant factors (not counting those required to support hierarchy)
are removed to improve the model accuracy as there are many insignificant model terms.
Besides, the nonlinear effects are captured in the regression models by moving up and down
the ladder of power transformations and appropriate transformation for each variable is
selected using Box-Cox plots to analytically calculate the best power law transformation

(See Montgomery, 2001 for details).

6.1 ANOVA for Control Limit k

The ANOVA Table 4 indicates that the three process parameters (p, 4, d)and the three
cost parameters (C,, a;, a,)have the largest impact on the optimal value for the upper

control limit k. the most significant term is p, the number of variables. It is intuitive that as
the number of variables increases, the control limit k increases. The impact of the variable
cost of sampling a, is the second most significant term. A smaller variable sampling cost
makes it economical to increase the sample size. A larger sample size in turn makes it easier
to distinguish between in control and out of control states, and this decreases the upper
control limit. Finally, as A increases, the process remains less under control and therefore k

decreases to quickly detect out-of-control states.



The statistical measures "Adj R-Squared" indicates that the defined regression

equation in Table 4 is significant for predicting the k®*. The "Pred R-Squared” value of
0.89 is in a reasonable agreement with the model "Adj R-Squared" value of 0.89. Finally,
the "Adeq Precision™" measures the signal to noise ratio and a ratio greater than 4 is always
desirable. The ratio of 48.27 indicates an adequate signal and therefore a reasonable and
accurate prediction can be made by just considering main effects and two-way interactions.

6.2 ANOVA for warning line w

The final ANOVA table for the significant model terms (and those required to support
hierarchy) is given in Table 5. The most significant term for determining w is p, the number
of variables. It is intuitive that as the number of variables increases, the warning limit w
increases. The larger mean shift d, the easier it is to discover and hence fewer samples are
needed and the warning limit w decreases. The variable cost of sampling and the cost of
producing nonconformities when the process is out of control form the largest interaction.
In fact when the value of C; is high then the warning limit w is decreased to increase the
sampling frequency to detect out of control state as soon as possible regarding the matter of
variable cost of sampling.

The determined regression model in Table 5 indicates that the parameter

(w+0.17)°'37 can be estimated accurately with the "Pred R-Squared" value of 0.64 which is

in a reasonable agreement with the model "Adj R-Squared"” value of 0.67. Also, the "Adeq

Precision" value of 22.60 indicates an adequate signal to noise ratio.

6.3 ANOVA for sample size n

The final ANOVA result for the significant model terms (and those required to support

hierarchy) is given in Table 6. The process parameters (p, A, d, E) and the cost
parameters (Cy, C;, a;, a,) have the significant impact on the optimal value for the
sample size n with d, E, 4 and a, having the greatest impact. The presented regression

model with high values of "Pred R-Squared”, "Adj R-Squared” and the "Adeq Precision”

can accurately predict the power transformation n™°%

. The positive sign of coefficient d
indicates that a smaller mean shift d requires one to use a larger sample size n which is
consistent with the principle of statistical hypothesis testing. E has intuitive appeal for
affecting n since it is the proportionality constant between the sample size and the time

associated with plotting each point on the control chart. The parameter a, also has intuitive
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appeal since it is variable cost associated with sampling. The ANOVA table also indicates

that the largest interaction effect is between a,and C.

6.4 ANOVA for large sampling interval h;

From the ANOVA Tables 7, the main effects a, and C; have the greatest impact in
predicting sampling interval h;. It seems intuitive that when the variable cost of sampling
increases the sampling intervals increase to decrease sampling frequencies. Also, a high
value of cost of producing defective products when the process is out of control causes a
reduction in sampling intervals to detect out-of-control states as quickly as possible. The
largest interaction effect is between a, and a;. The value of parameter h, is always set to the
minimum possible value, 0.1 in this paper.

The regression models presented in Tables 7 with high values of "Pred R-Squared",

"Adj R-Squared" and the "Adeq Precision™ can be used to significantly predict the power

transformations h, %",

7. Concluding remarks

In the present paper, the optimal design of the T? control chart with VSI scheme is
developed based on the cost model proposed by Lorenzen and Vance (1986) and the
expected total cost per hour is minimized using GA. An illustrative example is provided and
a sensitivity analysis is then carried out to study the effect of model parameters on the

solution of the optimal design. The ANOVA results indicate that the model parameters

A, d, T,, C,, E, a, and a; play a significant role in designing the chart parameters. In

addition, the variable cost of sampling plays an important role in determining all the control
char parameters. This paper also provides regression equations in Table 4-7 which can be
considered as the basis of an efficient and effective Meta model for the OD of the VSI T?
control chart from combinations of model parameters. The high values of "Pred R-Squared"
and "Adj R-Squared" measures indicated that the regression equations provide a good
approximation and also provide a much richer interpretation by considering nonlinear
transformations. The provided regression equations, easy computational methods, make it
easier to determine the optimal design of the VVSI T2 chart and facilitate implementation in
industry. This approach provides practitioners with a solution they can understand, and

hence will be more willing to adopt.
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Figure 1- A Quality Cycle
Tables
Table 1. Data adapted from General Motors
p=2 m=25 A4=0.05 n=1 7,=0
a; =5 a, =422 | a;=977.4 | a53=9774 |d=1

Table 2. The optimal parameters of ESD of the FRS and VSI schemes for different values of d

FRS
; VSI scheme scheme %

k W n_ h h «  AATS E(A) E(A)
0.50 | 10.86 2.00 22 240 0.10 0.005 2.49 368.94* | 408.64 | 11%
0.75 | 1086 264 13 1.89 0.10 0.005 1.54 297.31* | 325.41 | 9%
1.00 | 13.09 2.93 157 0.10 0.002 1.21  264.68* | 283.67 | 7%
1.25 | 11.50 3.28 1.37 0.10 0.005 0.97 245.00* | 259.57 | 6%
1.5 | 1259 3.83 1.26 0.10 0.004 0.83 232.94* | 244.13 | 5%
2.00 | 13.95 3.84 1.10 0.10 0.003 0.72 218.09* | 225.96 | 4%
250 | 16.32 5587 1.10 0.10 0001 0.62 21045 | 21578 | 3%
3.00 | 17.95 5.26 1.10 0.10 0.001 0.64 205.24* | 209.14 | 2%

N WWwOo o ©

Table 3. High and low levels for the model parameters

Factor | 2 To T T, Co C; g do ads a's E p d

1
Low 0 0 01 01 1 50 250 05 01 25 50 01 001 2 05
High 1 1 5 5 15 200 1000 5 10 1000 1000 1 005 10 2
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Table 4. ANOVA and Regression model for control limit k

Response: k%4 —2.37

Source SS(;JLgr(:efs DF Shgsgre Va'iue Prob > F
Model 87.83 12.00 7.32 175.11 <0.0001
Coefficients Parameters
8.07E-02 2 0.01 1.00 0.01 0.32 0.5742
-4.24E-02 a 0.41 1.00 0.41 9.78 0.0020
-6.88E-02 a, 10.00 1.00 10.00 239.35 <0.0001
-3.46E+00 2.64 1.00 2.64 63.04 <0.0001
-8.80E-03 d 1.23 1.00 1.23 29.31 <0.0001
2.92E-03 T, 0.12 1.00 0.12 2.75 0.0984
286E-04 Ci 2.96 1.00 2.96 70.70 <0.0001
1.28E-01 P 67.61 1.00 67.61 1617.39 = <0.0001
-1.19E-02 ar 0.44 1.00 0.44 10.60 0.0013
4.87E-03 a; x ay 0.75 1.00 0.75 18.06 < 0.0001
-3.20E-01 ax 0.26 1.00 0.26 6.15 0.0138
2.00E-02 a,xd 1.41 1.00 1.41 33.81 <0.0001
Residual 10.16 243.00 0.04
Total 97.99 255.00 7.32 175.11 <0.0001
Model Adequacy Measures
R-Squared 0.90 Pred R-Squared 0.89
Adj R-Squared 0.89 Adeq Precision 48.27
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Table 5. ANOVA and Regression model for warning limit w

Response: (w+0.17)%%" —1.23

Source SS(;JJZSS DF SI\(;ISZPe Vaﬁue Prob > F
Model 97.77 26.00 3.76 31.92 <0.0001

Coefficients Parameters
-2.32E-01 1 0.46 1.00 0.46 3.91 0.0493
4.87E-01 2 2.34 1.00 2.34 19.89 <0.0001
1.53E-02 T, 0.55 1.00 0.55 465 0.0321
9.01E-02  a 7.38 1.00 7.38 62.67 <0.0001
3.38E-04 Co 1.06 1.00 1.06 9.03 0.0030
216801 E 2.42 1.00 2.42 20.54 <0.0001
-7.01E+00 4.08 1.00 408 34.61 <0.0001
3.65E-01 d 12.81 1.00 12.81 108.70 <0.0001
3.97E-03 T, 0.35 1.00 0.35 2.98 0.0855
51404 Cy 6.67 1.00 6.67 56.65 <0.0001
1.08E-01 p 38.60 1.00 38.60 327.67 <0.0001
-1.46E-04 A’ 0.05 1.00 0.05 0.39 0.5315
2.35E-04 1xCy 0.50 1.00 0.50 4.23 0.0407
-1.26E-03 2% Cy 0.57 1.00 0.57 4.83 0.0290
-4.72E+00 2X 0.57 1.00 0.57 4.83 0.0289
-1.85E-01 oxd 1.23 1.00 1.23 10.48 0.0014
-1.85E-02 2x T, 1.08 1.00 1.08 9.13 0.0028
273604 T1xCy 0.65 1.00 0.65 5.48 0.0201
2.61E-02 a,xd 2.40 1.00 2.40 20.35 <0.0001
8.55E-05 a,xC, 6.44 1.00 6.44 54.67 <0.0001
5.04E-03  AyXp 2.55 1.00 2.55 21.61 <0.0001
1.97E-06 CoxCy 0.78 1.00 0.78 6.65 0.0105
184804  Coxp 0.78 1.00 0.78 6.60 0.0109
5.82E-03 xa's 0.78 1.00 0.78 6.64 0.0106
-170E-04 dxCy 0.58 1.00 0.58 4.96 0.0268
6.03E-05 Cixp 2.09 1.00 2.09 17.76 <0.0001

Residual 26.98 229.00 0.12
Total 12475 | 255.00
R-Squared 0.78 Pred R-Squared 0.73
Adj R-Squared 0.76 Adeq Precision 24.37
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Table 6. ANOVA and Regression model for sample size n

Response: n ™% —0.96

Source SSC;JI.?;.I’C::S DF S’:'S:?e Va'Tue Prob > F
Model 227E-02 | 26.00 i 8.74E-04 11157 <0.0001
Coefficients Parameters
1.92E-04 T, 2.68E-05 1.00 | 2.68E-05 3.42 0.0656
-397E-04 @ 6.48E-05 1.00 | 6.48E-05 8.27 0.0044
9.74E-04 a, 1.45E-03 1.00 | 1.45E-03 @ 185.56 <0.0001
-7.47E-07 a3 1.67E-06 1.00 | 1.67E-06 0.21 0.6450
2.30E-05 Co 8.86E-05 1.00 | 8.86E-05 11.31 0.0009
1.18E-02 E 2.42E-03 1.00 | 2.42E-03 . 309.32 <0.0001
1.68E-01 1.64E-03 1.00 | 1.64E-03 . 208.62 <0.0001
1.49E-02 d 1.34E-02 1.00 | 1.34E-02 | 1713.62 <0.0001
976E07 C; 2.71E-04 1.00 | 2.71E-04 34.60 <0.0001
-650E-04 P 5.72E-04 1.00 | 5.72E-04 72.96 <0.0001
3.58E-07 Tixaz 4.68E-05 1.00 | 4.68E-05 5.97 0.0153
-8.10E-03  T1x 4.03E-05 1.00 | 4.03E-05 5.14 0.0243
3.43E-05 aHxa 3.74E-05 1.00 | 3.74E-05 477 0.0299
1.56E-06 ax Cy 8.56E-05 1.00 | 8.56E-05 10.92 0.0011
3.76E-04 axE 1.79E-04 1.00 | 1.79E-04 22.90 <0.0001
5.76E-03 ay X 8.33E-05 1.00 | 8.33E-05 10.62 0.0013
2.83E-04 a,xd 2.83E-04 1.00 | 2.83E-04 36.06 <0.0001
-801E-07 @, xC; 5.66E-04 1.00 | 5.66E-04 72.20 <0.0001
1.78E-05 axp 3.16E-05 1.00 | 3.16E-05 4.04 0.0457
9.74E06 Cyxd 7.68E-05 1.00 | 7.68E-05 9.80 0.0020
-1.748-08 CoxCy 6.15E-05 1.00 | 6.15E-05 7.85 0.0055
5.21E-02 E x 5.62E-05 1.00 | 5.62E-05 7.17 0.0079
37103 Exd 4.02E-04 1.00 | 4.02E-04 51.29 <0.0001
-9.28E-02 x d 4.96E-04 1.00 | 4.96E-04 63.22 <0.0001
6.22E-03 xp 6.34E-05 1.00 | 6.34E-05 8.09 0.0048
3.56E-06 dxC, 2.57E-04 1.00 | 257E-04 32.82 <0.0001
Residual 1.79E-03 | 229.00 | 7.84E-06
Total 2.45E-02 | 255.00
Model Adequacy Measures
R-Squared 0.93 Pred R-Squared 0.91
Adj R-Squared 0.92 Adeq Precision 43.09
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Table 7. ANOVA and Regression model for short sampling interval h;

Response: h1_0'17 -0.93

Source SS(;Jl:?ar(:efs DF S,\(;ljgpe Va'iue Prob>F
Model 8.53E+00 36.00 2.37E-01 145,51 <0.0001

Coefficients Parameters
1.13E-02 1 1.95E-02 1.00 1.95E-02 11.99 0.0006
1.19E-02 2 7.47E-02 1.00 7.47E-02 45.90 < 0.0001
8.30E-03 T1 7.50E-04 1.00 7.50E-04 0.46 0.4979
-1.47E-02 ap 3.21E-01 1.00 3.21E-01 196.90 < 0.0001
-2.88E-02 ap 3.70E+00 1.00 3.70E+00 2273.34 <0.0001
-7.06E-04 Co 1.47E-01 1.00 1.47E-01 90.18 < 0.0001
-4.90E-02 E 5.90E-03 1.00 5.90E-03 3.63 0.0582
2.61E+00 4.09E-01 1.00 4.09E-01 251.41 <0.0001
5.59E-02 d 1.13E+00 1.00 1.13E+00 693.56 < 0.0001
7.69E-04 T2 2.63E-04 1.00 2.63E-04 0.16 0.6884
1.44E-04 C1 1.69E+00 1.00 1.69E+00 1040.06 <0.0001
-2.69E-03 p 1.14E-01 1.00 1.14E-01 70.20 < 0.0001
-6.51E-03 1 X T1 1.63E-02 1.00 1.63E-02 10.00 0.0018
2.16E-03 1 Xay 7.32E-03 1.00 7.32E-03 4,50 0.0351
-7.69E-01 1 X 1.51E-02 1.00 1.51E-02 9.30 0.0026
2.68E-03 2 Xdy 1.13E-02 1.00 1.13E-02 6.94 0.0090
-1.21E+00 2 X 3.76E-02 1.00 3.76E-02 23.08 <0.0001
-2.90E-03 2 X Tz 2.65E-02 1.00 2.65E-02 16.25 <0.0001
-1.91E-01 T1 X 2.25E-02 1.00 2.25E-02 13.84 0.0003
2.75E-03 apxap 2.40E-01 1.00 2.40E-01 147.18 < 0.0001
-7.84E-03 ap X d 4.48E-02 1.00 4.48E-02 27.52 < 0.0001
-8.12E-06 a; X Cl 1.20E-02 1.00 1.20E-02 7.38 0.0071
2.66E-05 ady X Co 2.49E-02 1.00 2.49E-02 15.30 0.0001
2.62E-03 ady X E 8.73E-03 1.00 8.73E-03 5.36 0.0215
-7.38E-02 dp X 1.37E-02 1.00 1.37E-02 8.39 0.0042
-1.28E-05 dy X C1 1.45E-01 1.00 1.45E-01 89.06 <0.0001
-1.14E-04 Co xd 1.05E-02 1.00 1.05E-02 6.48 0.0116
6336-07 CoxCy 8.11E-02 | 1.00 | 8.11E-02 49.82 <0.0001
314603 ExT, 250E-02 @ 1.00 = 2.50E-02 15.38 0.0001
5.49E-01 xd 1.74E-02 1.00 1.74E-02 10.67 0.0013
1.52E-03 X Cl 3.34E-02 1.00 3.34E-02 20.49 <0.0001
-6.65E-02 xP 7.24E-03 1.00 7.24E-03 4.45 0.0361
6.40E-05 dx Cl 8.29E-02 1.00 8.29E-02 50.93 <0.0001
2.00E-03 dx p 9.21E-03 1.00 9.21E-03 5.65 0.0183
-1.90E-06 T2 X C1 6.38E-03 1.00 6.38E-03 3.92 0.0491
-4.96E-06 C1 xXP 1.41E-02 1.00 1.41E-02 8.69 0.0036

Residual 3.57E-01 | 219.00 | 1.63E-03
Total 8.89E+00 | 255.00
Model Adequacy Measures
R-Squared 0.96 Pred R-Squared 0.95
Adj R-Squared 0.95 Adeq Precision 56.13
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Table 8. ANOVA and Regression model for long sampling interval h,

Response: /n(h,)+1.60

Source S?;l:gr%‘; DF S'\(;Ij:?e Va'iue Prob > F
Model 722.41 36.00 20.07 98.13 <0.0001
Coefficients Parameters
-2.91E-01 1 7.81 1.00 7.81 38.17 <0.0001
-1.61E-01 2 31.15 1.00 31.15 152.31 <0.0001
3.90E-02 To 0.09 1.00 0.09 0.46 0.4978
-7.53E-02 Tl 2.59 1.00 2.59 12.65 0.0005
2.54E-01 a 27.90 1.00 27.90 136.43 <0.0001
3.76E-01 a 317.96 1.00 317.96 1554.93 <0.0001
1.27E-04 as 0.99 1.00 0.99 4.82 0.0292
9.00E-03 Co 14.22 1.00 14.22 69.52 <0.0001
-4.73E-01 E 2.29 1.00 2.29 11.19 0.0010
-1.29E+01 0.12 1.00 0.12 0.57 0.4503
-1.89E-01 d 33.76 1.00 33.76 165.12 <0.0001
-1.78E-03 Tz 3.68 1.00 3.68 18.01 <0.0001
-1.96E-03 C1 175.41 1.00 175.41 857.82 <0.0001
3.61E-02 P 2.05 1.00 2.05 10.02 0.0018
1.37E-01 1 X T1 7.22 1.00 7.22 35.31 <0.0001
-2.53E-02 1 Xap 1.00 1.00 1.00 4.89 0.0280
7.10E+00 1 X 1.29 1.00 1.29 6.31 0.0127
1.64E-01 1 X d 0.97 1.00 0.97 4,73 0.0308
-6.27E-02 2 X 1.27 1.00 127 6.23 0.0133
8.45E+00 2 X 1.83 1.00 1.83 8.93 0.0031
2.53E-01 2 X d 2.30 1.00 2.30 11.23 0.0009
5.78E-02 2 X T2 10.47 1.00 10.47 51.22 < 0.0001
-3.90E-03 To X T2 1.14 1.00 1.14 5.59 0.0189
1.59E+00 Tl X 1.56 1.00 1.56 7.63 0.0062
-2.49E-02 i X ady 19.74 1.00 19.74 96.51 <0.0001
4.01E-02 a X d 1.17 1.00 117 5.73 0.0175
-1.82E-04 dp X Co 1.17 1.00 117 5.73 0.0176
5.21E-02 do X E 3.44 1.00 3.44 16.84 <0.0001
-9.23E-02 adp X d 30.06 1.00 30.06 147.02 < 0.0001
-1.75E-03 A% T, 0.94 1.00 0.94 4.59 0.0333
5.46E-05 dp X C1 2.63 1.00 2.63 12.87 0.0004
3.36E-03 axp 1.13 1.00 113 5.53 0.0195
-1.10E-04 Co X T2 0.85 1.00 0.85 4.17 0.0424
-6.49E-06 Co X C1 8.52 1.00 8.52 41.69 <0.0001
-2.46E-02 dx p 1.39 1.00 1.39 6.80 0.0097
3.60E-05 T2 X C1 2.29 1.00 2.29 11.20 0.0010
Residual 44.78 219.00 0.20
Total 767.19 255.00
Model Adequacy Measures
R-Squared 0.94 Pred R-Squared 0.92
Adj R-Squared 0.93 Adeq Precision 44.66
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