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Abstract Recent studies have shown that the variable sampling interval (VSI) scheme 

helps practitioners detect process shifts more quickly than the classical scheme (FRS). In 

this paper, the economically and statistically optimal design of the VSI T
2
 control chart for 

monitoring the process mean vector is investigated. The cost model proposed by Lorenzen 

and Vance (1986) based on Markov chain approach is modified as the objective function 

which is intended to be minimized through a genetic algorithm (GA) approach. Then the 

effects of the costs and operating parameters on the optimal design (OD) of the chart 

parameters and resulting operating loss through a fractional factorial design is 

systematically studied and finally, based on the ANOVA results, a Meta model to facilitate 

implementation in industry is proposed to determine the OD of the VSI T
2
 control chart 

parameters from the process and cost parameters.  

Keywords Hotelling’s T
2
 control chart, Variable Sampling Interval scheme, Economic 

Statistical Design,  Markov chain and Genetic Algorithm.  

 

1. Introduction  

A common multivariate control chart is the Hotelling
,
s T

2
 control chart (Hotelling 1947). 

The traditional sampling strategy in the Hotelling
,
s T

2
 control chart is the fixed ratio 

sampling (FRS) scheme in which samples of fixed size 0n  are obtained at constant intervals 

0h  to monitor a process. A major deficiency of the FRS T
2
 control scheme is that its 

efficiency to detect small and moderate shifts or drifts in the process mean is poor. 

Consequently several modifications have been suggested in the quality control literature to 

improve the performance of the FRS policy. 

One procedure to improve the statistical performance of the FRS control schemes is 

Variable Sampling Interval (VSI) scheme that varies the sampling interval between 

successive samples as a function of prior sample results. In this procedure, the area between 
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the control limits and the origin has been divided into two zones by a warning line w  for the 

use of two different sampling intervals ( 1h > 2h ). If the current sample value falls in a 

particular zone, then the next sample is to be drawn from the process after according to 

corresponding sampling interval. The use of the VSI control schemes requires the user to 

select five design parameters: the long and short sampling intervals 1h  and 2h , the fixed 

sample size n , the warning limit w and the control limit k. Traditionally, the design of VSI 

schemes involves the selection of convenient sample size and the control limit is then 

determined upon a maximum probability of a Type I error (false alarm) and/or a Type II 

error (failure to sound an alarm). The parameters w, 1h  and 2h  are determined such that the 

statistical performance or the speed with which process mean shifts are detected is 

minimized. Faraz et al (2010) made a good literature review on the statistical design of the 

VSI schemes. 

Recently the economic statistical design (ESD) of control charts is of a great 

importance. Based on the ESD procedure, the charts is designed in such a way that the 

overall costs associated with maintaining current control of a process is minimized while 

keeping good statistical properties. This procedure is first developed by Saniga (1989) and 

was so well received that Montgomery (1996) strongly endorsed it for practice which is 

called the optimal design (OD) in the literature. A more detailed literature review and 

discussion on the economic design of control charts can be found in Montgomery (1980) 

containing fifty one references on the topic. However, a study evaluating the optimal design 

of the VSI T
2
 control chart has not been found in the literature which is the contribution of 

this paper. This paper is organized as follows: In section 2 the VSI T
2
 control scheme and 

Markov chain approach are briefly reviewed. In section 3, the cost model proposed by 

Lorenzen and Vance (1986) based on the Markov chain approach is modified as the 

objective function. Section 4 is devoted to GA procedure for solving the cost model and the 

solution procedure is illustrated in section 5. The meta model to construct the VSI T
2
 

scheme is proposed in section 6 to determine the optimal values of the control chart 

parameters directly from the process and cost parameters which also shall facilitate 

implementation in industry. Besides, the proposed model can be acting as a guide line for 

practitioners to specify the important process and cost parameters and finally, concluding 

remarks make up the last section. 

 

2. VSI T2 control scheme and Markov chain approach  

In order to control a process with p correlated characteristics using the T
2
 scheme, it is first 

assumed that the joint probability distribution of the quality characteristics is a p-variate 
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normal distribution with in-control mean vector ),...,( 001 p0μ  and variance-covariance 

matrix  . Then the subgroups (each of size n) statistics )T
2

i 0
1

0 μx()μxn(  
ii  are 

plotted in sequential order to form the T
2
 control chart. The chart signals as soon as ki 2T . 

In statistical design methodology, If the process parameters ( 0μ  and  ) are known, k  is 

given by the upper   percentage point of chi-square variable with p degrees of freedom. 

However 0μ  and   are generally unknown and have to be estimated through m initial 

samples when the process is in control. In this case, the parameter k is obtained upon the 

1  percentage point F distribution with p and v degrees of freedom as follows: 

 ( , , ) ( , )k c m n p F p       (1) 
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In this paper, it is assumed that the process starts in a state of statistical control with 

mean vector 0μ  and covariance matrix   and then after a while assignable causes occur 

resulting in a shift in the process mean (
1μ ). The magnitude of the shift is measured by 

)()( 01
1

01 μμΣμμ  d . Further it is assumed that the time before the assignable cause 

occurs has an exponential distribution with parameter  . Thus, the mean time that the 

process remains in state of statistical control is 
1  (Faraz and parsian, 2006). 

Now, upon the VSI scheme, at each sampling stage, one of the following transient 

states is met according to the status of the process (in or out of control) and the size of the 

sample (small or large). 

State 1: w 2T0  and the process is in control; 

State 2: kw  2T and the process is in control;  

State 3: k2T  and the process is in control (false alarm);  

State 4: w 2T0  and the process is out of control;  
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State 5: kw  2T and the process is out of control; 

The control chart produces a signal when k2T . If the current state is 3, the signal is 

a false alarm; the absorbing state (state 6) is reached when the true alarm occurs. The 

transition probability matrix is given by 
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where ijp  denotes the transition probability that i  is the prior state and j  is the current 

state. In what follows, ),,,( vpxF  will denote the cumulative probability distribution 

function of a non-central F distribution with p and v degrees of freedom and non-centrality 

parameter 
2nd , where, 2,1);exp(  ihq ii   and jp1
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The speed with which a control chart detects process mean shifts measures its 

statistical efficiency and is calculated as follows: 



1
 ATCAATS      (4) 

where the AATS and ATC are the adjusted average time to signal and the average time from 

the start of the production until the first signal after the process shift, respectively. Figure 1 

illustrates the ATC and AATS measures. According to the elementary Markov chain 
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properties, the average time of the cycle (ATC) or the average time from the start of the 

production until the first signal after the process shift is calculated as follows: 

hQ)(Ib
1ATC      (5) 

where b  is a vector of initial probabilities, I is the identity matrix of order 5, Q is the 55 

matrix obtained from P on deleting the elements corresponding to the absorbing state and 

),,,,( 21221 hhhhhh  is the vector of sampling time intervals. In this paper the vector 

b  is set to (0, 1, 0, 0, 0) , for providing an extra protection and preventing problems that 

are encountered during start-up. 

 

3. The cost model   

Faraz et al (2009) modified the Lorenzen and Vance (1986) economic model based on some 

common assumptions and Markov chain approach. In this paper, the same approach is 

applied to study the OD of the VSI T
2
 control chart.  

Figure 1 illustrates a quality cycle observed by Duncan, which is divided into four 

time intervals of in-control period, out-of-control period, time to take a sample and interpret 

the results and time to find and repair an assignable cause. The average time of a quality 

cycle is calculated as follows: 

2101

2101

)1(         

)1(
1

)(

TTnEANFTATC

TTnEAATSANFTTE








    (6) 

where 1 = 1 if the process is not shut down during false alarms and 0 otherwise, T0 

stands for the expected time spent searching for a false alarm, E stands for the expected time 

to plot and chart the sample which triggers an out-of-control signal. The expected time to 

find the assignable cause and repair the process are given as T1 and T2 respectively. ANF is 

the expected number of false alarms in each quality cycle and is calculated as follows:  

)0,0,1,0,0(  1Q)(IbANF     (7) 

The costs of a quality cycle is categorized into four main components: the cost of 

producing nonconformities while the process is in control (C0), the cost of producing 

nonconformities while the process is out of control (C1), the cost of evaluating alarms - both 

false alarms ( 3a ) and repairing the process ( 3a ), and the cost of sampling ( 1a  and 2a  as the 

fixed and variable cost components of sampling and testing, respectively). Then the 

expected cost per quality cycle, E(C), is defined as:  
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  (8) 

where 2  is an indicator function for if production continues during the repair of the 

process, the ANS  stand for the expected number of inspected samples taken from the start 

of the process until the chart signals and is calculated as follows:   

)1,1,1,1,1(  1Q)(IbANS     (9) 

It is noted that when the process goes out of control, the sampling procedure stops even 

if the process continues.  Now, based on the renewal reward process assumption (see Ross, 

1995), the expected cost per hour is just defined as follows:  

)(

)(
)(

TE

CE
AE          (10) 

 

4. The optimization problem and genetic algorithm approach  

In the ED of control charts, it is assumed that the nine process parameters ,( p  

),,,,,,, 21210 ETTTd  and the six cost parameters ),,,,,( 332110 aaaaCC   

are previously estimated. Then, the procedure continues to find the five chart parameters 

),,,,( 21 hhnwk which minimize (10). Among these five chart parameters, the sample 

size n  is always a discrete variable and the other four variables are continuous where 

kw0 . To keep the chart practical, the minimum and maximum value of sampling 

intervals are considered as the possible minimum time between successive samples and 

maximum hours available in a work shift, respectively. i.e. 81.0 12  hh . The sampling 

intervals less than 0.1 hour may be problematic in the field. Therefore, the general 

optimization problem is defined as follows: 


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ts
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For offering the best protection against false alarms, the Type I error constraint 

0   is added to form the optimal design. The optimization problem (11) has both 
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continuous and discrete decision variables and a discontinuous and non-convex solution 

space. In this paper, the problem is solved via genetic algorithm (GA) approach which is the 

most widely used tool in this area, for example see Faraz et al (2009). Using GA requires to 

determine the values of the most significant GA parameters, i.e. the crossover rate ( Cr ), 

number of elites ( elitN ), the initial population size ( popN ) and the mutation rate ( Mr ). 

Faraz et al (2009) found that the low crossover rate and large mutation fraction values result 

in great explorations and refrain from trapping in many local minimums. Hence, they 

proposed the optimal values of 100POPN , 5elitN , 05.0Cr  and Mr = 0.9. These 

values are used here to study the OD of the VSI T
2
 control scheme. The procedure is as 

follows: 

Step 1: generate a population of size popN  chromosomes to form initial generation. Each 

chromosome is an arbitrary solution to optimization problem (12) and usually is 

represented by a numerical string. 

Step 2: find the expected cost per hour corresponding to each chromosome  

Step 3: scale chromosomes based on their expected cost per hour to obtain fitness values 

and assign each chromosome the selection probability corresponding to its fitness 

value. A lower expected cost per hour causes a higher fitness value and 

consequently the corresponding chromosome will have a higher chance for survive 

to next generation.  

Step 4: select elitN  chromosomes with the best fitness values in the current generation to 

survive to the next generation.  

Step 5: select (randomly but biased by the fitness values) two chromosomes from the mating 

pool of popN  chromosomes.  An individual can be selected more than once as a 

parent, in which case it contributes its genes to more than one child.  

Step 6: recombine these two chromosomes (parents) using the crossover and mutation 

operators to produce two new chromosomes (children). Repeat steps 5 and 6 until 

elitpop NN   children are born to form the new generation.  

Step 7: repeat the steps from 2 to 6 until the termination conditions are met, i.e. when the 

number of generations is large enough or no more optimization in E(A) value is 

observed. 

This procedure is illustrated through an industrial application in the following section.    
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5.   An illustrative example 

In this section the proposed approach to the OD of the VSI T
2
 control chart is illustrated 

through the industrial example taken from Faraz et al (2009) which considers the GM 

Company casting operation. The model estimated parameters is given in Table 1. The 

optimization problem (12) with Type I error constraint  0.005 is considered and the 

optimal designs are given in Table 2 for different values of mean shift d = 

0.5(0.25)1.5(0.5)3 with a cost comparison to the corresponding optimal FRS scheme. The 

results indicate that the VSI scheme is consistently cheaper than the FRS scheme while 

proposing a good statistical performance (AATS and α). The parameter h2 is always set to 

minimum value 0.1 and hence the practitioner should take samples when the chart measure 

falls in the corresponding zone. If the mean shift d increases, the values of sample size n and 

large sampling interval h1 decrease with an increase in the values of parameter w. i.e., the 

sampling rate decreases as the value of parameter d increases. It is intuitive that less effort is 

needed for detecting larger mount of shifts in the process mean. In the example, consider the 

case where the objective is to provide a good protection over the shift d =1. The optimal 

design of the VSI T2 control chart is set to k =13.09, w =2.93, n = 9, h1 =1.57 (nearly 95 

minutes) and h2 = 0.1 (6 minutes) having a low Type I error α =0.002 and a good power 

AATS = 1.21 (73 minutes). Note that the optimally designed VSI scheme has fewer Type I 

error rate than the statistical designs (α0=0.005). When T
2
 <2.93 the next sample of size 9 is 

taken after 95 minutes. Otherwise the next sample is taken after 6 minutes. This design 

imposes 264.68 $ per hour to the company which results in 7% savings per hour when it is 

compared to the optimally designed FRS scheme. Considering the process works 20 days a 

month, establishing the OD of the VSI T2 chart results in more than 110,000 $ annual 

savings with respect to the OD of the FRS scheme, just for the casting process and without 

any extra investing. The more savings can be achieved upon expanding the application of 

the optimally designed VSI scheme to other processes. 

In the next section, a Meta model for designing the OD of the VSI T
2
 control chart 

will be derived which can facilitate the application of the chart in industry. Besides, it may 

be helpful to thoroughly understand the effects of the cost and process parameters' changes 

on the optimal design of the VSI T
2
 scheme. 

     

6. A Sensitivity analysis for optimally designed the VSI T2 scheme 

In the OD of the VSI T
2
 control charts, it is assumed that economic information is readily 

available. However, in practice it is usually difficult to estimate all fifteen process and cost 

parameters and also the process of estimating needed parameters is often costly. Keats et al. 
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(1997) mentioned that difficulties in estimating the economic model parameters are a 

substantial barrier for practitioners in ED of the control charts implementation, but 

performing sensitivity analysis can alleviate this problem. In this way, practitioners can 

spend most of their efforts estimating the critical parameters. For example, if it can be 

shown that the cost of repairing a process plays a small role in determining the optimal 

design, then fewer resources can be used to estimate repair cost.  

Therefore, the fractional factorial design, resolution V, is used here to fully examine 

the effects of all fifteen parameters on the OD of the VSI T
2
 control charts. Using a 

resolution V design ensures that no main effects and no two-factor interactions are aliased 

with each other, but the two factor interactions are confounded with higher level 

interactions. Hence, it is assumed that all three-way and higher interactions are zero. See 

Montgomery (2001) for a detailed discussion of factorial designs, fractional factorial 

designs, and design resolution. Table 3 provides the high and low level settings for the 

fifteen factors considered. High and low values for each cost and process parameters were 

determined based on previous studies investigated.  

A computer program called Design-Expert is used to perform the analysis. By 

comparing the sum of squares among the fifteen factors for each response, the significant 

factors can be determined. Tables 4 – 7 show the ANOVA tables as well as the regression 

models to estimate the control chart parameters. The significant factors are marked in bold 

face. However, the insignificant factors (not counting those required to support hierarchy) 

are removed to improve the model accuracy as there are many insignificant model terms. 

Besides, the nonlinear effects are captured in the regression models by moving up and down 

the ladder of power transformations and appropriate transformation for each variable is 

selected using Box-Cox plots to analytically calculate the best power law transformation 

(See Montgomery, 2001 for details). 

6.1 ANOVA for Control Limit k 

The ANOVA Table 4 indicates that the three process parameters ,( p ), d and the three 

cost parameters ),,( 211 aaC have the largest impact on the optimal value for the upper 

control limit k. the most significant term is p, the number of variables. It is intuitive that as 

the number of variables increases, the control limit k increases. The impact of the variable 

cost of sampling 2a  is the second most significant term. A smaller variable sampling cost 

makes it economical to increase the sample size. A larger sample size in turn makes it easier 

to distinguish between in control and out of control states, and this decreases the upper 

control limit. Finally, as   increases, the process remains less under control and therefore k 

decreases to quickly detect out-of-control states. 
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The statistical measures "Adj R-Squared" indicates that the defined regression 

equation in Table 4 is significant for predicting the 4.0k . The "Pred R-Squared" value of 

0.89 is in a reasonable agreement with the model "Adj R-Squared" value of 0.89. Finally, 

the "Adeq Precision" measures the signal to noise ratio and a ratio greater than 4 is always 

desirable.  The ratio of 48.27 indicates an adequate signal and therefore a reasonable and 

accurate prediction can be made by just considering main effects and two-way interactions. 

 

6.2 ANOVA for warning line w 

The final ANOVA table for the significant model terms (and those required to support 

hierarchy) is given in Table 5. The most significant term for determining w is p, the number 

of variables. It is intuitive that as the number of variables increases, the warning limit w 

increases. The larger mean shift d, the easier it is to discover and hence fewer samples are 

needed and the warning limit w decreases. The variable cost of sampling and the cost of 

producing nonconformities when the process is out of control form the largest interaction.  

In fact when the value of C1 is high then the warning limit w is decreased to increase the 

sampling frequency to detect out of control state as soon as possible regarding the matter of 

variable cost of sampling.  

The determined regression model in Table 5 indicates that the parameter 

37.0)17.0( w can be estimated accurately with the "Pred R-Squared" value of 0.64 which is 

in a reasonable agreement with the model "Adj R-Squared" value of 0.67. Also, the "Adeq 

Precision" value of 22.60 indicates an adequate signal to noise ratio. 

 

6.3 ANOVA for sample size n 

The final ANOVA result for the significant model terms (and those required to support 

hierarchy) is given in Table 6. The process parameters ,( p  ),, Ed  and the cost 

parameters ),,,( 2110 aaCC  have the significant impact on the optimal value for the 

sample size n with ,, Ed  and 2a  having the greatest impact. The presented regression 

model with high values of "Pred R-Squared", "Adj R-Squared" and the "Adeq Precision" 

can accurately predict the power transformation 
0.01n

. The positive sign of coefficient d 

indicates that a smaller mean shift d requires one to use a larger sample size n which is 

consistent with the principle of statistical hypothesis testing. E has intuitive appeal for 

affecting n since it is the proportionality constant between the sample size and the time 

associated with plotting each point on the control chart. The parameter a2 also has intuitive 
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appeal since it is variable cost associated with sampling. The ANOVA table also indicates 

that the largest interaction effect is between a2 and C1.  

 

6.4 ANOVA for large sampling interval h1  

From the ANOVA Tables 7, the main effects a2 and C1 have the greatest impact in 

predicting sampling interval h1. It seems intuitive that when the variable cost of sampling 

increases the sampling intervals increase to decrease sampling frequencies. Also, a high 

value of cost of producing defective products when the process is out of control causes a 

reduction in sampling intervals to detect out-of-control states as quickly as possible. The 

largest interaction effect is between a2 and a1. The value of parameter h2 is always set to the 

minimum possible value, 0.1 in this paper.  

The regression models presented in Tables 7 with high values of "Pred R-Squared", 

"Adj R-Squared" and the "Adeq Precision" can be used to significantly predict the power 

transformations 
17.0

1


h . 

 

7. Concluding remarks 

In the present paper, the optimal design of the T
2
 control chart with VSI scheme is 

developed based on the cost model proposed by Lorenzen and Vance (1986) and the 

expected total cost per hour is minimized using GA. An illustrative example is provided and 

a sensitivity analysis is then carried out to study the effect of model parameters on the 

solution of the optimal design. The ANOVA results indicate that the model parameters 

211 ,,,,, aECTd  and 3a  play a significant role in designing the chart parameters. In 

addition, the variable cost of sampling plays an important role in determining all the control 

char parameters. This paper also provides regression equations in Table 4-7 which can be 

considered as the basis of an efficient and effective Meta model for the OD of the VSI T
2
 

control chart from combinations of model parameters. The high values of "Pred R-Squared" 

and "Adj R-Squared" measures indicated that the regression equations provide a good 

approximation and also provide a much richer interpretation by considering nonlinear 

transformations. The provided regression equations, easy computational methods, make it 

easier to determine the optimal design of the VSI T
2
 chart and facilitate implementation in 

industry. This approach provides practitioners with a solution they can understand, and 

hence will be more willing to adopt. 

 



 

 

 

12 

References 

[1] Cinlar, E., Introduction to stochastic Process, Englewood Cliffs, NJ, Prentice Hall, 1975. 

[2] Faraz, A. and Parsian, A., (2006), Hotelling's T2 control chart with double warning lines, 

Statistical Papers Vol. 47, 569-593. 

[3] A. Faraz, K. Chalaki and M. B. Moghadam, (2010), On the properties of the Hotelling’s T
2 

Control Chart with VSI Scheme, Quality & Quantity, International Journal of methodology. 

DOI: 10.1007/s11135-010-9314-z 

[4] Faraz, A. Saniga, E. and Kazemzadeh, R.B., (2009), Economic and Economic Statistical 

Design of T
2
 Control Chart with two-adaptive Sample Sizes, Journal of Statistical 

Computation and Simulation, DOI: 10.1080/00949650903062574. 

[5] Hotelling H., (1947), Multivariate quality control - Illustrated by the air testing of sample 

bombsights. Techniques of Statistical Analysis, Eisenhart, C., Hastay, M.W.,Wallis,W.A. 

(eds), New York: MacGraw-Hill. 

[6] Keats, J.B. and E.D. Castillo and E.V. Collani and E.M. Saniga, (1997), Economic 

Modeling for Statistical Process Control, Journal of Quality Technology, Vol. 29,144-147. 

[7] Lorenzen, T.J. and Vance, L.C., (1986), the economic design of control charts: a unified 

approach, Technometrics, Vol. 28, 3–11. 

[8] Montgomery, D.C., (1980), the economic design of control charts: a review and literature 

survey. Journal of Quality Technology, Vol. 12, 75-87. 

[9] Montgomery, D.C., (2001), Design and Analysis of Experiments, 5th ed., John Wiley, New 

York,. 

[10] Ross, S.M., (1995), Stochastic processes, 2th ed, John Wiely, ISBN: 9780471120629 

[11] Saniga, E.M., (1989), Economic statistical control chart designs with an application to 

X and R charts, Technometrics, Vol. 31, 313–320. 

 



 

 

 

13 

Figures 

 

Figure 1- A Quality Cycle 

Tables 

Table  1. Data adapted from General Motors 

p =2 m=25  =0.05 1 1 2 0 

0T = 1T = 0.0833 E= 0.0833 
2T =0.75 0C 114.24 1C 949.2 

1a 5 2a 4.22 3a 977.4 3a 977.4 d = 1 

 

Table  2. The optimal parameters of ESD of the FRS and VSI schemes for different values of d 

d 
VSI scheme 

FRS 

scheme %  

k w n h1 h2 α AATS E(A) E(A) 

0.50 10.86 2.00 22 2.40 0.10 0.005 2.49 368.94* 408.64 11% 
0.75 10.86 2.64 13 1.89 0.10 0.005 1.54 297.31* 325.41 9% 
1.00 13.09 2.93 9 1.57 0.10 0.002 1.21 264.68* 283.67 7% 
1.25 11.50 3.28 6 1.37 0.10 0.005 0.97 245.00* 259.57 6% 
1.5 12.59 3.83 5 1.26 0.10 0.004 0.83 232.94* 244.13 5% 
2.00 13.95 3.84 3 1.10 0.10 0.003 0.72 218.09* 225.96 4% 
2.50 16.32 5.87 3 1.10 0.10 0.001 0.62 210.45* 215.78 3% 
3.00 17.95 5.26 2 1.10 0.10 0.001 0.64 205.24* 209.14 2% 

 

 

Table  3. High and low levels for the model parameters 

Factor  1  2 T0 T1 T2 C0 C1 a1 a2 a3 a'3 E  p d 

Low 0 0 0.1 0.1 1 50 250 0.5 0.1 25 50 0.1 0.01 2 0.5 

High 1 1 5 5 15 200 1000 5 10 1000 1000 1 0.05 10 2 
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Table  4. ANOVA and Regression model for control limit k 

Response: 37.24.0 k  

Source 
Sum of 

Squares 
DF 

Mean 

Square 

F 

Value 
Prob > F 

Model 87.83 12.00 7.32 175.11 < 0.0001 

Coefficients Parameters      

8.07E-02  2 0.01 1.00 0.01 0.32 0.5742 

-4.24E-02 a1 0.41 1.00 0.41 9.78 0.0020 

-6.88E-02 a2 10.00 1.00 10.00 239.35 < 0.0001 

-3.46E+00  2.64 1.00 2.64 63.04 < 0.0001 

-8.80E-03 d 1.23 1.00 1.23 29.31 < 0.0001 

2.92E-03 T2 0.12 1.00 0.12 2.75 0.0984 

2.86E-04 C1 2.96 1.00 2.96 70.70 < 0.0001 

1.28E-01 p 67.61 1.00 67.61 1617.39 < 0.0001 

-1.19E-02  2 T2 0.44 1.00 0.44 10.60 0.0013 

4.87E-03 a1 a2 0.75 1.00 0.75 18.06 < 0.0001 

-3.20E-01 a2  0.26 1.00 0.26 6.15 0.0138 

2.00E-02 a2 d 1.41 1.00 1.41 33.81 < 0.0001 

Residual 10.16 243.00 0.04   

Total 97.99 255.00 7.32 175.11 < 0.0001 

Model Adequacy Measures 

R-Squared 0.90  Pred R-Squared 0.89 

Adj R-Squared 0.89  Adeq Precision 48.27 
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Table  5. ANOVA and Regression model for warning limit w 

 

 

Response: 23.1)17.0( 37.0 w   

Source 
Sum of 

Squares 
DF 

Mean 

Square 

F 

Value 
Prob > F 

Model 97.77 26.00 3.76 31.92 < 0.0001 

Coefficients Parameters      

-2.32E-01  1 0.46 1.00 0.46 3.91 0.0493 

4.87E-01  2 2.34 1.00 2.34 19.89 < 0.0001 

1.53E-02 T1 0.55 1.00 0.55 4.65 0.0321 

-9.01E-02 a2 7.38 1.00 7.38 62.67 < 0.0001 

3.38E-04 C0 1.06 1.00 1.06 9.03 0.0030 

-2.16E-01 E 2.42 1.00 2.42 20.54 < 0.0001 

-7.01E+00  4.08 1.00 4.08 34.61 < 0.0001 

3.65E-01 d 12.81 1.00 12.81 108.70 < 0.0001 

3.97E-03 T2 0.35 1.00 0.35 2.98 0.0855 

-5.14E-04 C1 6.67 1.00 6.67 56.65 < 0.0001 

1.08E-01 p 38.60 1.00 38.60 327.67 < 0.0001 

-1.46E-04 a'3 0.05 1.00 0.05 0.39 0.5315 

2.35E-04  1C1 0.50 1.00 0.50 4.23 0.0407 

-1.26E-03  2C0 0.57 1.00 0.57 4.83 0.0290 

-4.72E+00  2  0.57 1.00 0.57 4.83 0.0289 

-1.85E-01  2 d 1.23 1.00 1.23 10.48 0.0014 

-1.85E-02  2T2 1.08 1.00 1.08 9.13 0.0028 

-2.73E-04 T1C0 0.65 1.00 0.65 5.48 0.0201 

2.61E-02 a2 d 2.40 1.00 2.40 20.35 < 0.0001 

8.55E-05 a2C1 6.44 1.00 6.44 54.67 < 0.0001 

-5.04E-03 a2 p 2.55 1.00 2.55 21.61 < 0.0001 

1.97E-06 C0C1 0.78 1.00 0.78 6.65 0.0105 

-1.84E-04 C0 p 0.78 1.00 0.78 6.60 0.0109 

5.82E-03  a'3 0.78 1.00 0.78 6.64 0.0106 

-1.70E-04 dC1 0.58 1.00 0.58 4.96 0.0268 

6.03E-05 C1 p 2.09 1.00 2.09 17.76 < 0.0001 

Residual 26.98 229.00 0.12   

Total 124.75 255.00    

 

R-Squared 0.78  Pred R-Squared 0.73 

Adj R-Squared 0.76  Adeq Precision 24.37 
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Table  6. ANOVA and Regression model for sample size n 

Response: 96.001.0 n  

Source 
Sum of 

Squares 
DF 

Mean 

Square 

F 

Value 
Prob > F 

Model 2.27E-02 26.00 8.74E-04 111.57 < 0.0001 

Coefficients Parameters      

1.92E-04 T1 2.68E-05 1.00 2.68E-05 3.42 0.0656 

-3.97E-04 a1 6.48E-05 1.00 6.48E-05 8.27 0.0044 

9.74E-04 a2 1.45E-03 1.00 1.45E-03 185.56 < 0.0001 

-7.47E-07 a3 1.67E-06 1.00 1.67E-06 0.21 0.6450 

2.30E-05 C0 8.86E-05 1.00 8.86E-05 11.31 0.0009 

1.18E-02 E 2.42E-03 1.00 2.42E-03 309.32 < 0.0001 

1.68E-01  1.64E-03 1.00 1.64E-03 208.62 < 0.0001 

1.49E-02 d 1.34E-02 1.00 1.34E-02 1713.62 < 0.0001 

-9.76E-07 C1 2.71E-04 1.00 2.71E-04 34.60 < 0.0001 

-6.50E-04 p 5.72E-04 1.00 5.72E-04 72.96 < 0.0001 

3.58E-07 T1 a3 4.68E-05 1.00 4.68E-05 5.97 0.0153 

-8.10E-03 T1  4.03E-05 1.00 4.03E-05 5.14 0.0243 

3.43E-05 a2 a1 3.74E-05 1.00 3.74E-05 4.77 0.0299 

1.56E-06 a2C0 8.56E-05 1.00 8.56E-05 10.92 0.0011 

-3.76E-04 a2E 1.79E-04 1.00 1.79E-04 22.90 < 0.0001 

5.76E-03 a2  8.33E-05 1.00 8.33E-05 10.62 0.0013 

-2.83E-04 a2 d 2.83E-04 1.00 2.83E-04 36.06 < 0.0001 

-8.01E-07 a2C1 5.66E-04 1.00 5.66E-04 72.20 < 0.0001 

1.78E-05 a2 p 3.16E-05 1.00 3.16E-05 4.04 0.0457 

-9.74E-06 C0 d 7.68E-05 1.00 7.68E-05 9.80 0.0020 

-1.74E-08 C0C1 6.15E-05 1.00 6.15E-05 7.85 0.0055 

5.21E-02 E  5.62E-05 1.00 5.62E-05 7.17 0.0079 

-3.71E-03 E d 4.02E-04 1.00 4.02E-04 51.29 < 0.0001 

-9.28E-02  d 4.96E-04 1.00 4.96E-04 63.22 < 0.0001 

6.22E-03  p 6.34E-05 1.00 6.34E-05 8.09 0.0048 

3.56E-06 dC1 2.57E-04 1.00 2.57E-04 32.82 < 0.0001 

Residual 1.79E-03 229.00 7.84E-06   

Total 2.45E-02 255.00    

Model Adequacy Measures 

R-Squared 0.93  Pred R-Squared 0.91 

Adj R-Squared 0.92  Adeq Precision 43.09 
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Table  7. ANOVA and Regression model for short sampling interval h1 

Response: 93.0
17.0

1 


h  

Source 
Sum of 

Squares 
DF 

Mean 

Square 

F 

Value 
Prob > F 

Model 8.53E+00 36.00 2.37E-01 145.51 < 0.0001 

Coefficients Parameters      

1.13E-02  1 1.95E-02 1.00 1.95E-02 11.99 0.0006 

1.19E-02  2 7.47E-02 1.00 7.47E-02 45.90 < 0.0001 

8.30E-03 T1 7.50E-04 1.00 7.50E-04 0.46 0.4979 

-1.47E-02 a1 3.21E-01 1.00 3.21E-01 196.90 < 0.0001 

-2.88E-02 a2 3.70E+00 1.00 3.70E+00 2273.34 < 0.0001 

-7.06E-04 C0 1.47E-01 1.00 1.47E-01 90.18 < 0.0001 

-4.90E-02 E 5.90E-03 1.00 5.90E-03 3.63 0.0582 

2.61E+00  4.09E-01 1.00 4.09E-01 251.41 < 0.0001 

5.59E-02 d 1.13E+00 1.00 1.13E+00 693.56 < 0.0001 

7.69E-04 T2 2.63E-04 1.00 2.63E-04 0.16 0.6884 

1.44E-04 C1 1.69E+00 1.00 1.69E+00 1040.06 < 0.0001 

-2.69E-03 p 1.14E-01 1.00 1.14E-01 70.20 < 0.0001 

-6.51E-03  1 T1 1.63E-02 1.00 1.63E-02 10.00 0.0018 

2.16E-03  1  a2 7.32E-03 1.00 7.32E-03 4.50 0.0351 

-7.69E-01  1   1.51E-02 1.00 1.51E-02 9.30 0.0026 

2.68E-03  2  a2 1.13E-02 1.00 1.13E-02 6.94 0.0090 

-1.21E+00  2   3.76E-02 1.00 3.76E-02 23.08 < 0.0001 

-2.90E-03  2 T2 2.65E-02 1.00 2.65E-02 16.25 < 0.0001 

-1.91E-01 T1  2.25E-02 1.00 2.25E-02 13.84 0.0003 

2.75E-03 a1 a2 2.40E-01 1.00 2.40E-01 147.18 < 0.0001 

-7.84E-03 a1 d 4.48E-02 1.00 4.48E-02 27.52 < 0.0001 

-8.12E-06 a1C1 1.20E-02 1.00 1.20E-02 7.38 0.0071 

2.66E-05 a2C0 2.49E-02 1.00 2.49E-02 15.30 0.0001 

2.62E-03 a2E 8.73E-03 1.00 8.73E-03 5.36 0.0215 

-7.38E-02 a2  1.37E-02 1.00 1.37E-02 8.39 0.0042 

-1.28E-05 a2C1 1.45E-01 1.00 1.45E-01 89.06 < 0.0001 

-1.14E-04 C0 d 1.05E-02 1.00 1.05E-02 6.48 0.0116 

6.33E-07 C0C1 8.11E-02 1.00 8.11E-02 49.82 < 0.0001 

3.14E-03 ET2 2.50E-02 1.00 2.50E-02 15.38 0.0001 

5.49E-01  d 1.74E-02 1.00 1.74E-02 10.67 0.0013 

1.52E-03 C1 3.34E-02 1.00 3.34E-02 20.49 < 0.0001 

-6.65E-02  p 7.24E-03 1.00 7.24E-03 4.45 0.0361 

6.40E-05 dC1 8.29E-02 1.00 8.29E-02 50.93 < 0.0001 

2.00E-03 d p 9.21E-03 1.00 9.21E-03 5.65 0.0183 

-1.90E-06 T2C1 6.38E-03 1.00 6.38E-03 3.92 0.0491 

-4.96E-06 C1 p 1.41E-02 1.00 1.41E-02 8.69 0.0036 

Residual 3.57E-01 219.00 1.63E-03   

Total 8.89E+00 255.00    

Model Adequacy Measures 

R-Squared 0.96  Pred R-Squared 0.95 

Adj R-Squared 0.95  Adeq Precision 56.13 
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Table  8. ANOVA and Regression model for long sampling interval h2 

Response: 60.1)( 2 hn  

Source 
Sum of 

Squares 
DF 

Mean 

Square 

F 

Value 
Prob > F 

Model 722.41 36.00 20.07 98.13 < 0.0001 

Coefficients Parameters      

-2.91E-01  1 7.81 1.00 7.81 38.17 < 0.0001 

-1.61E-01  2 31.15 1.00 31.15 152.31 < 0.0001 

3.90E-02 T0 0.09 1.00 0.09 0.46 0.4978 

-7.53E-02 T1 2.59 1.00 2.59 12.65 0.0005 

2.54E-01 a1 27.90 1.00 27.90 136.43 < 0.0001 

3.76E-01 a2 317.96 1.00 317.96 1554.93 < 0.0001 

1.27E-04 a3 0.99 1.00 0.99 4.82 0.0292 

9.00E-03 C0 14.22 1.00 14.22 69.52 < 0.0001 

-4.73E-01 E 2.29 1.00 2.29 11.19 0.0010 

-1.29E+01  0.12 1.00 0.12 0.57 0.4503 

-1.89E-01 d 33.76 1.00 33.76 165.12 < 0.0001 

-1.78E-03 T2 3.68 1.00 3.68 18.01 < 0.0001 

-1.96E-03 C1 175.41 1.00 175.41 857.82 < 0.0001 

3.61E-02 P 2.05 1.00 2.05 10.02 0.0018 

1.37E-01  1 T1 7.22 1.00 7.22 35.31 < 0.0001 

-2.53E-02  1  a2 1.00 1.00 1.00 4.89 0.0280 

7.10E+00  1   1.29 1.00 1.29 6.31 0.0127 

1.64E-01  1  d 0.97 1.00 0.97 4.73 0.0308 

-6.27E-02  2  a1 1.27 1.00 1.27 6.23 0.0133 

8.45E+00  2   1.83 1.00 1.83 8.93 0.0031 

2.53E-01  2  d 2.30 1.00 2.30 11.23 0.0009 

5.78E-02  2 T2 10.47 1.00 10.47 51.22 < 0.0001 

-3.90E-03 T0 T2 1.14 1.00 1.14 5.59 0.0189 

1.59E+00 T1  1.56 1.00 1.56 7.63 0.0062 

-2.49E-02 a1 a2 19.74 1.00 19.74 96.51 < 0.0001 

4.01E-02 a1 d 1.17 1.00 1.17 5.73 0.0175 

-1.82E-04 a2C0 1.17 1.00 1.17 5.73 0.0176 

5.21E-02 a2E 3.44 1.00 3.44 16.84 < 0.0001 

-9.23E-02 a2 d 30.06 1.00 30.06 147.02 < 0.0001 

-1.75E-03 a2T2 0.94 1.00 0.94 4.59 0.0333 

5.46E-05 a2C1 2.63 1.00 2.63 12.87 0.0004 

3.36E-03 a2 p 1.13 1.00 1.13 5.53 0.0195 

-1.10E-04 C0T2 0.85 1.00 0.85 4.17 0.0424 

-6.49E-06 C0C1 8.52 1.00 8.52 41.69 < 0.0001 

-2.46E-02 d p 1.39 1.00 1.39 6.80 0.0097 

3.60E-05 T2C1 2.29 1.00 2.29 11.20 0.0010 

Residual 44.78 219.00 0.20   

Total 767.19 255.00    

Model Adequacy Measures 

R-Squared 0.94  Pred R-Squared 0.92 

Adj R-Squared 0.93  Adeq Precision 44.66 

 


