

2008 ADSA-ASAS Joint Annual Meeting
Indianapolis, July 7-11

Genetic parameters of stearoyl coenzyme-A desaturase 9 activity estimated by test-day model

V. M.-R. Arnould¹, N. Gengler^{1,2}, and H. Soyeurt¹

¹ Gembloux Agricultural University, Animal Science Unit, Belgium

² National Fund for Scientific Research, Belgium

Context

- Interest for human health
- Several authors suggested selection as a tool to **modulate milk fatty acid profiles**
(e.g., Palmquist et al., 1993; Soyeurt et al. 2006)
- Around 406 FA compose the milk fat
→ need to **resume the FA information**

Δ^9 desaturase

- Also named stearoyl Coenzyme-A desaturase or SCD
- Able to introduce a **cis**-bond between carbons 9 and 10 of SFA
- Involved in the production of the majority of MONO and CLA in milk

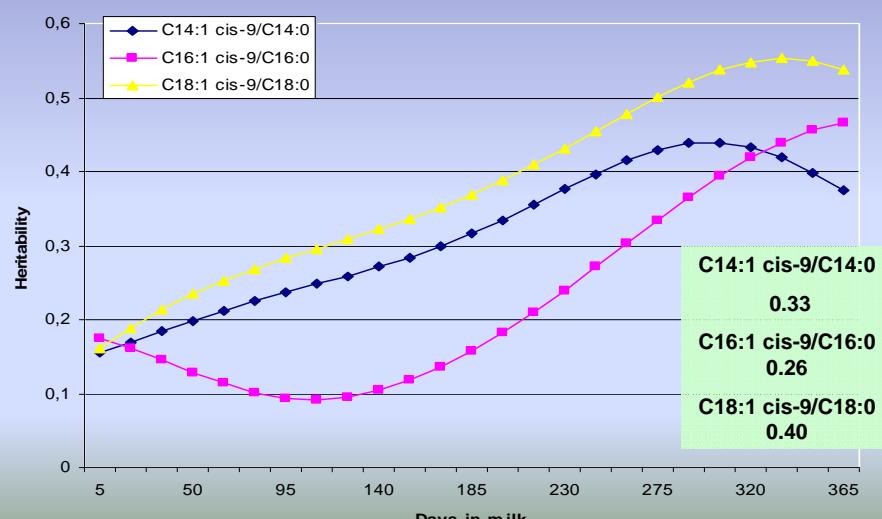
General objective

- Study the **genetic variation of Δ^9 -desaturase activity** in bovine milk within lactation using multitrait random regression test-day models
- Application to animal selection

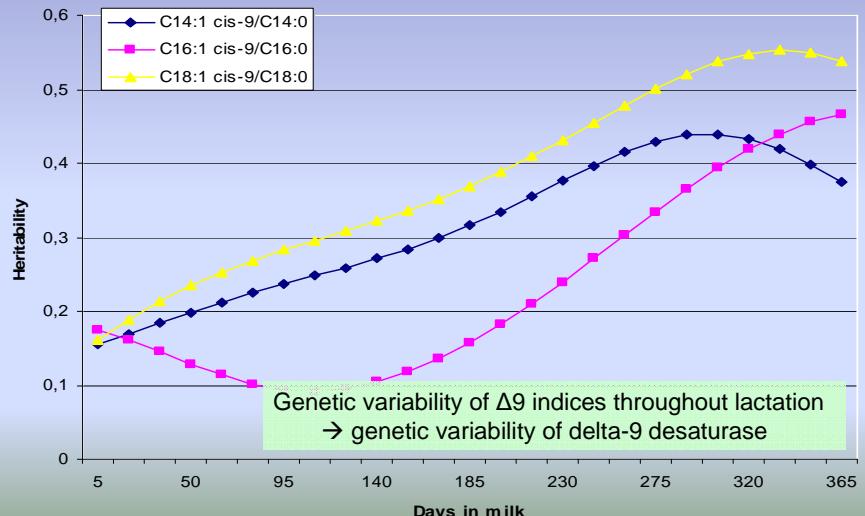
Materials & Methods

- Data set
 - 6,099 spectra collected between March 2005 and July 2007
 - 1,331 primiparous Holstein cows (> 84%)
 - Milk history
 - Milk yield, %Fat, %Protein
 - 4 < DIM < 365
 - Final data set: 119,214 test-day records between 1991 and 2007
- Multi-trait random regression test-day models (3)
- Studied traits
 - Milk yield
 - Fat content
 - Protein content
 - 3 Δ^9 indices (product / substrate)

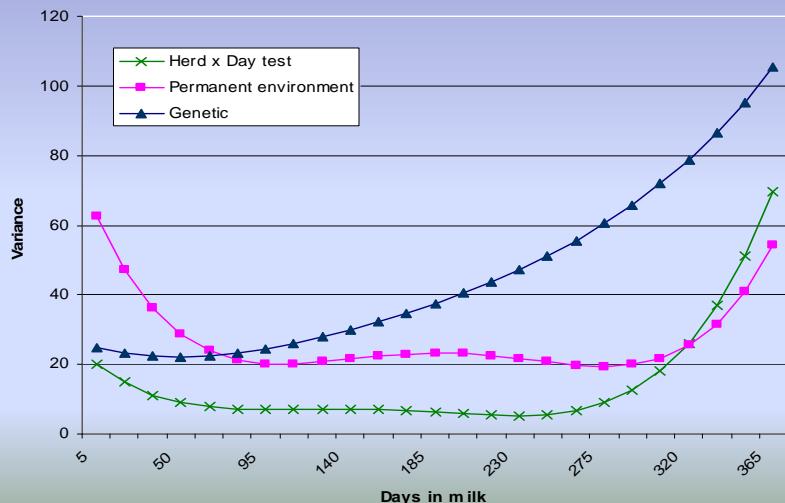
Materials & Methods

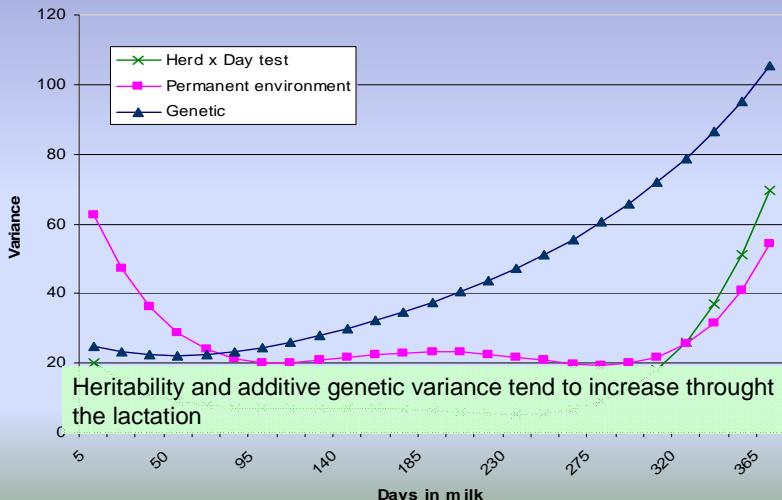

- Models:
 - Fixed effects:
 - Herd x date of test
 - Class of 15 days in milk (20)
 - Class of age (16)
 - Random effects:
 - Herd x year of calving
 - Permanent environment
 - Additive genetic effect
 - Residuals

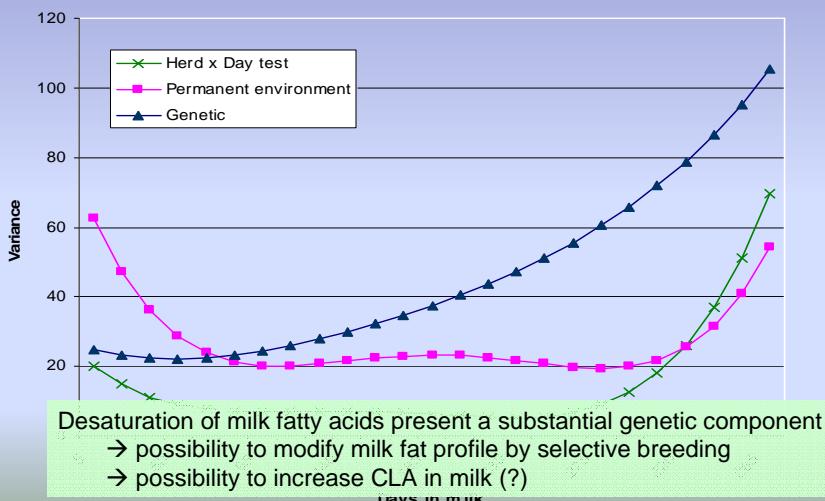
} Second order Legendre Polynomials


Studied traits

	N	Mean	SD
Milk (kg/day)	119,214	22.67	6.08
Fat (g/100g of milk)	119,214	4.06	0.69
Protein (g/100g of milk)	119,214	3.32	0.34
C14:1 <i>cis</i> -9/C14:0	6,099	0.10	0.02
C16:1 <i>cis</i> -9/C16:0	6,099	0.06	0.01
C18:1 <i>cis</i> -9/C18:0	6,099	1.93	0.42


Results: Heritability


Results: Heritability


Results: Variance components

Results: Variance components

Results: Variance components

Results: Relationships

Genetic correlation

Phenotypic correlation

	Milk	Fat content	Protein content
C14:1 cis-9/C14:0	0.52	-0.43	-0.28
	0.07	-0.31	-0.10
C16:1 cis-9/C16:0	0.13	-0.28	-0.02
	-0.05	-0.10	-0.02
C18:1 cis-9/C18:0	0.59	-0.72	-0.54
	0.23	-0.31	-0.26

Results: Relationships

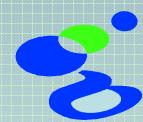
Negative correlation with fat and protein contents

→ Milk payment (?)

	Milk	Fat content	Protein content
C14:1 cis-9/C14:0	0.52	-0.43	-0.28
	0.07	-0.31	-0.10
C16:1 cis-9/C16:0	0.13	-0.28	-0.02
	-0.05	-0.10	-0.02
C18:1 cis-9/C18:0	0.59	-0.72	-0.54
	0.23	-0.31	-0.26

Application

- Sort sires according to their breeding values for the different studied traits:
 - C14:1 cis-9/C14:0
 - C16:1 cis-9/C16:0
 - C18:1 cis-9/C18:0
 - %MONO (g/100g of fat)
 - %SAT (g/100 g of fat)
- Comparison among the lists of sires obtained for all traits


Application: Relationships (Spearman correlations)

	C14:1 cis-9 /C14:0	C16:1 cis-9 /C16:0	C18:1 cis-9 /C18:0
C14:1 cis-9/C14:0	1	0.40	0.63
C16:1 cis-9/C16:0		1	0.16
C18:1 cis-9/C18:0			1

Values of correlations among Δ^9 indices were expected higher
→ Complexity of the studied traits

Application: example

C14:1 cis-9 /C14:0	C16:1 cis-9 /C16:0	C18:1 cis-9 /C18:0
Sire 1	Sire 5	Sire 2
Sire 3	Sire 4	
Sire 3	Sire 18	Sire 6
Sire 4	Sire 1	Sire 1
Sire 5		Sire 16
Sire 6	Sire 9	Sire 4
Sire 7		Sire 12
Sire 8		Sire 9
	Sire 7	Sire 5
Sire 10	Sire 15	
Sire 11		Sire 3
	Sire 17	
Sire 13	Sire 6	Sire 13
Sire 14		Sire 14
Sire 15	Sire 14	Sire 7

Most of sires observed in the C14 top 15 are the same in the C16 and C18 top 15

But the ranks are different

C14:1 cis-9 /C14:0	C16:1 cis-9 /C16:0	C18:1 cis-9 /C18:0
Sire 1	Sire 5	Sire 2
Sire 2	Sire 4	
Sire 3	Sire 18	Sire 6
Sire 4	Sire 1	Sire 1
Sire 5		Sire 16
Sire 6	Sire 9	Sire 4
Sire 7		Sire 12
Sire 8		Sire 9
	Sire 7	Sire 5
Sire 10	Sire 15	
Sire 11		Sire 3
	Sire 17	
Sire 13	Sire 6	Sire 13
Sire 14		Sire 14
Sire 15	Sire 14	Sire 7

Application: example

C14:1 cis-9 /C14:0	C16:1 cis-9 /C16:0	C18:1 cis-9 /C18:0	Mono (g/100g of fat)	Sat (g/100g fat)
Sire 1	Sire 5	Sire 2	Sire 19	Sire 1
Sire 2	Sire 4		Sire 2	Sire 11
Sire 3	Sire 18	Sire 6		Sire 8
Sire 4	Sire 1	Sire 1	Sire 6	Sire 9
Sire 5		Sire 16		Sire 7
Sire 6	Sire 9	Sire 4	Sire 9	
Sire 7		Sire 12	Sire 8	Sire 18
Sire 8		Sire 19	Sire 12	
	Sire 7	Sire 5	Sire 5	Sire 15
Sire 10	Sire 15		Sire 1	
Sire 11		Sire 3		Sire 5
	Sire 17			
Sire 13	Sire 6	Sire 13	Sire 17	Sire 2
Sire 14		Sire 14	Sire 3	Sire 10
Sire 15	Sire 14	Sire 7		Sire 17

Conclusions and perspectives

- Potential improvement of Δ^9 activity and subsequently of the milk fat composition
 - by breeding and animal selection
- Perspectives
 - Increase of data base
 - Sires used today are they in the top15?
 - Estimation of genetic parameters for FA for all of the Walloon cows in the milk recording

Thank you for your attention

Acknowledgments

DGA project: D31-5593 (section 1)

AWE

Milk committee (Battice)

FNRS:

2.4507.02F (2)

F.4552.05

FRFC 2.4623.08

arnould.v@fsagx.ac.be