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Abstract— In this paper, we study the behavior of pulse-
coupled integrate-and-fire oscillators. Each oscillator is char-
acterized by a state evolving between two threshold values. As
the state reaches the upper threshold, it is reset to the lower
threshold and emits a pulse which increments by a constant
value the state of every other oscillator.

The behavior of the system is described by the so-called
firing map: depending on the stability of the firing map,
an important dichotomy characterizes the behavior of the
oscillators (synchronization or clustering). The firing map is
the composition of a linear map with a scalar nonlinearity.

After briefly discussing the case of the scalar firing map
(corresponding to two oscillators), the stability analysis is
extended to the generaln-dimensional firing map (for n+ 1
oscillators). Different models are considered (leaky oscillators,
quadratic oscillators,. . . ), with a particular emphasis on the
persistence of the dichotomy in higher dimensions.

I. INTRODUCTION

Populations of interacting oscillators have attracted con-
tinuing interest among the scientific community for the last
decades. While the behavior of a single oscillator is simple,
the nonlinear nature of the interactions may trigger com-
plex behaviors of the whole system. Beyond their practical
interest, such systems have led to numerous exciting open
problems [1], [2], [3].

In the present paper, we focus on systems of integrate-and-
fire oscillators [4] characterized by an impulsive coupling.
Although the model was first described to study pacemaker
cells of the heart [5], it applies to other contexts. In particular,
pulse-coupled oscillators are used to simulate neurons [6].

The seminal work of Mirollo and Strogatz [7] reduces
the analysis ofn+ 1 coupled integrate-and-fire oscillators
to the analysis of the firing map, a map describing the
n phase differences at successive firing times. Then+ 1-
dimensional firing map has a very special structure: it is the
composition of a linear (isometric) map and a nonlinear map
deriving from the corresponding scalar firing map defined
over the phase interval[0,1]. The latter can be analytically
computed from the scalar differential equation modeling the
(integrating) behavior of a single phase oscillator.
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4000 Liège, Belgium, alexandre.mauroy@ulg.ac.be,
r.sepulchre@ulg.ac.be

J.M. Hendrickx and A. Megretski are with the Laboratory for Information
and Decision Systems, Massachusetts Institute of Technology, Cambridge,
MA, jm hend@mit.edu, ameg@mit.edu

A. Mauroy holds a FNRS (Belgian National Fund for Scientific Research)
fellowship.

J.M. Hendrickx holds postdoctoral fellowships from the FNRS and
the Belgian American Education Foundation, and is on leave from the
Department of Mathematical Engineering of the Université catholique de
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Popular oscillator models include the L(eaky)IF model and
the Q(uadratic)IF model. Our previous study [8] has revealed
an interesting dichotomy of the LIF model since only two
asymptotic behaviors are possible. Either the scalar firing
map is contracting and all oscillators asymptotically converge
to a phase-locked clustering behavior, or the scalar firing map
is expanding and all oscillators eventually synchronize.

In contrast to the LIF model, more general models (in-
cluding the QIF model) have a scalar firing map that is
contracting over some phase interval[0,φ ] and expanding
over the complementary interval[φ ,1]. Interestingly, numer-
ical simulations suggest that the behavior is still dichotomic
for most of the models: phase-locked clustering when the
firing map is contracting “on average” and synchrony when
the firing map is expanding “on average”.

The present paper reports on current progresses to char-
acterize the dichotomic behavior from the global analysis of
the firing map. We establish the dichotomy for the scalar
firing map (n = 1) but we show that its extension to higher
dimensions depends on finer properties of the scalar firing
map.

The paper is organized as follows. In Section II, the pulse-
coupled model is described and the firing map is introduced.
In particular, the existence and uniqueness of the fixed point
is established in full generality. Section III is devoted to the
global analysis of the scalar firing map. In Section IV, the
generaln-dimensional firing map is considered. Whereas the
dichotomy is shown for some particular firing maps in IV-A,
a counterexample is presented in IV-A. In Section V, a local
stability result complements the analysis in then-dimensional
case. It is established with the help of a technical result,
whose proof is performed in Section VI. We conclude with
Section VII.

II. A FIRING MAP TO STUDY PULSE-COUPLED
OSCILLATORS

An integrate-and-fire oscillator is described by a scalar
state variablexi , which monotonically increases between two
thresholdsx and x according to the dynamics ˙xi = F(xi),
F > 0. Upon reaching the upper thresholdx, the state is reset
to the lower thresholdx and the oscillator is said to “fire”.
The coupling between the oscillators is impulsive: whenever
an oscillator fires, it causes an instantaneous incrementε > 0
to the state of every other oscillator. Any oscillator which
exceeds the upper threshold in this process is “absorbed”
without firing by the firing oscillator. The oscillator that has
just fired and all those that it has absorbed behave then
exactly as a single oscillator — that is, they can be replaced
by a single oscillator.
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For the sake of simplicity, a phaseφi ∈ [0,1] is introduced,
which is determined from the state of oscillatori by rescaling
in such a way thatφi = 1 corresponds to the high-threshold
andφ̇i = 1/T, whereT is the natural period of the oscillator.
The evolution of a single — uncoupled — oscillator is then
described by the function

xi = f (φi) , P−1 [Tφi ] , (1)

with P(x) defined as the time required by the statexi(t),
solution of ẋi = F(xi), xi(0) = x, to reach the valuex :

P(x) =
∫ x

x

1
F(x′)

dx′, P(x) = T. (2)

The impulsive coupling only occurs at the precise fir-
ing times, where the oscillators receive a phase advance
and jump from phaseφi to phase min( f−1 [ f (φi)+ ε] ,x).
Between two firings, every phase evolves with a constant
velocity φ̇i = 1/T, without any coupling. The firing map
introduced in [7] is the application that maps the (sorted)
oscillator phases from one firing instant to their (sorted)
phases at the next firing instant. Even though it “omits”
the continuous time evolution of the oscillators between the
firings, the firing map provides a full characterization of the
system evolution.

For two oscillators, the firing map is a one-dimensional
map which expresses as

φ+ = h(φ) , f−1 [ f (1−φ)+ ε] . (3)

Given the phaseφ of oscillator 1 when oscillator 2 fires,
the firing map expresses the phaseφ+ of oscillator 2 at the
next firing (of oscillator 1), and vice versa. At each iteration,
the phase of the firing oscillator (φ = 0) is omitted: the map
is scalar. In addition,h(·) is strictly decreasing since the
evolution f is strictly increasing.

For n+1 distinct oscillators (n > 1), the firing map is the
n-dimensional generalization of the scalar firing maph(·). It
is given by

H(Φ) =



















φ+
1 = h(φn)

φ+
2 = h(φn−φ1)

...
φ+

n = h(φn−φn−1)

. (4)

Whenever an oscillator fires, it receives the indexn+ 1 —
its phaseφn+1 = 0 is omitted in (4) — and then remaining
oscillators receive the indexi according to the phase ordering

φn+1 = 0 < φ1 < φ2 < · · · < φn < 1. (5)

The successive iterations of the firing mapH(Φ) describe
the evolution of the phases at each firing instant. When an
absorption occurs, it can be noted that then-dimensional
vector is sent onto an′-dimensional space, withn′ < n.
The evolution of then′ + 1 remaining distinct oscillators is
subsequently described by then′-dimensional firing map.

The firing map (4) has remarkable properties. It is the
compositionH = ∆◦L of a linear map, characterized by the

n×n matrix

L =











0 . . . 0 1
−1 0 0 1

0
... 0

...
0 0 −1 1











, (6)

with a repeated static nonlinearity∆(ζ ) = [h(ζ1) · · ·h(ζn)].
The linear mapL provides the firing map with a particular
chain structure, which implies that the firing map has a
unique fixed pointΦ∗, as stated in the following result.

Proposition 1: Provided that n < (x − x)/ε, the n-
dimensional firing map (4), which satisfies the phase ordering
(5), has a unique fixed point.

Proof: See Appendix.
The upper-bound onn ensures thatn+1 distinct oscillators

can coexist over the rangeφ ∈ [0,1]. If n was larger than the
bound given, no fixed point for then-dimensional firing map
could exist since there would always be an absorption within
n steps. The unique fixed point of the firing map represents
the unique phase-locked configuration of then+ 1 distinct
oscillators spread over the range[0,1]. This situation, called
clustering, is studied in [8].

III. GLOBAL ANALYSIS OF THE SCALAR FIRING
MAP

We make the following assumption on the integrate-and-
fire modelẋi = F(xi).

Assumption 1: F(·) : [−1,1] 7→ R is continuous positive,
even, smooth, and strictly monotone on(0,1].

In the sequel, we assume without loss of generality that
[x,x] ⊆ [−1,1], so thatF(·) is always defined on[x,x]. Most
of the usual integrate-and-fire models satisfy Assumption 1.
A representative model of this class is the quadratic integrate-
and-fire (QIF) model, which corresponds toF(x) = S+ x2,
S> 0. A so-calledpiecewise linearmodel is characterized
by the dynamicsF(x) = S+ γ|x|, S,γ > 0. The well-known
leaky integrate-and-fire (LIF) model, withF(x) = S+ γx and
[x,x] = [0,1], appears to be equivalent to the piecewise linear
model. (The caseγ < 0 is actually equivalent to the piecewise
linear model with thresholds[x,x] = [−1,0].) In addition, the
exponential modelF(x) = Sexp(x2), S> 0, is also in the
class of considered models. (See Fig. 1).

With the dynamics defined above, the scalar firing map
has an important property. A well-chosen translation of the
scalar firing map, i.e.h(φ + δ ), has a reflection symmetry
with respect to the bisectrix (Fig. 2). This property of the
scalar firing map is summarized in the following proposition.

Proposition 2: Under Assumption 1, the corresponding
scalar firing map (3) satisfies the property

h(·+ δ ) = h−1(·)− δ , (7)

where(δ ,φδ ) is the unique solution of
{

φδ −h(φδ ) = δ
|h′(φδ )| = 1

. (8)
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Fig. 1. Three models (quadratic, piecewise linear, and exponential)
satisfying Assumption 1. The behavior of the corresponding firing map
differs whenx+x > 0 or x+x < 0.
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Fig. 2. The scalar firing map has an important property: the maph(φ +δ )
has a reflection symmetry with respect to the bisectrix.

The valueδ has the same sign asx+x and is a continuous
function of x+x, for a givenF(·). Moreover,

|h′(φ)| < 1 ∀φ < φδ . (9)

Proof: Since F is even, it follows from (2) that
P(−x) = −P(x)+P(−x). Consequently, one has

f−1(−x) = − f−1(x)+ f−1(−x) (10)

and

f (φ) = − f [−φ + f−1(−x)]. (11)

Properties (10) and (11) lead to

h−1(φ) = 1− f−1[ f (φ)− ε],

= 1− f−1(−x)+ f−1[− f (φ)+ ε],

= 1− f−1(−x)+ f−1[ f (−φ + f−1(−x))+ ε],

= 1− f−1(−x)+h[φ +1− f−1(−x)].

Setting

δ = 1− f−1(−x) = 1−P(−x)/T, (12)

one obtains (7) and the continuity ofδ with respect tox and
x follows from the continuity of P. In addition, the value
δ is positive ifP(−x)< T = P(x), or equivalently ifx+x> 0.

It follows from (1) and (2) that

f ′ = T

(

dP
dx

)−1

= TF.

From the expression of the scalar firing map (3), one obtains
the derivative

h′(φ) = − f ′(1−φ)

f ′(h(φ))
= − F [ f (1−φ)]

F[ f (1−φ)+ ε]
. (13)

Equations (8) and (12) lead to the equality
f [φδ −1+ f−1(−x)] = f (1−φδ )+ ε. According to the
property (11), one obtains− f (1− φδ ) = f (1− φδ )+ ε and
it follows that |h′(φδ )| = 1. SincedF/dx> 0 for x > 0, (13)
implies that|h′(φ)| < 1 for φ < φδ .

The property (7) is of paramount importance since the
conditionδ > 0 determines the global stability of the scalar
firing map. The following proposition summarizes the result.

Proposition 3: If the scalar firing map (3) satisfies (7) and
(9) with δ > 0 (resp.δ < 0), then its fixed point is globally
attracting (resp. repelling).

Proof: We proceed in two steps.
Step 1:We show that the firing maph(·) has no nontrivial

2-periodic orbits, that is

h(φ) = h−1(φ) (14)

admits no other solution but the fixed pointφ∗ = h(φ∗). In
the plane(φ ,φ+), a rotation of−π/4 of the axes results in
a change of variables

(φ ,φ+) 7→ (φ̃ , φ̃+) =

√
2

2
(φ −φ+,φ + φ+).

It turns the bisectrix into thẽφ+-axis — that is,φ̃ = 0 —
and the scalar firing maph(φ) becomes the map̃h(φ̃ ). The
assumption (7) expresses as

h̃

(

δ√
2

+ φ̃
)

= h̃

(

δ√
2
− φ̃

)

∀φ̃

and (9) is rewritten as

h̃′(φ̃ ) > 0 ∀φ̃ <
δ√
2
.

These two properties imply that the equationh̃(φ̃ ) = h̃(−φ̃),
which is equivalent to (14), has no other solution butφ̃ = 0
(which corresponds to the fixed pointφ∗). Hence, the return
mapR(·) , h[h(·)] has a unique fixed point.

Step 2: We consider the caseδ > 0 without loss of
generality, since the proof forδ < 0 follows on similar
lines. The fixed pointφ∗ = h(φ∗) cannot be larger than
φδ = h(φδ )+ δ becauseδ > 0 and h′ < 0. Then,φ∗ < φδ
implies that|h′(φ∗)|< 1, according to (9). It follows that the
derivative of the return map satisfiesR′(φ∗) = [h′(φ∗)]2 < 1.
Moreover, it holds thatR′(φ) = h′[h(φ)]h′(φ) > 0. Since, in
addition, the return map has only one fixed pointR(φ∗) = φ∗,
it can be written that

{

φ∗ < R(φ) < φ if φ > φ∗,

φ < R(φ) < φ∗ if φ < φ∗.
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This leads to

|R(φ)−R(φ∗)| = |R(φ)−φ∗| < |φ −φ∗| ∀φ 6= φ∗

and the fixed point ofR is globally attracting. For every
e> 0, there exist integersN1 andN2 such that, for allφ ,

{

|RN(φ)−φ∗| = |h2N(φ)−φ∗| < e for N ≥ N1,

|RN(h(φ))−φ∗| = |h2N+1(φ)−φ∗| < e for N ≥ N2.

It follows that, for every e > 0, there exists an integer
N3 = max(2N1,2N2 +1) such that, for allφ ,

|hN(φ)−φ∗| < e for N ≥ N3.

Then, one has limN→∞ |hN(φ)−φ∗| = 0, which concludes the
proof.

The stability of the fixed point leads to an interesting
dichotomy. The scalar firing map dictates the evolution of
n+1= 2 pulse-coupled oscillators. Stability of the fixed
point thereby means that the two oscillators are asymptot-
ically phase-locked: they have a constant phase difference
φ∗−0 = φ∗ at each firing. Anti-stability of the fixed point
corresponds to asymptotic synchronization: the phase differ-
ence grows at each firing, leading to an eventual absorption,
after which the two oscillators remain synchronized.

IV. GLOBAL ANALYSIS OF N-DIMENSIONAL
FIRING MAPS

The scalar firing map is characterized by an important
dichotomy and it results that the oscillators, after a transient
period, are either phased-locked or synchronized. In this
section, we discuss the generalization of this dichotomy to
arbitrary dimensions. If the dichotomy persists with then-
dimensional firing map, the behavior ofn + 1 oscillators
is simply characterized. Global stability of the fixed point
corresponds to the asymptotic phase-locked clustering be-
havior of the oscillators, which fire periodically, while global
anti-stability of the fixed point corresponds to asymptotic
synchronization of all oscillators.

When considering the decompositionH = ∆ ◦ L of
the n-dimensional firing map, the linear mapL (6) acts
as a mixing map while the repeated static nonlinearity
∆(ζ ) = [h(ζ1) · · ·h(ζn)] provides the firing map with stability
properties. The properties of the scalar firing map are there-
fore intimately linked to the stability of then-dimensional
firing map. In the sequel, we show that conditions (7) and
(9) are in general not sufficient to ensure the stability of the
n-dimensional firing map, although they still imply stability
under some additional simple assumptions.

A. Global analysis of firing maps with a contraction property

For dynamics verifying Assumption 1 and defined on
[x,x] ⊆ [0,1] (resp.⊆ [−1,0]), it follows from (13) that the
scalar firing map satisfies the property|h′(φ)| < 1 (resp.
|h′(φ)| > 1) ∀φ ∈ [0,1]. The scalar firing map is therefore
contracting (resp. expanding) on[0,1], which implies that
the fixed point (of the scalar firing map) is globally stable
(resp. anti-stable).

The contraction property and the dichotomy shown
above for n = 1 persist in higher dimensions, under an
additional assumption onh′′. This result is summarized in
the following theorem [8].

Theorem 1:Provided thath′′(φ) > 0 for all φ or h′′(φ) < 0
for all φ , the n-dimensional firing map (4) is contracting
(resp. expanding) with respect to the 1-norm

‖Φ‖ = |φ1|+ |φ1−φ2|+ · · ·+ |φn−1−φn|+ |φn| (15)

if |h′(φ)| < 1 (resp.|h′(φ)| > 1) ∀φ ∈ [0,1].

One notes that the LIF modelF(x) = S+ γx satisfies the
assumptions of Theorem 1. Indeed, it is equivalent to the
piecewise linear model, with[x,x] = [0,1] (or [x,x] = [−1,0]),
and the scalar firing map has the property

h′′(φ) = Tγ2ε
F [ f (1−φ)]

F [ f (1−φ)+ ε]2
> 0.

The proof of Theorem 1 makes a parallel with the con-
traction property of the scalar firing map. More precisely, it
shows that the linear mapL is an isometry for the distance
induced by the above norm while the contraction property
of the firing map is determined by the nonlinearity∆(·). It
can be noted that the assumption onh′′ is only sufficient
(and not necessary) to prove the contraction property with
respect to the norm (15). In addition, we suspect that every
firing map characterized by|h′| < 1 (or |h′|> 1) but without
verifying the assumptions onh′′ has a contraction property
with respect to a well-chosen norm.

The fact that the global contraction property of the firing
map is established by means of a 1-norm rather than a 2-
norm points to a potential limitation in studying (4) as an
absolute stability problem [9], [10]. For instance, the circle
criterion imposes additional slopes restrictions onh(·).

B. A counterexample for n= 2

The valueφδ in (9) separates the interval[0,φδ ] over
which the scalar firing map is contractive from the interval
[φδ ,1] over which it is expanding. Numerical simulations
with many models satisfying Assumption 1 suggest that
the dichotomy established forn = 1 does persist in higher
dimensions: the oscillators asymptotically converge to a
phase-locked configuration for(φδ > φ∗,δ > 0) (contraction
“on average” on[0,h−1(0)]) and asymptotically synchronize
for (φδ < φ∗,δ < 0) (expansion “on average” on[0,h−1(0)]).
This is not true, however, without extra assumption on the
firing map. This will be illustrated by an explicit construction
in the casen = 2. We will construct an example where
(φδ & φ∗,δ & 0) and where the fixed point is unstable.

For n = 2, the 2×2 Jacobian matrix of (4) evaluated at
the fixed point is given byJ(Φ∗) = −DL , where

D = diag{|h′(φ∗
2 )| |h′(φ∗

2 −φ∗
1)|}

and with the isometric matrixL corresponding to (6). One
first considers the conservative situation ˆx+ x̂= 0 character-
ized by a scalar firing map̂h satisfying (7) withδ = 0, i.e.
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ĥ(φ) = ĥ−1(φ). The fixed point verifieŝφ∗
2 − φ̂∗

1 = ĥ(φ̂∗
2 ) and

the product of the entries ofD is

|ĥ′(φ̂∗
2 )|.|ĥ′(φ̂∗

2 − φ̂∗
1 )| = |ĥ′(φ̂∗

2 )|.|ĥ′[ĥ(φ̂∗
2 )]| = 1, (16)

since ĥ′(φ) = [ĥ−1(φ)]′ = [ĥ′(ĥ−1(φ))]−1 = [ĥ′(ĥ(φ))]−1.
Consider now a system with the sameF and x but with
a slightly largerx, so thatx+x & 0 andδ & 0. One focuses
on the effect on the product, which writes

|h′(φ∗
2 )|.|h′(φ∗

2 −φ∗
1 )| = F [ f (φ∗

1 )− ε]

F [ f (φ∗
1 )]

F [ f (φ∗
2 )− ε]

F [ f (φ∗
2 )]

, (17)

since the fixed point satisfies

f (φ∗
1 )− ε = f (1−φ∗

2 ),

f (φ∗
2 )− ε = f (1+ φ∗

1 −φ∗
2 ).

(18)

Given (1) and (2), the equalities (18) are equivalent to

P[ f (φ∗
1 )− ε] =T −P[ f (φ∗

2 )],

P[ f (φ∗
2 )− ε]−P[ f (φ∗

1)] =T −P[ f (φ∗
2 )].

(19)

If x increases, thenT increases. Using the fact thatP(x) is
increasing with respect tox, one can deduce from (19) that
both values f (φ∗

1 ) and f (φ∗
2 ) increase. Depending on the

derivative
d
dx

[

F(x− ε)

F(x)

]

(20)

and on the values f̂ (φ̂∗
1 ) and f̂ (φ̂∗

2 ) of the case
(x̂+ x̂ = 0, δ = 0), it is possible that a slight increase ofx
increases the product (17) such that

|h′(φ∗
2 )|.|h′(φ∗

2 −φ∗
1 )| > |ĥ′(φ̂∗

2 )|.|ĥ′(φ̂∗
2 − φ̂∗

1 )| = 1

when δ & 0. In this case, at least one eigenvalue verifies
|λi | > 1 and the fixed point is locally unstable, in spite of
the positive valueδ characterizing the scalar firing map. As
an example of this situation, we propose the following model.

Example: Let the oscillators be characterized by the
piecewise linear dynamics ˙x = F(x) = S+ γ|x|, S,γ > 0.
Assumption 1 is satisfied and Proposition 2 implies that the
scalar firing map has the properties (7) and (9). The derivative
(20) satisfies the inequality

d
dx

[

F(x− ε)

F(x)

]

{

≤ 0 if x∈ [0,ε] ,

> 0 elsewhere.

We then show that, in the situationδ = 0, neither f̂ (φ̂∗
1 )

nor f̂ (φ̂∗
2 ) can lie in [0,ε]. It follows from (12) thatδ = 0

implies f̂−1(−x) = 1. The property (11) thereby becomes
f (φ) = − f (1−φ) and equation (18) leads to

f̂ (φ̂∗
1 )− ε = f̂ (1− φ̂∗

2) = − f̂ (φ̂∗
2 ). (21)

On the other hand, the second equation in (19) im-
plies that f̂ (φ̂∗

2 )− ε > f̂ (φ̂∗
1 ). Therefore, if f̂ (φ̂∗

1 ) ∈ [0,ε],
then f̂ (φ̂∗

2 ) > f̂ (φ̂∗
1 )+ ε ≥ ε, which contradicts (21). And if

f̂ (φ̂∗
2 )∈ [0,ε], then f̂ (φ̂∗

1 ) < f̂ (φ̂∗
2 )− ε ≤ 0, which again con-

tradicts (21). Hence,|h′(φ∗
2 )|.|h′(φ∗

2 −φ∗
1 )| > 1 whenδ & 0

and the fixed point is unstable. Numerical simulations re-
inforce these observations about the absence of dichotomy.

For δ & 0, populations of oscillators characterized by the
piecewise linear modelF(x) = S+ γ|x| do not exhibit phase-
locked clustering configurations, but more complex (even
aperiodic) behaviors. �

The above counterexample clearly shows that additional
conditions onh(·) must be added to ensure that the di-
chotomy persists with then-dimensional firing maps.

V. A LOCAL STABILITY RESULT

A local analysis has highlighted that the dichotomy does
not hold for some models satisfying Assumption 1. In this
section, we consider the local stability of the fixed point
of the n-dimensional firing maps in order to determine the
conditions for the dichotomy to persist. It has been seen that
the fixed point stability, for valuesδ close to 0, depends on
the derivative (20). In particular, the fixed point (of the 2-
dimensional firing map) is stable for allδ > 0 (resp. unstable
for all δ < 0) if (20) is strictly negative for allx ∈ [−1,1].
In this case, it follows that the second derivativeh′′(φ) is in
turn negative, according to (13). The additional condition

h′′(φ) < 0 ∀φ (22)

appears to be a sufficient condition to ensure the dichotomy
of the behaviors. When (22) is satisfied, local stability of
the n-dimensional firing map can actually be established,
which is the statement of Theorem 2. As a preliminary to
this important result, we need the following proposition,
whose proof is performed in Section VI.

Proposition 4: Let

P(z) = anbnzn +an−1bn−1zn−1 + · · ·+a0b0.

If the following conditions hold
• an > an−1 > · · · > a0 > 0,
• bn−k = bk, ∀k,
• The sequence(b0,b1, . . . ,bn) is positive and convex,

i.e. bk > 0 for all k and bk − bk−1 ≤ bk+1 − bk for
k = 1, . . . ,n−1,

then all roots ofP are strictly in the unit-disk:P(z) = 0⇒
|z| < 1.

The local stability ofn-dimensional firing maps satisfying
(22) is established with the help of Proposition 4.

Theorem 2:If the scalar firing map (3) satisfies (7) and
(9) with δ > 0 (resp.δ < 0) and if h′′(φ) < 0 ∀φ , then the
fixed point of then-dimensional firing map (4) is locally
stable (resp. unstable).

Proof: We consider the caseδ > 0 without loss of
generality, since the proof forδ < 0 follows on similar lines.
Then×n Jacobian matrix of (4) evaluated at the fixed point
is given byJ(Φ∗) = −DL , where

D = diag{|h′(φ∗
n )||h′(φ∗

n −φ∗
1)| · · · |h′(φ∗

n −φ∗
n−1)|}.

The corresponding characteristic polynomial is

P(z) =
n

∑
k=0

zk
n

∏
j=k

p j , (23)
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with p0 = |h′(φ∗
n )|, pn = 1, and p j = |h′(φ∗

n − φ∗
j )| for

j = 1, . . . ,n−1.
First, one compares the fixed pointΦ∗ of the firing

map with the fixed pointΦ̂∗
j of a conservative firing map

constructed with the scalar maph(φ + δ ). The coordinates
φ∗

j and φ̂∗
j respectively solve the sets of equations



















φ∗
1 = h(φ∗

n )
φ∗

2 = h(φ∗
n −φ∗

1)
...

φ∗
n = h(φ∗

n −φ∗
n−1)

(24)

and


















φ̂∗
1 = h(φ̂∗

n + δ )

φ̂∗
2 = h(φ̂∗

n − φ̂∗
1 + δ )

...
φ̂∗

n = h(φ̂∗
n − φ̂∗

n−1+ δ )

. (25)

Let B1(φ) = φ and Bi(φ) = φ −h[Bi−1(φ)] for i = 2, . . . ,n.
The special structure of (24) and (25) implies that
φ∗

n = h[Bn(φ∗
n )] and φ̂∗

n = h[Bn(φ̂∗
n + δ )]. Next, suppose that

φ∗
n > φ̂∗

n + δ . Since h′ < 0 and B′
i > 0 (see Appendix), it

follows that

φ∗
n = h[Bn(φ∗

n )] < h[Bn(φ̂∗
n + δ )] = φ̂∗

n ,

which contradicts the previous assumption. Then, one
has φ∗

n < φ̂∗
n + δ and the recursive comparison of

(24) and (25), starting from the first line, leads to
φ∗

j > φ̂∗
j and φ∗

n −φ∗
j < φ̂∗

n − φ̂∗
j + δ for j = 1, . . . ,n−1.

Given the assumptionh′′ < 0, one hash′(φ∗
n ) > h′(φ̂∗

n + δ )
and h′(φ∗

n −φ∗
j ) > h′(φ̂∗

n − φ̂∗
j + δ ). This can be rewrit-

ten as p j < p̂ j for j = 0, · · · ,n−1, where we denote
p̂0 = |h′(φ̂∗

n + δ )| and p̂ j = |h′(φ̂∗
n − φ̂∗

j + δ )|. Each valuep j

can therefore be expressed as the decomposition

p j = α j p̂ j , j = 0, · · · ,n−1, (26)

with 0 < α j < 1.
According to (7), one hash′(φ +δ ) = 1/h′[h−1(φ)]. Sim-

ilarly to (16), some elementary computations in (25) then
lead to the equalities

p̂ j p̂n−1− j = 1, j = 0, · · · ,n−1. (27)

In addition, it follows from the assumptionh′′ < 0 that

0 < p̂ j < p̂ j−1, j = 1, · · · ,n−1. (28)

Settingan = bn = 1 and

ak =
n−1

∏
j=k

α j , bk =
n−1

∏
j=k

p̂ j , k = 0, · · · ,n−1,

the inequality 0< α j < 1 leads toan > an−1 > · · · > a0 > 0
and (27) implies bn−k = bk. Finally, it follows from
(p̂k−1)2 ≥ 0 andpk−1 > pk (28) that p̂k p̂k−1 +1−2p̂k ≥ 0.
Since p̂k = bk/bk+1, one has the convexity condition
bk−bk−1 ≤ bk+1−bk for k = 1, · · · ,n− 1. The polynomial
(23) satisfies the assumptions of Proposition 4. This implies
that the fixed point is locally stable, which concludes the
proof.

One easily verifies that the exponential model
ẋ = F(x) = Sexp(x2) has a scalar firing map which
satisfies the assumptions of Theorem 2. The dichotomy is
thus proved (locally) for this model, that is, the behavior
of the oscillators is dichotomic, at least for configurations
close to the fixed point.

For a certain range of parameters, Theorem 2 also
applies to the QIF modelF(x) = S+ x2, which is similar
to the exponential model (see Fig. 1). However, the
scalar firing map does not satisfy the propertyh′′(φ) > 0
∀φ in full generality, so that the coefficients in the
characteristic polynomial (23) cannot be decomposed as
(26), with 0< α j < 1. It follows that Theorem 2 does
not characterize the behavior of the QIF model in full
generality. However, numerical simulations suggest great
evidence of the dichotomy in QIF model. It leads to the
following conjecture.

Conjecture 1:For the QIF modelF(x) = S+x2, the fixed
point is locally stable (resp. unstable) ifδ > 0 (resp.δ < 0)
in (7). In other words, ifx+x > 0 (resp.x+x< 0), then all
the roots of the polynomial (23), with

p j =
F[ f (φ∗

j+1)− ε]

F [ f (φ∗
j+1)]

, j = 0, . . . ,n−1

and pn = 1, are inside (resp. outside) the unit-disk:
P(z) = 0⇒ |z| < 1 (resp.|z| > 1).

The length of intervalI = {φ ∈ [0,1]|h′′(φ) > 0} seems
to be an appropriate criterion to determine whether the
dichotomy holds. An intervalI = /0 corresponds to the
exponential model and Theorem 2 implies the dichotomy.
Conversely, for the dynamicsF(x) = S+ γ|x|, the interval
I is quite large and the dichotomy does not hold. The QIF
model, characterized by a short intervalI , corresponds to an
intermediate situation between the two previous models.

VI. PROOF OF PROPOSITION 4

The proof of Proposition 4 relies on a geometric property.
Suppose that starting from an initial points0 in the plane,
one moves by a distancec, calls the arrival points1, then
rotates by an angleθ , moves by a distancec in the new
direction, callss2 the arrival point, and keeps repeating these
operations. It is well known that all pointssk lie in that case
on a same circle and are thus all at equal distance from
the centerg of that circle. The next Lemma states that if
the distance traveled at each iteration varies, then provided
that the sequence of distances is convex and increasing, the
sequence of distances betweensk andg is nondecreasing. Its
proof, omitted for space reasons, is available in [11].

Lemma 1:Let (c0,c1, . . . ,cm) be a nonnegative non-
decreasing convex sequence, and fixθ ∈ (0,2π). Let
s−1 = −c0/2, andsk = sk−1+ckeikθ for all otherk. Let then
g = i c0

2tan(θ/2)
. There holds

|s−1−g|= |s0−g| ≤ |s1−g| ≤ · · · ≤ |sm−g| .
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To prove Proposition 4, we also need the notion of
strict convex hull. Thestrict convex hullof a set of points
s1, . . . ,sn ∈ R

d is the set{∑i λisi : λi > 0,∑i λi = 1}. The
following Lemma, proved in [11], is a consequence of the
convexity of the distance.

Lemma 2:Let s1, . . . ,sn ∈ R
d be a set of points that are

not all equal andz a point in the same space. If there exists
g∈ R

d such that||z−g||2 ≥ ||sk−g||2 for everyk = 1, . . . ,n,
thenz does not belong to the strict convex hull ofs1, . . . ,sn.

We can now prove Proposition 4.

Proof: Fix a polynomial P. Clearly, P(reiθ ) 6= 0 if
θ = 0. Fix then aθ ∈ (0,2π), and let

sn = bneniθ

sn−1 = bneniθ + bn−1e(n−1)iθ

sn−2 = bneniθ + bn−1e(n−1)iθ +bn−2e(n−2)iθ

...
s0 = . . .

(29)

We first prove that 0 does not belong to the strict convex
hull of these points. Suppose thatn is even, and thus that

(bn,bn−1, . . .b0) = (cm,cm−1, . . . ,c1,c0,c1, . . .cm),

with m = n/2, and where the sequencec0,c1, . . . ,cm is
nonnegative, nondecreasing, and convex. Let

g′ = cme2miθ +cm−1e
(2m−1)iθ + · · ·+c1e(m+1)iθ +

c0

2
emiθ .

For every k, let then qk = e−miθ (sk−g′), with the con-
vention thatsn+1 = 0. The inclusion relations are invariant
under rotations and translations, so 0 is in the strict convex
hull of s0,s1, . . . ,sn only if qn+1 is in the strict convex
hull of q0,q1, . . . ,qn. Observe thatqm+1 = −c0/2, and that
qm−k = qm+1−k +cke−kiθ . Lemma 1 implies then the exis-
tence of ag on the imaginary axis such that

|qm+1−g| ≤ |qm−g| ≤ |qm−1−g| ≤ · · · ≤ |q0−g|. (30)

Moreover, observe thatqm+k = −q̄m+1−k, i.e., they have
the same imaginary part and opposite real parts. There
holds therefore|qm+k−g| = |qm+1−k−g| since g has no
real part. Together with the inequality (30), this implies
that |qn+1−g| ≥ |qk−g| for every k. It follows then from
Lemma 2 thatqn+1 is not in the strict convex hull of the
qk, and thus that 0 is not in the strict convex hull of the
sk since the inclusion relations are invariant under rotations
and translations. Ifn is odd, a similar argument based on a
variation of Lemma 1 can be made, as described in [11].

Suppose now, to obtain a contradiction, thatP(reiθ ) = 0
for somer ≥ 1. Dividing P(reiθ ) = 0 by rn, we obtain:

anbneniθ +an−1r
−1bn−1e(n−1)iθ + · · ·+a0r

−nb0 = 0. (31)

Without loss of generality, assume thatan = 1. Observe that
since r ≥ 1 and 1= an > an−1 > .. .a0 > 0, there holds
1 = an > an−1r−1 > · · · > a0r−n. Let λ0 = a0r−n, and for
k = 1, . . . ,n, λk = akrk−n − ak−1rk−1−n. Clearly, λk ∈ (0,1)

holds for everyk, and∑k λk = an = 1. We can then rewrite
equation (31) as

0 = λn
(

bneniθ )

+ λn−1

(

bneniθ +bn−1e(n−1)iθ
)

...

+ λ0

(

bneniθ +bn−1e(n−1)iθ + · · ·+b0

)

,

or equivalently as 0= ∑n
k=0 λksk, for the sk defined in (29).

This contradicts however the fact that 0 does not belong to
the strict convex hull of thesk. Therefore,P(reiθ ) 6= 0 if r ≥ 1
andθ ∈ (0,2π), which achieves our proof.

VII. CONCLUSIONS

In the present paper, we studied the behavior of pulse-
coupled integrate-and-fire oscillators. The evolution of the
oscillators is described by the so-called firing map, which
has a very special structure. In particular, the stability of the
n-dimensional firing map is determined by the properties of
the corresponding scalar firing map.

For two oscillators, the unique fixed point of the scalar
firing map is either globally stable or anti-stable. It results
in a dichotomic behavior of the oscillators, which are either
asymptotically phase-locked or perfectly synchronized.

The study is extended to then-dimensional firing map. In
some particular cases — such as the leaky integrate-and-fire
(LIF) oscillators — the firing map has a contraction property
and the dichotomic behavior shown forn= 1 still persists in
higher dimensions. On the other hand, a counterexample is
considered, which shows that the dichotomy is not a general
property whenn > 1. In spite of strong numerical evidence,
establishing the dichotomy of the quadratic integrate-and-fire
(QIF) model remains an open question.
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APPENDIX

Proof of Proposition 1

We proceed in three steps.

Step 1: Let B1(φ) = φ and Bi(φ) = φ − h[Bi−1(φ)]
for i = 2, . . . ,n + 1. We proof the following property.
For i = 1. . . ,n+1, there exists a value 0≤ φc

i such that
Bi(φc

i ) = 0 and such thatB′
i(φ) > 0 and 0< Bi(φ) < 1

∀φ ∈ [φc
i ,1). This is trivial for B1(φ) = φ , with φc

1 = 0. Con-
sidering the property to be true forBi−1 with i ∈{2. . . ,n+1},
we proceed by induction. One first obtains

B′
i(φ) = 1−h′[Bi−1(φ)]B′

i−1(φ) > 0 ∀φ ∈ [φc
i−1,1] (32)

since h(·), evaluated onBi−1(φ) ∈ [0,1], is strictly de-
creasing. Then, noting thatφc

i−1 < 1 and thath(0) > 1 by
construction, we have

Bi(φc
i−1) = φc

i−1−h[Bi−1(φc
i−1)] = φc

i−1−h(0) < 0. (33)
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Moreover, one easily computes that

Bi(1) = 1− f−1[x+(i −1)ε] > 0 (34)

since i ≤ n+ 1 < (x− x)/ε + 1. As a consequence of (32),
(33), (34), and the continuity ofBi, there exists a unique
φc

i , with φc
i−1 < φc

i < 1, such thatB(φc
i ) = 0. Noting that

Bi(1) < 1, it follows that 0≤ Bi(φ) < 1 ∀φ ∈ [φc
i ,1).

Step 2:A fixed point of the firing map (4) verifies

φ∗
i = h[Bi(φ∗

n )], i = 1, . . . ,n. (35)

One deduces that the condition (5) implies 0< φ∗
n −φ∗

i < 1,
or equivalently

0 < Bi(φ∗
n ) < 1, i = 1, . . . ,n. (36)

Moreover, it also holds

Bn+1(φ∗
n ) = 0. (37)

According to the above properties ofBi , the valueφ∗
n = φc

n+1
exists and is the unique solution of (37) which verifies all the
conditions (36). The valuesφ∗

i are then explicitly determined
by (35).

Step 3:One verifies that the fixed point does not violate
the ordering conditions (5). First, we have

φ∗
1 = h[B1(φ∗

n )] = h(φ∗
n ) > 0.

Furthermore, knowing that

h[B∗
2(φ

∗
n )] = h{φ∗

n −h[B1(φ∗
n )]} > h(φ∗

n ) = h[B∗
1(φ

∗
n )],

the other relations follow by induction. If
h[Bi(φ∗

n )] < h[Bi+1(φ∗
n )] for i = 1, . . . ,n, then

h[Bi+2(φ∗
n )] = h{φ∗

n −h[Bi+1(φ∗
n )]}

> h{φ∗
n −h[Bi(φ∗

n )]} = h[Bi+1(φ∗
n )].

At last, one hasφ∗
n < 1. This concludes the proof.
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