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Global Analysis of Firing Maps

A. Mauroy, J.M. Hendrickx, A. Megretski, and R. Sepulchre

Abstract—In this paper, we study the behavior of pulse- Popular oscillator models include the L(eaky)IF model and
coupled integrate-and-fire oscillators. Each oscillator is char- the Q(uadratic)IF model. Our previous study [8] has revealed
acterized by a state evolving between two threshold values. As an interesting dichotomy of the LIF model since only two
the state reaches the upper threshold, it is reset to the lower totic behavi ible. Either th lar firi
threshold and emits a pulse which increments by a constant asym_p olc be .aV|0rs are pO_SS' e. Either _e Scalar niring
value the state of every other oscillator. map is contracting and all oscillators asymptotically converge

The behavior of the system is described by the so-called to a phase-locked clustering behavior, or the scalar firing map
fiing map: depending on the stability of the firing map, s expanding and all oscillators eventually synchronize.
an important dichotomy characterizes the behavior of the In contrast to the LIF model, more general models (in-

oscillators (synchronization or clustering). The firing map is . . .
the composition of a linear map with a scalar nonlinearity. cluding the QIF model) have a scalar firing map that is

After briefly discussing the case of the scalar fiing map contracting over some phase intery@l¢| and expanding
(corresponding to two oscillators), the stability analysis is over the complementary intervi, 1]. Interestingly, numer-
extended to the generaln-dimensional firing map (for n+1  jcal simulations suggest that the behavior is still dichotomic
oscillators). Different models are considered (leaky oscillators, for most of the models: phase-locked clustering when the
quadratic oscillators,...), with a particular emphasis on the firi . S " and h h
persistence of the dichotomy in higher dimensions. Iing map 1S cc_)ntractlng_ on average™ and synchrony when

the firing map is expanding “on average”.

I. INTRODUCTION The present paper reports on current progresses to char-

Populations of interacting oscillators have attracted corficterize the dichotomic behavior from the global analysis of
tinuing interest among the scientific community for the last® fifing map. We establish the dichotomy for the scalar
decades. While the behavior of a single oscillator is simpldling map @ = 1) but we show that its extension to higher
the nonlinear nature of the interactions may trigger conflimensions depends on finer properties of the scalar firing
plex behaviors of the whole system. Beyond their practicdl'P- . ) )
interest, such systems have led to numerous exciting open! "€ Paper is organized as follows. In Section I, the pulse-
problems [1], [2], [3]. coupleq model is dt_ascrlbed and th_e firing map is m_troduce_d.

In the present paper, we focus on systems of integrate-adﬂ-part'cglar! the existence a_nd uniqueness of the fixed point
fire oscillators [4] characterized by an impulsive couplingiS established in full generality. Section Ill is devoted to the
Although the model was first described to study pacemak8fobal analysis of the scalar firing map. In Section 1V, the
cells of the heart [5], it applies to other contexts. In particulageneran-dimensional firing map is considered. Whereas the
pulse-coupled oscillators are used to simulate neurons [6]dichotomy is shown for some particular firing maps in IV-A,

The seminal work of Mirollo and Strogatz [7] reduces® counterexample is presented in IV-A. In Section V, a local
the analysis ofn+1 coupled integrate-and-fire oscillatorsStability result complements the analysis in théimensional

to the analysis of the firing map, a map describing thgase. It is established with the help of a technical result,
n phase differences at successive, firing times. Thel- whose proof is performed in Section VI. We conclude with

dimensional firing map has a very special structure: it is theection VII.

composition of a linear (isome_tric) map an_d_ a nonlinear map|; A FIRING MAP TO STUDY PULSE-COUPLED

deriving from th_e corresponding scalar firing map c_ieflned OSCILLATORS

over the phase intervdD, 1]. The latter can be analytically , i ) . .

computed from the scalar differential equation modeling the AN intégrate-and-fire oscillator is described by a scalar

(integrating) behavior of a single phase oscillator. state variablej, which monotonically increases between two
thresholdsx and X according to the dynamics = F(x),
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For the sake of simplicity, a phagee [0,1] is introduced, nx n matrix

which is determined from the state of oscillatdny rescaling o .. 0 1
in such a way thatg = 1 corresponds to the high-threshold 1 0 0 1
and@ =1/T, whereT is the natural period of the oscillator. L= , (6)
The evolution of a single — uncoupled — oscillator is then 0 - 0
described by the function 0 0 -11
x = (@) 2P [Taql, 1) with a repeated static nonlinearity({) = [h({1)---h({n)]-

The linear map. provides the firing map with a particular
with P(x) defined as the time required by the statét), chain structure, which implies that the firing map has a

solution ofX; = F(x;), xi(0) =X, to reach the value : unique fixed pointd*, as stated in the following result.
P(x) :/Xi,dx, PX)=T. 2 Proposition 1: Provided thatn < (X — x)/g, the n-
x F(X) dimensional firing map (4), which satisfies the phase ordering
The impulsive coupling only occurs at the precise fir(5), has a unique fixed point.
ing times, where the oscillators receive a phase advance Proof: See Appendix. u
and jump from phasep to phase miaf ~1[f(@)+ £],X). The upper-bound onensures that+1 distinct oscillators

Between two firings, every phase evolves with a constag@in coexist over the rangee [0,1]. If n was larger than the
velocity @ = 1/T, without any coupling. The firing map bound given, no fixed point for the-dimensional firing map
introduced in [7] is the application that maps the (sortedgould exist since there would always be an absorption within
oscillator phases from one firing instant to their (sorted) steps. The unique fixed point of the firing map represents
phases at the next firing instant. Even though it “omitsthe unique phase-locked configuration of the- 1 distinct
the continuous time evolution of the oscillators between th@scillators spread over the ran{§e1]. This situation, called
firings, the firing map provides a full characterization of theclustering, is studied in [8].
system evolution. . _ _ ~1ll. GLOBAL ANALYSIS OF THE SCALAR FIRING

For two oscillators, the firing map is a one-dimensional MAP

map which expresses as . . .
P P We make the following assumption on the integrate-and-

ot =h(@) & f1f(1-qp)+¢. (3) fire modelx = F(x).

Assumption 1: ) : [-1,1] — R is continuous positive,
even, smooth, and strictly monotone (1.

In the sequel, we assume without loss of generality that
Ix,X] C [-1,1], so thatF(-) is always defined ofix,X]. Most
of the usual integrate-and-fire models satisfy Assumption 1.
A representative model of this class is the quadratic integrate-
and-fire (QIF) model, which corresponds fqx) = S+ x?,
S> 0. A so-calledpiecewise lineamodel is characterized
by the dynamics(x) = S+ y|x|, S,y > 0. The well-known

Given the phasep of oscillator 1 when oscillator 2 fires,
the firing map expresses the phage of oscillator 2 at the
next firing (of oscillator 1), and vice versa. At each iteration
the phase of the firing oscillatop 0) is omitted: the map
is scalar. In additionh(-) is strictly decreasing since the
evolution f is strictly increasing.

For n+ 1 distinct oscillatorsr{ > 1), the firing map is the
n-dimensional generalization of the scalar firing nigp. It

's given by leaky integrate-and-fire (LIF) model, with(x) = S+ yx and
¢ = him) [x,X] = [0,1], appears to be equivalent to the piecewise linear
@ = h(gm—o) model. (The casg< 0 is actually equivalent to the piecewise
H(®) = : - (4)  linear model with threshold, X = [—1,0].) In addition, the

@ _ h(gh— gh 1) exponential modeF (x) = Sexp(x?), S> 0, is also in the
B class of considered models. (See Fig. 1).
Whenever an oscillator fires, it receives the index 1 — With the dynamics defined above, the scalar firing map
its phaseg, .1 = 0 is omitted in (4) — and th@ remaining has an important property. A well-chosen translation of the
oscillators receive the indeéxaccording to the phase orderingscalar firing map, i.eh(¢+ ), has a reflection symmetry
with respect to the bisectrix (Fig. 2). This property of the
hi1=0<@p<@p<--<@<l (®)  scalar firing map is summarized in the following proposition.

The successive iterations of the firing meg®) describe P ition 2- Under A tion 1. th di
the evolution of the phases at each firing instant. When an Irop?s_u lon 2 g er i ?_sun:E lon 2, te corresponading
absorption occurs, it can be noted that theimensional scalar firing map (3) satisfies the property
vector is sent onto ar-dimensional space, witm' < n. h(-+8)=h"1()-3, )
The evolution of the’ + 1 remaining distinct oscillators is
subsequently described by thedimensional firing map.
The firing map (4) has remarkable properties. It is the @s—h(gs) =0 ®)
compositionH = AoL of a linear map, characterized by the W (@s)] =1 '

where (9, @5) is the unique solution of
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satisfying Assumption 1. The behavior of the corresponding firing m
differs whenx+X> 0 or x+X < 0.
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Fig. 2. The scalar firing map has an important property: the higpt o)
has a reflection symmetry with respect to the bisectrix.

The valued has the same sign astX and is a continuous
function of x+X, for a givenF(-). Moreover,

W (@) <1 Vo< @s. ©)

Proof: Since F is even, it follows from (2) that
P(—x) = —P(x) + P(—x). Consequently, one has
fH—x) =—f1x)+f1(~x (10)
and
f(@) = —fl-+f (-x)]. (11)
Properties (10) and (11) lead to
h () =1 f[f(p) —&],
=1-f Y-+ -f(p) +e],
—1-f- 1 —X)+ (o4 FH(—x) + ],
- ) +hlg+1- (x|
Setting
5=1-f1—x) =1-P(—x)/T, (12)

one obtains (7) and the continuity éfwith respect tax and

x follows from the continuity of P. In addition, the value

0 is positive ifP(—x) < T = P(X), or equivalently ifx+X> 0.
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Three models (quadratic, piecewise linear, and exponenti

It follows from (1) and (2) that

-1
f'=T <g) ~TF.

From the expression of the scalar firing map (3), one obtains
the derivative

o Fd-9  F[f(1-9)]

"= Twe) ~ Fra-gra Y
Equations (8) and (12) lead to the equality
flgs — 1+ f1(—x)] = f(1— @) +€&. According to the

aEroperty (11), one obtains f(1—¢@s) = f(1—¢@5) + € and

follows that|h'(@s)| = 1. SincedF/dx> 0 for x > 0, (13)
implies that|l (@)| < 1 for ¢ < @s. [ |

The property (7) is of paramount importance since the
conditiond > 0 determines the global stability of the scalar
firing map. The following proposition summarizes the result.

Proposition 3: If the scalar firing map (3) satisfies (7) and
(9) with d > 0 (resp.d < 0), then its fixed point is globally
attracting (resp. repelling).

Proof: We proceed in two steps.

Step 1:We show that the firing map(-) has no nontrivial

2-periodic orbits, that is

h(g) =h"(9) (14)

admits no other solution but the fixed poipt = h(¢*). In
the plane(g, ¢™), a rotation of—1/4 of the axes results in
a change of variables

(.07 — (.0") = g(fp— o o+0").

It turns the bisectrix into thep*-axis — that is,p =0 —
and the scalar firing map(¢) becomes the map(¢). The
assumption (7) expresses as

~ (5 ~ (5 - ~

h{— =h|—=- v

(5+9)=h(75-9) v
and (9) is rewritten as

o~ -~ d

W(p)>0 Vo< N
These two properties imply that the equatfip) = h(— @),
which is equivalent to (14), has no other solution fut 0
(which corresponds to the fixed poigt). Hence, the return
mapR(-) £ h[h(:)] has a unique fixed point.

Step 2: We consider the casé > 0 without loss of
generality, since the proof fod < O follows on similar
lines. The fixed pointg* = h(¢*) cannot be larger than
@5 = h(@s) + 0 becaused > 0 andh’ < 0. Then,¢* < @5
implies that|h(¢*)| < 1, according to (9). It follows that the
derivative of the return map satisfie ¢*) = [ (¢*)]? < 1.
Moreover, it holds thaR (¢) = h'[h()]h (@) > 0. Since, in
addition, the return map has only one fixed p&*) = ¢*,
it can be written that

{¢*<R(¢)<qo if > ¢,

P<R(p) <@ if o< @*.
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This leads to The contraction property and the dichotomy shown
} . } } above forn = 1 persist in higher dimensions, under an
R(¢) =R = R@) —¢'| <|o—¢"| Yoo additional assumption oh”. This result is summarized in

and the fixed point oR is globally attracting. For every the following theorem [8].

e> 0, there exist integersl; and N, such that, for allp,
Theorem 1:Provided thah”(¢) > 0 for all g or b’ (¢) <0

IRV(9) — ¢*| = [PN() — ¢ <& for N > N, for all ¢, the n-dimensional firing map (4) is contracting
IRN(h(@)) — @*| = PPN+ (@) — ¢*| < e for N> N,. (resp. expanding) with respect to the 1-norm
It follows that, for everye > 0, there exists an integer Pl =]+ |o— @+ +|h-1—@|+|@|  (15)

Nz = max(2Np,2N; + 1 h that, for allp, .
s = max 2Ny, 2Nz +1) suc ral it |(g)] <1 (resp.|N(@)] > 1) Vo< [0,1].

Ih"(¢) —¢'| <e for N>Ns. One notes that the LIF modé&l(x) = S+ yx satisfies the

assumptions of Theorem 1. Indeed, it is equivalent to the

piecewise linear model, withx,X] = [0, 1] (or [x,X] = [—1,0]),

The stability of the fixed point leads to an interestingand the scalar firing map has the property
dichotomy. The scalar firing map dictates the evolution of y FIf(1—@)]
n+1=2 pulse-coupled oscillators. Stability of the fixed h'(¢) :Tyzem >
point thereby means that the two oscillators are asymptot- )
The proof of Theorem 1 makes a parallel with the con-

ically phase-locked: they have a constant phase difference’ " o ) X
©* —0= ¢ at each firing. Anti-stability of the fixed point traction property of the scalar firing map. More precisely, it

corresponds to asymptotic synchronization: the phase diffet0Ws that the linear malp is an isometry for the distance
-deuced by the above norm while the contraction property

of the firing map is determined by the nonlinearlty.). It

can be noted that the assumption lghis only sufficient

IV. GLOBAL ANALYSIS OF N-DIMENSIONAL (and not necessary) to prove the contraction property with
FIRING MAPS respect to the norm (15). In addition, we suspect that every

diring map characterized biyf| <1 (or || > 1) but without

Jerifying the assumptions oh” has a contraction property

Then, one has lifg_.« [N (@) — ¢*| = 0, which concludes the
proof.

after which the two oscillators remain synchronized.

The scalar firing map is characterized by an importa
dichotomy and it results that the oscillators, after a transient, h ll-ch
period, are either phased-locked or synchronized. In thi¥th respect to a well-chosen norm. »
section, we discuss the generalization of this dichotomy to 1h€ fact that the global contraction property of the firing
arbitrary dimensions. If the dichotomy persists with the Map is established by means of a 1-norm rather than a 2-
dimensional firing map, the behavior of+ 1 oscillators "OrM Points to a potential limitation in studying (4) as an
is simply characterized. Global stability of the fixed poin@2Solute stability problem [9], [10]. For instance, the circle
corresponds to the asymptotic phase-locked clustering b@iterion imposes additional slopes restrictionshgr).
hav_ior of.t_he oscillato_rs, Whic_h fire periodically, while gIoba_IB_ A counterexample for & 2
anti-stability of the fixed point corresponds to asymptotic , ,
synchronization of all oscillators. The value @5 in (9) separates the interva0, ¢s] over

When considering the decompositiod = Ao L of which the scalar firing map is contractive from the interval
the n-dimensional firing map, the linear map (6) acts [%,1] over which it is _expanding. Numerical simulations
as a mixing map while the repeated static nonlinearit}ith many models satisfying Assumption 1 suggest that
A(Q) = [N(Z1)---h(Zn)] provides the firing map with stability he dlchotomy establl_shed for=1 doe_s persist in higher
properties. The properties of the scalar firing map are therdimensions: the oscillators asympiotlcally converge to a
fore intimately linked to the stability of the-dimensional E)hase-locke:d conﬂgﬁulratlon féwps > ¢*, 5 > 0) (contraction
firing map. In the sequel, we show that conditions (7) ang’" average on0,h~(0)]) and asymptotically syrlghronlze
(9) are in general not sufficient to ensure the stability of thfP" (% < ¢*,5 < 0) (expansion “on average” do,h™~(0))).
n-dimensional firing map, although they still imply stabilityTh'S is not true, however, without extra assumption on the

under some additional simple assumptions. fmng map. This will be illugtrated by an explicit construction
in the casen = 2. We will construct an example where
A. Global analysis of firing maps with a contraction property(@s 2 ¢*,d = 0) and where the fixed point is unstable.

For dynamics verifying Assumption 1 and defined on FOrn=2, the 2x2 Jacobian matrix of (4) evaluated at
XX C [0,1] (resp.C [~1,0]), it follows from (13) that the the fixed point is given by(®*) = —DL, where
scalar firing map satisfies the propeity ()| < 1 (resp. i TNy
[N (®)| > 1) Vo € [0,1]. The scalar firing map is therefore D = diag{[i(¢5)l (%2 — @)}
contracting (resp. expanding) df,1], which implies that and with the isometric matrix corresponding to (6). One
the fixed point (of the scalar firing map) is globally stablefirst considers the conservative situatiom X = O character-
(resp. anti-stable). ized by a scalar firing map satisfying (7) withd =0, i.e.
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h(g) = h~1(¢). The fixed point verifie; — @i =h(¢s) and For & > 0, populations of oscillators characterized by the

the product of the entries d is piecewise linear modét (x) = S+ y|x| do not exhibit phase-
N A e A f A A locked clustering configurations, but more complex (even
since (@) = [h()) = [W(h ()]t = [(h(p))] 2. The above counterexample clearly shows that additional

Consider now a System with the Sarﬁeand)_( but with conditions Onh(') must be added to ensure that the di-
a slightly largerx, so thatx+X > 0 andd > 0. One focuses chotomy persists with tha-dimensional firing maps.
on the effect on the product, which writes V. ALOCAL STABILITY RESULT
I (@)W (@ — )| = Fif(g)—¢l F[f(@)—¢ (17) A local analysis has highlighted that the dichotomy does
' Fif(g)] Flf(g) not hold for some models satisfying Assumption 1. In this
. ) . . section, we consider the local stability of the fixed point
since the fixed point satisfies . : - : .
of the n-dimensional firing maps in order to determine the
f(of)—e=f(1—@), conditions for the dichotomy to persist. It has been seen that
(@) —e=F(1+¢f — @) (18)  the fixed point stability, for valued close to 0, depends on
) . ) the derivative (20). In particular, the fixed point (of the 2-
Given (1) and (2), the equalities (18) are equivalentto  gimensjonal firing map) is stable for all> 0 (resp. unstable
P[f () — ] =T —P[f(@)], (19) for all 8 < 0) if (20) is strictly negative for alb;‘?z [;1, 1].
el N T * In this case, it follows that the second derivativg) is in
PIf(92) — €] = PIf(@)] =T — P[T(¢2)). turn negative, according to (13). The additional condition

If X increases, thell increases. Using the fact thBtx) is 1
increasing with respect te, one can deduce from ((193) that (@) <0 Vo (22)
both valuesf(g) and f(¢g;) increase. Depending on the appears to be a sufficient condition to ensure the dichotomy
derivative of the behaviors. When (22) is satisfied, local stability of

d [F(XE)} (20) the n-dimensional firing map can actually be established,

dx | F(x) which is the statement of Theorem 2. As a preliminary to
this important result, we need the following proposition,
whose proof is performed in Section VI.

and on the valuesf(g) and f(g) of the case
(X+x=0,0=0), it is possible that a slight increase »f

increases the product (17) such that .
Proposition 4: Let

/0 x /0o % s N ok s SHN|
(@) -IN (@2 — )| > [N (@)] 1N (@2 — )| =1 P(2) = anbnZ" + an_1bn 12"+ - -+ agho.

when é 2 0. In this case, at least one eigenvalue verifieg the following conditions hold
|Ai| > 1 and the fixed point is locally unstable, in spite of
the positive valued characterizing the scalar firing map. As
an example of this situation, we propose the following model.
Example: Let the oscillators be characterized by the
piecewise linear dynamicg = F(x) = S+ y|x|, Sy > 0.

e @y>apn.1>--->ap>0,

o bn_k=byg, Vk,

« The sequenceby,bs,...,b) is positive and convex,
i.e. by > 0 for all k and by — bx_3 < byg,q — by for

k=1,...,n—-1
Assumption 1 is satisfied and Proposition 2 implies that th T ' . . . B
scalar firing map has the properties (7) and (9). The derivati%ez f" roots ofP are strictly in the unit-diskP(z) = 0=

(20) satisfies the inequality

; The local stability ofn-dimensional firing maps satisfying
d [F(x—¢ <0 if 0,¢
ax { go() )} {_ it xe[0,e], (22) is established with the help of Proposition 4.

>0 elsewhere

We then show that, in the situatiodi— 0, neither f(qﬁf) Th(_aorem 2:If the scalar firing_map (3) satisfies (7) and
(9) with 6 > 0 (resp.d < 0) and ifh’(p) < 0 Ve, then the

nor f() can lie in[0,¢]. It follows from (12) thatd =0 { . \ o )
implies f 1(—x) = 1. The property (11) thereby becomesf|xed point of then-dimensional firing map (4) is locally

flo) = —f(1— d tion (18) leads t stable (resp. unstable).
@) ( . fp) and equation (18) leads to Proof: We consider the casé > 0 without loss of

flg)—e=f1-@)=—f(®). (21) generality, since the proof fa¥ < O follows on similar lines.

Thenx n Jacobian matrix of (4) evaluated at the fixed point
On the other hand, the second equation in (19) irq-S givexn byJ(®*) = —DL whEar)e P

plies that f(g) — & > f(@f). Therefore, if f(¢}) € [0,€],

then (@) > f(@) + & > &, which contradicts (21). And if D = diag{ | (@) || (@ — @D)|-- 10 (¢ — @1 [}-
f(@)e[0,¢], thenf(g) < (@) — £ <0, which again con-
tradicts (21). Hencell'(¢;)|.In (¢ — ¢)| > 1 whend > 0 non
and the fixed point is unstable. Numerical simulations re- P(z) = Z)Zk I_Lp'" (23)
inforce these observations about the absence of dichotomy. Ko =

The corresponding characteristic polynomial is
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with po = [W(&)[, pn =1, and pj = [N (¢; — ¢)| for One easily verifies that the exponential model
j=1,...,n—-1. x=F(x)=Sexpx?) has a scalar firing map which
First, one compares the fixed poidt* of the firing satisfies the assumptions of Theorem 2. The dichotomy is
map with the fixed poin®* of a conservative firing map thus proved (locally) for this model, that is, the behavior
constructed with the scalar mdfyg+ 0). The coordinates of the oscillators is dichotomic, at least for configurations

@ and (ﬁj* respectively solve the sets of equations close to the fixed point.
. . For a certain range of parameters, Theorem 2 also
@ = him) applies to the QIF modeF (x) = S+ x2, which is similar
¢ = hig-e) (24) to the exponential model (see Fig. 1). However, the
: scalar firing map does not satisfy the propenty{¢p) > 0
@ = h(@g—-@ ) Vo in full generality, so that the coefficients in the
and characteristic polynomial (23) cannot be decomposed as
o = h(@+90) (26), with 0< aj < 1. It follows that Theorem 2 does
@ _ h((})ﬁfqﬁf+6) not characterize the behavior of the QIF model in full

(25) generality. However, numerical simulations suggest great
: L evidence of the dichotomy in QIF model. It leads to the
@ = hig—-—ag_,+9) following conjecture.
Let B1(@) = @ andB;j(@) = ¢ —h[Bi_1(¢)] for i=2,...,n. i i
The s(p(icial structu(re) of (24[) al’(1d)](25) implies that Conjecture 1:For the QIF modeF (x) = S+ %2, the fixed
@ = h[Bn(g')] and qbﬁ{ _ h[Bn((f); +5)]. Next, suppose that pomt is locally stable (_resp; unstable)df>£) (resp.d < 0)
G > (i’ﬁ +8. Sincel’ < 0 andB > 0 (see Appendix), it in (7). In other words, ix+X> 0 (resp.x-+X < 0), then all

follows that the roots of the polynomial (23), with
@ = hBn(95)] < h[Ba(G +3)] = G, oy — @) el
FIF(e )]

which contradicts the previous assumption. Then, one
has @ < qbﬁ{ + 0 and the recursive comparison ofand p, = 1, are inside (resp. outside) the unit-disk:
(24) and (25), starting from the first line, leads toP(z) =0= |z <1 (resp.|Z >1).

¢ >¢ and ¢ —@f <@g —¢ +0 for j:1,...A,n—1.

Given the assumptioh’” < 0, one hasY(¢;) > W (¢; +90) The length of interval = {@ € [0,1]|h"(p) > 0} seems
and W (g — @) >N (@ — ¢ +35). This can be rewrit- to be an appropriate criterion to determine whether the

ten as pj<p; for j=0,---,n—1, where we denote dichotomy holds. An intervall = 0 corresponds to the
Po = (@ + 8)| and 5} = | (@ — ¢ + 8)|. Each valuep; ~ exponential model and Theorem 2 implies the dichotomy.
can therefore be expressed as the decomposition Conversely, for the dynamicB(x) = S+ y|x|, the interval

| is quite large and the dichotomy does not hold. The QIF

pj=0ajpj, j=0,--,n—1, (26)  model, characterized by a short interVatorresponds to an
with 0 < aj < 1. intermediate situation between the two previous models.
According to (7), one hal'(¢+ d) = 1/W[h~1(¢)]. Sim-
ilarly to (16), some elementary computations in (25) then VI. PROOF OF PROPOSITION 4
lead to the equalities The proof of Proposition 4 relies on a geometric property.

@7) Suppose that starting from an initial poisg in the plane,
one moves by a distanag calls the arrival point,, then
In addition, it follows from the assumption’’ < 0 that rotates by an angl®, moves by a distance in the new

ﬁjﬁnflfj:]'? jzov"'vnil'

. L . direction, callss, the arrival point, and keeps repeating these
0<P<Pj-1, J=1--.n-1 (28) operations. It is well knownpthat all poinlﬁplie inpthat (?ase
Settinga, = by =1 and on a same circle and are thus all at equal distance from
n-1 n-1 the centerg of that circle. The next Lemma states that if
a = I_Laj’ bk = I_Lﬁj’ k=0,---,n—1, the distance traveled at each iteration varies, then provided
1= = that the sequence of distances is convex and increasing, the

the inequality 0< aj < 1 leads toa, > ay_1 > -+~ > ap > 0 sequence of distances betweerand.g is npndecreasing. Its
and (27) implies by x = be. Finally, it follows from proof, omitted for space reasons, is available in [11].

(P — 1) > 0 andpy_1 > pk (28) thatpipy_1 + 1 — 2Pk > 0. Lemma 1:Let (co,C1,...,Cm) be a nonnegative non-
Since px = bx/bky1, one has the convexity condition decreasing convex sequence, and fixe (0,2m). Let
b — bk 1 < b1 —bx for k=1,--- ,n—1. The polynomial s ;= —co/2, ands, = 1+ cx€*® for all otherk. Let then

(23) satisfies the assumptions of Proposition 4. This impliegg= im. There holds
that the fixed point is locally stable, which concludes the
proof. n Iss1—9gl=Iso—9g[<[s1—g/ < <[sm—0.
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To prove Proposition 4, we also need the notion oholds for everyk, and 3 Ax = a, = 1. We can then rewrite

strict convex hull. Thestrict convex hullof a set of points equation (31) as

Si,.--,5 € RY is the set{T;Ais : A > 0,5;A = 1}. The 0 = A, (bne™®)

following Lemma, proved in [11], is a consequence of the i0 (n-1)i0

convexity of the distance. An-1 (bne“ +bn-se )
Lemma 2:Let sq,...,s, € RY be a set of points that are

not all equal and a point in the same space. If there exists ' i0 (n-1)i0

g€ RY such that|z—g||, > ||sc— 9|, for everyk=1,...n, + Ao (bne” +bn-1€ +"'+b0)’

thenz does not belong to the strict convex hullgf...,s. o equivalently as 8= S oA, for the s, defined in (29).
We can now prove Proposition 4. This contradicts however the fact that O does not belong to

the strict convex hull of the,. ThereforeP(re'®) £0if r > 1

and 6 € (0,2m), which achieves our proof. [ |

VII. CONCLUSIONS

Proof: Fix a polynomial P. Clearly, P(re') # 0 if
6 =0. Fix then a@ € (0,2m), and let

= bye"®
: L = b:enig 4 by_qeln-Di In the present paper, we studied the behavior of pulse-
a i D ne2)i coupled integrate-and-fire oscillators. The evolution of the
Sh2 = bae® + b le( )if b ze( )ie 29
T n n n (29)  oscillators is described by the so-called firing map, which

: has a very special structure. In particular, the stability of the
S = ... n-dimensional firing map is determined by the properties of

. ) the corresponding scalar firing map.
We first prove that 0 does not belong to the strict CONVeX ¢ o oscillators, the unique fixed point of the scalar

hull of these points. Suppose thais even, and thus that  fjing map is either globally stable or anti-stable. It results
in a dichotomic behavior of the oscillators, which are either

bn,bn_1,...b0) = (cm,Cm-1,...,€1,C0,C1,...Cm), ; .
(Bn b1, bo) = (G, Cm-1 10,1, -Cm) asymptotically phase-locked or perfectly synchronized.

with m = n/2, and where the sequenag,ci,...,Cn is The study is extended to tlredimensional firing map. In
nonnegative, nondecreasing, and convex. Let some particular cases — such as the leaky integrate-and-fire
_ _ _ _ (LIF) oscillators — the firing map has a contraction property
g = €™ + Cy 1€ VIO 4 gy eMLIO %em'a. and the dichotomic behavior shown foe= 1 still persists in

_ higher dimensions. On the other hand, a counterexample is
For everyk, let then gx = e ™% (5—d'), with the con- considered, which shows that the dichotomy is not a general
vention thats,,1 = 0. The inclusion relations are invariant property whem > 1. In spite of strong numerical evidence,
under rotations and translations, so 0 is in the strict convesstablishing the dichotomy of the quadratic integrate-and-fire
hull of s9,s1,...,5 only if g1 is in the strict convex (QIF) model remains an open question.
hull of qo,qs,...,0dn. Observe thaim;1 = —Co/2, and that VIIl. ACKNOWLEDGMENTS
Om-k = Gme1-k + € M. Lemma 1 implies then the exis- . ' .
tence of ag on the imaginary axis such that This paper presents _research results of the Belgian Net-

work DYSCO (Dynamical Systems, Control, and Opti-

[Om+1—9 < |dm—9| <|dm-1—9| <---<|do—9g|. (30) mization), funded by the Interuniversity Attraction Poles
Programme, initiated by the Belgian State, Science Policy

Moreover, observe thatin.k = —Omi1-k I-€., they have ogice The scientific responsibility rests with its authors.
the same imaginary part and opposite real parts. There
holds therefore|qmik— 9| = |dmr1-k—9| Since g has no APPENDIX

real part. Together with the inequality (30), this impliesProof of Proposition 1

that g1 — 9| = [gk—g| for everyk. It follows then from  \e proceed in three steps.

. and thus that 0 fs not In the stict convex hul of tne, 9P L L€t Bi(0) = ¢ and Big) = ¢ - B 1(g)
Gk ri=2..n+1 We proof the following property.

S since the inclusion relations are invariant under rotations . i _ 1 n+1, there exists a value @ ¢f such that
and translations. If is odd, a similar argument based on aB'((RC) :(-). 'énd s’uch habi(o) = 0 o B < 1
variation of Lemma 1 can be made, as described in [11]. VI e [¢f,1). This is trivial foIrBl(fp) — @, with ‘Pf:IO Con-

Suppose now, to obtain a contradiction, tiR{te'®) =0  sidering the property to be true fBr_; withi € {2...,n+1},
for somer > 1. Dividing P(re'®) = 0 by r", we obtain: we proceed by induction. One first obtains
DL 4ar =0, (31) Bi(@)=1-N[Bi (@B _1(9) >0 Vee[¢g 1] (32)

since h(-), evaluated onBj_1(¢) € [0,1], is strictly de-
creasing. Then, noting that® ; < 1 and thath(0) > 1 by
construction, we have

anbne™"® +a,_1r by 1€

Without loss of generality, assume tret= 1. Observe that
sincer > 1 and 1=a, > a, 1 > ...a > 0, there holds
l=ap>ay, 1 1>--->ayr " Let A\g = agr ", and for
k=1,...,n, A= ar " —a 1" Clearly, A, € (0,1) Bi(g® 1) =¢1—-hBi_1(¢g°1)]=¢"1—h0)<0. (33)
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Moreover, one easily computes that

Bi(l)=1—f x+(i—1)¢ >0 (34)

sincei <n+1< (X—x)/e+1. As a consequence of (32),
(33), (34), and the continuity oB;, there exists a unique
¢°, with ¢, < ¢° < 1, such thatB(¢°) = 0. Noting that
Bi(1) < 1, it follows that 0< Bj(¢) <1 Vg€ [¢°,1).

Step 2:A fixed point of the firing map (4) verifies

@ = hBi(@)],

One deduces that the condition (5) implies@; — ¢@* <1,
or equivalently

(1]

i=1,...,n (35) 2]

(3]

0<Bi(g) <1, i=1...,n (36) [4]

Moreover, it also holds [5]
Bn+1(@y) =0. (37) @

[7]

According to the above properties Bf, the valueg; = ¢/, ,
exists and is the unique solution of (37) which verifies all the
conditions (36). The valueg* are then explicitly determined [8]
by (35).

Step 3:0ne verifies that the fixed point does not violate [9]
the ordering conditions (5). First, we have

@ = h{Bu(a)] = h(¢) > 0.

Furthermore, knowing that

h(Bz(¢h)] = h{g — h[Ba(¢h)]} > h(dh) = h[Bi(g)];

[10]

(11]
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the
h[Bi(@;)] < h[Bi+1(g;)] fori=1,...,n, then

other relations follow induction. If

by

h(Bi+2(@h)] = M{edh —h[Bia(e)]}
>h{g —hBi(¢)]} = h[Bi1(a)]-

At last, one hasg; < 1. This concludes the proof.
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