
Contribution to the Optimization of Closed-Loop Multibody

Systems : Application to Parallel Manipulators

J.-F. COLLARD1, P. FISETTE1 and P. DUYSINX2

1Université Catholique de Louvain, Center for Research in Mechatronics, place du
Levant, 2, B-1348 Louvain-la-Neuve, Belgium;
2Université de Liège, Département ProMéThé, chemin des Chevreuils, 1, Bât B52,
B-4000 Liège, Belgium

March 1, 2004

Abstract. This paper describes an original and robust method to optimize the de-
sign of closed-loop mechanisms, especially parallel manipulators. These mechanisms
involve non linear assembling constraints. During optimization, the Newton-Raphson
algorithm we use to solve these constraints may fail when the Jacobian matrix of
the constraints is ill-conditioned and stops the redesign process. To circumvent the
difficulty, the technique we propose takes advantage of numerical conditioning to
penalize the objective function. Applications to an academic example and parallel
robots demonstrate the capabilities of the methodology.

Keywords: design optimization, penalty, closed-loop multibody systems, parallel
manipulators

1. Introduction

Most of present issues in the field of multibody system (MBS) dynamics
involve other scientific disciplines to enlarge and enrich the results of the
MBS analysis. Combining multibody analysis and optimization tech-
niques has sometimes been exploited in the literature (e.g. : [1, 2, 3]),
but the few existing results are still not able to cope completely with
some limitations and/or conflicts. Several issues are addressed in recent
researches: applicability of optimization methods for some families of
MBS, problem formulation in terms of cost function, especially for
constrained systems, computer efficiency and parallel computation al-
gorithms, etc. However, current researches mainly produce guidelines
rather than rigid rules regarding the coupling of multibody dynamics
and optimization in a particular context, i.e. a family of applications
and a given type of objective function. As examples, one can cite
the optimal design of a vehicle transmission [1], of 3D manipulators
[4, 5, 6, 7, 8], the optimal synthesis of mechanisms [2, 9, 10] and parallel
robots [11, 12, 13] as well as the optimization of suspension and railway
vehicle [3, 14, 15], or machine tools [16].

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.1

2 J.-F. COLLARD ET AL.

Figure 1. Examples of closed-loop mechanisms

The present research tackles the optimization problem of MBS con-
taining three-dimensional kinematic loops as shown in Figure 1, involv-
ing :

• geometrical design parameters;

• a single scalar objective function whose nature may be geometrical,
kinematic or dynamical.

In this case, the question that is addressed is the following: how to
build a robust cost function for those systems such that a classical
optimization method can iterate with good convergence properties and
without troubleshooting in terms of loops closure (or “system assem-
bling”) ? For simple systems, one can obviously circumvent the problem
by expressing explicitly some optimization constraints on the geometri-
cal parameters (length of segments, amplitude of motion, etc.), but, as
soon as complex multi-loop systems like 3D parallel manipulators are
involved, this is not possible anymore. The original approach that is
used here is based on a penalty technique in which unreachable config-
urations (i.e. configurations where it is not possible to assemble or to
actuate the mechanism) and design constraint violations are avoided by
a large cost of the objective function. The proposed method extends the
parameter space and thus the cost function definition domain beyond
the feasible and assembly domain, leading to a continuous and well-
defined cost function. Hence, this allows to use efficient unconstrained
optimization methods as BFGS method, Nelder-Mead Simplex, etc. . .

The approach will be illustrated at first on the basis of a quite aca-
demic example: the design optimization of a planar ejector to improve
dynamical performances. Then the method will be applied on more
realistic problems: the dexterity optimization of a parallel manipula-
tor – the Hunt platform – to enhance kinematic performances. More
precisely, the goal is to maximize the average robot isotropy over a
workspace cube with respect to geometric design parameters.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.2

Contribution to the Optimization of Closed-Loop Multibody Systems 3

2. Optimization and Assembling Constraints

Before expressing the limitations due to assembling constraints, we will
briefly describe the multibody formalisms we use to compute the inverse
and direct models of constrained MBS which are generally involved in
the computation of the objective function. Indeed, it is important to
know the origin of these assembling constraints in the case of closed-
loop mechanisms. MBS dynamical formalisms will be described first.
Main issues due to assembling constraints will be explained thereafter.

2.1. MBS dynamical formalisms

Most multibody applications contain loops of bodies (car suspension,
parallel robots, mechanisms, etc. . .) which force the generalized coor-
dinates q – relative joint coordinates in our formalism – to satisfy m
geometrical constraints h(q) = 0 at any time. In order to fully describe
the system, these assembling constraints and their first and second
time derivatives must be added to the equations of motion, in which
constraint forces are introduced via the Lagrange multipliers technique:

M(q) q̈ + c(q, q̇, fext, text, g) = Q(q, q̇) + J tλ (1)

h(q) = 0 (2)

ḣ(q, q̇) = J(q)q̇ = 0 (3)

ḧ(q, q̇, q̈) = J(q)q̈ + J̇ q̇(q, q̇) = 0 (4)

where:

• M [n ∗n] is the symmetric generalized mass matrix of the system,

• q [n ∗ 1] denotes the relative – or joint – generalized coordinates,

• c [n ∗ 1] is the non linear dynamical vector which contains the gy-
roscopic, centrifugal and gravity terms as well as the contribution
of components of external resultant forces fext and torques text,

• Q [n ∗ 1] represents the generalized joint forces (torques).

• J = ∂h
∂qt denotes the constraint Jacobian matrix (dimension: [m ∗

n]),

• J̇ q̇(q, q̇) [m ∗ 1] is the quadratic term (expression in q̇i q̇j) of the
constraints at acceleration level (dimension: [m ∗ 1]),

• λ represents the Lagrange multipliers associated with the con-
straints (dimension: [m ∗ 1]).

FinalPaperMSD.tex; 5/03/2004; 16:26; p.3

4 J.-F. COLLARD ET AL.

Various methods can be used to solve the system (1–4), i.e. to
predict the motion of the system (q(t), q̇(t)), starting from an initial
configuration (q(t = 0), q̇(t = 0)), by time-integrating the accelerations
q̈(t). Amongst these, one can opt for a full reduction of the system to
a purely differential form, which can be obtained by means of the Co-
ordinate Partitioning [17]. Assuming that the constraints h(q) = 0 are
independent and after reordering the vector of generalized coordinates
q (and the columns of the constraint Jacobian J accordingly), we can
perform the following partition:

q =
(

u
v

)
; J =

(
Ju Jv

)
(5)

where u denotes the subset of (n−m) independent coordinates and v
denotes the subset of m dependent coordinates. By correctly1 choosing
the subset v, the m by m matrix Jv will be regular.

Once the coordinate partitioning is established, the reduction method
simply uses matrix permutations and operations to produce the equa-
tions of motion in ODE form. Let us first partition the generalized mass
matrix M and the vector c according to the coordinate partitioning (5):

(
Muu Muv

Mvu Mvv

) (
ü
v̈

)
+

(
cu

cv

)
=

(
Qu

Qv

)
+

(
Ju

t

Jv
t

)
λ (6)

When Jv is regular, eliminating the unknowns λ using the lower part
of system (6) produces:

(
Muu Muv

) (
ü
v̈

)
+Bvu

t (
Mvu Mvv

) (
ü
v̈

)
+cu+Bvu

tcv = Qu+Bt
vuQv

(7)
where we define the so-called coupling matrix Bvu , − (Jv)

−1 Ju.
Then using the first (eq. (3)) and second derivatives (eq. (4)) of

the constraints, the generalized velocities and accelerations v̇ and v̈ are
respectively given by:

v̇ = Bvuu̇ (8)
v̈ = Bvuü + b with b , −J−1

v (J̇ q̇) (9)

and can also be eliminated from the differential equations (7). This
produces the final reduced ODE system, concisely written as:

M(u, v)ü + F(u̇, u, v) = Q(u̇, u, v) (10)

1 This constitutes one of the issues explained below in 2.2.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.4

Contribution to the Optimization of Closed-Loop Multibody Systems 5

where Q denotes the joint generalized forces (torques) associated with
the actuated2 joints. From this system, direct (ü = M−1(Q−F)) and
inverse3 (Q = Mü+F) dynamic formulations may be easily extracted.

The algebraic constraints still have to be solved in order to elim-
inate the dependent variables v from (10). While analytical solutions
can exist for specific cases, general algebraic constraints (2) require
a numerical procedure to be solved: the Newton-Raphson iterative
algorithm can be used for successive estimations of v:

vk+1 = vk − (Jv)
−1 h |v=vk (11)

where the right hand side is evaluated for v = vk and the values of u
corresponding to the instantaneous system configuration.
Thanks to this final numerical elimination, the set of purely differ-
ential equations (10) constitutes the equations of motion of the con-
strained system described in terms of the n−m independent generalized
coordinates u.

2.2. Main issues due to assembling constraints

In some cases, we may face convergence problems of the Newton-
Raphson algorithm to solve the constraints (11) and such problems can
be frequently encountered when performing a geometrical optimization
process.

a. Multiple solutions b. Singularity:

∣∣∣ ∂h
∂vt

∣∣∣= 0 c. Impossibility: h(u, v) 6= 0, ∀v
Figure 2. Troubleshooting cases when solving assembling constraints

• A first case may occur when the solution in term of v is not unique
for a given vector u (see Figure 2.a). A way to prevent from that
is to start the algorithm with initial values close to the expected
solution.

2 Which do not necessary coincide with the independent joint coordinates u.
3 In practice, inverse dynamics does not require the explicit computation of the

mass matrix (O(N2) complexity). An O(N) recursive formalism is used to get Q
more straightforwardly.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.5

6 J.-F. COLLARD ET AL.

• A second problem may happen if the mechanism reaches a singular
configuration, the constraint Jacobian matrix Jv = ∂h

∂vt becoming
singular4 (see Figure 2.b). Practically, those singularities corre-
spond to a loss of mobility of the robot by locking one or more
actuators associated with joint variables u. They can be assimi-
lated to unreachable points in the parameter space. Therefore, the
cost function will be penalized at that point, even if it is possible
to close the mechanism by another choice of the partitioning.

• Finally, it can be impossible to close the mechanism simply because
a constraint hi has no root: the Newton-Raphson algorithm cannot
converge towards a solution (see Figure 2.c). In that case, the
closed mechanism doesn’t exist but, instead of rejecting it, we will
keep it and penalize the cost function accordingly.

In the optimization process, the second and third cases will be
treated in the same way, as explained in the next section. For the first
case, we rely on the robustness of the Newton-Raphson process when
iterating from a neighborhood of a well-known closed configuration.
Other configurations are found by small increment around and from
the latter: by experience, this technique is reliable and ensures a robust
convergence in any case.

Let’s point out that the penalization of the cost function which is
caused by unsatisfied geometrical constraints may occur whatever is
the nature (geometrical, kinematic or dynamical) of the cost function
itself.

3. Penalty Optimization Method

3.1. How to Extend the Objective Function outside the
Closed-Loop Domain ?

In order to perform a smooth penalization of the objective function
f(P), it is important to find the closed-loop border according to the
u, v partitioning in the parameter space. The idea here is to observe
the conditioning of the constraint Jacobian matrix Jv which indicates

4 Two kinds of singularities are considered here: the mathematical singularities,
arising from a wrong choice of the sequence of rotation variables, and those associ-
ated with ignorable variables such as the axial rotation of a connecting rod. They
can be avoided by achieving a suitable model of the mechanism.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.6

Contribution to the Optimization of Closed-Loop Multibody Systems 7

the proximity of that border where the determinant of Jv vanishes to
zero5.

Let’s take an application with two parameters P1,P2 (see Figure 3).
Let’s suppose that the optimizer is calling the objective function –
assumed to be scalar – outside the closed-loop border, at point X. Then
a fixed point G is chosen inside the boundary6 and the penalization is
computed along the direction GX from a point B′. The latter is located
close to the border, where the absolute value of the determinant of Jv

reaches a threshold ε (strictly greater than zero), to avoid singular con-
figurations and numerical round-off problems. The closed-loop border
is for instance detected on the basis of the number iter of iterations of
the Newton-Raphson algorithm which reaches the maximum iterM

7.

Figure 3. Penalization along direction GX

The search of B′ is simply done by a dichotomic search along the
segment [G,X] (see Figure 3). Various cases are considered:

• The Newton-Raphson algorithm converges: iter < iterM ⇒ [B, G] seg-
ment:

• |det(Jv)| ≥ ε ⇒ [B′, G] segment
• |det(Jv)| ≤ ε ⇒ [B′, B] segment

• The Newton-Raphson algorithm doesn’t converge: iter ≥ iterM ⇒
[B,X] segment

Once point B′ has been found and f(B′) has been evaluated, we suggest
to compute and penalize f(X), on the basis of f(B′). This extension
may be continuous or not, the only condition is to make sure that

5 The present approach is clearly partitioning-dependent. A way to circumvent
this limitation should be to consider all the possible coherent partitioning to find
the border proximity in the parameter space.

6 Various possibilities can be envisaged to choose point G: for instance, the last
update of the optimal parameter values.

7 Typically, iterM = 20.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.7

8 J.-F. COLLARD ET AL.

f(X) > f(B′). In the proposed examples, different kinds of extension
have been applied and a rather simple algorithm has been used: the
Nelder-Mead simplex method, which is robust but slowly convergent.

3.2. The Objective Function Algorithm

The optimization procedure flowchart is given in Figure 4.

Figure 4. Objective function computation algorithm

Each time the optimizer calls the objective function, design con-
straints8 imposed by the designer are evaluated first. If they are sat-
isfied, the mechanism can be assembled using the Newton-Raphson
algorithm described before. If the latter converges, the objective func-
tion which involves that configuration (or a set of configurations, as in
the application section 5.2) can be evaluated. Otherwise, if one of both
tests is unsatisfied, the penalization process9 begins: first, the border
is found by the dichotomy method as explained before and then, the
objective function is extended continuously and returns a penalized

8 e.g. : upper or lower bound of a parameter.
9 Up to now, we systematically deal with the design constraints in the same way

as the closed-loop constraints, using the same penalty approach.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.8

Contribution to the Optimization of Closed-Loop Multibody Systems 9

value to the optimizer. However, in some cases, if an upper bound of the
objective function is known, it may be quickly extended discontinuously
without searching the border10.

4. First Example: Design of a Planar Ejector

The system (see Figure 5.a) consists of two bodies: a ball (radius: R =
7 cm, mass: M = 300 g) and a simple articulated arm (negligible mass)
which has to push the ball with a torque QP over a distance L = 20 cm,
slope: α = 30◦. The problem was stated in the frame of a mobile robotic
project for which such an ejector had to be designed. The contact point
S is supposed to be fixed on the right arm tip thanks to a roller (whose
axial rotation is disregarded). This first - quite academic - example can
thus be modelled as a slider-crank mechanism (see Figure 5.b) whose
optimization parameters are the position (x, z) of the joint P and the
length of the crank ‖−→PS‖ = l (‖−→CS‖ = R). All the coordinates are
expressed in the inertial frame {O, Î1, Î3}, where O is located at the
origin of the ball movement.

a. Planar ball ejector. . . b. . . . modelled by a slider-crank mechanism

Figure 5. Planar ejector model

Two different formulations of the optimal design problem are pro-
posed:

• The first one consists in minimizing the maximum torque QP nec-
essary to supply a given constant acceleration a to the ball (i.e. a
velocity ramp from 0 m/s to 0.4 m/s):

min
x,z,l

(
max

t
QP

)
(12)

• The second formulation is to maximize the velocity vfinal of ejec-
tion (when the position u of the ball reaches l) for a given constant

10 This is not represented on the flowchart.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.9

10 J.-F. COLLARD ET AL.

torque QP (i.e. 1.4 Nm):

max
x,z,l

(
v|u=l

)
(13)

These two objectives involves the computation of the inverse and
direct dynamical equations of a closed-loop MBS respectively (see sec-
tion 2.1). Thus, applying the Coordinate Partitioning Method [17]
described in section 2.1, the partitioning is performed (see eq. (5))
where the independent coordinate u = ‖−−→OC‖ and the dependent one
v is the angle rotation of the joint P . The closed-loop constraint h of
eq. (2) becomes here:

h(q) =
∥∥∥−−→OC −−→OS

∥∥∥
2 −R2 (14)

⇔ h(q) =

(
u

√
3

2
+ x + l cos v

)2

+
(

u

2
− z + l sin v

)2

−R2 (15)

In the same way, the elements of the constraint Jacobian matrix (see (5))
are:

Ju = 2u +
√

3x− z + l(
√

3 cos v + sin v) (16)

Jv = l
[(
−u
√

3− 2x
)

sin v + (u− 2z) cos v
]

(17)

For this simple case, the closed-loop constraint could be solved ana-
lytically but, in general, we use the Newton-Raphson algorithm (11) to
find v with respect to u. Now, as shown in section 2.1, the generalized
mass matrix M , the vector c and the joint forces (torques) Q may be
computed:

M =
(

M 0
0 0

)
, c =

(
Mg
2

0

)
, Q =

(
0
QP

)
(18)

Finally, introducing (16, 17, 18) into (7), and using the coupling matrix
Bvu , − (Jv)

−1 Ju, the reduced system of this example is:

QP = B−1
vu M

(
ü +

g

2

)
(19)

This constitutes the inverse dynamical model from which the direct
dynamical model can be trivially derived (ü = . . .).

Coming back to our objective functions, the first one (eq. (12)) to
minimize gives us:

max
t

[
B−1

vu M

(
ü +

g

2

)]
= max

t
B−1

vu , since ü = a (20)

FinalPaperMSD.tex; 5/03/2004; 16:26; p.10

Contribution to the Optimization of Closed-Loop Multibody Systems 11

and the second one (eq. (12)) to maximize reduces to:

t∗∫

0

Bvu
QP

M
− g

2
dt with t∗ s.t. u(t∗) = L (21)

One restriction of the optimization problems is thus the closed-loop
constraint which is safely satisfied (see section 3.1) if:

iter < iterM and |Jv(u(t))| ≥ ε (22)

To ensure that the ball is pushed instead of being pulled11, another
restriction has to be added to ensures that the crank (the arm) must
always be located safely (ε > 0) behind the ball:

Ju(u(t)) ≥ ε (23)

Remark that both constraints (22,23) have to be satisfied ∀ u ∈ [0;L]
(1st obj), or ∀ t ∈ [0; t∗] (2nd obj).

Finally, systems of equations (20,22,23) and (21,22,23) constitute
both optimization problems. Now, the extended objective functions
with penalization are :

fext(x, z, l) =

f(x, z, l) if iter < iterM

and |Jv| ≥ ε
and Ju ≥ ε

f(x, z, l)|border + s d otherwise

(24)

where f is either (20) or (21), s is the slope12 of the linear extension
and d is the distance between the border and the point X(x, z, l) along
the direction GX (see section 3.1, figure 3). Note that the computation
of f(x, z, l)|border depends on which border is firstly crossed starting
from G and going to X.

The results for both objective functions are presented in table I.
Starting with x = −2 cm, z = 12 cm and l = 12 cm, the optimal values
are found with respectively 1108 and 390 evaluations of both objective
functions (using the Nelder-Mead Simplex method and a continuous
penalty extension as discussed in Section 3.1). The global computa-
tion takes less than 2 minutes with a standard PC in the Matlabr
environment.

11 Which is physically irrelevant for the envisaged ejector.
12 Chosen value : 100.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.11

12 J.-F. COLLARD ET AL.

Table I. optimization results of the planar ejector

Min. max. torque Max. final velocity

(a = 0.4 m/s2) (QP = 1.4 Nm)

Final value [Nm] 0.168 [m/s] 5.03

x [cm] -1.46 [cm] -3.08

z [cm] 7.04 [cm] 6.58

l [cm] 9.57 [cm] 8.21

5. Application to Parallel Manipulators: Kinematic
Conditioning Optimization

5.1. Dexterity of manipulators

Dexterity of a manipulator is a kinetostatic performance that can be
measured from the condition number κ of its forward kinematics Jaco-
bian J [18]. In other words, if this Jacobian J is defined by:

ẋ = J q̇ (25)

where q̇ is the joint velocity vector and ẋ the velocity vector of the end-
effector described by Cartesian coordinates (position and orientation),
this dexterity index is the ratio of the largest singular value of J to
its smallest one. This definition assumes that all entries of J have the
same units. Otherwise, this dimensional inhomogeneity can be solved
by introducing a normalizing characteristic length as suggested in [18].
The latter is used to divide the positioning rows of J , making it dimen-
sionally homogeneous. As explained in [18], let us note that the value
of the characteristic length itself comes from the minimization of the
condition number over all the reachable configurations [18].

The goal is to optimize a global posture-independent performance
index which is the mean of the inverses of the condition number κ over a
volume V in the Cartesian space of the end-effector, also called Global
Dexterity Index (GDI) [11] :

GDI =

∫
V

1
κ dV

V
(26)

In the case of positioning and orientating manipulators (for instance,
the Hunt platform described below), the value of κ is obviously com-
puted after normalizing the Jacobian matrix, as previously explained.
By analogy with the optimization proposed in [18], we suggest that the

FinalPaperMSD.tex; 5/03/2004; 16:26; p.12

Contribution to the Optimization of Closed-Loop Multibody Systems 13

above-mentioned characteristic length becomes an additional parame-
ter of our optimization problem which initially only deals with design
parameters.

5.2. Six-DoF Hunt Platform

The Hunt platform (see Figure 6) has 3 position and 3 orientation
degrees of freedom which require to normalize J before computing
κ, each time the parameters change, i.e. at each call of the objective
function. As explained above, this involves an additional optimization
parameter: the characteristic length LC . The nine other parameters of
this optimization problem (see Figures 6 and [7] for more details) are
the legs lengths LI,LS, the characteristic radius of the platform RP
and of the base RB, the gauge H between adjoining actuators on the
base, the angle α (around a vertical axis), followed by angle β (around
an horizontal axis), angle ψ, and finally the vertical distance zc between
the base and the center of the desired workspace volume (small cube
in Figure 6).

Figure 6. Hunt platform model

According to the research project specifications (for a surgical ap-
plication), design parameters of this robot are limited by bounds (see
Table II). The results obtained with the Nelder-Mead simplex method
are presented in table II and initial and optimal design can be compared
in Figure 7.

The “validation” of this result is made by using stochastic opti-
mization algorithms for the same optimization problem: on the one
hand, we apply a classical genetic algorithm and on the other hand, an
evolutionary strategy is used.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.13

14 J.-F. COLLARD ET AL.

Table II. Optimization bounds and results of the Hunt platform optimization

minimum maximum Initial (G) Optimal

Average Isotropy [%] 26.45 58.12

zc [mm] 100 500 300 263.6

LI [mm] 50 300 200 220.4

LS [mm] 50 300 200 300.0

RB [mm] 50 200 100 50.0

RP [mm] 50 200 100 163.5

H [mm] 10 100 50 10.0

α [◦] 0 20 10 0.0

β [◦] 0 50 10 8.0

ψ [◦] 5 50 10 5.0

LC [mm] 10−10 1 10−2 6.1·10−3

Figure 7. Initial and optimal designs of the Hunt platform

For the genetic algorithm13, each of the 10 parameters is coded on
32 bits and the size of the population is 200. Three genetic operators
are used to generate new populations. To begin, a selection is done
by tournament taking – with a probability of 0.9 – the best of two
individuals chosen randomly in the population. This generates half a
population on which crossovers are performed, cutting chromosomes in
two points. Finally, the mutation operator is applied on each bit with
a fixed probability of 0.01. The evolution of the best fitness of each
generation is plotted in Figure 8. The best fitness is found at the 407th

generation and is equal to 58.07%.
In evolutionary strategies [3], a population of µ parents mutates in

a population of λ offsprings by adding a Gaussian random variable to

13 issued from the course of Prof. V. Magnin, Ecole polytechnique universitaire de
Lille, France.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.14

Contribution to the Optimization of Closed-Loop Multibody Systems 15

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

Generation number

B
es

t f
itn

es
s

(a
ve

ra
ge

 is
ot

ro
py

)
[%

]

Best individual
for the genetic algorithm

(407th generation)

Best individual
for the evolutionary strategy

(306th generation)

Genetic algorithm

Evolutionary strategy

Figure 8. Optimization of the Hunt platform using stochastic methods

each optimization parameter. The standard deviation of that variable
allows to control the speed of convergence [3]. It is also possible to
enrich the algorithm by adding a step of recombination between parents
before mutation. In our case, we choose µ = 20 and λ = 200, and also
a discrete recombination as described in [3]. In Figure 8, the evolution
of the best fitness of each parent generation is plotted. The best one
appeared at the 306th generation and is equal to 58.12%.

If we now compare the results of three optimization methods (Sim-
plex method, genetic algorithm and evolutionary strategy), we remark
that they are very similar (see Table III). The slight differences comes
probably from the different convergence criteria and the choice of the
various parameters involved in the optimization process (e.g.: size of
populations, selection and mutation probabilities,. . .). We may thus
reasonably conclude that it should be a global optimum.

6. Conclusion and prospects

In this paper, a penalization method has been developed to optimize
the design of closed-loop 3D mechanisms. The main issue lies in the as-
sembling constraints and the way to solve them. So, we have shown how
to exploit the conditioning of the constraints Jacobian matrix and/or
the Newton-Raphson convergence to penalize the objective function.
This enables to produce a nice optimization formulation that can be
solved robustly, whatever the method used. Three applications are
proposed: first, a simple planar ejector to illustrate the method, and
then, a more 3D realistic 3D application dealing with parallel robot
dexterity. Finally, a short comparison is made between optimization

FinalPaperMSD.tex; 5/03/2004; 16:26; p.15

16 J.-F. COLLARD ET AL.

Table III. Comparison between optimization methods

Simplex Genetic Evolutionary

Average Isotropy [%] 58.12 58.07 58.12

zc [mm] 263.6 266.1 263.2

LI [mm] 220.4 220.2 219.4

LS [mm] 300.0 299.4 300.0

RB [mm] 50.0 52.1 50.4

RP [mm] 163.5 166.4 162.2

H [mm] 10.0 10.3 10.0

α [◦] 0.0 0.1 0.0

β [◦] 8.0 8.4 7.4

ψ [◦] 5.0 5.1 5.0

LC [µm] 6.1 6.0 6.2

results obtained with deterministic and stochastic methods, to assert
the credibility of the method and of the solution.

In term of the prospects, we intend to develop further the proposed
method:

• An interesting problem relates with the tuning of the parame-
ters of the objective function computation algorithm detailed in
section 3.1 (i.e. the choice of point G, the type of extension. . .)

• To make the method partitioning-independent, we will try to build
a penalization criteria based on the global constraint Jacobian
matrix conditioning instead of Jv (see section 3.1)

A last prospect concerns the optimization algorithm itself: other deter-
ministic methods, more sophisticated than the Nelder-Mead Simplex,
can be investigated and confronted.

Acknowledgements

This research has been sponsored by the Belgian Program on Interuni-
versity Attraction Poles initiated by the Belgian State — Prime Minis-
ter’s Office — Science Policy Programming (IUAP V/6). The scientific
responsibility is assumed by its authors.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.16

Contribution to the Optimization of Closed-Loop Multibody Systems 17

References

1. Haj-Fraj, A. and F. Pfeiffer. Optimization of Automatic Gearshifting. In
Vehicle System Dynamics Supplement, 35:207–222, 2001.

2. Jiminez, J. M., G. Alvarez, J. Cardenal, and J. Cuadrado. A simple and
general method for kinematic synthesis of spatial mechanisms. In Mechanism
and Machine Theory, 32:323–341, 1997.

3. Datoussäıd, S., O. Verlinden, and C. Conti. Application of Evolutionary Strate-
gies to Optimal Design of Multibody Systems. In Multibody Systems Dynamics,
8(4):393-408, 2002.

4. Su, Y.X., B.Y. Duan, and C.H. Zheng. Genetic design of kinematically optimal
fine tuning Stewart platform. In Mechatronics, 11:821–835, 2001.

5. Stocco, L.J., S.E. Salcudean, and F. Sassani. Optimal Kinematic Design of
a Haptic Pen. In IEEE/ASME Transactions on Mechatronics, 6(3):210–220,
2001.

6. Fattah, A., and A.M. Hasan Ghasemi. Isotropic Design of Spatial Parallel
Manipulators. In The International Journal of Robotics Research, 21(9):811–
824, 2002.

7. Ryu, J. and J. Cha. Volumetric error analysis and architecture optimization for
accuracy of HexaSlide type parallel manipulators. In Mechanism and Machine
Theory, 38:227-240, 2003.

8. Ceccarelli , M., and C. Lanni. A multi-objective optimum design of general
3R manipulators for prescribed workspace limits. In Mechanism and Machine
Theory, 39:119-132, 2004.

9. Vallejo, J, R. Aviles, A. Hernandez, and E. Amezua. Nonlinear optimization of
planar linkages for kinematic syntheses. In Mechanism and Machine Theory,
30:501–518, 1995.

10. Cabrera, J.A., A. Simon, and M. Prado. Optimal synthesis of mechanisms with
genetic algorithms. In Mechanism and Machine Theory, 37:1165–1177, 2002.

11. Gallant-Boudreau, M. and R. Boudreau. An Optimal Singularity-Free Planar
Parallel Manipulator for a Prescribed Workspace Using a Genetic Algorithm.
Proc. of the IDMME’2000/Forum 2000 CSME Conference, Montreal, 2000.

12. Gürsel A., and B. Shirinzadeh. Topology optimisation and singularity analysis
of a 3-SPS parallel manipulator with a passive constraining spherical joint. In
Mechanism and Machine Theory, 39:215-235, 2002.

13. Lemay, J., and L. Notash. Configuration engine for architecture planning of
modular parallel robots. In Mechanism and Machine Theory, 39:101-117, 2004.

14. Datoussäıd, S. Optimisatdion du comportement dynamique et cinématique de
systèmes multicorps à structure cinématique complexe. PhD thesis, Faculté
Polytechnique de Mons, Belgium,1998.

15. Simionescu, P.A., and D. Beale. Synthesis and analysis of the five-link rear
suspension system used in automobiles. In Mechanism and Machine Theory,
37:815-832, 2002.

16. Németh, I. A CAD tool for the preliminary design of 3-axis machine tools: syn-
thesis, analysis and optimisation. PhD thesis, Katholieke Universiteit Leuven,
Belgium,1998.

17. Wehage, R.-A., and E.-J. Haug. Generalized coordinate partitioning for di-
mension reduction in analysis of constrained dynamic systems. In Journal of
Mechanical Design, 134;247–255, 1982.

18. Angeles, J. Fundamentals of Robotic Mechanical Systems: theory, methods, and
algoritnms. Springer-Verlag, pp.174-190, 1997.

FinalPaperMSD.tex; 5/03/2004; 16:26; p.17

FinalPaperMSD.tex; 5/03/2004; 16:26; p.18

