2009 ADSA-CSAS-ASAS Joint Annual Meeting Montréal, July 12-16

Equivalent Mixed Model for Joint Genetic Evaluation Considering Molecular and Phenotypic Information

N. Gengler^{1,2}, and F. Colinet¹

¹ Gembloux Agricultural University, Animal Science Unit, Belgium

² National Fund for Scientific Research, Belgium

FNRS

Dual Purpose Belgian Blue Breed (dp-BBB): Context of This Study

- Local breed in Belgium and Northern France
- Strong muscling and average 4000 kg milk
 - best cows over 6000 kg milk
- Show a myostatin (mh) mutation
- mh mutation frequent in Walloon dp-BBB
 - most recent females genotyped for mh
 - males are required to be genotyped for mh
- Leads to a special approach in the field to use (or better misuse) molecular information
 - three "types" of genotypes
 - ⇒ illustration of breed "types"

Three dp-BBB Types: +/+

Three dp-BBB Types: mh/+

Three dp-BBB Types: mh/mh

Context of This Study: Dual Purpose Belgian Blue Breed

- Three types and their perception:
 - $mh/mh \Rightarrow beef$
 - $+/+ \Rightarrow milk$
 - mh/+ ⇒ intermediate
- Large knowledge of genotypes
 - empirical use of *mh* locus for selection
 - makes dp-BBB rather exceptional compared to other cattle breeds
- Need for practical method to integrate molecular information
 - mixed inheritance model and beyond

Mixed Inheritance Model

 Generic mixed inheritance model combining fixed gene effects g and random polygenic u effects:

$$y = X\beta + ZQg + Zu + e$$

 Usual assumptions concerning distribution of random effects:

$$E\begin{bmatrix} \mathbf{u} \\ \mathbf{e} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} \text{ and } Var \begin{bmatrix} \mathbf{u} \\ \mathbf{e} \end{bmatrix} = \begin{bmatrix} \mathbf{G} & \mathbf{0} \\ \mathbf{0} & \mathbf{R} \end{bmatrix}$$

 Equivalent mixed inheritance model replacing fixed gene effects g and random polygenic u effects by a combined genetic effect a:

$$y = X\beta + Za + e$$
 where $a = Qg + u$

Modified assumptions:

$$E\begin{bmatrix} a \\ e \end{bmatrix} = \begin{bmatrix} Qg \\ 0 \end{bmatrix} \text{ and } Var \begin{bmatrix} a \\ e \end{bmatrix} = \begin{bmatrix} G & 0 \\ 0 & R \end{bmatrix}$$

• Using a derivation similar to that of genetic groups (Quaas, J. Dairy Sci. 1988 71: 1338-1345)

$$\begin{bmatrix} X'R^{-1}X & X'R^{-1}Z & 0 \\ Z'R^{-1}X & Z'R^{-1}Z + G^{-1} & -G^{-1}Q & \hat{a} \\ 0 & -Q'G^{-1} & Q'G^{-1}Q & \hat{g} \end{bmatrix} = \begin{bmatrix} X'Ry \\ \hat{z}'Ry \\ \hat{g} \end{bmatrix}$$

Please note joint estimation of a and g!

Alternative Mixed Model Equations

 Solving of whole system is equivalent of solving iteratively the following two systems of equations:

$$[\mathbf{Q'G^{-1}Q}]\hat{\mathbf{g}} = [\mathbf{Q'G^{-1}}\hat{\mathbf{a}}] \qquad (1)$$

$$\begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{X'}\mathbf{R}^{-1}\mathbf{Z} \\ \mathbf{Z'}\mathbf{R}^{-1}\mathbf{X} & \mathbf{Z'}\mathbf{R}^{-1}\mathbf{Z} + \mathbf{G}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{a}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'}\mathbf{R}^{-1}\mathbf{y} \\ \mathbf{Z'}\mathbf{R}^{-1}\mathbf{y} + \mathbf{G}^{-1}\mathbf{Q}\hat{\mathbf{g}} \end{bmatrix} (2)$$

$$[\mathbf{Q'G^{-1}Q}]\hat{\mathbf{g}} = [\mathbf{Q'G^{-1}}\hat{\mathbf{a}}] \qquad (1)$$

System of equations (1) extracts gene effects
g from current estimated combined genetic
effects a

Interpretation of Alternative Equations

$$\begin{bmatrix} X'R^{-1}X & X'R^{-1}Z \\ Z'R^{-1}X & Z'R^{-1}Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{a} \end{bmatrix} = \begin{bmatrix} X'R^{-1}y \\ Z'R^{-1}y + G^{-1}Q\hat{g} \end{bmatrix} (2)$$

 System of equations (2) estimates combined genetic effects a and fixed effects taking into account current estimates of gene effects g

Not All Genotypes Known

- Dimensions of Q: n x m
 - where n = animals and m = gene effects
- However dimensions of Q'G⁻¹Q: m x m
- Q can contain « zero » lines
 - allows solving of (1) when only limited number of animals genotyped
 - only expectations for non genotyped animals change
 - gene effects can be estimated from limited known genotypes

Importance of G⁻¹

- **G** covariance structure among combined genetic effects **a** (not **a**̂), weights them
- Solving (1) large analogy to solving a Generalized Linear Model
 - which splits a into g and random residual ε
 - model $\mathbf{a} = \mathbf{g} + \varepsilon$ with $Var(\mathbf{a}) = \mathbf{G}$
- Analogy can be used for simpler solving using equivalent BLUP

Random g Effects?

- Situations where estimating **g** as fixed clearly sub-optimal (e.g., dense SNP panels)
- Modification of equations (1) to do random estimation after splitting variances G = QG_gQ'+G_u

$$\left[\mathbf{Q'}\mathbf{G}_{u}^{-1}\mathbf{Q}+\mathbf{G}_{g}^{-1}\right]\hat{\mathbf{g}}=\left[\mathbf{Q'}\mathbf{G}_{u}^{-1}\hat{\mathbf{a}}\right]$$

- Large similarity to genomic prediction equations
 - Most important difference use of current estimates of a, also in an iterative manner
- Other modifications for (2)

Context: mh locus use in dp-BBB

- Data used of official January 2009 genetic evaluations in the Walloon Region of Belgium
- Pedigree: 1,606,024 animals
- Data: 11,117,505 Test Day records (2009) (10,019,460 TD before 2003)
- 689,057 cows with production records

Material and Methods

- mh genotypes available (and known by the breeders) for:
 - 123 dp-BBB bulls
 - 1,940 dp-BBB cows with production records
- Offspring of genotyped animals
 - 12,211 cows with production records
- Four evaluation runs using official Walloon random regression test-day model:
 - with data until 2003 or 2009
 - with (equivalent model "mh" suffix) or without (original model) modification for mh genotype in the model

Allele Substitution Effect of mh Estimated with Equivalent Model

	Based on data recorded before		
Trait	2009	2003	
	(11,117,505 TD)	(10,019,460 TD)	
Milk yield (kg/305 d of lact)	-158.7	-149.9	
Fat yield (kg/305 d of lact)	-8.93	-8.23	
Protein (kg/305 d of lact)	-5.64	-5.16	

Results in line with sparse literature

Correlations Between EBV for Milk Yield (MY): All Animals

		2009mh	2009mh	2009
Category	N	VS.	VS.	VS.
		2009	2003mh	2003
All evaluated	1,606,074	0.999	0.996	0.996
dp-BBB	18,433	0.992	0.992	0.992
Genotyped dp-BBB	2,001	0.998	0.985	0.984
Offspring of genotyped dp-BBB	12,211	0.999	0.993	0.993

Correlations Between EBV for MY: Cows with No Test-Day Records Before 2003

		2009mh	2009mh	2009
Category	N	VS.	VS.	VS.
		2009	2003mh	2003
All evaluated	58,695	0.997	0.872	0.865
dp-BBB	1,873	0.996	0.917	0.909
Genotyped dp-BBB	427	0.996	0.864	0.843
Offspring of genotyped dp-BBB	743	0.995	0.895	0.879

Coefficients of Regression Between EBV for MY:

Cows with No Test-Day Records Before 2003

		2003mh	2003
Category	N	VS.	VS.
		2009mh	2009
All evaluated	58,695	0.785	0.767
dp-BBB	1,873	0.851	0.822
Genotyped dp-BBB	427	0.766	0.706
Offspring of genotyped dp-BBB	743	0.817	0.763

Conclusion

- Developed equivalent mixed inheritance model
 - straight forward derivation
 - no need that all animals being genotyped:
 - here only few thousand
- Estimate allele substitution effects with alternative model
 - results as expected (rather sparse literature)
- For all (great majority non genotyped) animals
 - minimal changes compared to original model
- For animals without records before 2003
 - rather large improvement in ability to predict realized EBV (2009) from PA (2003):
 - improved correlations
 - regression coefficients closer to 1

Implications

- Underlying mixed model can come from large range of models (any mixed model), e.g.:
 - random regression model (as used here)
 - different types of multi-trait models including MACE
- Basic hypothesis:
 - change of expectations
 - can be adapted for Genomic Prediction (random g)
- Estimating simultaneously SNP effects and combined genetic effects using this approach:
 - theoretically promising
 - obviously still large challenges ahead

Acknowledgements

- National Fund for Scientific Research
- Walloon Breeding Association (AWE)
- Walloon Regional Ministry of Agriculture
- You for your attention!