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Abstract

A scalable algorithm for modeling dynamic fracture and fragmentation of solids in

three dimensions is presented. The method is based on a combination of a discon-

tinuous Galerkin (DG) formulation of the continuum problem and Cohesive Zone

Models (CZM) of fracture. Prior to fracture, the flux and stabilization terms aris-

ing from the DG formulation at interelement boundaries are enforced via interface

elements, much like in the conventional intrinsic cohesive element approach, albeit

in a way that guarantees consistency and stability. Upon the onset of fracture, the

traction-separation law (TSL) governing the fracture process becomes operative

without the need to insert a new cohesive element. Upon crack closure, the rein-

statement of the DG terms guarantee the proper description of compressive waves

across closed crack surfaces.

The main advantage of the method is that it avoids the need to propagate topo-

logical changes in the mesh as cracks and fragments develop, which enables the
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indistinctive treatment of crack propagation across processor boundaries and, thus,

the scalability in parallel computations. Another advantage of the method is that it

preserves consistency and stability in the uncracked interfaces, thus avoiding issues

with wave propagation typical of intrinsic cohesive element approaches.

A simple problem of wave propagation in a bar leading to spall at its center is used

to show that the method does not affect wave characteristics and as a consequence

properly captures the spall process. We also demonstrate the ability of the method

to capture intricate patterns of radial and conical cracks arising in the impact of

ceramic plates which propagate in the mesh impassive to the presence of processor

boundaries.

Key words: Dynamic brittle fracture, Cohesive zone models, Discontinuous

Galerkin methods, Parallel computing

1 Introduction

The damage and failure of brittle materials subjected to intense loads is char-

acterized by the development of intricate patterns of three-dimensional cracks,

especially in the case of localized impact loading, e.g. (1; 2; 3). The compu-

tational characterization of these three-dimensional aspects of brittle damage

processes is critical in many applications including armor materials (4) and or-

bital debris mitigation (5). One class of approaches which has shown promise

for modeling brittle fracture processes is based on the so-called “discrete crack”

model of fracture. In the discrete crack approach, the initiation and propa-

gation of cracks is modeled explicitly by introducing surfaces of discontinuity
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within the material. The fracture processes at these surfaces of discontinu-

ity can be described by cohesive zone models (CZM) of fracture (6; 7) via

a phenomenological traction-separation law (TSL). The most popular imple-

mentation of this concept is the so-called “cohesive element” method (see (8)

for a recent review) in which crack openings are represented as displacement

jumps at the inter-element boundaries using “interface” or “cohesive” finite el-

ements. Simulations using cohesive element methods suffer from a well-known

mesh dependency as the possible crack nucleation sites and propagation paths

are constrained by the finite element discretization (9; 10; 11; 12). This hin-

ders the ability to describe complex crack patterns arising in three dimensional

problems. A possible avenue for mitigating mesh dependency in cohesive el-

ement methods is to employ very fine meshes. As the mesh becomes finer,

the available sites for crack nucleation and propagation increases, thus reduc-

ing crack path dependence on the mesh. Mesh refinement is also critical for

resolving the size of the fracture process zone which is exceedingly small in

brittle materials. The need for highly refined meshes demands parallel compu-

tational schemes that are scalable to large numbers of processors for problems

of increasing size, especially in three dimensional problems. However, owing

to fundamental issues in the formulation and implementation of conventional

cohesive element methods, scalable three-dimensional algorithms for fracture

and fragmentation are yet to be demonstrated.

In the original implementation of the cohesive element method for modeling

brittle crack propagation in elastic materials (commonly known as the “intrin-

sic” approach, Figure 1a), cohesive surfaces are assumed to have an initially

elastic response. This class of cohesive laws are implemented by creating the

interface element data structures at all the interelement boundaries prior to
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Fig. 1. Surface traction t in terms of opening δ for the cohesive laws utilized in

the a) the intrinsic approach, and b) the extrinsic approach. The cohesive law is

typically characterized by the fracture energy Gc and the cohesive strength σmax.

the calculation (13; 14). Due to the fact that surfaces of discontinuity are

initially present at all possible crack initiation sites, the intrinsic approach is

potentially scalable. Indeed, in (10) Xu et al developed a 2D parallel imple-

mentation of the intrinsic approach and demonstrated parallel calculations on

up to thirty six processors. A well-known problem with the intrinsic approach

is that the initially elastic response of the intrinsic TSL necessarily alters

the effective elastic response of the material prior to the onset of fracture, a

phenomenon called “artificial compliance”. This spurious behavior affects the

propagation of elastic stress waves in the uncracked continuum (15) and has

been shown to be mesh dependent (16). The only way to reduce the effect of

artificial compliance is by increasing the initial elastic slope of the cohesive law,

leading to severe stable time step restrictions which render the intrinsic ap-

proach unsuitable for explicit dynamic calculations (15) or to ill-conditioning

of consistent Jacobians in static or implicit dynamics calculations, (17).

A second class of cohesive methods fall under the so-called “extrinsic” ap-

proach in which cohesive elements are inserted at interelement boundaries

only when a specified fracture criterion is met, (18; 19; 20). In this case, the

TSL effectively has an initially rigid response (Figure 1b), thus avoiding artifi-
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cial compliance issues prior to fracture. It should be noted, however, that this

issue also arises in the extrinsic approach if there is a compressive reloading of

the cohesive elements, e.g. upon crack closure. In the extrinsic method, the in-

sertion of cohesive elements is effected on-demand and incrementally through

dynamic modification of data structures describing the topology of the mesh,

a process which is algorithmically complex, especially in three dimensions.

The first sequential implementation of the adaptive insertion concept in three

dimensions was presented by Pandolfi and Ortiz, (21; 22) and used data struc-

tures in which all of the relevant mesh entities and adjacency relationships are

explicitly stored to facilitate the modification of the mesh topology. Ortiz’s

group, (23), recently showed that the computational complexity of this mesh

topology modification algorithm is unnecessarily exorbitant (O (N1.9
I ), where

NI is the number of interface elements), and proposed an alternative inser-

tion scheme based on a graph representation of the finite element mesh which

grows linearly in the number of interface elements. To address the same is-

sues, Paulino et al, (24), proposed a different data structure and algorithmic

approach also of linear complexity.

It bears emphasis that the totality of these data structures and algorithms are

restricted in their application to the case of single processor calculation. The

extension of these algorithms to the widely adopted scenario of parallel finite

element computations using partitioned meshes and communications based

on message passing offers a considerably higher challenge. The main problem

in the extension to the parallel case lies in the inherent difficulty associated

with propagating topological changes in the mesh across processor boundaries.

Just like with other algorithms in computational geometry involving non-local

topological mesh changes, propagating these changes across processor bound-
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aries leads to granular communications of topological data of a priori unspec-

ified size and location, and is thus inherently unscalable. A promising solution

to this difficulty can be found in a new extrinsic approach proposed recently

by (25) in which extrinsic cohesive elements are inserted at all interelement

boundaries prior to the calculation and remain dormant until fracture occurs,

at which point they are activated. Since the cohesive elements are initially

present at all possible crack nucleation sites, as for the intrinsic approach,

this method can be parallelized in principle in a scalable fashion. Indeed, (25)

presented a 2D parallel implementation of the method and demonstrated its

scalability for a 1.2 M element mesh on up to 512 processors. The possibility

of extending this approach to three dimensions is palpable, although it is yet

to be demonstrated.

A variety of other methods have been proposed to model fracture and other

discontinuities discretely while enabling arbitrary crack paths in simulations

and reduce mesh dependency. The basic idea of these approaches is to al-

low surfaces of discontinuity to propagate through the interior of volumetric

elements (see e.g. the embedded localization line method (26), (27; 28), the

extended finite element method (XFEM) (29; 30; 31), and the cohesive seg-

ments method (32; 33)). This class of methods have significant potential to

reduce mesh dependency by enabling arbitrary crack paths with relatively

coarse meshes. However, fine meshes are still necessary to resolve the size of

the fracture process zone in brittle materials. Scalable algorithms for this fam-

ily of methods have not been demonstrated and are expected to exhibit an

even higher level of complexity than the parallelization of cohesive element

methods.

The purpose of the present paper is to develop a scalable cohesive element
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approach for modeling dynamic fracture of solids in three dimensions. Toward

this end, we propose a new method based on a discontinuous Galerkin (DG)

reformulation of the continuum problem following (34; 35). The idea of us-

ing DG formulations in the description of fracture was originally proposed by

Mergheim et al (36) who applied it to the problem of interface delamination

in two dimensions. A recent paper also utilizes a space-time DG formulation

to describe dynamic fracture for constrained crack paths in two dimensions

(37). The method was applied to simulate mode I crack growth under impact

loading and particle matrix decohesion using the exponential cohesive law of

Xu and Needleman (14). However, the potential of this approach for modeling

arbitrary dynamic crack propagation in three dimensions has not yet been re-

alized. In the method we propose in this paper, interface elements are inserted

at interelement boundaries at the beginning of the simulation, which proceeds

using a DG approach. Consistency and stability of the finite element solution

in the pre-fracture regime are guaranteed by additional terms in the weak

statement of the problem which emerge naturally from the DG formulation.

By stark contrast, intrinsic cohesive approaches violate both consistency and

stability, which leads to a variety of numerical problems including “artificial

compliance” and wave propagation issues (15). When the specified fracture

criterion is met at an interelement boundary, the computation of the DG in-

terface flux terms gives its place to an extrinsic cohesive law which describes

the irreversible traction-separation response eventually leading to complete

decohesion and the formation of new crack surfaces.

The proposed approach also addresses another important issue with conven-

tional CZM which has been neglected in previous work, including in those

methods that have been effectively parallelized in two dimensions, (10; 25).
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In previous approaches, the post-fracture response in compression upon crack

closure is handled through the TSL with a penalty-like stiffness approach,

which also induces artificial compliance (i.e. violates consistency) and, thus,

affects wave propagation. Accurate modeling of compressive wave propagation

is particularly important in simulating the multi-hit impact response of pro-

tective structures (e.g. armor plates), as well as in other structures exhibiting

progressive damage.

A unique advantage of the proposed method is that its parallel implemen-

tation follows directly from the parallel DG method for the uncracked con-

tinuum (35), without any need for special treatment of cracks propagating

across processor boundaries. Topological changes to the mesh and modifica-

tion to interprocessor communication maps are completely avoided as the mesh

is fragmented initially by requirement of the DG method. Crack nucleation

and propagation is effected entirely at the constitutive level when evaluating

interelement boundary integrands at the quadrature points of the interface el-

ements. As a consequence, the method also inherits the scalability properties

of the DG method demonstrated in (35).

In section 2, the hybrid DG/cohesive framework is presented. The implemen-

tation of the method for parallel computation is discussed in section 2.4. Two

numerical examples are presented in section 3 to demonstrate the features

of the method and to illustrate parallel computations involving cracks which

cross processor boundaries. The first problem corresponds to the propagation

of a uniaxial tensile stress wave in a bar leading to spall at its center. This

example is used to show that the method does not affect wave characteristics

and as a consequence properly captures spall at the center plane. The second

example involves the simulation of the impact of a ceramic plate and is used to
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demonstrate the ability of the method to capture intricate patterns of radial

and conical cracks arising in the impact of ceramic plates which propagate in

the mesh impassive to the presence of processor boundaries.

2 Discontinuous-Galerkin Cohesive-Zone Modeling Framework

The formulation of the DG framework for the continuum problem follows

closely the presentation in (34; 35; 8). For completeness, the main steps in the

formulation are summarized below.

2.1 DG/CZ weak formulation

Consider a body B0 subjected to a force per unit mass B. Its boundary surface

∂B0 is partitioned into a Dirichlet portion ∂DB0 constrained by displacements

ϕ̄ and a Neumann part ∂NB0 subjected to surface traction T̄. One always has

∂B0 = ∂NB0 ∪ ∂DB0 and ∂DB0 ∩ ∂NB0 = ∅. The continuum equations stated

in material form are

ρ0ϕ̈ =∇0 · P + ρ0B in B0 (1)

ϕ = ϕ̄ on ∂DB0 (2)

P · N = T̄ on ∂NB0 (3)

In these relations ρ0 is the initial density, P is the first Piola-Kirchhoff stress

tensor, N is the unit surface normal in the reference configuration.

The discontinuous Galerkin (DG) weak form of Eqs. (1-3) arises by seeking an

elementwise-continuous polynomial approximation ϕh of the deformation over

the discretization B0h =
⋃E

e=1 Ω̄e
0 of B0, where Ω̄e

0 is the union of the open do-
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main Ωe
0 with its boundary ∂Ωe

0, i.e. ϕh /∈ C0 (B0h), as in continuous Galerkin

approximations, but ϕh ∈ C0 (Ωe
0). Consequently, for a DG formulation the

trial functions δϕh are also discontinuous across the element interfaces on the

internal boundary of the body ∂IB0h =
[

⋃E
e=1 ∂Ωe

0

]

\∂B0h.

The new weak formulation of the problem is obtained in a similar way as

for the continuous Galerkin approximation. The strong form (1) of the linear

momentum balance is enforced in a weighted-average sense by multiplying by

a suitable test function δϕh and integrating in the domain. However, since

both test and trial function are discontinuous, the integration by parts is not

performed over the whole domain, but on each element instead, leading to

∑

e

∫

Ωe

0

(ρ0ϕ̈h · δϕh + Ph : ∇0δϕh) dV −
∑

e

∫

∂Ωe

0
∩∂IB0h

δϕh · Ph ·NdS =

∑

e

∫

Ωe

0

ρ0B · δϕhdV +
∑

e

∫

∂Ωe

0
∩∂N B0h

δϕh · T̄dS (4)

In this equation the discretized stress tensor Ph results from the discretized

deformation state Fh = ∇0ϕh through a constitutive material law. Equation

(4) can be written as

∫

B0h

(ρ0ϕ̈h · δϕh + Ph : ∇0δϕh) dV +
∫

∂IB0h

Jδϕh · PhK · N−dS =

∫

B0h

ρ0B · δϕhdV +
∫

∂N B0h

δϕh · T̄dS (5)

where we have used the jump operator defined on the interface of two finite

elements by

J•K =
[

•+ − •−
]

(6)

The main idea of the DG method is to address the contribution of the interele-

ment discontinuity terms by introducing a numerical flux h (P+,P−,N−) de-

pendent on the limit values on the surface from the neighboring elements, such
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that

∫

∂IB0h

Jδϕh · PhK · N−dS →
∫

∂IB0h

JδϕhK · h
(

P+,P−,N−
)

dS (7)

where N− is the outward unit surface normal for a given element. Rewriting

the term in question we find

∫

∂IB0h

Jδϕh · PhK·N−dS =
∫

∂IB0h

JδϕhK·〈Ph〉·N−dS+
∫

∂IB0h

〈δϕh〉·JPhK·N−dS

(8)

where the average operator defined by

〈•〉 =
1

2

[

•+ + •−
]

(9)

has been used. The last term in equation (8) can be neglected because the

jump in Ph does not require penalization to ensure consistency. Hence, h is

chosen to be

h
(

P+,P−,N−
)

= 〈Ph〉 · N− (10)

This form of the numerical flux was proposed by Bassi and Rebay (38) in

the first DG formulation concerning elliptic equations. Other forms for the

numerical flux are possible and can be found in the work of Arnold et al. (39)

and Brezzi et al. (40). Using the choice of numerical flux from equation (10),

the weak formulation reduces to

∫

B0h

(ρ0ϕ̈h · δϕh + Ph : ∇0δϕh) dV +
∫

∂IB0h

JδϕhK · 〈Ph〉 · N−dS =

∫

B0h

ρ0B · δϕhdV +
∫

∂N B0h

δϕh · T̄dS (11)

Since the interelement displacement continuity is not enforced strongly in a

DG formulation, it must be enforced weakly which, in turn, ensures stability

of the numerical solution. To this end, the compatibility equation ϕ−
h −ϕ+

h = 0

on ∂IB0h is enforced through a (sufficiently large) quadratic stabilization term
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in JϕhK, JδϕhK. In scalar problems this can be achieved by simply adding a

term proportional to the scalar product JϕhK · JδϕhK. However, an appropriate

term accounting for the material and mesh dimension must be proportional to

JδϕhK⊗N
−:C:JϕhK⊗N

−

hs
, where C = ∂P

∂F
is the Lagrangian tangent moduli, and hs is

the mesh size. With the addition of this quadratic term, general displacement

jumps are stabilized in the numerical solution and large-deformation mate-

rial response is properly accounted for. The final formulation of the problem

consists of finding ϕh such that

∫

B0h

(ρ0ϕ̈h · δϕh + Ph : ∇0δϕh) dV +
∫

∂IB0h

JδϕhK · 〈Ph〉 · N−dS+

∫

∂IB0h

{

JδϕhK ⊗ N− : 〈βs

hs
C〉 : JϕhK ⊗ N−

}

dS =

∫

B0h

ρ0B · δϕhdV +
∫

∂N B0h

δϕh · T̄dS (12)

where βs plays the role of a penalty parameter. This formulation, known as the

Interior Penalty Method, has been shown to be stable (for βs > 1), consistent

and to possess the optimal convergence rate in the energy norm (34).

The extension of this DG framework to explicit dynamics time integration

including parallel implementation was presented in (35), where it was also

shown that the stable time step is reduced by a factor of
√

βs as compared to

a CG formulation, i.e

∆t < ∆tcrit =
hs√
βsc

(13)

where c is the sound speed of the material. More details concerning this ap-

proach, and in particular the numerical implementation based on interface

elements can be found in (34; 35).

A dynamic simulation proceeds initially and prior to the nucleation of cracks

according to the above DG framework. The onset of fracture is effected in
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the same manner as in the extrinsic CZM approach, i.e. following a fracture

stress criterion. Upon the nucleation of a crack at an interface element, the DG

flux terms cease to operate and give place to the TSL governing the fracture

process in the material. It should be noticed that this does not require any

modifications of the mesh, but simply a change in the terms evaluated at

the interface element integration points. Hence, if T is the surface traction

resulting from the TSL in the reference configuration, equation (11) becomes

∫

B0h

(ρ0ϕ̈h · δϕh + Ph : ∇0δϕh) dV +
∫

∂IB0h

αT (JϕhK) · JδϕhK dS

+
∫

∂IB0h

(1 − α) JδϕhK · 〈Ph〉 · N−dS+

∫

∂IB0h

(1 − α) JδϕhK ⊗ N− : 〈βs

hs
C〉 : JϕhK ⊗ N−dS

=
∫

B0h

ρ0B · δϕhdV +
∫

∂N B0h

δϕh · T̄dS (14)

In this equation α is a binary operator defined as α = 0 before fracture and

α = 1 after the fracture stress criterion is met. It should be noted that this

approach provides for the possibility of partially fractured interface elements

as α may adopt different values at different quadrature point of each interface

element.

Equation (14) can also help to understand some of the numerical problems

in the intrinsic CZM. Consistency is a requirement for convergence which, in

the DG formulation for the uncracked body (α = 0), is satisfied by the DG

flux term: JδϕhK · 〈P〉 · N−, as shown in (34). By contrast, in the intrinsic

CZM formulation the flux term is T (JϕhK) · JδϕhK, which violates consistency.

In fact, as stated, this term corresponds to the stabilization term of the DG

formulation, which only enforces consistency in the limit when the tangent in

the reversible range of the TSL T(JϕhK) tends to infinity (16). This creates
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severe restrictions in the critical time step size in intrinsic CZM methods, a

problem that is avoided in the discontinuous Galerkin method where the only

penalty in the critical time step size is a factor of
√

βs, as discussed above

(13). In practice, 1 < βs < 10 is enough to ensure numerical stability (35),

implying a minimal impact on the stable time step size.

Another important advantage of the DG/CZM formulation is that the cohe-

sive law operates strictly at the quadrature point. This implies that within an

interface element it is allowed to have both “cracked” and “uncracked” quadra-

ture points. This affords the possibility of sub-element crack resolution. By

contrast, in the extrinsic CZM all quadrature points of the interface element

simultaneously respond according to the TSL when the fracture criterion is

met at a single point in the mesh. Furthermore, in the DG/CZM formulation,

the evaluation of the fracture criterion is naturally effected at the quadrature

points of the original DG interface element, i.e. the new cracked surface occurs

exactly at the same point where the fracture criterion is met. In the extrinsic

approach, by contrast, the fracture criterion is commonly evaluated at the

quadrature points of the bulk elements and the cohesive element is inserted

at the closest interelement boundary. These two advantageous aspects of the

DG formulation should render the method more accurate at describing crack

nucleation.

2.2 Cohesive Law

The proposed approach is general in the sense that it does not rely on any

particular assumption about the specific TSL employed in the description of

fracture. It can thus be adapted to a wide class of brittle and ductile fracture
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behavior. For definiteness, we here adopt the irreversible, linear softening co-

hesive law of (19). This particular TSL assumes that the cohesive behavior is

isothermal, isotropic, and that the cohesive tractions depend on the local state

of deformation at the crack tip only through the displacement jump. A sim-

ple formulation for modeling mixed-mode fracture, in accordance with these

assumptions, is obtained by assuming that the cohesive free energy density

depends on the surface opening vector ∆ only through an effective separation

δ defined by

δ =
√

γ2∆2
m + ∆2

n (15)

In this expression, ∆n is the positive normal separation along the unit local

normal in the deformed configuration n, ∆m is the tangential separation along

the unit local tangent in the deformed configuration m, and γ is a parameter

which assigns different weights to normal and tangential separations.

Under this set of assumptions, one can define an effective cohesive traction T

per unit undeformed area which is given by

T = T (δ,q) (16)

where q is a suitable set of internal variables describing the irreversible pro-

cesses involved in decohesion. This law becomes operative at a quadrature

point of an interface element when the fracture criterion

√

(σh : [n⊗ n])2 + γ−2 (σh : [n⊗ m])2 ≥ σc (17)

is satisfied. In this expression, σh is the Cauchy stress, and σc is the criti-

cal effective cohesive strength. Once the effective traction is determined, the

components of the traction vector follow from

T =
T

δ

(

γ2∆mm + ∆nn
)

(18)
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In the specific case of the linear irreversible softening law, the functional form

of the effective cohesive traction for crack opening is given by

T (δ, δmax) = σc

(

1 − δ

δc

)

ds

dS
for δ̇ ≥ 0, δ = δmax (19)

where ds
dS

is the surface change between the deformed and reference configu-

ration. Complete decohesion (T ≡ 0) occurs for δ ≥ δc. In reference to Figure

2, the variable δmax is the maximum effective opening displacement and con-

stitutes the internal variable describing irreversibility. For crack unloading,

characterized by δ̇ < 0 or δ < δmax, the functional form of the linear irre-

versible softening law is assumed to follow a straight path to and from the

origin yielding

T (δ, δmax) =
Tmax

δmax

δ for δ̇ < 0, or δ < δmax (20)

where Tmax is the value of the effective traction at δ = δmax. The work of

separation (denoted by φs) for the linear softening law is simply

φs =
1

2
σcδc

ds

dS
= Gc, (21)

where Gc is the fracture energy, which can be obtained from experiments. Fig-

ure 2 depicts the T − δ relationship for the linear softening law, and assuming

small deformation ( ds
dS

= 1). For crack closure, i.e. ∆n = 0 and ∆̇n < 0, we

assume that the normal response is governed by the continuum response, and

therefore fall back to the DG form of the interface terms. This guarantees that

compressive stress wave components can propagate across the closed crack sur-

face as in the uncracked body. The tangential response is still governed by the

TSL. Improvements on this model would incorporate a frictional component

in the tangential response, but this has been neglected in the present work for

simplicity and due to lack of experimental data supporting this need.
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Fig. 2. T − δ relationship for the linear softening extrinsic law

2.3 Finite element discretization and explicit time integration

The weak formulation of the dynamics problem presented above is taken as a

basis for finite element discretization. To this end, the deformation mapping,

its first variation and the material acceleration field are respectively approxi-

mated by the interpolations

ϕh (X)= Na (X)xa , δϕh (X) = Na (X) δxa , ϕ̈h (X) = Na (X) ẍa , (22)

where Na is the conventional shape function corresponding to node a ∈ [1, N ],

xa is the vector of current nodal positions, and N is the number of nodes. The

weak form (14) therefore reduces to the set of ordinary differential equations:

Mabẍb + f i
a (x) + f s

a (x) = f e
a , ∀t ∈ T , (23)

where, the inertial, internal, interface and external forces are respectively de-

fined by
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Mabẍb =
∫

B0h

ρ0NaNbdV ẍb , (24)

f i
a =

∫

B0h

P : ∇0NadV , (25)

f s
a± =±

∫

∂IB0h

(1 − α) 〈P〉 · N−NS
a dS

±
∫

∂IB0h

(1 − α)

[〈

βs

hs
C

〉

: JxbK ⊗ N−

]

· N−NS
a NS

b dS

±
∫

∂IB0h

αT (JxK)NS
a dS , (26)

f e
a =

∫

B0h

ρ0BNadV +
∫

∂N B0h
T̄NS

a dS , (27)

where Mab is the mass matrix, and ± refers to the boundaries of the two

elements sharing the same interface.

The numerical implementation of the DG/cohesive framework is based on the

use of interface elements introduced between the volumetric finite elements

as depicted in Figure 3. The main advantage of using interface elements is

the ability to integrate both the DG interface forces as well as the cohesive

law (26). In this formulation, the conventional finite elements inside the vol-

ume of the domain can be used without modification. In this paper, 10-node

quadratic tetrahedral elements are used, resulting in 12-node quadratic in-

terface elements. Tetrahedral elements are integrated using a 4-point reduced

quadrature rule, while the interface elements require full 6-point integration

in order to prevent spurious penetration modes (35).

The interface elements are inserted between the two volume elements Ωe+
0 and

Ωe−
0 by splitting the shared nodes, leading to independent problem unknowns.

This new element encompasses the surface elements ∂IΩ
e+
0 and ∂IΩ

e−
0 , which

coincide in the reference configuration. In the reference configuration the inter-

polation of the position, the deformation mapping and its jumps are computed

using the standard shape functions of the surface element NS
a (ξ), a ∈ [1, n],
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Fig. 3. Description of a 12-node interface element introduced between two 10-node

quadratic tetrahedra Ωe+
0 and Ωe−

0 .

where ξ = (ξ1, ξ2) are the natural coordinates. For example, the reference

configuration of the element is thus described by the expression:

X±(ξ) =
n
∑

a=1

NS
a (ξ)Xa± , (28)

where Xa± , a ∈ [1, 6] are the nodal coordinates of the surface elements in

the reference configuration. The reference interelement outer surface normal

N− corresponding to element Ωe−
0 evaluated on the middle surface is obtained

from the expression:

N−(ξ) =
G1(ξ) × G2(ξ)

|G1(ξ) × G2(ξ)| , (29)

in which

Gα(ξ) = 〈X,α〉 =
n
∑

a=1

NS
a,α(ξ) 〈Xa〉 (30)

are the tangent basis vectors, α ∈ [1, 2], 〈Xa〉 = X
+
a +X

−
a

2
. To compute the

equivalent geometric quantities in the deformed configuration, as required by

the TSL, the same expressions can be used by simply replacing the undeformed

nodal positions with those in the deformed configuration.
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Time integration of the dynamics equations (23) is effected using a conven-

tional second-order central-difference scheme (41) with mass lumping, which

is suitable for the fast dynamic fracture processes of interest in this paper.

2.4 Parallel Implementation using MPI

The parallel implementation of the computational framework encompasses the

following steps:

(1) Partitioning of the original conforming finite element mesh into as many

processors as form part of the calculation. For this step we utilize the

popular METIS library. (42).

(2) Identification of the topology of the partitioned mesh to determine neigh-

bors of each partition and generation of the nodal communication maps

with neighbors. Although these are later discarded after the DG mesh is

created, they provide very useful information to identify partition bound-

aries in the DG mesh.

(3) Generation of the data structures of the new volumetric finite

element mesh corresponding to the partition. In the DG formu-

lation, volumetric elements have their own nodes which are not shared

with adjacent elements. This can be done in a straightforward manner

from the continuous partition finite element mesh by iterating through

all the elements, replicating all the original nodes shared with the adja-

cent elements and updating the connectivity table to point to the new

node identifiers. It is then clear that a node in the original mesh gets

replicated as many times as its number of adjacent volume elements. A

map from the new to the old node ID is created as each new node is
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generated for later convenience when generating the interface elements

and the interprocessor communication maps.

(4) Generation of interface elements in the interior of the partition

mesh. This can be efficiently accomplished in linear time on the total

number of faces in the mesh by employing the WingedFace data structure

(43) applied to the original partition mesh. For each face, this stores

information about the adjacent volume elements and their face adjacency.

Through the new volume element connectivity table one can then directly

create the connectivity map for the interface elements. It should be noted

that this step does not require the insertion of any extra nodes in the

mesh.

(5) Generation of interface elements at interprocessor boundaries.

For faces on interprocessor boundaries, it is clear that one of the two

neighboring processors needs to define an interface element. Real domain

boundary is distinguished from interprocessor boundary by use of the

old communication maps and the new-to-old nodal ID mapping as fol-

lows: once a partition boundary face is found, the face’s old node IDs are

searched in the communication map of the partition neighbors. When

all face nodes are found on a neighbor communication map, that signals

that the face is an interprocessor boundary face and that a new interface

element should be inserted. An interface element is inserted if the pro-

cessor ID is lower than that of the neighbor to avoid duplication. This

potentially creates a small imbalance but in practice no impact on scala-

bility has been observed as the imbalance is only of a surface-to-volume

character.

(6) Update of the interprocessor nodal communication maps. In the

framework proposed, the new nodal communication maps are simple to
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obtain from the existing information of the interprocessor boundary faces.

Remarkably, this step can be done without the need for any communi-

cations, barring an exceptional case as described below. The number of

nodes involved in the pairwise map is equal to the number of faces on

that interprocessor boundary multiplied by the number of nodes per face

(six in the case of 10-node tetrahedral elements used here). A simple spa-

tial sort procedure of the faces involved and their nodes is used to match

up the nodal communication pairs while avoiding communications. The

spatial sorting needs to be done in two levels (for all the nodes of each

face first and then for face node groups), as there are spatially-coincident

nodes in adjacent faces which can lead to incorrect pairwise node iden-

tification across the communication map due to machine round-off. The

only exception which requires communication occurs when a partition

boundary node is shared by more than one face of the same volumetric

element. The face-based communication map then leads to a duplication

of a node on the communication map. Fortunately, these nodes can be

simply identified with minimal communication and either eliminated from

the communication map or handled in the interprocessor assembly oper-

ation. We have chosen this latter approach for implementation efficiency.

This requires a modification of the assembly operator. The modification

of the assembly operator is described in the following.

(7) Modified parallel assembly operator. The usual approach of assem-

bling global nodal quantities (e.g. masses, internal forces, etc.) by first

adding the local processor contributions to all the processor nodes and

then completing boundary-node values through an MPI reduce operation

using the communication maps needs to be extended to contemplate the

case of repeated nodes in the face-based communication maps. The ex-
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tension involves simply pre-assembling the information in the identified

repeated boundary nodes prior to MPI communication. This guarantees

that the local nodes contain all the necessary information that needs to

be exchanged with the neighbor.

It bears emphasis that the steps in the parallel implementation are indepen-

dent of the specific finite and interface element type employed. The outlined

procedure is then equally applicable to higher-order or hexahedral elements,

etc. Additional aspects of the parallel DG implementation may be found in

(35). However, it should be noted that the steps outlined above represent a sig-

nificant improvement compared to the approach in this reference as it avoids

the need of using and maintaining a global node ID, which, in turn, requires

significant communication and spatial searches in the initialization stage of

the overall algorithm.

Once the new communication maps and modified assembly operator are es-

tablished, the calculation proceeds in the same fashion as the well-established

and widely-adopted approach of MPI-based explicit finite element calculations

(44; 45).

One of the unique aspects of the DG/CZM computational framework pro-

posed is that the nucleation and propagation of cracks proceeds natural and

impassively to the presence of processor boundaries without any extra oper-

ation, since the fracture modeling approach operates directly and exclusively

at the constitutive level of the interface elements.
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3 Numerical examples

3.1 Application: Longitudinal wave propagation and spall of an elastic bar

For a simple and exacting verification test of the hybrid DG/CZM method,

we consider the spall of a bar which remains elastic up to a given fracture

stress. Here, we use the term ”spalling” to denote an internal fracture surface

created by the interaction of two tensile stress waves to differentiate it from

other types of fracture. Spall conditions at the center of the bar are induced

by two longitudinal tensile waves originated at both bar ends by imposing a

constant extensional velocity Vz. The waves travel toward the center at the

longitudinal wave speed cd =
√

λ+2µ
ρ0

, where ρ0 is the reference material density

and λ and µ are the respectively the first and second Lamé constants, with

a stress intensity σw = ρ0cdVz. The imposed velocity Vz is chosen such that

the longitudinal stress is half the fracture strength σw = 0.5σc, which, in turn,

causes the material to spall when the waves meet a the center of the bar. A

schematic of the domain geometry is depicted in Figure 4.

y

Prescribed velocities on z−faces

Constrained displacements on 
x and y faces

x
z

L
t

t

Fig. 4. Schematic of domain geometry and boundary conditions
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The boundary and initial conditions for the z-faces correspond to a prescribed

uniform velocity Vz:

− ϕ̇ (x, y, 0, t) = ϕ̇ (x, y, L, t) = (0; 0; Vz) ∀t ∈ [0, T ] (31)

Additionally, the x and y displacements are constrained on the lateral faces.

In this wave propagation problem, the material response prior to fracture

remains elastic and well into the infinitesimal strain limit. For convenience, an

elastic neo-Hookean potential is used which reproduces the linear response in

the limit of small deformations:

W =

(

λ

2
log J − µ

)

log J +
µ

2
(I1 − 3) , (32)

where λ and µ are the Lame constants, J = det(F), and I1 = tr(C) for

F = ∇0ϕ and C = FTF. The material properties of the uncracked continuum

elements and the dimensions of the bar, as well as the applied velocity of the

z-faces are given in Table 1.

3.2 Comparison of DG/CZM and CG/CZM Approaches

The problem is simulated both with the proposed DG/CZM approach and

with the conventional intrinsic CG/CZM method for the purpose of compari-

son. The material properties chosen for the DG/cohesive interface elements are

given in Table 2. The parameters are selected to be representative of alumina

(critical stress and fracture energy, which determines the COD). However, the

specific values are not really important as the example is used for verification

purposes only and is not intended to reproduce any particular experiment.The

solution is computed in parallel for the two approaches using the coarse mesh

shown in Figure 5 which consists of 13683 tetrahedral elements or 130683
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Properties Values

Length L = 4.0 mm

Thickness t = 0.4 mm

Initial density ρ0 = 3690 kg·m−3

Elastic Modulus E = 260 GPa

Poisson’s Ratio ν = 0.21

Longitudinal Wave Speed cd = 8906 m·s−1

Velocity Vz = 6.086 m·s−1

Table 1

Simulation of spall of an elastic bar: bar dimensions, material properties and im-

posed velocity.

nodes.

Fig. 5. Undeformed mesh consisting of 13,683 10-node tetrahedra showing the pro-

cessor boundaries of the partitioned mesh for 10 processors

Figure 6 shows snapshots of axial stress in the bar at different times for the

DG/CZM simulation. In Figure 6(a)-(b) the 200 MPa wave transmitted to the
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Properties Values

DG Stability Parameter βs = 4.0

Fracture stress σc = 400 MPa

Fracture Energy φs = 34 J·m−2

Critical Opening Displacement δc = 0.17 µm

Weighting Parameter γ = 1.0

Table 2

Simulation of spall of an elastic bar: properties for the DG elements and cohesive

law.

bar by the external velocity applied to the bar ends can be seen propagating

toward the center at times 0.08µs and 0.16µs, respectively. Figure 6(c) shows

the stress distribution in the bar at time 0.32µs, slightly after the two inci-

dent waves reach the center at time 0.224µs. The zero stress at the center of

the bar denotes the presence of a fracture plane which creates a stress relief

wave that propagates outwardly toward the bar ends in both directions. The

narrow higher-intensity precursor stress of about 300 MPa reflects the stress

rise during the formation of the fracture surface. The later snapshot shown in

Figure 6(d) shows the continuing unloading of the two bar halves after spall

takes place.

In Figure 7 we compare the time history of stress σzz at the point (x, y, z) =

(0, 0, L/4 = 1.0mm) as predicted by the DG/cohesive approach against the

theoretical result given by one-dimensional wave theory. The exact solution
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Fig. 6. Snapshots of wave propagation for DG/Cohesive formulation showing the

incident waves at (a) 0.08 µs, (b) 0.16 µs and the reflection waves subsequent to

the onset of spall fracture at (c) 0.32 µs, (d) 0.45 µs

corresponds to the idealized case of the wave propagating in a bar of half the

length with a free surface at the end, i.e. it ignores the spall plane fracture

process.

Examining Figure 7, we find that despite the coarseness of the mesh, the

DG/CZM method accurately captures the speed and intensity of the incident

stress wave. After the onset of fracture, the DG/cohesive formulation also

captures the ensuing stress relief waves that reflect from the fracture surfaces.

In Figure 8 we show: (a) an exterior close-up view of the fracture surface

predicted by the DG/Cohesive scheme and (b) and internal view of the actual

computed spall surface by plotting all the fully-fractured interface elements.
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Fig. 7. σzz versus time for a point located at (x, y, z) = (0, 0, 1.0mm)

It can be observed in this figure that due to the unstructured character of

the mesh, the exact location of the theoretical spall plane z = L/2 is not

present as a possible locus of cracks and, as a result, the computed fracture

plane exhibits a certain roughness. This underscores the problem of mesh

dependency usually associated with cohesive element methods. However this

problem can be alleviated by mesh refinement as shown in Figure 9, where

the calculation has been repeated with a selectively refined mesh of 150742

tetrahedral elements or roughly 1.5 million nodes, Figure 9a. In this case,

the spall surface much better approximates the flat spall plane at the bar

center, Figure 9b. Further, the simulation was repeated with a mesh of 223,294

elements or 2.2M nodes, designed to contain the z = L/2-plane in its set of

interface elements, Figure 10(a). In this case, the spall plane at the center was

captured exactly, as expected, Figure 10b.
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(a) External trace of computed spall surface

(b) Fully fractured interface elements defining the spall sur-

face

Fig. 8. External and internal views of the computed spall surface

We contrast the results obtained for this problem with the DG/CZM method

with those in the CG intrinsic approach. In the latter, the Rose-Smith-Ferrante

intrinsic cohesive law is utilized. For this law, the normal and tangential trac-

tions are given respectively as,

TN =
σc

δ0
e(1−δ/δ0)∆N

ds

dS
(33)
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(a) Computational mesh

(b) Fracture surface

Fig. 9. Computed spall surface for a selectively-refined mesh showing a better res-

olution of the fracture plane

and

TM = γ2σc

δ0
e(1−δ/δ0)∆M

ds

dS
(34)

where σc is the critical cohesive strength at the onset of fracture which oc-

curs at δ = δ0. For consistency with the DG/CZM approach, we choose the

same values for the spall strength and the fracture energy. The cohesive law

properties for the intrinsic TSL are given in Table 3. It bears emphasis that in

this example the initial slope of the intrinsic law is determined by the physical

parameters of the phenomenological TSL (i.e. the spall strength for σc, and

the fracture energy for φs), and thus it cannot be used as a numerical knob to

reduce the effect of artificial compliance.

Figure 11 shows the contours of longitudinal stress obtained with the CG/intrinsic
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(a) Computational mesh

(b) Fracture surface

Fig. 10. Computed spall surface for a selectively-refined mesh with the plane z = L/2

contained among the mesh interelement boundaries which captures the fracture

plane exactly

Properties Values

Critical Cohesive Strength σc = 400 MPa

Work of Separation φs = 34 J·m−2

Critical Opening Displacement δ0 = 0.031 µm

Weighting Parameter γ = 1.0

Table 3

Cohesive law properties for the CG intrinsic formulation used in the simulation of

uniaxial wave propagation and spall.
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CZM method, corresponding to the same time snapshots as shown in Figure

6 for the DG approach. The first two snapshots in Figure 11(a)-(b) show no

appreciable difference in this particular view. However, as Figure 7 attests,

the speed and intensity of the stress wave is noticeably smaller than it should,

as previously noted by (15). This is a manifestation of the problem of artifi-

cial compliance introduced by the intrinsic cohesive law, which affects wave

propagation, as discussed above. The immediate consequence of this is that

when the two incident tensile waves meet at the center, the spall stress is not

reached, and the waves continue propagating from the center of the bar toward

the ends with double intensity and no fracture, Figures 11(c)-(d) and Figure

7.

3.3 Scalability Tests

The scalability of the proposed DG/CZM method is assessed using simulations

of the problem in Section 3.1 on three different platforms: our group cluster,

and two supercomputers at the Department of Defense High Performance

Computing Modernization Program (HPCMP). The platform details are:

• Our group cluster which consists of 40 compute nodes (320 compute cores).

Each compute node contains two Intel 2.26 GHz Xeon E5520 64-bit quad-

core processors with 24Gb of memory. The nodes are interconnected via a

4x DDR Infiniband network.

• The MJM system at the DoD Supercomputing Resource Center which con-

sists of 1100 compute nodes (4400 cores). Each compute node contains two

Intel 3.0 GHz Woodcrest 64-bit dual-core processors with 8 Gb of memory
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Fig. 11. Snapshots of wave propagation at (a) 0.08 µs, (b) 0.16 µs, (c) 0.32 µs, (d)

0.43 µs for the intrinsic CG/cohesive formulation showing a lack of spall due to

incorrect wave propagation

each. The nodes are interconnected via a 4x DDR Infiniband network 1 .

• The Diamond system which is and SGI Altix ICE consisting of 1,920 com-

pute nodes (15,360 compute cores). Each compute node contains two 2.8GHz

Intel Xeon 64bit quadcore Nehalem processors with 24 Gb of memory. The

nodes are interconnected in a HyperCube topology DDR 4X InfiniBand

network 2 .

A finite element mesh comprising 50,732 volume elements (507,320 nodes) is

employed iniitially on 2 processors. Then, both the number of processors and

1 More information available at http://www.arl.hpc.mil/Systems/mjm.html
2 More information available at http://www.erdc.hpc.mil/hardSoft/Hardware/ICE
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the computational mesh are increased so as to maintain a fixed computational

load per processor. The largest simulation was conducted on 4096 processors

on the Diamond system and consisted of 103 million elements or 1.03 billion

nodes.

The results are summarized in Figure 12, which shows a plot of the CPU

time normalized with the number of elements and number of time steps as a

function of the number of cores used for each platform considered. The plot

shows that the DG/CZM method maintains excellent scalability at least up

to 4096 processors.

Fig. 12. Scalability of the DG/CZM method on up to 4096 processors and problems

of upward of 3 billion degrees of freedom: Scaled speed-up results given as compute

time per time step and per element as a function of number of processors for all

three platforms tested

These results are consistent with the scalability of the continuum DG frame-

work for explicit dynamic calculations of large deformation of solids presented

in (35). However, the new results not only include the extended framework for

dynamic fracture but are also for very large problems (up to 3 billion degrees

of freedom) and processor counts (up to 4096). Thus, the scalability of the
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proposed DG/CZM method for large parallel computations of fracture and

fragmentation is demonstrated.

3.4 Application: Ceramic Plate Impact

Alumina Plate

t

L

L

rs
Rigid Sphere

sV
radius 

velocity L / 2

L / 2

Fig. 13. A schematic of the simulation setup for the impact simulation.

As a key example demonstrating the capabilities of the proposed DG/CZM

method in a problem of practical interest, we consider the high-velocity im-

pact of ceramic plates with hard spherical projectiles. Ceramics are commonly

employed in the design of protective armor plates in defense applications due

to their high ballistic impact resistance. The pioneering paper of Shockey et al

(46) showed that impact response of ceramic plates exhibits a complex com-

bination of failure modes including radial, conical and lateral cracks, as well

as lattice plasticity. The computational modeling of this complex problem us-

ing CZM was first attempted by Camacho and Ortiz (18). They showed that

the extrinsic CZM was successful at capturing the conical crack patterns in

ceramic plate impact providing finely resolved meshes were employed in the

calculations. However, due to the axisymmetric assumption which enabled the
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calculations to be conducted in a two-dimensional domain, the radial cracks

could not be modeled explicitly via the CZM. Instead, they adopted a contin-

uum damage approach only for this purpose. Here, we revisit this problem and

attempt a full three-dimensional description of the ceramic plate impact prob-

lem using the DG/CZM proposed. We emphasize that three dimensional cal-

culations with the resolution required to capture all the crack patterns in this

problem is enabled by the scalability of the approach, which, in turn, relies on

the possibility of seamlessly propagating cracks across processor boundaries.

We consider the model problem of impact of rigid sphere at the center of

a square alumina plate depicted schematically in Figure 13. The plate and

sphere dimensions are given in table 4. It is assumed that the plate behaves

elastically until the onset of fracture, with the elastic response described by

equation (32). The material properties for the bulk elements of the plate are

listed in table 4. Prior to fracture, the interface elements at the interelement

boundaries respond according to the continuum DG formulation as detailed

in section 2. Upon the onset of fracture, the cohesive law in section 2.2 with

the properties in table 5 becomes operative at the quadrature points of the

interface elements following equation (14). The finite element mesh employed

in the calculation consists of 183,673 volumetric finite elements or 1,836,730

nodes. In Figure 14 we show the initial mesh with 16 partitions represented

with different intensities of gray.

The results of this simulation are shown in the sequence of Figures 15-20 and

in Figure 21. Each Figure of the sequence 15-20 shows snapshots of the sim-

ulation at different times consisting of a montage of: (a) hydrostatic stress

contours on the impacted surface of the plate, (b) instantaneous maximum

principal stress contours on the back face of the plate, (c) contours of the
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Properties Values

Plate

Length L = 5.08 cm

Thickness t = 1.2 cm

Initial density ρ0 = 3690 kg·m−3

Elastic Modulus E = 260 GPa

Poisson’s Ratio ν = 0.21

Sphere

Radius rs = 7.66 mm

Density ρs = 8000 kg·m−3

Velocity Vs = (0; 0; − 300 m·s−1)

Table 4

Plate and sphere dimensions and material properties used for the ceramic impact

simulation.

instantaneous maximum principal stress in a through-thickness cross section,

(d) the trace of the fracture surfaces on a through-thickness cross section and

(e) a three-dimensional rendering of the fracture surfaces. Figure 15 corre-

sponds to time t = 0.52µs soon after the time of impact. It shows the incipient

stress waves, including a strong state of hydrostatic compression directly un-

derneath the impact point, a Rayleigh wave on the surface and a compression

wave propagating through the cross section of the plate hemispherically. Fig-

ure 16 corresponds to time t = 2.09µs, soon after the stress wave has reached

38



Properties Values

DG Stability Parameter βs = 4.0

Critical Cohesive Strength σc = 1.4 GPa

Work of Separation φs = 25.4 J·m−2

Critical Opening Displacement δc = 0.17 µm

Weighting Parameter γ = 1.0

Table 5

Cohesive law parameters used in the ceramic impact simulation

Fig. 14. Undeformed mesh for the ceramic plate impact problem consisting of

183,673 volumetric elements showing the processor boundaries for 16 processors

the back face. The maximum principal stress in the reflected wave is large

enough to initiate the first cracks on the back surface, which is accompanied

by a stress release on the newly-created free crack surfaces and behind the
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wave front propagating radially outwards. As Figure 16(e) shows, there is an

ensuing fracture ring on the front face originated at the interface between

the precursor surface wave propagating outwardly which and the hydrostatic-

compression region underneath the impactor. At time t = 3.4µs, Figure 17,

the development and propagation of radial cracks at the back face (b) and of

conical cracks in the cross section (c),(d) can be clearly observed. The radial

cracks are clearly driven by the high in-plane biaxial tensile stress wave prop-

agating outwardly. The stress level drops significantly behind the radial crack

tips. Similarly, the conical crack propagation is driven by the high principal

stress localizing on the conical surface (c). At time t = 5.46µs, Figure 18, it

becomes clear that the crack patterns are dominated by several radial cracks

at the back face still propagating toward the edges and a principal conical

crack stemming from underneath the impact zone. It can also be observed

that the radial crack which initially propagates towards the bottom left cor-

ner in Figure 18(b) branches out into two cracks which propagate away from

the corner and toward the adjacent edges. Later on in the simulation, Figure

19, the fracture pattern continues to develop and both the radial and conical

cracks become clearly visible as crack openings grow to a macroscopic scale.

Figure 20 shows the final computed snapshot, after which no further fragmen-

tation is experienced by the plate. The trace of the conical and radial cracks

on the face at the end of the simulation is shown in Figure 21.

From this simulation, it can be seen that the fracture and fragmentation pro-

cess in ceramic plate impact is clearly determined by the propagation of stress

waves in the material. Conversely, the propagation of stress waves is substan-

tially affected by the ensuing cracks, as the sequence of pressure contours on

the surface of the plate in Figures 15-20(a) clearly shows. More specifically,
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(a) Hydrostatic stress contours on exter-

nal surface of the plate

(b) Maximum principal stress contours

on back face of the plate

(c) Contours of maximum principal stress in cross section

(d) Trace of fracture surfaces on cross section

(e) 3D rendering of fracture surfaces

Fig. 15. Snapshot of simulation results at t = 0.52 × 10−6s
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(a) Hydrostatic stress contours on exter-

nal surface of the plate

(b) Maximum principal stress contours

on back face of the plate

(c) Contours of maximum principal stress in cross section

(d) Trace of fracture surfaces on cross section

(e) 3D rendering of fracture surfaces

Fig. 16. Snapshot of simulation results at t = 2.09 × 10−6s
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(a) Hydrostatic stress contours on exter-

nal surface of the plate

(b) Maximum principal stress contours

on back face of the plate

(c) Contours of maximum principal stress in cross section

(d) Trace of fracture surfaces on cross section

(e) 3D rendering of fracture surfaces

Fig. 17. Snapshot of simulation results at t = 3.4 × 10−6s
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(a) Hydrostatic stress contours on exter-

nal surface of the plate

(b) Maximum principal stress contours

on back face of the plate

(c) Contours of maximum principal stress in cross section

(d) Trace of fracture surfaces on cross section

(e) 3D rendering of fracture surfaces

Fig. 18. Snapshot of simulation results at t = 5.46 × 10−6s
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(a) Hydrostatic stress contours on exter-

nal surface of the plate

(b) Maximum principal stress contours

on back face of the plate

(c) Contours of maximum principal stress in cross section

(d) Trace of fracture surfaces on cross section

(e) 3D rendering of fracture surfaces

Fig. 19. Snapshot of simulation results at t = 10.9 × 10−6s
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(a) Hydrostatic stress contours on exter-

nal surface of the plate

(b) Maximum principal stress contours

on back face of the plate

(c) Contours of maximum principal stress in cross section

(d) Trace of fracture surfaces on cross section

(e) 3D rendering of fracture surfaces

Fig. 20. Snapshot of simulation results at t = 15.6 × 10−6s
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stress concentrations at crack tips, stress release and posterior multiple reflec-

tions at newly-created crack surfaces lead to very heterogeneous stress distri-

butions. It is thus clear the importance of properly describing the propagation

of stress waves in the fracturing material. In particular, we highlight the po-

tential importance of post-fracture transmission of compressive waves across

closed or closing cracks, a challenge for the CZM approach which is clearly

affected by the artificial compliance issue discussed throughout this paper.

As explained in Section 2.2, this is properly handled in the proposed method

by falling back to the normal component of the DG fluxes when cracks close

and the interfaces go into compression, thus guaranteeing the transmission of

longitudinal compressive waves as in the continuum uncracked problem.

Fig. 21. Radial cracks and trace of dominant conical crack on plate back face at the

end of the simulation

We finally show in Figure 22 a view of the back face in the deformed con-
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figuration at the end of the simulation with the different mesh partitions in

different colors. The purpose of this figure is to demonstrate that in the par-

allel DG/CZM method proposed, cracks are able to propagate freely across

the processor boundaries without the need of communicating any topological

information between the processors.

Fig. 22. Deformed back face view at the end of the simulation showing radial cracks

propagating across mesh partitions

4 Conclusions

In this paper, a scalable 3D computational method was presented for modeling

dynamic fracture and fragmentation of brittle solids. The method is based
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on a combination of a discontinuous Galerkin formulation of the continuum

problem and Cohesive Zone Models of fracture. The approach is general in

the sense that it does not place any restriction on the TSL employed in the

description of fracture.

By contrast to intrinsic cohesive zone models, the DG framework guaran-

tees the consistency and stability of the numerical solution prior to fracture.

This, in turn, avoids wave dispersion issues associated with “artificial com-

pliance” of intrinsic cohesive element methods. This was demonstrated in the

context of uniaxial wave propagation in a brittle elastic bar, where the pro-

posed method captures both the spall and stress relief, whereas the intrinsic

cohesive approach fails. Another important advantage of the DG/CZM formu-

lation is that the cohesive law operates strictly at the quadrature point where

the fracture criterion is met, whereas other quadrature points may remain

unfractured, thus affording the possibility of sub-element crack resolution.

Perhaps the most appealing aspect of the DG/CZM formulation presented is

its straightforward parallel implementation which does not require the com-

munication of topological mesh changes as cracks propagate across processor

boundaries. This enables large-scale simulations with highly refined meshes

which is critical for describing complex crack patterns and fragmentation in

three-dimensions. The excellent scalability properties of the parallel implemen-

tation were demonstrated on three different platforms on up to 4096 processors

and problem sizes of up to three billion degrees of freedom.

The method was applied to the problem of impact of a ceramic plate and

captured the main patterns of conical and radial cracks which propagate in

the mesh impassive to the presence of processor boundaries.
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